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Abstract

We consider a binary Bayesian game with large population where agents have additively

separative payoff heterogeneity, and we investigate dynamic relationship between the aggregate

strategy (the action distribution aggregated over all agents) and the strategy composition (the

joint distribution of action and payoff type). When each agent’s decision follows the best re-

sponse dynamic with constant revision rate, Ely and Sandholm (2005) prove that the dynamic

of aggregate strategy is independent from the strategy composition. We introduce stochastic

status-quo biases into BRD; then, the revision rate is positively correlated with the incentive of

revision. We verify that stationarity of the aggregate strategy requires balance between inflows

and outflows in the strategy composition. The aggregate strategy exhibits instability even when

the strategy composition is close to an equilibrium composition, due to the pressure of sorting

the composition.

Keywords: best response dynamic, Bayesian games, aggregate dynamics, learning speed, payoff

heterogeneity
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1 Introduction

There has been a number of research that study how exogeneous heterogeneity in learning or

decision protocols affect aggregate dynamics. While agents in these models are simply assumed to

have exogeneously different rules, it is natural for economists to rationalize difference in learning

protocols by difference in incentives of learning. In this paper, an agent is supposed to overcome

a status-quo bias and revise his action more frequently if he can expect larger improvement of
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payoff. Then, payoff heterogeneity induces heterogeneity in revision frequency. We focus on a

symmetric two-action Bayesian games and find the dynamic of the aggregate strategy significantly

depends on the strategy composition and it generally exhibits instability even in a neighborhood

of an equilibrium composition.

In the standard best response dynamic (BRD), proposed by Gilboa and Matsui (1991) and

Hofbauer (1995), the revision opportunity of each agent arrives according to a Poisson process with

a constant rate. Ely and Sandholm (2005) formulate a Bayesian version of best response dynamic

by embedding payoff heterogeneity. The Bayesian best response dynamic (B-BRD) is aggregable

in the sense that the evolution of aggregate behavior depends on the strategy composition only

through the current aggregate behavior.

Aggregability simplifies dynamic analysis, as the aggregate behavior is just a distribution on

the action set while the strategy composition is a joint distribution on the action set and the type

space. On the other hand, this means that aggregable dynamic cannot capture possible effects of

the strategy composition on the aggregate behavior.

In any evolutionary dynamics, social change is driven by the group of revising agents; tran-

sition of the aggregate behavior is determined by the aggregation of the change in their strategy

composition. The constant revision rate of the standard BRD implies that the receipt of a revi-

sion opportunity is independent of the current social state and the agent’s current action. As the

revision opportunity is not biased by the agent’s current action, the strategy composition of the

revising agents before their revision coincides with that of the society; so is the aggregate behavior.

After the revision, they switch to their optimal actions, which is determined in a Bayesian popu-

lation game by the current aggregate behavior. Since both old and new aggregate strategies of the

revising agents are described by the current aggregate behavior of the society, change in the social

aggregate behavior is simply determined by its current state.

In reality, we expect the frequency of switching actions to depend on the incentive to switch.2

Zusai (2014) defines a version of BRD, the tempered best response dynamic (tBRD), where the

revision rate increases with the payoff difference between the agent’s current action and the optimal

action. Here we extend the tBRD to a two-strategy Bayesian population game. In the tBRD, the

receipt of a revision opportunity by an agent of a given type is positively correlated with that type’s

incentive to revise. Hence the Bayesian tBRD (B-tBRD) is not aggregable, since the aggregation

of revising agents’ previous actions may differ from the aggregate behavior of the society. This

non-aggregability without exogenous heterogeneity in revision protocols would be useful to select

robust implications from agent based dynamics, especially to check the robustness to non-aggregable

distributional effects on the aggregate dynamic.

First, we verify that the stationarity of an aggregate strategy requires balance between inflows

and outflows in the strategy composition. So, even if the aggregate strategy is in aggregate equi-

librium and stationary under the B-BRD, it may not be stationary under the B-tBRD when the

2Experimental and empirical research report significance of status-quo bias in real economic choices: see Samuelson
and Zeckhauser (1988); Hartman, Doane, and Woo (1991); Madrian and Shea (2001). Also the theory of industrial
organization notes the significance of consumers’ switching costs in market competition (Klemperer, 1995).
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underlying strategy composition is not an equilibrium composition. Second, even if the strategy

composition is close to an equilibrium composition, the aggregate strategy can deviate away from

the aggregate equilibrium. This suggests that the pressure to sort the composition is stronger

than the aggregate dynamic. These results are obtained without imposing a specific form on the

functional relationship between the payoff difference and the revision rate. So they robustly hold

as long as a revision opportunity of strategy is positively correlated with the incentive of revision.

In other contexts, a number of other authors have used status-quo bias or switching costs to

model insensitivity to negligible payoff improvements. On the implementation problems, Lou, Yin,

and Lawphongpanich (2010) and Szeto and Lo (2006) consider (deterministic) status-quo biases in

a model of traffic congestion. The former investigates congestion pricing in a static equilibrium

model, and the latter studies a dynamic traffic assignment model without pricing. Zusai (2014)

argues that the tempered BRD can be interpreted as the BRD with stochastic status-quo biases:

even if the revision opportunity arrives at a constant rate, a revising agent does not take the optimal

action when the realized status-quo bias exceeds the payoff deficit of his current action. As the

status-quo bias varies stochastically, larger payoff deficit implies higher probability that a revising

agent actually switches to the optimal action. So this paper is the first study that investigates

the implication of such stochastic switching costs on aggregate dynamic in a Bayesian population

game.

Evolutionary game theorists and macroeconomists have considered the implications of het-

erogeneity in evolutionary dynamics and learning process on aggregate dynamics and controls, by

introducing exogeneous heterogeneity in revision or learning protocols into evolutionary or adaptive

dynamics: see Schuster, Sigmund, Hofbauer, Gottlieb, and Merz (1981), Golman (2009, Chapter

5), and Sawa and Zusai (2014) in evolution; Evans, Honkapohja, and Marimon (2001) and Giannit-

sarou (2003); Honkapohja and Mitra (2006) in macroeconomics. In contrast to these models, the

tBRD generates heterogeneous learning speeds endogenously, combining payoff heterogeneity with

stochastic status-quo biases. So all heterogeneity in our model results from payoff heterogeneity.

This enables us to consider distributional effects of heterogeneity on aggregate social dynamics.

This paper proceeds as follows. The next section defines a two-strategy Bayesian population

game. In the following two sections, we define Bayesian BRD and Bayesian tBRD for these games,

and compare their implications for aggregate dynamics. In the last section, we discuss implications

on dynamic implementation of the social optimum. Lengthy proofs are given in the appendix.

2 The binary-choice Bayesian population game

Here we model a two-strategy Bayesian population game. An agent in the population chooses his

action from the two options, IN and OUT. The payoff of IN is a function of the mass of the agents

who choose IN in the entire society and the function is common to all agents, while the payoff of

OUT is constant and heterogeneous.

The society Ω consists of continuously many agents. Let BΩ be a σ-algebra and PΩ : BΩ → [0, 1]
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be the probability measure over Ω. Each agent ω ∈ Ω chooses action a(ω) from IN (action I)

and OUT (action O). An agent who is IN is called a participant. We restrict the action profile

a : Ω→ {I,O} to be a BΩ-measurable function. The aggregate participation rate over all the

population is x̄ = PΩ(a(ω) = I) ∈ [0, 1]. We also call it the aggregate strategy.

Each participant gets the payoff F (x̄) from being IN, given the aggregate participation rate

x̄. We assume that F : [0, 1] → R is continuously differentiable and bounded; thus it is Lipschitz

continuous, say with Lipshitz constant LF . There is heterogeneity in the payoff from OUT: an

agent of type θ ∈ Θ := [θ, θ̄] ⊂ R gains payoff θ from being OUT. The function θ : Ω → Θ is

assumed to be BΩ-measurable. Let BΘ be a σ-algebra on Θ and PΘ be the probability measure

of types over Θ, generated from (Ω,BΩ,PΩ) by θ. To avoid trivial indeterminacy of equilibrium,

assume that PΘ has no atom. Let PΘ : Θ → [0, 1] be the cumulative distribution function of θ,

i.e., PΘ(θ) := PΘ((−∞, θ]) and pΘ : Θ→ R+ be the density function. Assume that pΘ is bounded

above and always positive: there exists p̄Θ such that

0 < pΘ(θ) ≤ p̄Θ for all θ ∈ Θ.

The joint distribution of type and action, i.e, the participants’ composition is expressed by a

probability measure X on Θ such that X(BΘ) := PΩ(a(ω) = 1 and θ(ω) ∈ BΘ) for each measurable

set BΘ ∈ BΘ. X is dominated by PΘ in the sense that

PΘ(BΘ) = 0 =⇒ X(BΘ) = 0 for any BΘ ∈ BΘ.

It follows from Radon-Nikodym theorem that there exists a BΘ-measurable function x : Θ → R
such that

X(BΘ) =

∫
BΘ

x(θ)dPΘ(θ) for any BΘ ∈ BΘ.

x is the density function of X; x(θ) is the proportion of participants among the type-θ agents. Like

Ely and Sandholm (2005), we sometimes call x a Bayesian strategy, imagining a Bayesian game

where a player chooses a strategy (a contingent action plan) before he knows his own type.3 The

aggregate participation rate is expressed in terms of the participants’ composition via4

x̄ = X(Θ) = EΘx.

The space of strategy compositions is XΘ, the set of probability measures over Θ that is dom-

inated by PΘ. We adopt the variational norm on this space:5 for any two probability measures

3In a Bayesian game, we distinguish a ‘player’ and an ‘agent.’ A player comes to the game before knowing its
type, and decides on a plan of the action contingent on the realized type: a Bayesian strategy is this contingent plan
of one player. In a Bayesian population game, an agent comes to the game after knowing his type and decides on an
action; the Bayesian strategy is essentially an empirical joint distribution of type and actions.

4Here EΩ is the expectation operator on the probability space (Ω,BΩ,PΩ), while EΘ is that on (Θ,BΘ,PΘ): i.e.,
EΩf :=

∫
Ω
f(ω)dPΩ(ω) for a BΩ-measurable function f : Ω → R and EΘf̃ :=

∫
Θ
f̃(θ)dPΘ(θ) for a BΘ-measurable

function f̃ : Θ→ R.
5Here we import formulation and properties of topology on our strategy space from the models on evolutionary
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X,X′ ∈ XΘ with densities x, x′, the distance between X and X′ is defined as

‖X− X′‖ := EΘ|x− x′| =
∫

Θ
|x(θ)− x′(θ)|dPΘ(θ).

Let M(π, θ) ∈ [0, 1] be the set of optimal probabilities of IN that maximize the expected payoff

given the payoff vector (π, θ) ∈ R2:

M(π, θ) = arg max
y∈[0,1]

yπ + (1− y)θ =


{1} if θ < π,

[0, 1] if θ = π,

{0} if θ > π.

Given x̄, IN and OUT are indifferent for an agent with type θ = F (x̄); we call such a type the

indifferent type given x̄. The type θ = P−1
Θ (x̄) is called the marginal type. If the composition

is sorted, i.e., if agents take IN from the lowest type until the aggregate participation rate reaches

x̄, then the marginal type is the threshold between the participants and the nonparticipants.

In a Nash equilibrium of this binary-choice game, every agent correctly predicts the participation

rate and plays the best response to it. Precisely speaking, the Bayesian strategy x : Θ→ [0, 1] is a

Bayesian equilibrium if for almost all θ ∈ Θ, we have x(θ) ∈M(F (EΘx), θ),

i.e., x(θ)


= 1 if θ < F (EΘx),

∈ [0, 1] if θ = F (EΘx),

= 0 if θ < F (EΘx).

(1)

This means that almost every player’s action is optimal given the aggregate state.

In a Bayesian equilibrium, the composition is sorted and the marginal type matches the indif-

ferent type: that is, the aggregate participation rate x̄ = EΘx satisfies

x̄ = PΘ(F (x̄)). (2)

We say that the aggregate participation rate x̄ is an aggregate equilibrium if it satisfies (2),

and that the Bayesian strategy x is a Bayesian pseudo-equilibrium if its aggregation x̄ = EΘx

satisfies (2). A Bayesian equilibrium is a Bayesian pseudo-equilibrium but the converse is not

true when the participants’ composition is not sorted. We should also note that for any aggregate

equilibrium x̄∗, there is a Bayesian equilibrium x∗ ∈ Σ with this aggregate state EΘx
∗ = x̄∗: namely

x∗(θ) = 1 for almost all types θ < F (x̄∗) and x∗(θ) = 0 for almost all types θ > F (x̄∗).

dynamics in a continuous action space such as Oechssler and Riedel (2001): see Cheung (2013) for a well-organized
summary. The density-based formula of the variational norm comes from Theorem 5 in Oechssler and Riedel (2001).
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3 Aggregability of Bayesian BRD

The best response dynamic, defined by Gilboa and Matsui (1991) and Hofbauer (1995), is an

evolutionary dynamic based on myopic optimization in a population game. Each agent switches to

the best action based on the current payoff (myopic optimization) only when he gets an opportunity

to revise his action. The revision opportunity arrives according to a Poisson process with arrival

rate 1. Ely and Sandholm (2005) extend BRD to a dynamic of Bayesian strategy, Bayesian best

response dynamic (B-BRD).

In our binary-choice Bayesian population game, B-BRD is defined as

Ẋ(BΘ) = PΩ[BΘ ∩ (−∞, F (X(Θ))]− X(BΘ) for any BΘ ∈ BΘ,

or equivalently ẋt(θ) ∈M(F (EΘxt), θ)− xt(θ),

i.e., ẋt(θ)


= 1− xt(θ) if θ < F (EΘxt),

∈ [−xt(θ), 1− xt(θ)] if θ = F (EΘxt),

= −xt(θ) if θ > F (EΘxt)

(3)

for each θ ∈ Θ. Notice that ẋt(θ) = 0 is equivalent to (1). That is, a stationary point of B-BRD

coincides with a Bayesian equilibrium. If a Bayesian strategy x is not in equilibrium, there are (a

positive measure of) types of agents who want to switch the action and their revision changes the

Bayesian strategy.

In general, the dynamic of the aggregate participation rate x̄ depends on the composition xt.

Ely and Sandholm (2005) show that B-BRD is aggregable in the sense that ˙̄xt depends on xt only

through its aggregation x̄t = EΘxt. Indeed, the aggregate dynamic takes the simple form

˙̄xt = EΘẋt = PΘ(F (x̄t))− x̄t. (4)

That is, the future aggregate state {x̄t}t≥0 is perfectly predicted from the current aggregate state

x̄0, without knowing the participants’ composition x0.

In particular, once the aggregate state falls in an aggregate equilibrium, it stays there forever

even if the participants’ composition is not a Bayesian equilibrium. To provide a contrast with

later results, let us rephrase this as a theorem.

Theorem 1 (Aggregability of B-BRD and stationarity of aggregate equilibrium, Ely and Sandholm

2005). Under B-BRD with the constant revision rate 1, the aggregate state x̄t = EΘxt follows the

aggregate dynamic (4). In particular, an aggregate equilibrium (2) is a rest point of this aggregate

dynamic and vice versa.
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Rough proof. Under B-BRD (3), the dynamic of the aggregate state x̄t = EΘxt is

˙̄xt = EΘẋt(θ) =

∫ F (x̄t)

θ
(1− xt(θ))dPΘ(θ) +

∫ θ̄

F (x̄t)
(−σt(θ))dPΘ(θ)

=

{∫ F (x̄t)

θ
dPΘ(θ)−

∫ θ̄

θ
xt(θ)dPΘ(θ)

}
= {PΘ(F (x̄t))− x̄t}.

So we obtain (4). It follows that (2) is equivalent to ˙̄x = 0.

The computation in this proof gives us the intuition behind the aggregation of B-BRD. Under

B-BRD, each agent revises his strategy with a common and constant rate 1. In particular, receipts

of revision opportunities are independent of an agent’s type and action. Thus the current aggregate

participation rate of the revising agents is just x̄t before their revision; it becomes PΘ(F (x̄t)) after

the revision because the types below the indifferent type θ = F (x̄t) switch to IN and the proportion

of such types among the revising agents is the same as that in the whole society, namely PΘ(F (x̄t)).

As the mass of revising agents is scaled down to 1 per unit time, these transitions of revising agents

yield the aggregate dynamic (4).

4 Non-aggregability of Bayesian tBRD

4.1 Bayesian tempered BRD

The assumption of a constant revision rate is crucial to obtain the aggregability of B-BRD. The

constant revision rate ensures that every agent revises his action at the same rate regardless of the

incentive for revision. This assumption, while greatly simplifying the analysis, may not always be

appropriate.

Zusai (2014) proposes a variant of BRD, the tempered best response dynamic (tBRD),

where an agent becomes less likely to revise action as the payoff improvement from revision becomes

smaller. He considers a population game with finitely many separate populations. The tBRD can

be interpreted as the standard BRD with stochastic status-quo biases or switching costs.

Here we extends tBRD to a single-population Bayesian game and define Bayesian tBRD. In the

B-tBRD, the revision rate is ‘tempered’ by an increasing function Q : R+ → [0, 1] of the difference

between the agent’s current payoff and the maximal payoff. The rate is thus Q(|F (x̄) − θ|) for

a type-θ agent; in particular, it is Q(0) if he is taking the optimal one. As in Zusai (2014), we

assume that Q : R+ → [0, 1] is continuously differentiable and satisfies Q(0) = 0, Q(q) > 0 for all

q > 0. Besides, we assume the existence of q̄ ∈ (0,∞] such that Q is strictly increasing in [0, q̄) and
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Q(q̄) = 1. Then the dynamic of the Bayesian strategy is

ẋt(θ) = Q(|F (EΘxt)− θ|){M(F (EΘxt), θ)− xt(θ)}

=


Q(F (EΘxt)− θ){1− xt(θ)} if θ < F (EΘxt),

0 if θ = F (EΘxt),

−Q(θ − F (EΘxt))xt(θ) if θ > F (EΘxt).

(5)

This is the Bayesian tempered best response dynamic (B-tBRD).

We can establish unique existence of the path {xt} from arbitrary x0 ∈ Σ and its Lipschitz

continuity in x0 by Theorem A.3 in Ely and Sandholm (2005), which they use to prove those

properties for the standard Bayesian BRD. Similar to the B-BRD, a stationary point of the B-

tBRD coincides with a Bayesian equilibrium.

Like the (non-Bayesian) tBRD, the B-tBRD (5) can be interpreted as the standard B-BRD with

stochastic status-quo biases. First we assume that the revision opportunity of each individual agent

arrives according to a Poisson process with constant arrival rate > 0, like the standard BRD. Then,

we introduce stochastic status-quo biases. Once an agent gets a revision opportunity at time t, he

draws a value q ∈ [0, q̄] of status-quo bias from a continuous distribution Q. Then he decides the

next action a′ given his current action a, so as to maximize the genuine payoff plus the status-quo

bias:6

arg max
a′∈A={O,I}

Fa′(x̄; θ) + q1(a′ = a).

The optimal revision is as follows.

An action-O player switches to I if F (x̄) > θ + q, i.e. q < F (x̄)− θ;

An action-I player switches to O if F (x̄) + q < θ, i.e. q < θ − F (x̄).

That is, an agent receiving a revision opportunity switches his action if his current action is not

optimal and also he draws a status-quo bias satisfying q < |F (x̄) − θ|; otherwise, a revising agent

sticks with his current action. In sum, a suboptimal action player switches to the optimal action

at the rate Q(|F (x̄) − θ|), and an optimal action player never switches. We thus have the same

Bayesian dynamic as (5).

4.2 Stationarity condition and instability of aggregate equilibrium

While the incentive-dependent revision rate changes each type’s revision rate, it also changes the

direction of the transition of the aggregate participation rate. The dynamic of the aggregate

participation rate x̄t is obtained from aggregation of the transition of the participate rates over all

6The indicator function 1(P (·)) : Z → R of a propositional function (predicate) P : Z → {true, false} means
1(P (z)) = 1 if the proposition P (z) is true and 1(P (z)) = 0 if it is false.
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the types:

˙̄xt = EΘẋt(θ) = V̄ (xt) :=

∫ F (x̄t)

θ
Q(F (x̄t)−θ)(1−xt(θ))dPΘ(θ)+

∫ θ̄

F (x̄t)
{−Q(θ−F (x̄t))xt(θ)}dPΘ(θ).

In an infinitesimal period of time [t, t+ dt], the net increase of aggregate participation rate dx̄t

under B-tBRD (5) is approximated as dx̄t ≈ V (xt)dt. We decompose V (xt) as V (xt) = Q̃t(ỹt− x̃t)
with

Q̃t :=

∫ F (x̄t)

θ
Q(F (x̄t)− θ)(1− xt(θ))dPΘ(θ) +

∫ θ̄

F (x̄t)
{Q(θ − F (x̄t))xt(θ)}dPΘ(θ),

ỹt :=

∫ F (x̄t)

θ
Q(F (x̄t)− θ)(1− xt(θ))dPΘ(θ)/Q̃,

x̃t =

∫ θ̄

F (x̄t)
Q(θ − F (x̄t))xt(θ)dPΘ(θ)/Q̃.

In this infinitesimal period, a type-θ player of a suboptimal action receives a revision opportunity

with probability Q(|F (x̄t)−θ|)dt. In the definition of Q̃t, the first integral multiplied with dt is the

mass of revising agents who have types smaller than F (x̄t) and took OUT before the revision, and

the second integral multiplied with dt is the mass of those who have type larger than F (x̄t) and

took IN. The sum Q̃tdt is thus the mass of all revising agents in this period. x̃t is the proportion

of the latter group to all the revising agents, namely the participation rate among revising agents

before their revision. After revision, this rate changes to ỹ, since the former group enters and the

latter exits.

If the revision opportunity were independent from action and type, then Q̃t, ỹt and x̃t are simply

1, PΘ(F (x̄t)) and x̄t, respectively; the the last equation d̃t(ỹt− x̃t) would reduce to PΘ(F (x̄t))− x̄t,
the aggregate dynamic under B-BRD (4). But it does not under B-tBRD and thus ˙̄xt can be different

from (4). In particular, the sign of ỹt − x̃t may be different from the sign of PΘ(F (x̄t)) − x̄t. So

the dynamic of the aggregate participation rate x̄t under B-tBRD is different from the aggregate

of B-BRD, not only in the speed (mass of revising agents Q̃) but also in the direction.

Under B-tBRD the current state of the aggregate participation rate x̄t is not sufficient to

predict its transition ˙̄xt. In particular, an aggregate equilibrium is not necessarily stationary,

unless the underlying Bayesian strategy is exactly a Bayesian equilibrium. The following theorem

states a necessary and sufficient condition to keep the aggregate participation rate at an aggregate

equilibrium. Recall that q̄ ∈ (0,∞] is the upper bound of status-quo bias.

Theorem 2 (Stationarity condition of an aggregate equilibrium under B-tBRD). Assume a contin-

uous type distribution PΘ with density pΘ. Suppose the aggregate state x̄t is an aggregate equilibrium

at time 0: x̄0 = PΘ(F (x̄0)). Let x̄∗ = x̄0 and θ∗ = F (x̄∗). Then, x̄t = x̄∗ for all t ∈ [0,∆] with

some ∆ > 0 if and only if

(1− x(θ∗ − q))pΘ(θ∗ − q) = x(θ∗ + q)pΘ(θ∗ + q) for all q ∈ [0, q̄]. (6)

9



Indeed x̄t = x̄∗ for all t ∈ [0,∞) if this condition holds.

The left hand side is the density of those who have type θ = θ∗ − q and play Out at time 0,

and the right hand side is the density of those who have type θ = θ∗ + q and play In at time 0.

Noticing that the Bayesian strategy moves from x0 to the Bayesian equilibrium (1) with EΘx
∗ = x̄∗,

provided that x̄t ≡ x̄∗; the former group gradually enters and the latter exits. The stationarity of

aggregate equilibrium under B-tBRD thus requires balancing these entries and exits at each level

of type difference q = |θ − θ∗| ∈ (0, q̄), not only balancing the entries and exits aggregated over all

types.

The upper bound q̄ matters to keep the aggregate equilibrium as a stationary point of the

aggregate dynamic. The shape of the distribution function Q(·) does not appear in this stationarity

condition (6), but it determines the size of divergence from the aggregate equilibrium when this

condition is violated.

In general, the stationarity condition (6) imposes a non-trivial restriction on the type distribu-

tion PΘ and the composition x0 at time 0. Assume that density pΘ is continuous. If x0 is continuous

in θ at θ∗, (6) implies pΘ(θ∗) = 1/2. In particular, if x0(θ) = x̄∗ for all θ, the aggregate equilibrium

must be x̄∗ = 1/2. In contrary, suppose that x0 is discontinuous at θ∗ such that x0(θ) = xL for

all θ < θ∗, x0(θ) = xH for all θ > θ∗ and xLPΘ(θ∗) + sH(1 − PΘ(θ∗)) = x̄∗. Then, (6) implies

xL + xH = 1 and thus x̄∗ = 1/2. In these two cases, any aggregate equilibria other than x̄∗ = 1/2

cannot be stationary.

In aggregate BRD, stability of an aggregate equilibrium is easily determined from F ′. In par-

ticular, if F ′ is positive, the aggregate equilibrium is unstable. This holds in the aggregation of

B-tBRD as well. Somewhat surprisingly, an aggregate equilibrium cannot be stable even around a

Bayesian equilibrium, whatever F ′ is; in any neighborhood of a Bayesian equilibrium x∗, we can

find a Bayesian strategy at which the aggregate strategy move away from EΘx
∗.

Theorem 3. If X∗ satisfies either of the following two conditions, then, for any ε̄ > 0, there is a

Bayesian strategy X† such that ‖X† − X∗‖ < ε̄, x̄† := EΘx
† > x̄∗ and ˙̄x = V̄ (x†) > 0.

1. X∗ is not a Bayesian equilibrium but its aggregate x̄∗ is in the aggregate equilibrium, its density

x∗ satisfies the balancing condition (6) and thus V̄ (X∗) = 0. Further, F ′(x̄∗) > 0.

2. X∗ is a Bayesian equilibrium with density x∗ and aggregate x̄∗. Assume that F (x̄∗) belongs to

the interior of Θ.

5 Discussion: dynamic implementation of social optimum

In the tempered best response dynamic proposed by Zusai (2014), frequency of revision increases

with incentive of revision, namely the payoff deficit of the current action. This paper applies the

tBRD to a binary-choice game with heterogeneous payoff types. The tBRD makes the dynamic of

aggregate participation rate depend on the participants’ composition not only through the current

10



aggregate participation rate, unlike the aggregate dynamic under the standard BRD with a constant

revision rate. We thus propose tBRD as a tool to generate non-aggregable perturbation of BRD in

population games with payoff heterogeneity.

One application of Bayesian evolutionary dynamics is dynamic pricing schemes used by a social

planner to implement a socially optimal aggregate behavior.7 For example, consider a congestion

pricing efficient utilization of toll and free lanes,8 with commuters who have different values of time.

The central planner evaluates the social state primarily in terms of the allocation of commuters

(aggregate behavior), i.e. the numbers of commuters (utilization level) on each lane.9

The optimal control under Bayesian BRD is a bang-bang control. It indeed achieves the most

efficient aggregate behavior in the shortest time. As long as the utilization of the toll lane is

below the efficient level, the central planner should keep the toll at zero (or the lowest feasible

toll). Once the utilization level reaches the efficient level, the toll should be raised so as to keep

this utilization level as a Nash equilibrium. Still the strategy composition may change: namely

individual commuters may still switch their lanes. But inflow and outflow are offset thanks to the

constant revision rate of B-BRD.

In contrast, under Bayesian tBRD, this equilibrium toll may not maintain the efficient aggre-

gate behavior, depending on the strategy composition. When the strategy composition is not in

equilibrium, there are players of suboptimal actions who could gain some payoff improvement from

switching to the optimal action. Under the B-tBRD, the degree of payoff improvement can break

the balance between inflow and outflow. Compare two groups of commuters, namely those who are

currently taking the free lane but would switch to toll lane (inflow) and those who are taking the

toll lane but would switch to free lane (outflow). Provided that the current utilization level is in

aggregate equilibrium given the equilibrium toll, the masses of these two groups are the same and

thus the inflow and outflow are offset under the BRD. But, suppose that the payoff improvements

of the former group is larger than that of the latter. Then, under the tBRD, the former group

switches to the free lane in greater numbers than the latter group switches to the toll lane; the

inflow gets larger than the outflow and thus the utilization level overshoots the efficient level even

with the equilibrium toll. So the bang-bang control does not work, as it can leave such disparity in

the degree of payoff improvement. Instead, the tBRD requires one to smooth the control depending

on the strategy composition, so as to reduce the payoff disparity.
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A Proofs

A.1 Theorem 2

Proof of the “if” part in Theorem 2. The time derivative ˙̄x at time 0 is

˙̄x0 = Eẋ0(θ)

=

∫ θ∗

θ
Q(θ∗ − θ)(1− xt(θ))pΘ(θ)dθ +

∫ θ̄

θ∗
{−Q(θ − θ∗)xt(θ)}pΘ(θ)dθ

=

∫ θ∗−θ

0
Q(q)(1− xt(θ∗ − q))pΘ(θ∗ − q)dq +

∫ θ̄−θ∗

0
{−Q(q)xt(θ

∗ + q)}pΘ(θ∗ + q)dq

=

∫ q̄

0
Q(q) {(1− xt(θ∗ − q))pΘ(θ∗ − q)− xt(θ∗ + q)pΘ(θ∗ + q)} dq

+

∫ ∞
q̄

Q(q) {(1− xt(θ∗ − q))pΘ(θ∗ − q)− xt(θ∗ + q)pΘ(θ∗ + q)} dq. (7)

On the other hand, the aggregate equilibrium x̄0 = x̄∗ implies

PΘ(θ∗)− x̄∗ =

∫ q̄

0
{(1− xt(θ∗ − q))pΘ(θ∗ − q)− xt(θ∗ + q)pΘ(θ∗ + q)} dq

+

∫ ∞
q̄
{(1− xt(θ∗ − q))pΘ(θ∗ − q)− xt(θ∗ + q)pΘ(θ∗ + q)} dq. (8)

The stationarity condition (6) implies that the first integrals in these two equations (7) and (8)

are both zero. Further, by x̄0 = x̄∗ = PΘ(θ∗), the second integral in (8) is zero, which implies the

second one in (7) is also zero since Q(q) = 1 for all q ≥ q̄. Therefore, the stationarity condition

implies ˙̄x0 = 0.

Besides, for any q ∈ [0, q̄], the two types θ∗ − q and θ∗ + q satisfy

d

dt
log{1− xt(θ∗ − q)} = −Q(q) =

d

dt
log σt(θ

∗ + q),

as long as x̄t = x̄∗ and hence F (x̄t) = θ∗. So x̄t = x̄∗ keeps the stationarity condition (6) satisfied

at time t. Therefore, once (6) holds at time 0, we have x̄t = x̄∗ for all t ≥ 0.

In the proof of the “only if” part, we use the following lemma.

Lemma 1. Let a random variable κi (i = 1, 2) have a continuous c.d.f. Gi with density gi. Besides,

assume that a function β : R→ [0, b̄] ⊂ R be nondecreasing and especially strictly increasing in an

interval K̄ ⊂ R with inf{β(k)|k ∈ K̄} = 0 and sup{β(k)|k ∈ K̄} = b̄. Suppose that there exists

ε > 0 such that∫ +∞

−∞
exp(−β(k)τ)g1(k)dk =

∫ +∞

−∞
exp(−β(k)τ)g2(k)dk for all τ ∈ (−ε, ε). (9)
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Then, we have

g1(k) = g2(k) for all k ∈ K̄.

Proof of Lemma 1. Define function Bi : R → R as Bi(b) := P[β(κi) ≤ b] = Gi(supβ−1(b)) (i =

1, 2). Then, it is the cumulative distribution function of the random variable β(κi) with a bounded

support, supp(Bi) = [0, b̄]. Each side of the assumption (9) is

∫ ∞
−∞

exp(−β(k)τ)gi(k)dk =

∫ b̄

0
e−bτdBi(b),

namely the moment generating function of each distribution function Bi.

So the assumption (9) means that these two moment generating functions coincide each other

for τ ∈ (−ε, ε). As these two have bounded support [0, b̄], this implies their identity B1(b) = B2(b)

for all b ∈ R (Billingsley, 1979, p.253). B1 ≡ B2 means

G1(β−1(b)) = G2(β−1(b)) for all b ∈ [0, b̄];

because β is non-decreasing and strictly increasing in K̄, it is equivalent to

G1(k) = G2(k), i.e., g1(k) = g2(k) for all k ∈ K̄.

Proof of the “only if” part in Theorem 2. As long as the aggregate state stays at x̄0, the indifferent

type remains the same, i.e., F (x̄t) = F (x̄0) = θ∗. This implies that the revision rate of type θ is

constant, i.e. Q(|F (x̄t)− θ|) = Q(|θ∗ − θ|) for t ∈ [0,∆].

We explicitly obtain the path {xt(θ)|t ∈ [0,∆]} from x0(θ). Fix a moment of time T ∈ [0,∆)

and express the path as the transition from time T ∈ [0,∆]. For all τ ∈ [−T,∆− T ],

xT+τ (θ) =


1− (1− xT (θ)) exp(−Q(θ∗ − θ)τ) if θ < θ∗,

xT (θ∗) if θ = θ∗,

xT (θ) exp [−Q ((θ − θ∗)τ)] if θ > θ∗.
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The aggregate state is thus expressed as

x̄T+τ =

∫ θ∗

θ
{1− (1− xT (θ)) exp(−Q(θ∗ − θ)τ)}pΘ(θ)dθ

+

∫ θ̄

θ∗
{xT (θ) exp [−Q ((θ − θ∗)τ)]}pΘ(θ)dθ

= PΘ(θ∗)−
∫ θ∗−θ

0
exp(−Q(q)τ)(1− xT (θ∗ − q))pΘ(θ∗ − q)dq

+

∫ θ̄−θ∗

0
exp(−Q(q)τ)xT (θ∗ + q)pΘ(θ∗ + q)dq

= PΘ(θ∗)−M1
T

∫ θ∗−θ

0
exp(−Q(q)τ)y1

T (q)dq +M2
T

∫ θ̄−θ∗

0
exp(−Q(q)τ)y2

T (q)dq,

where Y i
T ∈ R and yiT : R→ R+ (i = 1, 2) are given by

Y 1
T :=

∫ θ∗−θ

0
(1− xT (θ∗ − q))pΘ(θ∗ − q)dq,

y1
T (q) :=

(1− xT (θ∗ − q))pΘ(θ∗ − q)/Y 1
T if q ∈ [0, θ∗ − θ]

0 otherwise,

Y 2
T :=

∫ θ̄−θ∗

0
xT (θ∗ + q)pΘ(θ∗ + q)dq,

y1
T (q) :=

xT (θ∗ + q)pΘ(θ∗ + q)/Y 2
T if q ∈ [0, θ̄ − θ∗]

0 otherwise.

Y 1
T is the mass of those who have types below θ∗ and play OUT at time T and Y 2

T is the mass

of those who have above θ∗ and play IN at time T . Notice that Y 1
T − Y 2

T = PΘ(θ∗) − EΘxT . The

function yiT is the density function of this type difference in the mass of Y i
T .

The aggregate state staying at the aggregate equilibrium x̄T = x̄∗ = PΘ(θ∗) implies Y 1
T = Y 2

T .

Hence the aggregate state x̄T+τ remains at x̄∗ = PΘ(θ∗) if and only if for all τ ∈ [−T,∆− T ],∫ +∞

−∞
exp(−Q(q)τ)y1

T (q)dq =

∫ +∞

−∞
exp(−Q(q)τ)y2

T (q)dq.

In particular, x̄T+τ = x̄∗ for all t ∈ [0,∆] if and only if the above equation holds for each T = ∆/i

and all τ ∈ (−∆/i,∆/i) with any i = 2, 3, . . .. Each side of the equation is the moment generating

function of −Q(q) under each of the two conditional density functions y1
T , y

2
T of the type difference

q. Notice that function Q(q) is strictly increasing in the range (0, q̄) with Q(0) = 0 and Q(q̄) = 1.

According to Lemma 1, the above equation means that these two conditional distributions

should be the same in this range. Therefore, x̄T+τ = x̄∗ for all t ∈ [0,∆] only if

y1
∆/i(q) = y2

∆/i(q) for all q ∈ [0, q̄]
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for each i = 2, 3, . . . . Continuity of xt in time t implies continuity of yit in time t. As this equation

holds for i = 2, 3, . . ., we thus obtain y1
0(q) = y2

0(q), i.e. (6).

A.2 Theorem 3

First, we decompose the aggregate dynamic V̄ into V̄ = V̄0 + ∆V̄1 + ∆V̄2 + ∆V̄3 with

V̄0(x) :=

∫ θ∗

−∞
Q(θ∗ − θ)(1− x(θ))dPΘ(θ) +

∫ +∞

θ∗
{−Q(θ − θ∗)x(θ)}dPΘ(θ),

∆V̄1(x) =

∫ θ∗

−∞
{Q(F (x̄)− θ)−Q(θ∗ − θ)}(1− x(θ))dPΘ(θ),

∆V̄2(x) =

∫ F (x̄)

θ∗
{Q(F (x̄)− θ)(1− x(θ)) +Q(θ − θ∗)x(θ)}dPΘ(θ),

∆V̄3(x) = −
∫ +∞

F (x̄)
{Q(θ − F (x̄))−Q(θ − θ∗)}x(θ)dPΘ(θ).

With x̄∗ =: EΘx
∗ and θ∗ := F (x̄∗), we have the linear approximation of Q as

Q(F (x̄)− θ) = Q(θ∗ − θ) +Q′(θ∗ − θ)F ′(x̄∗)(x̄− x̄∗) + o(x̄− x̄∗),

where o is Landau’s little-o, i.e., |o(δ)/δ| → 0 as δ → 0. It follows that

∆V̄1(x) = F ′(x̄∗)(x̄− x̄∗)

{∫ θ∗

−∞
Q′(θ∗ − θ)(1− x(θ))dPΘ(θ) + o(x̄− x̄∗)

}
.

Similarly, we obtain

∆V̄3(x) = F ′(x̄∗)(x̄− x̄∗)

{∫ +∞

F (x̄)
Q′(θ − θ∗)x(θ)dPΘ(θ) + o(x̄− x̄∗)

}
.

Presume that F (x̄) ≥ θ∗. Then, ∆V̄2(x) is o(x̄∗ − x̄), since ∆V2(x) ≥ 0 and

∆V̄2(x) ≤
∫ F (x̄)

θ∗
{Q(F (x̄)− θ∗)(1− x(θ)) +Q(F (x̄)− θ∗)x(θ)}dPΘ(θ) = Q(F (x̄)− θ∗)}PΘ((θ∗, F (x̄)))

≤ Q(F (x̄)− θ∗)p̄Θ(F (x̄)− θ∗)

= {Q′(0) + F ′(x̄∗)(x̄∗ − x̄) + o(x̄∗ − x̄)}p̄Θ{(F ′(x̄∗)(x̄∗ − x̄) + o(x̄∗ − x̄)}

= Q′(0)F ′(x̄∗)2p̄Θ(x̄∗ − x̄)2 + o((x̄∗ − x̄)2).

In the first inequality, we use the assumption that Q is increasing and F (x̄) ≥ θ∗. For the second

equality, notice that, in both two parts, x̄∗ is an aggregate equilibrium and thus θ∗ = F (x̄∗).

Part 1. First, since x∗ is not a Bayesian equilibrium but x̄∗ is an aggregate equilibrium, the par-
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ticipant composition X∗ should satisfy

PΘ(θ∗)− X∗((−∞, θ∗]) = X∗((θ∗,+∞)) > 0.

Choose ε ∈ (0, ε̄) arbitrarily. Define Bayesian strategy x† as

x†(θ) :=

(1− ε)x∗(θ) + ε if θ < θ∗,

x∗(θ) otherwise.

This Bayesian strategy induces the aggregate participation rate x̄† such that

x̄† := EΘx
† = EΘx

∗ +

∫ θ∗

−∞
ε(1− x∗(θ))dPΘ(θ)

= x̄∗ + ε {PΘ(θ∗)− X∗((−∞, θ∗])}︸ ︷︷ ︸
A>0

> x̄∗.

Observe that

V̄0(x†) =

∫ θ∗

−∞
Q(θ∗ − θ)(1− x†(θ))dPΘ(θ)

∫ +∞

θ∗
{−Q(θ − θ∗)x†(θ)}dPΘ(θ)

=V (x∗) +

∫ θ∗

−∞
Q(θ∗ − θ)(x∗(θ)− x†(θ))dPΘ(θ) +

∫ +∞

θ∗
Q(θ − θ∗){x∗(θ)− x†(θ)}dPΘ(θ)

=

∫ θ∗

−∞
Q(θ∗ − θ)ε(1− x∗(θ))dPΘ(θ)

=ε

∫ θ∗

−∞
Q(θ∗ − θ)(1− x∗(θ))dPΘ(θ)︸ ︷︷ ︸

B>0

> 0.

In the second equality, we use the assumption that x∗ satisfies the balancing condition and thus

V̄ (x∗) = 0. The last inequality comes from the fact that PΘ(θ∗) − X∗((−∞, θ∗]) > 0 and thus

1− x∗(θ) > 0 in a positive measure subset of (−∞, θ∗].
We have∫ θ∗

−∞
Q′(θ∗ − θ)(1− x†(θ))dPΘ(θ) = (1− ε)

∫ θ∗

−∞
Q′(θ∗ − θ)(1− x∗(θ))dPΘ(θ)︸ ︷︷ ︸

C≥0

≥ 0,

since Q′ ≥ 0 and 1 ≥ x∗(θ). Thus,

∆V1(x) = F ′(x̄∗)Aε{(1− ε)C + o(Aε)}

= F ′(x̄∗)ACε+ o(ε).
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We have ∫ +∞

F (x̄†)
Q′(θ − θ∗)x†(θ)dPΘ(θ) =

∫ +∞

F (x̄†)
Q′(θ − θ∗)x∗(θ)dPΘ(θ)

=

∫ +∞

θ∗
Q′(θ − θ∗)x∗(θ)dPΘ(θ)︸ ︷︷ ︸

D≥0

−
∫ F (x̄†)

θ∗
Q′(θ − θ∗)x∗(θ)dPΘ(θ).

The latter integral is non-negative and bounded by a linear function of ε, because∫ F (x̄†)

θ∗
Q′(θ − θ∗)x∗(θ)dPΘ(θ) ≤ Q̄′p̄Θ(F (x̄†)− θ∗) = Q̄′p̄Θ(Aε+ o(ε)).

Here Q̄′ is the maximum of Q′(q) in [0, F (x̄†) − θ∗]; recall that Q is continuously differentiable.

Hence,

∆V3(x) = F ′(x̄∗)Aε

{
D −

∫ F (x̄†)

θ∗
Q′(θ − θ∗)x∗(θ)dPΘ(θ) + o(Aε)

}
= F ′(x̄∗)ADε+ o(ε).

Therefore, we have

V̄ (x†) = {B + F ′(x̄∗)A(C +D)}ε+ o(ε)

When ε is sufficiently small, ˙̄x = V̄ (x†) is positive.

Part 2. Let e ∈ R+ be small enough to meet e < q̄/4 and F (x̄∗) − 4e, F (x̄∗) + e ∈ Θ. Choose

w ∈ R+ arbitrarily such that ∫ 2e

e
Q(q)dq

/∫ 4e

3e
Q(q)dq < w < 1.

As Q is increasing in [0, q̄] and 4e < q̄, the fraction on the LHS is smaller than 1. Then, choose

ε ∈ (0, ε̄) so small that X† defined from density x† given below satisfies F (EΘx
†) < θ∗ + e, x†(θ) ∈

(0, 1) for all θ, and ‖X† − X∗‖ < ε:

x†(θ) :=


x∗(θ) + ε/pΘ(θ) = ε/pΘ(θ) if θ ∈ [θ∗ + e, θ∗ + 2e),

x∗(θ)− wε/pΘ(θ) = 1− wε/pΘ(θ) if θ ∈ [θ∗ − 4e, θ∗ − 3e),

x∗(θ) otherwise.
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This Bayesian strategy induces the aggregate participation rate x̄† such that

x̄† := EΘx
† = EΘx

∗ +

∫ θ∗+2e

θ∗+e

ε

pΘ(θ)
dPΘ(θ)−

∫ θ∗−3e

θ∗−4e

wε

pΘ(θ)
dPΘ(θ)

= x̄∗ + (1− w)e︸ ︷︷ ︸
A′>0

ε > x̄∗.

Furthermore, we have

V̄0(x†) =

∫ θ∗

θ
Q(θ∗ − θ)(1− x†(θ))dPΘ(θ) +

∫ θ̄

θ∗
{−Q(θ − θ∗)x†(θ)}dPΘ(θ)

=

∫ θ∗−3e

θ∗−4e
Q(θ∗ − θ) wε

pΘ(θ)
dPΘ(θ)−

∫ θ∗+2e

θ∗+e
Q(θ − θ∗) ε

pΘ(θ)
dPΘ(θ)

=ε′
(
w

∫ 4e

3e
Q(q)dq −

∫ 2e

e
Q(q)dq

)
︸ ︷︷ ︸

B′>0

> 0

The definition of x† implies∫ θ∗

−∞
Q′(θ∗ − θ)(1− x†(θ))dPΘ(θ)

=

∫ θ∗−3e

θ∗−4e
Q′(θ∗ − θ) wε

pΘ(θ)
dPΘ(θ) = wε

∫ θ∗−3e

θ∗−4e
Q′(θ∗ − θ)dθ

=εw(Q(4e)−Q(3e))︸ ︷︷ ︸
C′>0

> 0.

It follows that

∆V1(x) = F ′(x̄∗)A′ε{εC ′ + o(A′ε)}

= F ′(x̄∗)A′C ′ε2 + o(ε2) = o(ε).

Similarly, we have ∫ +∞

F (x̄†)
Q′(θ − θ∗)x†(θ)dPΘ(θ)

=

∫ θ∗+2e

θ∗+e
Q′(θ − θ∗) ε

pΘ(θ)
dPΘ(θ) = ε

∫ θ∗+2e

θ∗+e
Q′(θ − θ∗)dθ

=ε (Q(2e)−Q(e))︸ ︷︷ ︸
D′>0

> 0
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Note that θ∗ + e > F (x̄†). Hence,

∆V3(x†) = F ′(x̄∗)A′ε(εD′ + o(A′ε))

= F ′(x̄∗)A′D′ε2 + o(ε2) = o(ε).

Therefore, we have

V̄ (x†) = B′ε+ o(ε).

Hence, when ε† is sufficiently small, ˙̄x = V̄ (x†) is positive.
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