Optimal Control of Influenza Epidemic Model with Virus Mutat ions
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Abstract Different strains of influenza viruses spread in human patputs during every season of epidemics. As the
infected population size increases, the virus can mutsé iand grow in its strength. The traditional epidemic SIR

model does not capture the mutations of viruses, and heeamdllel is not sufficient to study epidemics where the
virus mutates at the same time scale as the epidemic prdodakss work, we establish a novel framework to study

the epidemic process with mutations of influenza viruses;vbouples the SIR model with replicator dynamics used
for describing virus mutations. We formulate an optimaltcolproblem to study the optimal strategies for medical

treatment and quarantine decisions. We obtain structesalts for the optimal strategies and use numerical exanple
to corroborate our results.

Keywords: Evolutionary game dynamics, virus mutations, replicatpnamics, SIR epidemic model, optimal con-
trol, dynamic games, control of epidemics

1 Introduction

An epidemic of infectious disease occurs when virus pomnatndergoes genetic mutations or new species of viruses
are introduced into host population, and the host immuuwityr&it change in the virus population is suddenly reduced
below certain threshold. Hence, the epidemic modeling lshialte into account not only the population dynamics of
the host population but also those of the viruses. In trawiiti epidemiological models, differential equations asecdu
to capture the dynamic evolution of different classes ot pogulations. In particular, the susceptible (S) is the<la
of people who are not infected; the infected (I) is the cldgseople having the disease; the removed or recovered (R)
represents dead or immune people. The commonly used SIRI fiiodgis used to describe the population migrations
between these three classes of models. In order to captiietérdependencies between virus and host populations,
we establish a system framework that combines the SIR madtteewolutionary models that describe virus mutations.
In this work, we study influenza epidemic in urban populagiowe analyze the evolutionary model for virus
mutations together with SIR models for evolution of susit®@t infected and recovered subpopulations. Over the
time, individuals from these subpopulations randomlyrimté with each other and change their state. We consider
epidemic process as a dynamic process of changing statestreceptible individuals to the infected and finally to the
recovered. The influenza epidemic is a fast spreading pspoeslving the large part of total population. Hence one
of the most important topics for research is on the protaeaifgpopulation during annual epidemic season. There exist
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methods of the preventions that reduce sickness rate tegtmpopulation, and medical measures (pharmacological
products, quarantine policies, etc.) that reduce the nuoftibe infected in the population.

Another aspect of the influenza epidemic is that differergiss of influenza viruses can spread in the popula-
tion during each epidemic season. Thus, in this work, we gau evolutionary dynamics to describe the mutation
within the virus population. We assume that the virus hasttypes with different strains and fithess functions. Both
types of viruses spread in urban population, and henceglthimepidemic process, different parts of population will
be infected. In our model, we split infected subpopulatimts two subgroup and consider a modified SIR model.
Therefore, the epidemic process in urban population dependhe changes in virus population.

In our work, we formulate the SIR model under the mechanismirofs mutation that influence on the human
population and consider minimization of treatment costsraumber of infected in both subpopulations to reduce the
speed of epidemics. This complex problem is formulated aspimal control problem, and the virus mutation is
described by replicator dynamics.

The paper is organized as follows. In Section 2, we discusse work to our model. Section 3 presents the
evolutionary model of viruses. In Section 4, we establighépidemic model for the urban population. In section 5,
we use Pontryagin’s maximum principle to find the optimaltcolrand present structural results of the optimal control
problem. In section 6, we use numerical simulation to itaist our results. The paper is concluded in Section 7.

2 Related Works

Recent literature has seen a surge of interest in using aptiomtrol and game-theoretic methods to study disease con-
trol of influenza for public health. This research problem ba traced back to [3], where an SIR-type of mathematical
framework has been proposed to study the epidemic spreaddmageneous population. It provides a deterministic
dynamical system model as the mean field approximation ofitiakerlying stochastic evolution of the host subpop-
ulations. In [4], a control problem is formulated for a modéctarrier-borne epidemic model, and it has been shown
the optimal control effort switches at maximum once betwienmaximum and the minimum control effort. In [5],
many variants of optimal control models of SIR-epidemiasiavestigated for the application of medical vaccination
and health promotion campaigns. In [6], a dynamic SIR epidenodel is used to identify the optimal vaccination
policy mixes for the flue season.

Epidemic models have also been used in computer sciencergyiteering to describe the temporal evolution
of worm propagation in computer networks. Engineering mésh such as stochastic system analysis and optimal
control methods, have been applied to provide insights ereflidemic spread as well as disease control policies for
protecting the population with quarantine and removal.7lp & sequential hypothesis testing is adopted to detect a
worm epidemic propagation over the Internet under a stdichdsnsity-dependent Markov jump process propagation
model. In [8, 9], optimal control methods have been usedudysthe class of epidemic models in mobile wireless
networks, and Pontryagin’s maximum principle is used tontif\athe damage that the malware can inflict on the
network by deploying optimum decision rules.

Game-theoretic approaches have also been used to anadysteategic interactions between malicious worms and
the system under attack. In [10], a virus protection gameébkas proposed based on two-state epidemic models for
nodes and the characterization of the equilibrium focusersteady state of the response. In [11], static and dynamic
game frameworks have been used to design equilibrium réeacsirategies for defending sensor networks from node
capturing and cloning attacks. It has been shown thatlthd nonzero-sum differential game framework is equivalent
to a zero-sum differential game between a tearN aftackers and the system.

Different from the work done in the past, this paper congdecoupled system framework composed of the SIR
epidemic model and the evolutionary dynamic model for vinugation. This framework is motivated by the fact
that the epidemic spread of the virus can facilitate thesvinutation, strengthening the virulence of the virus, which
will in turn expedite the spread and worsen the epidemice.SIIR epidemic model with virus mutations can capture
this complex interactions between the virus and the hostailows us to explain more complex phenomena through
analysis.
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3 Evolutionary Model of Virus Mutation

Infection decease, such as influenza and SARS, is an urgbéfct fealth problem in modern urban environment.
Influenza spreads faster, especially in large urban papaokand influences the lifestyle and working facilities of
people. The occurrence of epidemics depends on many faatohsas the size of human population, virus strain and
virulence, and it has become important to use effectivestmteduce their influence on human population [12], [13],
[14]. Mathematical model of virus infection in a populatioan be used to study those factors, which influence the
epidemic growth for improving existing treatment and ewasilg new effective prevention measures and treatment.
In earlier research in the literature, it has been showndhehg epidemic season, influenza virus can mutate, and
during the epidemic season, several types of influenza wiraslate in human population. Different mutations of the
influenza virus affect human beings with different inteiesit and the epidemics evolve depending on the virus type
and its intensity. Hence evolution of virus mutation shdoédtaken into account when SIR model is used to model
influenza epidemics.

In this work, we couple together two dynamic processes, the. evolution of virus mutation and the epidemic
process in human population as one dynamical system. Thespamding scheme of the system is illustrated in Fig.
1. At the top level, two different types of influenza virus qoste to infect the host for continuing their life cycles,
and thereby leading to the spread of epidemics in human ptipnl The total population will contain several infected
subpopulations, which correspond to different virus tygas the bottom level, the human population is divided into
subpopulations: the susceptible (S), the infected (1) &Ardecovered (R). Spreading of the viruses can be controlled
with help of prevention measures, such as medical treatorasblation of infected individuals of population. Thus,
at this level, we consider SIR model with those control patars.

Fig. 1 Transition rule: The scheme describes the reaction of hypopalation to the virus mutation. We assume that the epidenoicess
can be controlled using treatment or quarantine methodssémeasures can de considered as control parameters ysti®,sand used
to reduce the size of the infected population and termirreepidemic process.

At the top level of coupled dynamical system, we use evohaig dynamics to describe the mutations within the
virus population. We first describe the interactions betw&e virus types using an evolutionary game model, for
which we define pure strategies, fithess and rule of changasgulation. In the game, two types of viruses compete
for human organisms, and depending on the strength of thes,vane type can survive or vanish from the virus
population.

We assume that the virus has two types or two strains dengt&d dndV,, and without loss of generality, we
assume thaty, dominates virud/,. The fitness of the virus typé in the population is}(V;,V;),i, ] = 1,2, which
depends on the survivability of the virus among its infeqiegulation (e.g. human beings). The life cycle of viruses
requires a host organism and occupation of such organigia tea@nergy costs. Hence the virus paypi composed
of two components: one is the utility of occupation of hogjaism, and the other is the cost, i.e. energy costs,
J=b—-GC,b >0,GC >0, b <G, C; <C,. Utility of occupationb; is dependent on the population st&teand
hence the mixed strategigg x, € [0, 1] over the sefVi,V,) are also dependent on the population states. Here, mixed
strategy is defined as the fraction of corresponding virgsés circulating in population. Thereby virus population
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state is defined as valuét) = (x1(t),%2(t)), X1+ %2 = 1, herex(t) = p‘W(t)J = 1,2, componenp;(t) is the number of
replicas of virus/;, M is virus population size.

Depending on the virus strength, the number of people iateby different virus types will be different. We need
two flows of epidemic processes in human population to des@ur model to describe the population. We Lis®
denote the population state for the subpopulation infebietype 1 virus, and, is the state for the subpopulation
infected by type 2 virus. Both viruses spread over the efin@an population, and the interactions between two
viruses when attacking the same human organism are desevitiethe following four scenarios:

e if of virus V; meets virusvy, then payoffs for both are equal %;—Cl The virus incurs energy cos@ with
probability 1/2 if he can not occupy an host organism, and achieve a utfliy aith probability 1/2 if it succeeds
in occupation.

e if virus V; meets a viru¥/,, then virusv; obtains a payoff ob; andV, obtains a payoff of 0.

e if avirusV, meets a viru¥y, then we have the same payoff as above.

e if avirusV, meets a/,, then for both viruses, they obtain payoff%lgﬁ.

The above four cases of competition between the two typesro$es are summarized in the following matrix
representation:

V1 \Z)
Vl ( Dy 2(.,1 Dy 2(4 ) (b17 0)
Vol (0by) (P23

According to evolutionary game theory [15], we compare tagqgff of thei-th pure strategy with the average payoff
of total population. If the difference is positive, then rntuen of individuals using this pure strategy will increase, o
decrease otherwise. The average payoff of the populati®? — R is defined as

u(x,x) = ii)q u(ei,x)7

whered € R?,i =V1,Vs, is a vector withi-th element being one and 0 otherwise, indicating ttiepure strategyy is
a continuous function. The payoff of theh pure strategy is defined €, x) = € Ax, whereA is the payoff matrix
of current symmetric game, amxdt) is fraction of virusv; [16].

To describe evolution of virus we need to use system of difféal equations, in current work, we focused on
replicator dynamics [17] to describe changes of statesrus\population.

% = g[u(e,x) — u(x,x)]x;, (1)

wheree € R, is time scaling factor. Since the mutation process in viroggypation and epidemic process in human
population may develop with different speed (e.g. viruswatate faster than spreads in human populatioofn be
used to describe such difference in the time scale of the ywmamics.

The stationary state of the system of differential equatid) leads to symmetric Nash equilibrium [17]. Therefore,
depending on the parametdssC;, the game has two asymmetric Nash equililjfiz0), (0, 1), corresponding to the
strategies in which all population are being tyyheandV,, respectively' and one symmetric Nash equilibri(gx),
wherex = (X1,%X2), X1 = +a X2 =3 +a , herea; = b -G Cl , bZ —b1. Symmetric case is more interesting since
both virus types have |n]ﬂuences on the human populatlon

4 Epidemic Process for Urban Population

Consider a total urban population of sikewith two types of viruses circulate in the population duriggidemic
season. The human population is divided into four groupsstisceptible, the infected by virlfg, the infected by
virusVs, and the recovered. The susceptible is a subpopulationnéhidpeing that are not infected by viruses but will
be infected by one or both types of viruses, and they do nat llamnunity to the viruses. We assume that in human
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population, two types of viruses coexist at the same timen&tuorganisms can be occupied by both types of viruses,
and hence this leads to competitions between viruses fdndbe Depending on the virus strength, we observe that
number of people infected by virusr by virusj can be different, and people infected by vikjor \» belong to the
infected subpopulation. The recovered subpopulationistnsf people recovered from being infected. The mixing of
urban populations allows viruses to spread quickly, anti @acson in the population is assumed to be in contact with
others with equal probabilities. Hence when an infectedviddal interacts with a susceptible one, the virus spread
is then made possible. Virus with higher virulence, by owguasption, which has higher probability of success in
spreading when interaction occurs between an infectedithdil and a susceptible individual.

4.1 Epidemic Dynamics

We model virus spread in urban population using epidemio&d&IR model, where a system of differential equations
is used to describe the fraction of urban population as atifmof time. Then, at time, ns, n;, ni,, Nk correspond to
fractions of the population who aresusceptible, infectgdribusV;, infected by virud/, and recovered, respectively,
and for allt, conditionN = ns+ ny, + Ny, + nNris justified. Define

_ M _ M

S(1) = 22 (1) = T, 1a(t) = T2, R(t) = T, (R(O) = 1= S(1) ~ 11(t) - I2(1)

as portions of the susceptible, the infected and the reedviarthe population. At the beginning of epidemic process
t =0, most of people in the population belong to sub-populeiesceptible, small group in total population is infected
and other people are in recovered sub-population. Hentiel isiiates are:

0<50)=<1,0<13(0)=12<1,0<1,0)=19<1, RO =1-5"—-19-12.

We have extended the simple SIR model introduced by [3]{d8fscribe the situation with two virus types:

g—f’ — &Sk &Sk,

1

1 (55— 01— )l

éjltz (01S—01—u)ly @
—= = (5S— 02— W)l

gk

i (o1 + )l + (024 Up)ly;
whered are infection rates for virus;, i = 1,2, g; are recovered rates. Infection rate is defined as a produbeof
contact raté and transmissibility of infection, i.e., probability oiimsmission infection during the contadt,

I‘1|i

G:IGO(W):IéoIi.

In this work, changes in virus population influence on theapzters of SIR model, and therefore number of infected
is a function of corresponding virus subpopulatignj = V1, Vo, li(t) = li(x,t). We letl;(x;,t) be linear and) take
the following form:

& =1 li(xi,t).
Then SIR model can be rewritten as follows:
ds
i ~5S- &S
L 55—l —wly;
& ©)

— = 5S— 02l — Wly;

Tl (o1 +up)ly+ (02 +u2)l2;



6 Gubar Elena and Quanyan Zhu

In the model above, the infection rate is integrated intoeh@ution of mutation process to epidemics in the urban
population.Medical treatment or quarantine isolationus the number of the infected individuals in the urban
population. These prevention measures can be interpreteaidrol parameters in the system defined as(u, uy),
hereu; are fractions of the infected which are quarantined or uimtensive medical treatment,Qu;(t) <1, 0<

u(t) < 1, for all t. Recovered rates are inversely proportional to diseasgtidaiT, henceg; = =.

=l =

4.2 Objective Function

In this work, we will minimize the overall cost in time inteaMO, T|. At any givert, following costs exist in the system:
fa(l1(t)), f2(12(t)) these are treatment costR(t)) is the benefit rateh; (usi(t)),h2(uz(t)) are costs for medical
treatments (i.e. quarantine or removal) that help to redue@pidemic spreading;,, ki,, kr represent the costs and
benefit for invective and recovered in the end of the epidehié@e functionsfi(l;) are non-decreasing and twice-
differentiable, convex functions, i.€f(0) = 0, fi(lj) > 0 forl; > 0,i = 1,2., g(R) is non-decreasing and differentiable
function andg(0) = 0, hi(ui(t)) is twice-differentiable and increasing functionun(t) such ash;(0) = 0, hj(x) >
0, i =1,2, whenu; > 0.

The cost for the aggregated system is given by

J=fg f2(11(t)) + f2(12(t)) — G(R(t)) + hy(us(t)) + ha(ua(t))dt + ki, 11(T) + ki, 12(T) — keR(T) (4)

and the optimal control problem is to minimize the cost, ingin,, ,1 J. To simplify the analysis, we consider the
case wheréy, =k, =kg =0.

5 Optimal Control of Epidemics

We use Pontryagin’s maximum principle [20], to find the ogtimontrolu = (uz, uy) to the problem described above
in Section 4. Define the associated Hamiltortiand adjoint functiongds, A, A, Ar as follows:

H = f1(12(t)) + f2(12(t)) — g(R(t)) + ha(ur(t)) + ha(uz(t)) + (A, — As) 1 Sh+ (5)
(A1, = Ag)%Sh+ (AR — Al ) 0111+ (AR— A1) 0212 — (A, — AR) 11Uz — (A1, — AR)l2Uo.

Here we use conditioR=1— S— I; — |,. We construct adjoint system as follows:

1
: 6
M) = — 24 = 13(12) + As%S— Ay (&S 02) — Aoy ©)
AR(t) =-53 = (d(R)
with the transversality conditions given by
A(T)=0,A,(T)=0, As(T) =0, Ar(T) =0 @)

According to Pontryagin’s maximum principle, there exishtinuous and piecewise continuously differentiable
co-state functiong; that at every point € [0, T] whereu; anduy is continuous, satisfy (6) and (7). In addition, we
have

(u,up) carg min H(A,(S11,12,R), (U, Up)). (8)

Ug,Upr€[0,1]



Optimal Control of Influenza Epidemic Model with Virus Muias

5.1 Structure of Optimal Control

Based on previous research [9],[19], [20] in this subsectice show that an optimal contro(t) = (u1(t),ux(t)) has

following structural results.

Proposition 1 The following statements hold for the optimal control peshldescribed in Section 4:

e Ifhj(-) are concave, then

u(t) = (ua(t),uz(t)) = { Eéjég: ;g:gzttit%';

e Ifhi(-) is strictly convex, then existg t;, 0 <tp <t; < T:

0, @<h(0),i=12
ut)=< @), HO)<a<h(l),i=12;
1, h(l)<a@,i=12.

Proof. The proof of Proposition 1 will require an auxiliary Lemmaridat will be discussed in detail in Section 5.2.

Before stating Lemma 1, first we define functigmss follows.

@ = (A, —AR)1, @ = (A, —AR)l2.
Rewrite the Hamiltonian in terms of functigmand we obtain

H = (f1(11(t)) + f2(12(t)) — 9(R(t)) + (A, — As) 1Sk + (A, — As) &Sk + (AR — Al ) 011+
(AR— A1) 0212+ (ha(us(t)) — @uur) + (ha(uz(t)) — @ou2).

For any admissible control, u, and according to (8) for atle [0, T|
[(he(ua(t)) — @uu1) + (ha(ua(t)) — @lz)] < he (U1(t)) — @utin) + (ho(Ti2(t)) — i),
then, we obtain

(ua(t),ux(t)) € arg min (h(X) — @x) + (ha2(y) — @y).
x€[0,1],y € [0,1]

We observe that
minf(hy(us (1)) — @uug) + (ha(uz(t)) — @euz)] = min(hy (U (1)) — guu) + Min(ha(u2(t)) — auiz).
Sinceu; = u; = 0 are admissible control, hence using (10), we obtain
(ha(U(t) — @uu) + (ha(Ua(t)) — @aUz) < (ha(0) — @0) + (hx(0) — @0) =0, forallt.
To prove Proposition 1, we consider the following auxilisgnma.
Lemma 1. Functionsq, i = 1,2 are decreasing functions of t, fot [tp, T], to >t > 0, while
&Sk—aili > u;,i =1,2.

Proof:

9)

(10)

(11)

(12)

(13)

The state and co-state functions are differentiable fonstitheng also differentiable functions at each tirhe
t € [0,T] at which functionsu,u, are continuous. We have to show thgi< O at each time € [to, T], to >t > 0.

Consider functioryp, given by
@ = —(f{(11) = (A, — A) 18— (Ar— Ai,) 01— G (R))l1 — (AR — A1, ) (8:Sh — Gul1 — l1uy),

and likewise g as follows:

(14)
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@ = —(f5(12) — (A, — A9) %S~ (Ar— A,) 02— G (R))l2 — (AR — A1, ) (828 — 0al2 — IaU). (15)

Here, f{(11) > 0, f3(12) > 0,d'(R) > 0, & > 0, I1,12,S R > 0, then right hand side of expressions (14) and (15)
are negative, if condition§; Sh — o111 > u; andd,Sh — ozl, > u, are satisfied, otherwise functiogsare increasing.
The term& Sk — agili > u; > 0,1 = 1,2 can be interpreted as a condition for the beginning of tidespic, see [3]. The
proof of Lemma 1 is completed.

5.2 Proof of Proposition 1

In this subsection, we prove proposition 1 under two casessiffunctionsy(u;),i = 1,2.

5.2.1 hj(-) are concave.

Let hy andh, be concavel{] < 0,h; < 0), then f1(x) — @1X) and fi2(y) — ¢y) are concave functions ofandy. For
any timet the uniqgue mimimum is eitherm=0o0orx=1 (y=0o0ry=1). Then

(0,0), 1+ @ < hy(1) +h2(1),

U= (ug,U2) = { (1,1), @+ @ > hy(1)+hy(2). o

There can be at most onat whichg (t) + ¢(t) = h1(1) 4 hz(1) according to Theorem of Intermediate value. As
faras@,i = 1,2 are decreasing functions, while conditianSk — oil; > u;, i = 1,2 are satisfied, hence if sutkxists,
sayts, theng + @ > hi(1) + ho(1) for time intervallto,t1] and @ + @ < hy(1) +hy(1) in [ty, T]. If conditions (13)
are broken, thegy + @ < h1(1) +hy(1) for time interval[0,to]. For valuek;, = kj, = kr =0, we have tha@y(T) =0,
hi(1) > 0.

5.2.2 hi(-) are convex.

Whenhi(-) are strictly convextf’ > 0) then g (h1(X) — @1X) |x=x,= 0 and & (h2(y) — @1y) |y-y, = O at ax € [0,1] or
y € [0,1], thenuy(t) = x1 anduy(t) =y, elseuy(t) € {0,1} anduy(t) € {0,1}. Then,

u=< N1a), N0 <ag<h(l),i=12 17)
1, h(l)<aq@,i=12

Functionq, h{, u; is continuous at all € [0, T]. In this caséh; is strictly convex andl{ is strictly increasing function,
soh’(0) < h'(1). Thus there exists such poirigst;, 0 < tg < t; < T such as conditions(17) and (13) are satisfied, and
according tog is decreasing function. In time interval whek&k — il < u;,i = 1,2 theng are increasing functions
and conditions (17) will be rewritten. There may exist suntetinterval[0,to) thatu; = 0 and@ < h{(0), i = 1,2, and
then for time intervaltp, T] conditions (17) continue to be satisfied.

Using the auxiliary Lemma 2 below, we complete the proof aff@sition 1. From Lemma 1, we need to check
that multipliers(A;;, — As), (A, — As), (AR — Ay,) in equations (14) and (15) are non-negative.

Lemma2.Forall 0 <t <T, we haveA|, — As) > 0, (A, —As) >0, (Ar— Ai;) > O.

Property 1.Let w(t) be a continuous and piecewise differential functiort.ofet w(t;) = L andw(t) > L for all
t € (t1,...,to]. Thenw(t;") > 0, wherew(t;") = XIiﬁrr;ov(x).

Property 2.For any convex and differentiable functig(x), which is 0 atx =0, ¥’ (x)x — y(x) > 0 for all x > 0.

Proof: We first prove the case fdr= T and then fort < T. Step 1.At time T, we have(A (T) —As(T)) = 0,
(A,(T) = As(T)) =0, and(Ar(T) — Ay, (T)) = 0 according to (7)A;,(T) — As(T) = —f;(112(T)) < 0 and by analogy
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A (T) = As(T) = —f5(12(T)) < 0 andAr(T) — A,y = f1(12(T)) +9(R(T)) > O, therefore expressior{d, (T) —
As(T)), (A, (T) —Ag(T)), (AR(T) — Asl1(T)) are positive in an open interved, T).

Step 2.(Proof by contradiction).

Lett* < T be the last instant moment at which one of the inequality taimds are performed:

Case l.In this case, we will prove thd#,, (t) — Ag(t)) > 0. Suppose tha, (t) — As(t)) =0, (A, (t) —As(t)) =0
and(Ar(t) — Ay, (t)) > O then

Ay () = As(t) = f{(12) = (N, — Ag)81S— (AR— A1) 01 — (As— Aiy)Bil1 — (As— A, B,
and hence we obtain th@ihl(t*) - )\s(t*)) < 0. This contradict$roperty 1for function (A, (t*) — Ag(t*)) which

means thatA,, (t*) — As(t*)) > 0.
Now let (Ar(t) — A, (t)) = 0 and(Ar(t) — Ay, (t)) = 0 and(As(t) — A, (t)) > O, (Ag(t) — A, (t)) > 0.

A, () = As(t™) = (= F1(12) + As1S— Ay, (51— 01) — ArT1) — (—As(—1l1 — Solz) — Ay, Bal1)
= —f1(11) = (A, = Ag) 1S~ (AR— Ai,) 01 + (A1, — As)b1l1 + (A, — As) Bl2 (18)
= —f1(11) = (A, = As)31S— (AR— A1) 01 — (As— A1) 8111 — (As— Ay, B2l

If & =0 andd, =0 and(Ar(t) — Aj,(t)) > 0 thenA, (t*) — Ag(t*) < O that contradict®roperty 1for the functions
(Ai, (t¥) — Ag(t™)) at timet™, and also such mometitdoes not exist. Lemma 2 is proved in this case.

If & > 0 andd, > 0, then the system of ODE is autonomous, and hence Hamilt@md the control do not have
dependence of the variable independent

H(S(t),11(t),12(t),R(t), us(t), ux(t), As(t), Ar, (t), A, (1), Ar(t)) = constant (19)
From (5), we obtain

H = f1(12(t)) + f2(12(t)) — 9(R(t)) + hy(us(t)) + ha(uz(t)) + (A1, — As) a1 Sh + (A, — As) %2 Sh+ (20)
()\R— )\|1)01|1+ (/\R— )\|2)02|2 — (/\|1 — )\R)|1U1 — ()\|2 —/\R)|2u2.

Sinceg(R) is a non-decreasing function, thg(R(T)) > g(R(t)), we obtain
H — f1(11(t)) + g(R(t) > f2(I2(t)) + hy(ua(t)) +ha(uz(t)) + (A, — As)a1Sh + (Al, — As) &Sk 21)
(AR— A1) 0111+ (AR— A,) 0212 + (AR — Al 11Us + (AR — Ay,)I2up > 0.

This follows from assumptions on functiofg11) andhy (uy ), ho(up) such ads1(T) > 0 thenfy(l1) > 0 anduy(t) > 0,
up(t) > 0 thenhy(uz) > 0, hp(up) > 0.
From (9), we have

H = (f1(11(t)) + f2(12(t)) — 9(R(t)) + (A, — Ag)1Sh + (A1, —Ag) %Sk + (AR — Aj,) 0111+ (AR — A1, 0212 (22)
+(ha(ug(t)) — @uua) + (ha(uz(t)) — @uz).

Therefore, we obtain

f1(11(t)) + f2(12(t)) —g(R(t) —H  (hy(ui(t)) —@uu1) | (ha(Ua(t)) — @uUp)

A (1) = As(t) = — 1 (11) + B + ; + B -

(As— A1) &S — (A, - )\R)Uz:—i + (A = A9)8ul1+ (A, — Ag) &l

= L1300~ 001~ 4~ 1)+ gy + MO B0, () “ ko)

(As—A|2>6zs:—j — (A AR>oz:—j ~(As—Ay)dil— (As— ).

(23)

Here f1(11) is convex increasing function arfg(0) = 0,13 > 0 and(fy(l1) — f1(11)l1) <0, by Property 2 From (7),
(18), (21) Them,, (t) — As(t) < 0 and it contradict®roperty 1, and part of the lemma follows.

Case Il. We have to prove thaf, (t) — Ag(t)) > 0. This is a symmetric case to Cés®sing the same reasoning,
we obtain
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A, (t) = As(t) = =/ (12) + (As— Ai,) 85+ (Ai, — AR) G2 + (Al — A9)1l1 + (A1, — Ag) Bal 2
= 2 (fall2)~ t12)02) - - (H — fa(l) + g(R)) + M) = 0], (ellalt) — )

(As—ml)éls:—: — (s —AR>01:—; — (As=A)82l2— (As— A1)l

— (24)

Thus, we havé\.z(t) —)\s(t) < 0 that contradict®roperty 1, and hence function@\, (t) — Ag(t)) > 0.
Case lll. In this case, we will prove thdfAr(t) — Ay, (t)) > 0 in similar way.

H — f2(l2(t)) + g(R(t) > —f1(11(t)) + ha(ua(t)) 4+ ha(Uz(t)) + (A, — As)B1Sh + (A1, — A5) & Shb+ (25)
()\R— )\|1)01|1+ (/\R— )\|2)02|2+ (/\R— )\|1)|1U1+ (AR—/\|2)I2u2 >0

This follows from assumptions on functiohg(us ), hz(uz) such ads1(T) > 0 thenfy(11) > 0 anduy(t) > 0, uy(t) >0
thenhy(u1) > 0, hp(up) > 0. Therefore, we obtain

AR() = Ny (1) = G (R) + F{(12) = A, 518+ A (8,5~ 07) + Aro
QR £ -y ASBS+ O A0
=R+ i+ 1 -2 2t - 00)+ B + - AP @8)
O )02 (0~ ) (ha(ua) — )
R—Al,)02 .

I I I

From (7), (18), (21), (12) , we obtai;hq(t) — )hl(t) > 0 and byProperty 1Ag(t) — A, (t) > 0, Lemma 2 follows.
Together with lemma. proof of lemma2 completes proof of propositioh

5.3 Quadratic Cost Functions

In this subsection, we consider a particular case of Prtiposi, where the cost functiomg(u),i = 1,2 are quadratic,
ie.,
hi(u) = agu? + aqU + a2, ag # 0. (27)

Quadratic function is strictly convex if coefficiead > 0, and we can apply the same arguments as inZurtemma
1. Consider%(h (X) — @X) |x=x, = O from Proposition 1, wherl (u) is defined as in (27), then we obtain

(N1 (X) — @) [xmxs = 55 (@0U7 + 31U + 82 — AX) [x=x, = 230l + 31— @,
Hence we arrive at the following form of optimal control

U|7

1, h(l)<aq@,i=12

Functionsq, h{, u; are continuous at atl € [0,T]. In this case}y is strictly convex andy is a strictly increasing
function, soh'(0) < h'(1). Thus there exists such poirttst;, 0 < tg < t; < T such as conditions (28) and (13) are
satisfied, andy is decreasing function. If conditions (13) are broken there may exist such time inter@l to) that

ui =0 and@ < h{(0), i = 1,2, and then for time intervalo, T] conditions (28) continue to be satisfied.

6 Numerical Simulations

In this section, we present numerical simulations to casrate our results. The system parameters are described
as follows. Population size i = 100000, at initial time, the susceptible populat®(i®) = 99200 individuals, the
recovered populatioR(0) = 0. We suppose that@® percent of population are infected by viMis i.e.,11(0) = 400,
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and Q03 percent of population are infected by viNs i.e., 1,(0) = 300. Epidemic lasts for the period of 60 days.
During the epidemic, people from the infected populatiaruincosts for the treatment, and hence thereby we define
costs functions a§, = 4011, fi, = 103, g(R) = 0.05R. For concave cost functions we usedu; ) = 10uz, ho(up) =
5u, and for convex cost functionshky (uy) = 20u§, hy(uy) = 10u§. The costs here are measured in same monetary
units (m.u.), which can be in US dollars, Chinese RMB, or Ewtepending on the context. We let the duration of
disease caused by virlfg be 15 days, while the duration of disease caused by Viriee 8 days. Clearly, virug; is
stronger than virus,.

The auxiliary parameters of the model are given as follows.cdl\bose iteration stdp= 0.0115; the scale factor
for virus dynamics = 100; the transition rate from the susceptible to the infiégi@pulationi;, 81, = 0.000006; the
transition rate from the susceptible to the infected paypnd,, &,, = 0.000004; the transition rate from the infected
populationl; to the recoveredy; = 1/15= 0.066666667; and the transition rate from the infedtetd the recovered,
0, =1/8=0.125.

In Figs. 2-4, we present three variants of our model:

1. Original SIR model without virus mutation;
2. SIR model with virus mutation process;

3. SIR model with virus mutation and application of conttalp modifications which depend on the costs functions
properties are considered.

120000

100000
80000 \
60000

40000

YV X
NN EVAVA

0 6 1" 17 23 29 35 40 46 52 57 63

[—sA—i1—12—R]

Fig. 2 SIR model without virus mutation. Red curve correspondsiflected by virud/;, green curve corresponds to infected by viius
Initial states arey, = 400,15, = 300, the maximum values argnax = 59871,l2max = 2968. Epidemic peaks a reached at 15-th and 11-th
days.
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80000
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wl ] X
/
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time

—SA—I1 12—R

Fig. 3 SIR model with virus mutation. With the same initial statepeevious figure the maximum values &iigax = 81413,l2max = 2968.
Epidemic peaks a reached at 5-th and 4-th days.
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In Fig. 2, we observe that for described initial states andiqdar case of parametefs and g; the maximum
guantity of people in the infected subpopulations is adteat the 15-th day in group, l1max= 59871, and at the 11-
th day in the infected subpopulatibn maximum number of infected Ig;ax = 2968. In Fig. 3, we show the epidemic
process with the same initial states for subpopulationsust&ptible, Infected and Recovered in human population
together with virus mutation process. From simulation we see that ganges in virus population lead to different
epidemic behavior in human population. The maximum numbpeople in infected populations arg,, = 81413,
lomax = 5490, reached at the 5-th and the 4-th day, respectively.sékenae that virus mutation occurs according to
an evolutionary process, described in Section 3. To defigefpmatrix of symmetric game between different types
of viruses we use next parameters of utility and energy dpstedC;, hereb; = 100,b, = 200,C; = 400,C, = 300,
hence the corresponding stationary points (which are alshNEquilibria) are{(1,0),(0,1), (X = (0.5,0.5))} (see
Fig. 15).

120000
100000 \
80000

60000

40000

e |

20000

0

0 1" 23 35 46 57

time

[—s—1L1—12—R]

Fig. 4 SIR model with virus mutation and application of controlngtionsh;, i = 1,2 are concaveh; (u;) = 10us, hy(uz) = 5u,. Maximal
quantity of infected aré max = 19942,l2max = 609.

Fig. 4 shows that the number of the infected has been redusztbdhe application of control parameters. As we
have discussed earlier, control parameters can be integoas insensitive medical treatment or quarantine, agppidie
the infected population. The maximum number of infectedpiidemic peak aré max = 19942 lomax = 609, epidemic
peaks reached at the 5-th and the 4-th day, respectively.

Figs. 5-8 illustrate the results of Proposition 1, and shiesvdptimal treatment policies for different situation$: (i
simple epidemic process, and (ii) epidemic process undileieimce of virus mutation. Both situations are considered
under concave and convex cases for the costs fundtions.

08

06 i

04

02

0 5 10 15 20 25 30 35 40 45 50 55 60
time

Fig. 5 Optimal control in SIR model without virus mutation, cosgaétions are concavg. Control is switched off on 50-th day. Curves
for variablesu; coincide with variableu,.



Optimal Control of Influenza Epidemic Model with Virus Muias 13

Figs. 5 — 6 show the optimal treatment policy applied to urpapulation. It can be seen that the policy is active
until the 50-th day and then is switched off if no influence wéis mutation process is on the human population.

08

06

04

0.2

-0.2

Fig. 6 Optimal control in SIR model without mutation and convextdasictionsh;, hy (up) = 202, hy(up) = 10J§.

Fig. 6 corresponds to the second part of Proposifipander the assumption that the costs functibaig) are
convex. In this case, the optimal contralis switched off at the 50-th day, and the optimal contrpis switched off
at the 15-th day.

0.8

0.6 L

0.4

02

time

Fig. 7 Optimal control in SIR model with virus mutation and concaest functionsh;. Control is switched of at the 48-th day for both
subpopulation of infected.
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0.8

——u_1
06 —m—u_2

0.4

02

Fig. 8 Optimal control in SIR model with virus mutation and convestfunctionsh;. u; decays at the 9-th dayp vanishes at the 50-th
day.

Figs. 7 — 8 illustrate the results of Proposition 1. We take account the impact of virus evolution on the urban
population. In our model viru¥; dominatesv,, then during the time number of infected in subpopulatibns
increasing, hence we need to use control parameters mersing. In Fig. 7, we observe that the optimal controls are
switched off at the 48-th day, whereas in 8 at the 9-th and Ghth@lay, respectively.

Furthermore, we present a comparison between the aggdegzgts as a result of the application of four different
policies in our system, i.e., (i) simple SIR model withoutud mutation process, (i) simple SIR model with virus
mutation process, (iii) optimal treatment policy with came costs functions, and (iv) optimal treatment policy with
convex costs functions. Next, figs. 9.—14 present the dpvedmt of the aggregated costs over the time.

3000000

2500000
2000000

1500000 /
1000000 /

500000 //
0

0 6 1 17 23 29 35 40 46 52 57 63 69
time

Aggregated costs

Fig. 9 Aggregated costs for SIR model without virus mutation psscé\ggregated cost &= 4701610146 m.u. for period of 60 days.

In Fig. 9, we show the curve associated with system costag@pidemic total epidemic duration. According to
(4), we observe that aggregated cosl is 4701610146 m.u. for total period. Here we do not take intmantany
effect from virus mutation process and application of colrtty human population. In this case the maximum and the
minimum values arénax = 2419518 m.u. andyin = 19000 m.u. Maximum aggregate cost is reached at the 14-th day
and this time belongs to the interval between epidemic pealkkesponding to different viruses.
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Fig. 10 Aggregated costs for SIR model, if virus mutation processiocin human population during epidemic period. Aggregjatest
isJ = 47630705 M.UJmax = 3309432 m.u. andmin = 19000 m.u.

Fig. 10 illustrates aggregated costs, when epidemic psoisesonsidered together with virus mutation process.
Aggregated cost i$= 47630705 m.u. Maximum and minimum values &fg«= 3309432 m.u. andpin = 19000 m.u.,
respectively, and reaches its maximum at the 4-th day. Here we can see thateflus higher than in previous case,
then we may assume that mutation process provoke increasaugts for treatment in human population. Moreover,

from our simulation, we see that the aggregated costs foranynopulation increase faster when we include virus
mutation process to our model, also these costs are muchrhigh
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4000000

3500000 1—;

2 3000000 |
8 |
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) |
H 2000000 i
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1000000 4

500000

0

time

Fig. 11 Aggregated costs for SIR model under optimal control pohésus mutation process does not influence on the human pbpnl
Aggregated cost i§ = 4376001971 m.UJmnax= 3976008 m.u.Jmin = 539541 m.u.

Fig. 11 shows the aggregated cost in total epidemic peridduiman population when control is applied to the
system. Here, we assume that virus mutation does not infuiree human population. From the simulation, we
observe that the aggregated cosl is 4376001971 m.u., maximum and minimum values &g = 3976008 m.u.,
Jmin = 539541 m.u. The maximum value is reached at the beginningidémics, and the aggregated cost decreases
after the optimal control is switched on. Here, we use coac¢auctionsh;(u;) to describe costs which are provoked

by application of control. In this case, aggregated costplyedecrease after the 6-th day, which correspond to the
reduction of the infected in both subpopulations under fhtental control strategies.
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Fig. 12 Aggregated costs for SIR model with virus mutation proc€ggtimal control policy is applied to the system. Aggregatedt is
J = 48338102 m.u.Jmax= 3309432 m.u.Jmin = 19000 m.u.

Fig. 12 shows aggregated costs for the case of convex castidosh;(u;), we observe that aggregated cost is
J = 48338102 m.u.Jmnax= 3309432 m.u.Jmin = 19000 m.u. the maximum is reached at the 4-th day insteadeof th
2nd day. From simulations we observe that properties osdosictionsh;(u;) perform influence to the total system
costs.
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time

Fig. 13 Aggregated costs in SIR model without mutation processin@gbtcontrol strategies are applied to human populatiostsco
functionsh; are concave. Aggregated costs for total periodl45227204 m.u.Jmax= 29011 m.u.Jmin = —4887 m.u.

In Fig. 13, we consider epidemic control without influencevinfis mutations, but with the application of optimal
control to the model. In this situation, the aggregated fovgbtal period is] = 227204 m.u. The maximum and mini-
mum values arémax= 29011 m.u.JJnin = —4887 m.u., which are reached at the 11-th and the 60-th dsyectvely.
After the 25-th day aggregated costs become negative ipéne income of population increases under the optimal
treatment policy; i.e., the treatment costs decrease apam@u with the utility from the effect of recovering.
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Fig. 14 Aggregated costs in SIR model without mutation processin@gbtcontrol strategies are applied to human populatiosfsco
functionsh; are convex. Aggregated costs for total period is 48284749 m.uUJmax = 2419528 m.u.Jmin = 19121 m.u.

Aggregated costs for SIR model without mutation proces®ungtimal control, is) = 48284749 m.u. Maximum
and minimum values are reached at the 13-th and the 60-tmekpectively, andmnax = 2419528 m.u.Jmin = 19121
m.u.

Figs. 13-14 show that system aggregate costs are lower ifonsider simple epidemic process, without virus
mutations, and the aggregate costs increase when virusiomuéacurs during the epidemic period. The influence of
optimal treatment policy on the system is not as strong agtheence of mutation process.

Fig. 15 demonstrates the evolution of viruses over time imw population [21]. Here, we can see that there are
three stationary states corresponding to three Nash kdajland that the convergence of solution trajectories@EO
(1) depends on the the initial states.

Fig. 15 Simplex of mixed strategies of the symmetric bimatrix gawrenfiodeling virus mutations. In our numerical example, tbiecs
Nash equilibria is found to b&(1,0), (0,1), (0.5,0.5)}, where(1,0), (0,1) correspond to all population beiivg andV,, respectively; and
(0.5,0.5) corresponds to half of the virus beikfg and half\;.

From the simulation results above, we observe that the epédeeak occurs earlier than in normal situation when
the influence of virus mutation process is considered on timeam population. The size of subpopulations evolves
according to the virus strength or virulence of the infectetl the maximum number of the infected in the population
with a stronger strain of virus is larger than its counterpéth a weak strain of virus. The population profile of
the infected depends on the virus populations. We obseatetike equilibria of the mutation process change under
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different parameters in game payoff matrix, and hence le@dpulation profile of the infected. Application of control
parameters, such as medical treatment or quarantine pallioys us to reduce quantity of infected individuals intbot
subpopulations. However, the process of virus mutatioratgignificant impact on the epidemic costs under optimal
control applied to the system. We observe that aggregattd ace higher when effect of virus mutation is considered
in the epidemics than the cost when mutation is not includete model. It is interesting to see that the application
of optimal control does not lead to considerable reductggregated costs in both cases.

7 Conclusions

In this paper, we have studied an epidemic model that takesatount the evolutionary dynamics of virus mutations.
The classical SIR epidemic dynamics are strongly couplékl thie replicator dynamics of the virus. We have formu-
lated an optimal control problem in which we seek to find anmat treatment and quarantine strategies against the
infection of two different types of viruses. Using Pontrirdggmaximum principle, we have shown that, depending on
the structure of the cost functions, the optimal controlda#tgreshold structure. We have corroborated our results wit
numerical examples, observing different switching tinmglie control strategies under models with and withoutsviru
mutations. As future work, we would extend this work to nultitypes of viruses and apply different evolutionary
dynamics to model the process of virus mutations includinigative dynamics and best response dynamics.
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