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Abstract Different strains of influenza viruses spread in human populations during every season of epidemics. As the
infected population size increases, the virus can mutate itself and grow in its strength. The traditional epidemic SIR
model does not capture the mutations of viruses, and hence the model is not sufficient to study epidemics where the
virus mutates at the same time scale as the epidemic process.In this work, we establish a novel framework to study
the epidemic process with mutations of influenza viruses, which couples the SIR model with replicator dynamics used
for describing virus mutations. We formulate an optimal control problem to study the optimal strategies for medical
treatment and quarantine decisions. We obtain structural results for the optimal strategies and use numerical examples
to corroborate our results.

Keywords: Evolutionary game dynamics, virus mutations, replicatordynamics, SIR epidemic model, optimal con-
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1 Introduction

An epidemic of infectious disease occurs when virus population undergoes genetic mutations or new species of viruses
are introduced into host population, and the host immunity to that change in the virus population is suddenly reduced
below certain threshold. Hence, the epidemic modeling should take into account not only the population dynamics of
the host population but also those of the viruses. In traditional epidemiological models, differential equations are used
to capture the dynamic evolution of different classes of host populations. In particular, the susceptible (S) is the class
of people who are not infected; the infected (I) is the class of people having the disease; the removed or recovered (R)
represents dead or immune people. The commonly used SIR model [1, 2] is used to describe the population migrations
between these three classes of models. In order to capture the interdependencies between virus and host populations,
we establish a system framework that combines the SIR model with evolutionary models that describe virus mutations.

In this work, we study influenza epidemic in urban populations. We analyze the evolutionary model for virus
mutations together with SIR models for evolution of susceptible, infected and recovered subpopulations. Over the
time, individuals from these subpopulations randomly interact with each other and change their state. We consider
epidemic process as a dynamic process of changing states from susceptible individuals to the infected and finally to the
recovered. The influenza epidemic is a fast spreading process, involving the large part of total population. Hence one
of the most important topics for research is on the protection of population during annual epidemic season. There exist
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methods of the preventions that reduce sickness rate to protect population, and medical measures (pharmacological
products, quarantine policies, etc.) that reduce the number of the infected in the population.

Another aspect of the influenza epidemic is that different strains of influenza viruses can spread in the popula-
tion during each epidemic season. Thus, in this work, we focus on evolutionary dynamics to describe the mutation
within the virus population. We assume that the virus has twotypes with different strains and fitness functions. Both
types of viruses spread in urban population, and hence during the epidemic process, different parts of population will
be infected. In our model, we split infected subpopulationsinto two subgroup and consider a modified SIR model.
Therefore, the epidemic process in urban population depends on the changes in virus population.

In our work, we formulate the SIR model under the mechanism ofvirus mutation that influence on the human
population and consider minimization of treatment costs and number of infected in both subpopulations to reduce the
speed of epidemics. This complex problem is formulated as anoptimal control problem, and the virus mutation is
described by replicator dynamics.

The paper is organized as follows. In Section 2, we discuss related work to our model. Section 3 presents the
evolutionary model of viruses. In Section 4, we establish the epidemic model for the urban population. In section 5,
we use Pontryagin’s maximum principle to find the optimal control and present structural results of the optimal control
problem. In section 6, we use numerical simulation to illustrate our results. The paper is concluded in Section 7.

2 Related Works

Recent literature has seen a surge of interest in using optimal control and game-theoretic methods to study disease con-
trol of influenza for public health. This research problem can be traced back to [3], where an SIR-type of mathematical
framework has been proposed to study the epidemic spread in ahomogeneous population. It provides a deterministic
dynamical system model as the mean field approximation of theunderlying stochastic evolution of the host subpop-
ulations. In [4], a control problem is formulated for a modelof carrier-borne epidemic model, and it has been shown
the optimal control effort switches at maximum once betweenthe maximum and the minimum control effort. In [5],
many variants of optimal control models of SIR-epidemics are investigated for the application of medical vaccination
and health promotion campaigns. In [6], a dynamic SIR epidemic model is used to identify the optimal vaccination
policy mixes for the flue season.

Epidemic models have also been used in computer science and engineering to describe the temporal evolution
of worm propagation in computer networks. Engineering methods, such as stochastic system analysis and optimal
control methods, have been applied to provide insights on the epidemic spread as well as disease control policies for
protecting the population with quarantine and removal. In [7], a sequential hypothesis testing is adopted to detect a
worm epidemic propagation over the Internet under a stochastic density-dependent Markov jump process propagation
model. In [8, 9], optimal control methods have been used to study the class of epidemic models in mobile wireless
networks, and Pontryagin’s maximum principle is used to quantify the damage that the malware can inflict on the
network by deploying optimum decision rules.

Game-theoretic approaches have also been used to analyze the strategic interactions between malicious worms and
the system under attack. In [10], a virus protection game hasbeen proposed based on two-state epidemic models forN
nodes and the characterization of the equilibrium focus on the steady state of the response. In [11], static and dynamic
game frameworks have been used to design equilibrium revocation strategies for defending sensor networks from node
capturing and cloning attacks. It has been shown that theN+1 nonzero-sum differential game framework is equivalent
to a zero-sum differential game between a team ofN attackers and the system.

Different from the work done in the past, this paper considers a coupled system framework composed of the SIR
epidemic model and the evolutionary dynamic model for virusmutation. This framework is motivated by the fact
that the epidemic spread of the virus can facilitate the virus mutation, strengthening the virulence of the virus, which
will in turn expedite the spread and worsen the epidemics. The SIR epidemic model with virus mutations can capture
this complex interactions between the virus and the host, and allows us to explain more complex phenomena through
analysis.
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3 Evolutionary Model of Virus Mutation

Infection decease, such as influenza and SARS, is an urgent public health problem in modern urban environment.
Influenza spreads faster, especially in large urban populations and influences the lifestyle and working facilities of
people. The occurrence of epidemics depends on many factorssuch as the size of human population, virus strain and
virulence, and it has become important to use effective tools to reduce their influence on human population [12], [13],
[14]. Mathematical model of virus infection in a populationcan be used to study those factors, which influence the
epidemic growth for improving existing treatment and evaluating new effective prevention measures and treatment.
In earlier research in the literature, it has been shown thatduring epidemic season, influenza virus can mutate, and
during the epidemic season, several types of influenza viruscirculate in human population. Different mutations of the
influenza virus affect human beings with different intensities, and the epidemics evolve depending on the virus type
and its intensity. Hence evolution of virus mutation shouldbe taken into account when SIR model is used to model
influenza epidemics.

In this work, we couple together two dynamic processes, i.e., the evolution of virus mutation and the epidemic
process in human population as one dynamical system. The corresponding scheme of the system is illustrated in Fig.
1. At the top level, two different types of influenza virus compete to infect the host for continuing their life cycles,
and thereby leading to the spread of epidemics in human population. The total population will contain several infected
subpopulations, which correspond to different virus types. On the bottom level, the human population is divided into
subpopulations: the susceptible (S), the infected (I) and the recovered (R). Spreading of the viruses can be controlled
with help of prevention measures, such as medical treatmentor isolation of infected individuals of population. Thus,
at this level, we consider SIR model with those control parameters.
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Fig. 1 Transition rule: The scheme describes the reaction of humanpopulation to the virus mutation. We assume that the epidemic process
can be controlled using treatment or quarantine methods. These measures can de considered as control parameters in the system, and used
to reduce the size of the infected population and terminate the epidemic process.

At the top level of coupled dynamical system, we use evolutionary dynamics to describe the mutations within the
virus population. We first describe the interactions between two virus types using an evolutionary game model, for
which we define pure strategies, fitness and rule of changes inpopulation. In the game, two types of viruses compete
for human organisms, and depending on the strength of the virus, one type can survive or vanish from the virus
population.

We assume that the virus has two types or two strains denoted by V1 andV2, and without loss of generality, we
assume thatV1 dominates virusV2. The fitness of the virus typeVi in the population isJi(Vi ,Vj), i, j = 1,2, which
depends on the survivability of the virus among its infectedpopulation (e.g. human beings). The life cycle of viruses
requires a host organism and occupation of such organism leads to energy costs. Hence the virus payoffJi is composed
of two components: one is the utility of occupation of host organism, and the other is the cost, i.e. energy costs,
Ji = bi −Ci , bi > 0, Ci > 0, bi < Ci , C1 < C2. Utility of occupationbi is dependent on the population stateIi and
hence the mixed strategiesx1,x2 ∈ [0,1] over the set(V1,V2) are also dependent on the population states. Here, mixed
strategy is defined as the fraction of corresponding virus’ types circulating in population. Thereby virus population
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state is defined as valuex(t) = (x1(t),x2(t)), x1+ x2 = 1, herexi(t) =
pi(t)
M , i = 1,2, componentpi(t) is the number of

replicas of virusVi, M is virus population size.
Depending on the virus strength, the number of people infected by different virus types will be different. We need

two flows of epidemic processes in human population to describe our model to describe the population. We useI1 to
denote the population state for the subpopulation infectedby type 1 virus, andI2 is the state for the subpopulation
infected by type 2 virus. Both viruses spread over the entirehuman population, and the interactions between two
viruses when attacking the same human organism are described with the following four scenarios:

• if of virus V1 meets virusV1, then payoffs for both are equal tob1−C1
2 . The virus incurs energy costsC1 with

probability 1/2 if he can not occupy an host organism, and achieve a utility of b1 with probability 1/2 if it succeeds
in occupation.

• if virus V1 meets a virusV2, then virusV1 obtains a payoff ofb1 andV2 obtains a payoff of 0.
• if a virusV2 meets a virusV1, then we have the same payoff as above.
• if a virusV2 meets aV2, then for both viruses, they obtain payoff ofb2−C2

2 .

The above four cases of competition between the two types of viruses are summarized in the following matrix
representation:

V1 V2

V1 (b1−C1
2 , b1−C1

2 ) (b1,0)
V2 (0,b1) (b2−C2

2 , b2−C2
2 )

According to evolutionary game theory [15], we compare the payoff of thei-th pure strategy with the average payoff
of total population. If the difference is positive, then number of individuals using this pure strategy will increase, or
decrease otherwise. The average payoff of the populationu : R2 →R is defined as

u(x,x) =
k

∑
i=1

xiu(e
i ,x),

whereei ∈R
2, i =V1,V2, is a vector withi-th element being one and 0 otherwise, indicating thei-th pure strategy;u is

a continuous function. The payoff of thei-th pure strategy is defined byu(ei ,x) = eiAx, whereA is the payoff matrix
of current symmetric game, andxi(t) is fraction of virusVi [16].

To describe evolution of virus we need to use system of differential equations, in current work, we focused on
replicator dynamics [17] to describe changes of states in virus population.

ẋi = ε[u(ei ,x)−u(x,x)]xi , (1)

whereε ∈ R+ is time scaling factor. Since the mutation process in virus population and epidemic process in human
population may develop with different speed (e.g. virus canmutate faster than spreads in human population),ε can be
used to describe such difference in the time scale of the two dynamics.

The stationary state of the system of differential equations (1) leads to symmetric Nash equilibrium [17]. Therefore,
depending on the parametersbi , Ci , the game has two asymmetric Nash equilibria(1,0), (0,1), corresponding to the
strategies in which all population are being typeV1 andV2, respectively; and one symmetric Nash equilibrium(x,x),
wherex= (x1,x2), x1 =

a2
a1+a2

,x2 =
a1

a1+a2
, herea1 =

b1−C1
2 , a2 =

b2−C2
2 −b1. Symmetric case is more interesting since

both virus types have influences on the human population.

4 Epidemic Process for Urban Population

Consider a total urban population of sizeN with two types of viruses circulate in the population duringepidemic
season. The human population is divided into four groups: the susceptible, the infected by virusV1, the infected by
virusV2, and the recovered. The susceptible is a subpopulation of human being that are not infected by viruses but will
be infected by one or both types of viruses, and they do not have immunity to the viruses. We assume that in human
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population, two types of viruses coexist at the same time. Human organisms can be occupied by both types of viruses,
and hence this leads to competitions between viruses for thehost. Depending on the virus strength, we observe that
number of people infected by virusi or by virus j can be different, and people infected by virusV1 or V2 belong to the
infected subpopulation. The recovered subpopulation consists of people recovered from being infected. The mixing of
urban populations allows viruses to spread quickly, and each person in the population is assumed to be in contact with
others with equal probabilities. Hence when an infected individual interacts with a susceptible one, the virus spread
is then made possible. Virus with higher virulence, by our assumption, which has higher probability of success in
spreading when interaction occurs between an infected individual and a susceptible individual.

4.1 Epidemic Dynamics

We model virus spread in urban population using epidemiological SIR model, where a system of differential equations
is used to describe the fraction of urban population as a function of time. Then, at timet, ns, nI1, nI2, nR correspond to
fractions of the population who aresusceptible, infected by virusV1, infected by virusV2 and recovered, respectively,
and for allt, conditionN = ns+nI1 +nI2 +nR is justified. Define

S(t) =
nS

N
, I1(t) =

nI1

N
, I2(t) =

nI2

N
, R(t) =

nR

N
, (R(t) = 1−S(t)− I1(t)− I2(t))

as portions of the susceptible, the infected and the recovered in the population. At the beginning of epidemic process
t = 0, most of people in the population belong to sub-populationSusceptible, small group in total population is infected
and other people are in recovered sub-population. Hence initial states are:

0< S(0) = S0 < 1, 0< I1(0) = I0
1 < 1, 0< I2(0) = I0

2 < 1, R(0) = 1−S0− I0
1 − I0

2.

We have extended the simple SIR model introduced by [3],[18]to describe the situation with two virus types:

dS
dt

=−δ1SI1− δ2SI2;
dI1
dt

= (δ1S−σ1−u1)I1;
dI2
dt

= (δ2S−σ2−u2)I2;
dR
dt

= (σ1+u1)I1+(σ2+u2)I2;

(2)

whereδi are infection rates for virusVi , i = 1,2, σi are recovered rates. Infection rate is defined as a product ofthe
contact ratel and transmissibility of infection, i.e., probability of transmission infection during the contact,δi0

δi = lδi0

(nIi

N

)
= lδi0Ii.

In this work, changes in virus population influence on the parameters of SIR model, and therefore number of infected
is a function of corresponding virus subpopulationx j , j = V1,V2, Ii(t) = Ii(xi , t). We let Ii(xi , t) be linear andδi take
the following form:

δi = lδi0Ii(xi , t).

Then SIR model can be rewritten as follows:

dS
dt

=−δ1S− δ2S;
dI1
dt

= δ1S−σ1I1−u1I1;
dI2
dt

= δ2S−σ2I2−u2I2;
dR
dt

= (σ1+u1)I1+(σ2+u2)I2;

(3)
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In the model above, the infection rate is integrated into theevolution of mutation process to epidemics in the urban
population.Medical treatment or quarantine isolation reduces the number of the infected individuals in the urban
population. These prevention measures can be interpreted as control parameters in the system defined asu= (u1,u2),
hereui are fractions of the infected which are quarantined or underintensive medical treatment, 0≤ u1(t) ≤ 1, 0≤

u2(t)≤ 1, for all t. Recovered rates are inversely proportional to disease durationT, henceσi =
1

T
.

4.2 Objective Function

In this work, we will minimize the overall cost in time interval [0,T]. At any givent, following costs exist in the system:
f1(I1(t)), f2(I2(t)) these are treatment costs;g(R(t)) is the benefit rate;h1(u1(t)),h2(u2(t)) are costs for medical
treatments (i.e. quarantine or removal) that help to reducethe epidemic spreading;kI1, kI1, kR represent the costs and
benefit for invective and recovered in the end of the epidemic. Here functionsfi(Ii) are non-decreasing and twice-
differentiable, convex functions, i.e.,fi(0) = 0, fi(Ii)> 0 for Ii > 0, i = 1,2., g(R) is non-decreasing and differentiable
function andg(0) = 0, hi(ui(t)) is twice-differentiable and increasing function inui(t) such ashi(0) = 0, hi(x) >
0, i = 1,2, whenui > 0.

The cost for the aggregated system is given by

J =
∫ T

0 f1(I1(t))+ f2(I2(t))−g(R(t))+h1(u1(t))+h2(u2(t))dt+ kI1I1(T)+ kI1I2(T)− kRR(T) (4)

and the optimal control problem is to minimize the cost, i.e., min{u1,u2} J. To simplify the analysis, we consider the
case wherekI1 = kI1 = kR = 0.

5 Optimal Control of Epidemics

We use Pontryagin’s maximum principle [20], to find the optimal controlu= (u1,u2) to the problem described above
in Section 4. Define the associated HamiltonianH and adjoint functionsλS, λI1, λIr , λR as follows:

H = f1(I1(t))+ f2(I2(t))−g(R(t))+h1(u1(t))+h2(u2(t))+ (λI1 −λS)δ1SI1+
(λI2 −λS)δ2SI2+(λR−λI1)σ1I1+(λR−λI2)σ2I2− (λI1 −λR)I1u1− (λI2 −λR)I2u2.

(5)

Here we use conditionR= 1−S− I1− I2. We construct adjoint system as follows:

λ̇S(t) =− ∂H
∂S =−λS(−δ1I1− δ2I2)−λI1δ1I1;

λ̇I1(t) =− ∂H
∂ I1

=− f ′1(I1)+λSδ1S−λI1(δ1S−σ1)−λRσ1;

λ̇I2(t) =− ∂H
∂ I2

=− f ′2(I2)+λSδ2S−λI2(δ2S−σ2)−λRσ1;

λ̇R(t) =− ∂H
∂R = (g′(R));

(6)

with the transversality conditions given by

λI1(T) = 0, λI2(T) = 0, λS(T) = 0, λR(T) = 0 (7)

According to Pontryagin’s maximum principle, there exist continuous and piecewise continuously differentiable
co-state functionsλi that at every pointt ∈ [0,T] whereu1 andu2 is continuous, satisfy (6) and (7). In addition, we
have

(u1,u2) ∈ arg min
u1,u2∈[0,1]

H(λ ,(S, I1, I2,R),(u1,u2)). (8)
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5.1 Structure of Optimal Control

Based on previous research [9],[19], [20] in this subsection, we show that an optimal controlu(t) = (u1(t),u2(t)) has
following structural results.

Proposition 1 The following statements hold for the optimal control problem described in Section 4:

• If hi(·) are concave, then

u(t) = (u1(t),u2(t)) =

{
(1,1), for 0< t < t1;
(0,0), for t1 < t < T

• If hi(·) is strictly convex, then exists t0, t1, 0< t0 < t1 < T:

ui(t) =





0, φi ≤ h′i(0), i = 1,2;
h′−1(φi), h′i(0)< φi ≤ h′i(1), i = 1,2;
1, h′i(1)< φi , i = 1,2.

Proof. The proof of Proposition 1 will require an auxiliary Lemma 1 and it will be discussed in detail in Section 5.2.
Before stating Lemma 1, first we define functionsφi as follows.

φ1 = (λI1 −λR)I1, φ2 = (λI2 −λR)I2.

Rewrite the Hamiltonian in terms of functionφ and we obtain

H = ( f1(I1(t))+ f2(I2(t))−g(R(t))+ (λI1 −λS)δ1SI1+(λI2 −λS)δ2SI2+(λR−λI1)σ1I1+
(λR−λI2)σ2I2+(h1(u1(t))−φ1u1)+ (h2(u2(t))−φ2u2).

(9)

For any admissible controlu1,u2 and according to (8) for allt ∈ [0,T]

[(h1(u1(t))−φ1u1)+ (h2(u2(t))−φ2u2)]≤ h1(ũ1(t))−φ1ũ1)+ (h2(ũ2(t))−φ2ũ2), (10)

then, we obtain
(u1(t),u2(t)) ∈ arg min

x∈ [0,1],y∈ [0,1]
(h1(x)−φ1x)+ (h2(y)−φ2y).

(11)

We observe that

min
u1,u2

[(h1(u1(t))−φ1u1)+ (h2(u2(t))−φ2u2)] = min
u1

(h1(u1(t))−φ1u1)+min
u2

(h2(u2(t))−φ2u2).

Sinceu1 = u2 = 0 are admissible control, hence using (10), we obtain

(h1(u1(t))−φ1u1)+ (h2(u2(t))−φ2u2)≤ (h1(0)−φ10)+ (h2(0)−φ20) = 0, for all t. (12)

To prove Proposition 1, we consider the following auxiliarylemma.

Lemma 1. Functionsφi , i = 1,2 are decreasing functions of t, for t∈ [t0,T], t0 ≥ t ≥ 0, while

δiSIi −σiIi ≥ ui , i = 1,2. (13)

Proof:
The state and co-state functions are differentiable functions, thenφi also differentiable functions at each timet,

t ∈ [0,T] at which functionsu1,u2 are continuous. We have to show thatφ̇i < 0 at each timet ∈ [t0,T], t0 ≥ t ≥ 0.
Consider functionφ1 given by

φ̇1 =−( f ′1(I1)− (λI1 −λS)δ1S− (λR−λI1)σ1−g′(R))I1− (λR−λI1)(δ1SI1−σ1I1− I1u1), (14)

and likewise,φ2 as follows:
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φ̇2 =−( f ′2(I2)− (λI2 −λS)δ2S− (λR−λI2)σ2−g′(R))I2− (λR−λI1)(δ2SI2−σ2I2− I2u2). (15)

Here, f ′1(I1) ≥ 0, f ′2(I2) ≥ 0, g′(R) ≥ 0, δi ≥ 0, I1, I2,S,R≥ 0, then right hand side of expressions (14) and (15)
are negative, if conditionsδ1SI1−σ1I1 ≥ u1 andδ2SI2−σ2I2 ≥ u2 are satisfied, otherwise functionsφi are increasing.
The termδiSIi −σi Ii ≥ ui ≥ 0, i = 1,2 can be interpreted as a condition for the beginning of the epidemic, see [3]. The
proof of Lemma 1 is completed.

5.2 Proof of Proposition 1

In this subsection, we prove proposition 1 under two cases ofcost functionshi(ui), i = 1,2.

5.2.1 hi(·) are concave.

Let h1 andh2 be concave (h′′1 < 0,h′′2 < 0), then (h1(x)−φ1x) and (h2(y)−φ2y) are concave functions ofx andy. For
any timet the unique mimimum is either inx= 0 orx= 1 (y= 0 ory= 1). Then

u= (u1,u2) =

{
(0,0),φ1+φ2 < h1(1)+h2(1),
(1,1), φ1+φ2 > h1(1)+h2(1).

(16)

There can be at most onet at whichφ1(t)+φ2(t) = h1(1)+h2(1) according to Theorem of Intermediate value. As
far asφi , i = 1,2 are decreasing functions, while conditionsδiSIi −σi Ii ≥ ui , i = 1,2 are satisfied, hence if sucht exists,
sayt1, thenφ1+ φ2 > h1(1)+h2(1) for time interval[t0, t1] andφ1+ φ2 < h1(1)+h2(1) in [t1,T]. If conditions (13)
are broken, thenφ1+φ2 < h1(1)+h2(1) for time interval[0, t0]. For valueskI1 = kI1 = kR= 0, we have thatφi(T) = 0,
hi(1)> 0.

5.2.2 hi(·) are convex.

Whenhi(·) are strictly convex (h′′i > 0) then ∂
∂x(h1(x)− φ1x) |x=x1= 0 and ∂

∂y(h2(y)− φ1y) |y=y1= 0 at ax ∈ [0,1] or
y∈ [0,1], thenu1(t) = x1 andu2(t) = y, elseu1(t) ∈ {0,1} andu2(t) ∈ {0,1}. Then,

ui =






0, φi ≤ h′i(0), i = 1,2;
h′−1(φi), h′i(0)< φi ≤ h′i(1), i = 1,2.
1, h′i(1)< φi , i = 1,2

(17)

Functionφi , h′i , ui is continuous at allt ∈ [0,T]. In this casehi is strictly convex andh′i is strictly increasing function,
soh′(0)< h′(1). Thus there exists such pointst0, t1, 0< t0 < t1 < T such as conditions(17) and (13) are satisfied, and
according toφi is decreasing function. In time interval whereδiSIi −σi Ii < ui , i = 1,2 thenφi are increasing functions
and conditions (17) will be rewritten. There may exist such time interval[0, t0) thatui = 0 andφi ≤ h′i(0), i = 1,2, and
then for time interval[t0,T] conditions (17) continue to be satisfied.

Using the auxiliary Lemma 2 below, we complete the proof of Proposition 1. From Lemma 1, we need to check
that multipliers(λI1 −λS), (λI2 −λS), (λR−λI1) in equations (14) and (15) are non-negative.

Lemma 2. For all 0≤ t ≤ T, we have(λI1 −λS)> 0, (λI2 −λS)> 0, (λR−λI1)> 0.

Property 1.Let w(t) be a continuous and piecewise differential function oft. Let w(t1) = L and w(t) > L for all
t ∈ (t1, . . . , t0]. Then ˙w(t+1 )≥ 0, wherew(t+1 ) = lim

x→x0
v(x).

Property 2.For any convex and differentiable functiony(x), which is 0 atx= 0, y′(x)x− y(x)≥ 0 for all x≥ 0.

Proof: We first prove the case fort = T and then fort < T. Step 1.At time T, we have(λI1(T)−λS(T)) = 0,
(λI2(T)−λS(T)) = 0, and(λR(T)−λI1(T)) = 0 according to (7).̇λI1(T)− λ̇S(T) = − f ′1(I1(T)) < 0 and by analogy
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λ̇I2(T)− λ̇S(T) = − f ′2(I2(T)) < 0 andλ̇R(T)− λ̇I1(T) = f ′1(I1(T)) + g(R(T)) > 0, therefore expressions(λI1(T)−
λS(T)), (λI2(T)−λS(T)), (λR(T)−λSI1(T)) are positive in an open interval(0,T).

Step 2.(Proof by contradiction).
Let t∗ < T be the last instant moment at which one of the inequality constraints are performed:
Case I.In this case, we will prove that(λI1(t)−λS(t))> 0. Suppose that(λI1(t)−λS(t)) = 0, (λI2(t)−λS(t)) = 0

and(λR(t)−λI1(t))> 0 then

λ̇I1(t
∗)− λ̇S(t∗) = f ′1(I1)− (λI1 −λS)δ1S− (λR−λI1)σ1− (λS−λI1)δ1I1− (λS−λI2)δ2I2,

and hence we obtain that(λ̇I1(t
∗)− λ̇S(t∗)) < 0. This contradictsProperty 1for function (λI1(t

∗)− λS(t∗)) which
means that(λI1(t

∗)−λS(t∗))> 0.
Now let (λR(t)−λI1(t)) = 0 and(λR(t)−λI2(t)) = 0 and(λS(t)−λI1(t))> 0,(λS(t)−λI2(t))> 0.

λ̇I1(t
∗+)− λ̇S(t∗+) = (− f ′1(I1)+λSδ1S−λI1(δ1S−σ1)−λRσ1)− (−λS(−δ1I1− δ2I2)−λI1δ1I1)

=− f ′1(I1)− (λI1 −λS)δ1S− (λR−λI1)σ1+(λI1 −λS)δ1I1+(λI2 −λS)δ2I2
=− f ′1(I1)− (λI1 −λS)δ1S− (λR−λI1)σ1− (λS−λI1)δ1I1− (λS−λI2)δ2I2.

(18)

If δ1 = 0 andδ2 = 0 and(λR(t)−λI1(t))> 0 thenλ̇I1(t
∗)− λ̇S(t∗)< 0 that contradictsProperty 1for the functions

(λI1(t
∗)−λS(t∗)) at timet∗, and also such momentt∗ does not exist. Lemma 2 is proved in this case.

If δ1 > 0 andδ2 > 0, then the system of ODE is autonomous, and hence Hamiltonian and the control do not have
dependence of the variable independentt.

H(S(t), I1(t), I2(t),R(t),u1(t),u2(t),λS(t),λI1(t),λI2(t),λR(t)) = constant. (19)

From (5), we obtain

H = f1(I1(t))+ f2(I2(t))−g(R(t))+h1(u1(t))+h2(u2(t))+ (λI1 −λS)δ1SI1+(λI2 −λS)δ2SI2+
(λR−λI1)σ1I1+(λR−λI2)σ2I2− (λI1 −λR)I1u1− (λI2 −λR)I2u2.

(20)

Sinceg(R) is a non-decreasing function, theng(R(T))≥ g(R(t)), we obtain

H − f1(I1(t))+g(R(t)≥ f2(I2(t))+h1(u1(t))+h2(u2(t))+ (λI1 −λS)δ1SI1+(λI2 −λS)δ2SI2+
(λR−λI1)σ1I1+(λR−λI2)σ2I2+(λR−λI1)I1u1+(λR−λI2)I2u2 ≥ 0.

(21)

This follows from assumptions on functionsf1(I1) andh1(u1), h2(u2) such asI1(T)> 0 then f1(I1)> 0 andu1(t)> 0,
u2(t)> 0 thenh1(u1)≥ 0, h2(u2)≥ 0.

From (9), we have

H = ( f1(I1(t))+ f2(I2(t))−g(R(t))+ (λI1 −λS)δ1SI1+(λI2 −λS)δ2SI2+(λR−λI1)σ1I1+(λR−λI2)σ2I2
+(h1(u1(t))−φ1u1)+ (h2(u2(t))−φ2u2).

(22)

Therefore, we obtain

λ̇I1(t)− λ̇S(t) =− f ′1(I1)+
f1(I1(t))+ f2(I2(t))−g(R(t)−H

I1
+

(h1(u1(t))−φ1u1)

I1
+

(h2(u2(t))−φ2u2)

I1
−

(λS−λI2)δ2SI2
I1
− (λI2 −λR)σ2

I2
I1
+(λI1 −λS)δ1I1+(λI2 −λS)δ2I2

=
1
I1
( f1(I1)− f ′1(I1)I1)−

1
I1
(H − f2(I2)+g(R))+

(h1(u1(t))−φ1u1)

I1
+

(h2(u2(t))−φ2u2)

I1
−

(λS−λI2)δ2S
I2
I1
− (λI2 −λR)σ2

I2
I1
− (λS−λI1)δ1I1− (λS−λI2)δ2I2.

(23)

Here f1(I1) is convex increasing function andf1(0) = 0, I1 > 0 and( f1(I1)− f ′1(I1)I1)≤ 0, byProperty 2. From (7),
(18), (21) TheṅλI1(t)− λ̇S(t)< 0 and it contradictsProperty 1, and partI of the lemma follows.

Case II. We have to prove that(λI2(t)−λS(t))> 0. This is a symmetric case to CaseI Using the same reasoning,
we obtain
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λ̇I2(t)− λ̇S(t) =− f ′(I2)+ (λS−λI2)δ2S+(λI2 −λR)σ2+(λI1 −λS)δ1I1+(λI2 −λS)δ2I2

=
1
I2
( f2(I2)− f ′2(I2)I2)−

1
I2
(H − f1(I1)+g(R))+

(h1(u1(t))−φ1u1)

I2
+

(h2(u2(t))−φ2u2)

I2
−

(λS−λI1)δ1S
I1
I2
− (λI1 −λR)σ1

I1
I2
− (λS−λI2)δ2I2− (λS−λI1)δ1I1.

(24)

Thus, we havėλI2(t)− λ̇S(t)< 0 that contradictsProperty 1, and hence functions(λI2(t)−λS(t))> 0.
Case III. In this case, we will prove that(λR(t)−λI1(t))> 0 in similar way.

H − f2(I2(t))+g(R(t)≥− f1(I1(t))+h1(u1(t))+h2(u2(t))+ (λI1 −λS)δ1SI1+(λI2 −λS)δ2SI2+
(λR−λI1)σ1I1+(λR−λI2)σ2I2+(λR−λI1)I1u1+(λR−λI2)I2u2 ≥ 0

(25)

This follows from assumptions on functionsh1(u1), h2(u2) such asI1(T)> 0 then f1(I1)> 0 andu1(t)> 0, u2(t)> 0
thenh1(u1)≥ 0, h2(u2)≥ 0. Therefore, we obtain

λ̇R(t)− λ̇I1(t) = g′(R)+ f ′1(I1)−λI1δ1S+λI2(δ1S−σ1)+λRσ1

= g′(R)+ f ′1(I1)+ (λI1 −λS)δ1S+(λR−λI1)σ1

= g′(R)+ f ′1(I1)+
H
I1

−
f2(I2)

I1
+

1
I1
( f ′1(I1)I1− f1(I1))+

g(R)
I1

+(λS−λI2)δ2S
I2
I1
+

(λR−λI2)σ2
I2
I1
−

(h1(u1(t))−φ1u1)

I1
−

(h2(u2(t))−φ2u2)

I1
.

(26)

From (7), (18), (21), (12) , we obtaiṅλR(t)− λ̇I1(t)> 0 and byProperty 1λR(t)−λI1(t)> 0, Lemma 2 follows.
Together with lemma1 proof of lemma2 completes proof of proposition1.

5.3 Quadratic Cost Functions

In this subsection, we consider a particular case of Proposition 1, where the cost functionshi(u), i = 1,2 are quadratic,
i.e.,

hi(u) = a0u2
i +a1ui +a2, a0 6= 0. (27)

Quadratic function is strictly convex if coefficienta0 > 0, and we can apply the same arguments as in part2 of Lemma
1. Consider∂

∂x(hi(x)−φix) |x=x1= 0 from Proposition 1, wherehi(u) is defined as in (27), then we obtain

∂
∂x(hi(x)−φix) |x=x1=

∂
∂x(a0u2

i +a1ui +a2−φix) |x=x1= 2a0ui +a1−φi ,

Hence we arrive at the following form of optimal control

ui =





0, φi ≤ h′i(0), i = 1,2;
φi−a1
2a0

, h′i(0)< φi ≤ h′i(1), i = 1,2.
1, h′i(1)< φi , i = 1,2

(28)

Functionsφi , h′i , ui are continuous at allt ∈ [0,T]. In this case,hi is strictly convex andh′i is a strictly increasing
function, soh′(0) < h′(1). Thus there exists such pointst0, t1, 0< t0 < t1 < T such as conditions (28) and (13) are
satisfied, andφi is decreasing function. If conditions (13) are broken then there may exist such time interval[0, t0) that
ui = 0 andφi ≤ h′i(0), i = 1,2, and then for time interval[t0,T] conditions (28) continue to be satisfied.

6 Numerical Simulations

In this section, we present numerical simulations to corroborate our results. The system parameters are described
as follows. Population size isN = 100000, at initial time, the susceptible populationS(0) = 99200 individuals, the
recovered populationR(0) = 0. We suppose that 0.04 percent of population are infected by virusV1, i.e.,I1(0) = 400,
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and 0.03 percent of population are infected by virusV2, i.e., I2(0) = 300. Epidemic lasts for the period of 60 days.
During the epidemic, people from the infected population incur costs for the treatment, and hence thereby we define
costs functions asfI1 = 40I1, fI2 = 10I2, g(R) = 0.05R. For concave cost functions we usedh1(u1) = 10u1, h2(u2) =
5u2 and for convex cost functions –h1(u1) = 20u2

1, h1(u1) = 10u2
2. The costs here are measured in same monetary

units (m.u.), which can be in US dollars, Chinese RMB, or Euros depending on the context. We let the duration of
disease caused by virusV1 be 15 days, while the duration of disease caused by virusV2 be 8 days. Clearly, virusV1 is
stronger than virusV2.

The auxiliary parameters of the model are given as follows. We choose iteration steph= 0.0115; the scale factor
for virus dynamicsε = 100; the transition rate from the susceptible to the infected populationI1, δ10 = 0.000006; the
transition rate from the susceptible to the infected population I2, δ20 = 0.000004; the transition rate from the infected
populationI1 to the recovered,σ1 = 1/15= 0.066666667; and the transition rate from the infectedI2 to the recovered,
σ2 = 1/8= 0.125.

In Figs. 2-4, we present three variants of our model:

1. Original SIR model without virus mutation;
2. SIR model with virus mutation process;
3. SIR model with virus mutation and application of control,two modifications which depend on the costs functions

properties are considered.

Fig. 2 SIR model without virus mutation. Red curve corresponds to infected by virusV1, green curve corresponds to infected by virusV1.
Initial states areI10 = 400,I20 = 300, the maximum values areI1max= 59871,I2max= 2968. Epidemic peaks a reached at 15-th and 11-th
days.

Fig. 3 SIR model with virus mutation. With the same initial states as previous figure the maximum values areI1max= 81413,I2max= 2968.
Epidemic peaks a reached at 5-th and 4-th days.
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In Fig. 2, we observe that for described initial states and particular case of parametersδi andσi the maximum
quantity of people in the infected subpopulations is achieved at the 15-th day in groupI1, I1max= 59871, and at the 11-
th day in the infected subpopulationI2, maximum number of infected isI2max= 2968. In Fig. 3, we show the epidemic
process with the same initial states for subpopulations of Susceptible, Infected and Recovered in human population
together with virus mutation process. From simulation we can see that ganges in virus population lead to different
epidemic behavior in human population. The maximum number of people in infected populations areI1max= 81413,
I2max = 5490, reached at the 5-th and the 4-th day, respectively. We assume that virus mutation occurs according to
an evolutionary process, described in Section 3. To define payoff matrix of symmetric game between different types
of viruses we use next parameters of utility and energy costsbi andCi , hereb1 = 100,b2 = 200,C1 = 400,C2 = 300,
hence the corresponding stationary points (which are also Nash Equilibria) are{(1,0),(0,1),(x = (0.5,0.5))} (see
Fig. 15).

Fig. 4 SIR model with virus mutation and application of control. Functionshi , i = 1,2 are concave.h1(u1) = 10u1, h2(u2) = 5u2. Maximal
quantity of infected areI1max= 19942,I2max= 609.

Fig. 4 shows that the number of the infected has been reduced due to the application of control parameters. As we
have discussed earlier, control parameters can be interpreted as insensitive medical treatment or quarantine, applied to
the infected population. The maximum number of infected in epidemic peak areI1max= 19942,I2max= 609, epidemic
peaks reached at the 5-th and the 4-th day, respectively.

Figs. 5-8 illustrate the results of Proposition 1, and show the optimal treatment policies for different situations: (i)
simple epidemic process, and (ii) epidemic process under influence of virus mutation. Both situations are considered
under concave and convex cases for the costs functionshi(ui).

Fig. 5 Optimal control in SIR model without virus mutation, costs functions are concavehi . Control is switched off on 50-th day. Curves
for variablesu1 coincide with variableu2.
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Figs. 5 – 6 show the optimal treatment policy applied to urbanpopulation. It can be seen that the policy is active
until the 50-th day and then is switched off if no influence of virus mutation process is on the human population.

Fig. 6 Optimal control in SIR model without mutation and convex cost functionshi , h1(u1) = 20u2
1, h2(u2) = 10u2

2.

Fig. 6 corresponds to the second part of Proposition1, under the assumption that the costs functionsh(ui) are
convex. In this case, the optimal controlu1 is switched off at the 50-th day, and the optimal controlu2 is switched off
at the 15-th day.

Fig. 7 Optimal control in SIR model with virus mutation and concavecost functionshi . Control is switched of at the 48-th day for both
subpopulation of infected.
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Fig. 8 Optimal control in SIR model with virus mutation and convex cost functionshi . u1 decays at the 9-th day,u2 vanishes at the 50-th
day.

Figs. 7 – 8 illustrate the results of Proposition 1. We take into account the impact of virus evolution on the urban
population. In our model virusV1 dominatesV2, then during the time number of infected in subpopulationsI1 is
increasing, hence we need to use control parameters more intensive. In Fig. 7, we observe that the optimal controls are
switched off at the 48-th day, whereas in 8 at the 9-th and the 60-th day, respectively.

Furthermore, we present a comparison between the aggregated costs as a result of the application of four different
policies in our system, i.e., (i) simple SIR model without virus mutation process, (ii) simple SIR model with virus
mutation process, (iii) optimal treatment policy with concave costs functions, and (iv) optimal treatment policy with
convex costs functions. Next, figs. 9.–14 present the development of the aggregated costs over the time.

Fig. 9 Aggregated costs for SIR model without virus mutation process. Aggregated cost isJ = 4701610146 m.u. for period of 60 days.

In Fig. 9, we show the curve associated with system costs during epidemic total epidemic duration. According to
(4), we observe that aggregated cost isJ = 4701610146 m.u. for total period. Here we do not take into account any
effect from virus mutation process and application of control to human population. In this case the maximum and the
minimum values areJmax= 2419518 m.u. andJmin = 19000 m.u. Maximum aggregate cost is reached at the 14-th day,
and this time belongs to the interval between epidemic peakscorresponding to different viruses.
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Fig. 10 Aggregated costs for SIR model, if virus mutation process occurs in human population during epidemic period. Aggregated cost
is J = 47630705 m.u.,Jmax= 3309432 m.u. andJmin = 19000 m.u.

Fig. 10 illustrates aggregated costs, when epidemic process is considered together with virus mutation process.
Aggregated cost isJ=47630705 m.u. Maximum and minimum values areJmax=3309432 m.u. andJmin=19000 m.u.,
respectively, andJ reaches its maximum at the 4-th day. Here we can see that valueof J is higher than in previous case,
then we may assume that mutation process provoke increasingof costs for treatment in human population. Moreover,
from our simulation, we see that the aggregated costs for human population increase faster when we include virus
mutation process to our model, also these costs are much higher.

Fig. 11 Aggregated costs for SIR model under optimal control policy. Virus mutation process does not influence on the human population.
Aggregated cost isJ = 4376001971 m.u.,Jmax= 3976008 m.u.,Jmin = 539541 m.u.

Fig. 11 shows the aggregated cost in total epidemic period inhuman population when control is applied to the
system. Here, we assume that virus mutation does not influence the human population. From the simulation, we
observe that the aggregated cost isJ = 4376001971 m.u., maximum and minimum values areJmax= 3976008 m.u.,
Jmin = 539541 m.u. The maximum value is reached at the beginning of epidemics, and the aggregated cost decreases
after the optimal control is switched on. Here, we use concave functionshi(ui) to describe costs which are provoked
by application of control. In this case, aggregated costs deeply decrease after the 6-th day, which correspond to the
reduction of the infected in both subpopulations under the optimal control strategies.
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Fig. 12 Aggregated costs for SIR model with virus mutation process.Optimal control policy is applied to the system. Aggregatedcost is
J = 48338102 m.u.,Jmax= 3309432 m.u.,Jmin = 19000 m.u.

Fig. 12 shows aggregated costs for the case of convex costs functionshi(ui), we observe that aggregated cost is
J = 48338102 m.u.,Jmax= 3309432 m.u.,Jmin = 19000 m.u. the maximum is reached at the 4-th day instead of the
2nd day. From simulations we observe that properties of costs functionshi(ui) perform influence to the total system
costs.

Fig. 13 Aggregated costs in SIR model without mutation process. Optimal control strategies are applied to human population, costs
functionshi are concave. Aggregated costs for total period isJ = 227204 m.u.,Jmax= 29011 m.u.,Jmin =−4887 m.u.

In Fig. 13, we consider epidemic control without influence ofvirus mutations, but with the application of optimal
control to the model. In this situation, the aggregated costfor total period isJ = 227204 m.u. The maximum and mini-
mum values areJmax= 29011 m.u.,Jmin=−4887 m.u., which are reached at the 11-th and the 60-th day, respectively.
After the 25-th day aggregated costs become negative, thereby the income of population increases under the optimal
treatment policy; i.e., the treatment costs decrease as compared with the utility from the effect of recovering.
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Fig. 14 Aggregated costs in SIR model without mutation process. Optimal control strategies are applied to human population, costs
functionshi are convex. Aggregated costs for total period isJ = 48284749 m.u.,Jmax= 2419528 m.u.,Jmin = 19121 m.u.

Aggregated costs for SIR model without mutation process under optimal control, isJ = 48284749 m.u. Maximum
and minimum values are reached at the 13-th and the 60-th day,respectively, andJmax= 2419528 m.u.,Jmin = 19121
m.u.

Figs. 13-14 show that system aggregate costs are lower if we consider simple epidemic process, without virus
mutations, and the aggregate costs increase when virus mutation occurs during the epidemic period. The influence of
optimal treatment policy on the system is not as strong as theinfluence of mutation process.

Fig. 15 demonstrates the evolution of viruses over time in human population [21]. Here, we can see that there are
three stationary states corresponding to three Nash equilibria, and that the convergence of solution trajectories of ODE
(1) depends on the the initial states.

Fig. 15 Simplex of mixed strategies of the symmetric bimatrix game for modeling virus mutations. In our numerical example, the set of
Nash equilibria is found to be{(1,0), (0,1), (0.5,0.5)}, where(1,0), (0,1) correspond to all population beingV1 andV2, respectively; and
(0.5,0.5) corresponds to half of the virus beingV1 and halfV2.

From the simulation results above, we observe that the epidemic peak occurs earlier than in normal situation when
the influence of virus mutation process is considered on the human population. The size of subpopulations evolves
according to the virus strength or virulence of the infected, and the maximum number of the infected in the population
with a stronger strain of virus is larger than its counterpart with a weak strain of virus. The population profile of
the infected depends on the virus populations. We observe that the equilibria of the mutation process change under
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different parameters in game payoff matrix, and hence lead to population profile of the infected. Application of control
parameters, such as medical treatment or quarantine policy, allows us to reduce quantity of infected individuals in both
subpopulations. However, the process of virus mutation hasa significant impact on the epidemic costs under optimal
control applied to the system. We observe that aggregated costs are higher when effect of virus mutation is considered
in the epidemics than the cost when mutation is not included in the model. It is interesting to see that the application
of optimal control does not lead to considerable reduction aggregated costs in both cases.

7 Conclusions

In this paper, we have studied an epidemic model that takes into account the evolutionary dynamics of virus mutations.
The classical SIR epidemic dynamics are strongly coupled with the replicator dynamics of the virus. We have formu-
lated an optimal control problem in which we seek to find an optimal treatment and quarantine strategies against the
infection of two different types of viruses. Using Pontryagin’s maximum principle, we have shown that, depending on
the structure of the cost functions, the optimal control hasa threshold structure. We have corroborated our results with
numerical examples, observing different switching times for the control strategies under models with and without virus
mutations. As future work, we would extend this work to multiple types of viruses and apply different evolutionary
dynamics to model the process of virus mutations including imitative dynamics and best response dynamics.
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