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Abstract

As a common practice, various firms initially make information and access to their

products/services scarce within a social network; identifying influential players that

facilitate information dissemination emerges as a pivotal step for their success. In this

paper, we tackle this problem using a stylized model that features payoff externalities

and local network effects, and the network designer is allowed to release information

to only a subset of players (leaders); these targeted players make their contributions

first and the rest followers move subsequently after observing the leaders’ decisions.

In the presence of incomplete information, the signaling incentive drives the optimal

selection of leaders and can lead to a first-order materialistic effect on the equilibrium

outcomes. We propose a novel index for the key leader selection (i.e., a single player to

provide information to) that can be substantially different from the key player index

in Ballester et al. (2006) and the key leader index with complete information proposed

in Zhou and Chen (2013). We also show that in undirected graphs, the optimal leader

group identified in Zhou and Chen (2013) is exactly the optimal follower group when

signaling is present. The pecking order in complete graphs suggests that the leader
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should be selected by the ascending order of intrinsic valuations. We also examine the

out-tree hierarchical structure that describes a typical economic organization. The key

leader turns out to be the one that stays in the middle, and it is not necessarily exactly

the central player in the network.

Keywords: social network, signaling, information management, targeted

advertising, game theory

JEL classifications: D21, D29, D82
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1 Introduction

In the past decade, we have witnessed the explosive growth of social networks, as exemplified

by the success of Facebook, Linkedin, Twitter, and various online game producers. One

common feature in these social networks is the presence of strong network effects, i.e., a

user’s (player’s) “consumption utility” depends not only on how much time and effort she

invests in the network, but also on the behaviors of other users. These interactions suggest

that any marketing strategy cannot be determined in isolation, because its effect on one

individual can be propagated to the close friends/ neighbors, the neighbors of neighbors, and

ultimately spread out through the entire network. Second, as these companies frequently

launch novel games and services that go beyond the users’ original imagination, users may

have limited knowledge about the level of satisfaction while making their purchasing or

subscription decisions (Jackson (2008)). This inherent uncertainty constitutes a critical

barrier that prevents users from quickly adopting new services or technology. To overcome

this issue, managing the information dissemination becomes a critical business strategy

for these social network designers when marketing a product, promoting an idea, inducing

innovation, or disciplining the social behavior (Acemoglu et al. (2011), Acemoglu et al.

(2013), and Bala and Goyal (1998)).

While intuitively it is sensible to make the information as transparent as possible, in

practice various firms intentionally restrict the users that have access to the quality of new

services/ games, even though mass information spreading is not technically infeasible. This

targeted advertising approach turns out to be extremely popular amongst the practitioners.

For example, Ty’s initial launch of bean-stuffed toys is made available only to an exclusive

set of consumers. When the European music site Spotify was first launched in the United

States, free versions were accessible by invitation only (Dye (2000)). Another example is

Google+, a social network site that can only be joined through invitations by friends who

have already been in the circle. At the early stage of Facebook, only individuals with

email addresses from a restricted set of schools are eligible to join. Consequently, identifying

influential users (also known as “opinion leaders,” “trend setters,” “fashion influentials,” and

“mavens”) in the networks becomes a pivotal step and is nowadays an active marketing area

of research. There are some e-commerce sites and startup companies that focus exclusively

on identifying influentials (such as Klout.com), and the advance of big data analytics makes it
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possible to conduct large-scale identifications for various kinds of social networks. See Section

2 for a detailed literature review of academic papers. The targeted advertising approach is

particularly attractive when spending a limited advertising resource can generate a huge

momentum of buzz through the network interactions (Campbell et al. (2012)).

This paper attempts to provide some guidelines for targeting influentials (seeding) that

facilitates the optimal information dissemination in such a social network context. In pursuit

of this goal, we consider a network game amongst multiple self-interested players. The game

exhibits payoff externalities (i.e., a player’s contribution has direct impacts on other players’

payoffs) and strategic complementarity (i.e., an increase of one player’s contribution leads to

a weakly increasing marginal benefit of other players’ contributions). There is an underlying

state (“product quality”) that influences the players’ valuations uniformly, and it is ex ante

unknown to all the players. The network designer is allowed to choose a subset of players

(leaders) to move first, and then the rest follow after observing the leaders’ contributions. In

compliance with the targeted advertising practice and research, the network designer is able

to make the leaders informed about the product quality via experiencing the trial versions or

having free samples beforehand. Since the leaders are informed about the state, the followers

shall speculate the information content they have received by observing their contributions.

A priori, the information transmissions in this network game are not so straightforward

because of payoff externalities: leaders care directly about the followers’ contributions, and

therefore it is not a dominant strategy to simply disclose information. In the absence of

direct communication channel among players, the contributions serve as credible signaling

instruments in this sequential-move network game.

We characterize the unique linear perfect Bayesian Nash equilibrium in which each

leader’s contribution is linear in the underlying state. The inversibility of linear functions

implies that the equilibrium is fully separating; thus, in equilibrium every player ultimately

knows the true state. We then build upon these equilibrium characterizations to examine

the selection problem of leader group. This is in the same spirit of Zhou and Chen (2013), in

which we consider a complete-information version of this problem. In that paper, we show

that it is isomorphic to a weighted maximum-cut problem, and sequential-moving gives rise

to a second-order enhancement of aggregate contribution. In the presence of incomplete

information, we prove that this problem is fundamentally different from the maximum-cut

problem due to the signaling incentives. Furthermore, the appropriate selection of leader
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group can lead to a first-order materialistic effect on the equilibrium outcomes. Thus, in

this social network context a little incomplete information takes us a long way.

The above result subsequently provides some non-trivial recommendation of the network

designer’s information management strategies. We propose a novel index for the key leader

selection (i.e., a single player to provide information to). We show that this index can

be substantially different from the key player index in Ballester et al. (2006) and the key

leader index with complete information proposed in Zhou and Chen (2013). In undirected

graphs, the optimal leader group identified in Zhou and Chen (2013) is exactly the optimal

follower group when signaling is present. In particular, if the graphs are complete (i.e., there

exists an unweighted link between each pair of players), the pecking order suggests that

the leader should be selected by the ascending order of intrinsic valuations. This is exactly

the opposite criterion used in the case with complete information (Zhou and Chen (2013)).

We also examine the out-tree hierarchical structure in which the externality is generated

only one way from a player to another. This pyramidal network is representative in the

organization structure context, and two common approaches have been widely studied and

proposed: top-down (passing information from the root of the tree) and bottom-up (starting

from the end leaves). However, our analysis reveals that despite their popularity, neither of

these two is optimal. The key leader turns out to be the one that stays in the middle, and

it is not necessarily exactly the central player in the network.

The remainder of this paper is organized as follows. In Section 2, we review some

relevant literature. Section 3 gives a simple two-player example to illustrate the main ideas

of the paper. Section 4 introduces the model setup. Section 5 characterizes the equilibrium

outcomes and discusses the key-leader problem in this context. Section 6 provides further

examples of network structures for illustration. We draw some concluding remarks in Section

7. All the technical proofs are relegated to the appendix.

2 Literature review

There has been vast literature on network externality that elaborates on how a player’s

utility depends directly on other players’ decisions. The classical papers primarily focus on

the aggregate level of network externality (i.e., the aggregate number of players in the game is
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a sufficient statistics of this effect); see, e.g., Rohlfs (1974), Katz and Shapiro (1985), Farrell

and Saloner (1986), and Economides (1996) for an extensive survey of this literature. The

influential paper by Ballester et al. (2006) incorporates the local network effects (i.e., players

may care more about some players’ actions than others). In the simultaneous-move network

game, they show that the measure “weighted Katz-Bonacich Centrality” can be used to

describe the Nash equilibrium outcomes; this nicely bridges the network economics literature

and the sociology literature. Candogan et al. (2012) incorporate the pricing decisions into the

framework of Ballester et al. (2006) and examine both the perfect discrimination scenario and

the case when the seller is restricted to use a limited number of prices. See also Ballester and

Calvó-Armengol (2010), Bramoullé and Kranton (2007), and Corbo et al. (2006) for further

discussions and Jackson (2008) for a comprehensive survey.

As aforementioned, we build upon our earlier work Zhou and Chen (2013). In that

paper, we introduce the possibility of sequential-moving using the framework of Ballester

et al. (2006). In the two-stage game of Zhou and Chen (2013), we examine the problem of

group selection: which subset of players should be included in the first-movers (leaders). We

show that the problem is isomorphic to the classical weighted maximum-cut problem, and we

proceed to characterize the optimal group selections for several special network structures.

If the network designer is allowed to determine the entire hierarchy (sequence) of moves,

Zhou and Chen (2013) show that the optimal hierarchy turns out to be a chain structure.

The new feature in the current paper is the information asymmetry amongst players. Thus,

the current paper applies more suitably to the situations in which products or services

involve substantial uncertainty, thereby creating room for information dissemination. In

such a scenario, the leaders’ actions serve as effective signaling instruments that convey

their private information to the followers. We show that this signaling incentive leads to

first-order contribution improvement; in contrast, the benefit of sequentiality in Zhou and

Chen (2013) is of second order, irrespective of whether it is a restricted two-stage game or

a general hierarchy design problem. This subsequently leads us to prove that the group

selection problem is substantially different from the weighted maximum-cut problem, and

some design principles are radically different (e.g., the swap between the leader and follower

groups, and the implications of the pecking order based on intrinsic valuations).

Our paper also adds to the social learning literature. Unlike Banerjee (1992) and

Bikhchandani et al. (1992), we endogenize the flow of information transmissions via group
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selection. There are some papers that examine the learning aspect in dynamic networks (e.g.,

Acemoglu et al. (2011) and Acemoglu et al. (2013)). However, due to the payoff externalities,

in our paper truthful information disclosure is not a priori obvious since players care about

other players’ actions and therefore how their own actions affect other players’ beliefs. Con-

sequently, signaling comes in to play at its full force. The identification of influential players

is reminiscent of the idea of targeted advertising, and it has recently been re-examined in

various sociology and marketing contexts (such as Coulter et al. (2003), Gladwell (2006),

Van den Bulte and Joshi (2007), and Weimann (1994)). Our work addresses directly the

critiques by Watts and Dodds (2007) that this research stream should be grounded by eco-

nomic micro-foundation, as we provide a theoretical framework that explicitly accounts for

individual decision making and information dissemination. A very recent paper by Campbell

et al. (2012) examines the buzz management from the perspective of social status signaling,

where information is exchanged via random individual meetings. In our context, the under-

lying uncertainty concerns the quality of new products/ services rather than the individual

players’ social types and the signaling instrument is the contribution level rather than com-

munication. Thus, the economic drivers and accordingly the strategy recommendations are

fundamentally different. The identification of influentials for seeding is also examined in the

computer science field (such as Chen et al. (2009) and Kempe et al. (2005)); nevertheless,

the signaling effect we study here has no counterparts in that research stream.

3 A two-player toy example

To illustrate the main ideas of this paper, we hereby present a toy example with two players.

Each player i’s payoff is given in the following form:

ui = αiθxi −
1

2
x2i + δxix3−i, i ∈ {1, 2}. (1)

In (1), αi > 0 measures the intrinsic marginal utility (valuation) for player i. The parameter

θ captures the product quality. The quadratic term −1
2
x2i is adopted to capture the dimin-

ishing marginal return of the player’s own contribution. The last term captures the network

effect among the players. The parameter δ > 0 controls the strength of this effect, and it is

common across the two players. Each player is entitled to determine the level of contribution

(effort) xi. In the following we investigate several different scenarios of information and game
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structures.

We start with the simplest case in which the product quality, θ, is publicly known and

the two players make their contributions simultaneously. In this simultaneous-move game

with complete information, we can write down the players’ best responses and solve the game

easily. The Nash equilibrium is described below:

xN = (xN1 , x
N
2 )′ =

(
α1 + δα2

1− δ2
θ,

α2 + δα1

1− δ2
θ

)′
,

where the superscript N denotes the Nash equilibrium.

Sequential-move game. Now consider the case in which player 1 moves first and

assume again that θ is publicly known. As aforementioned, this “targeting” can be facilitated

by offering free samples, demonstrating an innovation, or showcasing the idea/ behavior to

player 1. In this case, player 2 observes x1 and plays her best response to x2 = α2θ + δx1

(from the first-order condition). Anticipating player 2’s response in the subsequent stage,

player 1 determines her optimal level of contribution. In this sequential-move game with

complete information, the outcomes of the unique subgame perfect Nash equilibrium are:

x∗1 =
α1 + δα2

1− 2δ2
θ, and x∗2 = α2θ + δx∗1 =

(1− δ2)α2 + δα1

1− 2δ2
θ.

Comparing the contribution levels in these two games, we find that x∗1 > xN1 and x∗2 > xN2 .

Thus, sequential-moving boosts both players’ contribution levels.

Moreover, the aggregate effort under sequential move is (1+δ)α1+(1+δ−δ2)α2

1−2δ2 θ. If we are

free to choose any player as the first mover, the player with higher α should be the one, since

the coefficient 1 + δ is greater than 1 + δ− δ2. This is shown in any complete graph in Zhou

and Chen (2013), and we include it here for comparison purposes.

Incomplete information: simultaneous-move game. Next, we introduce incom-

plete information regarding the product quality. In such a scenario, we assume that θ is a

random draw from Θ = [0, θ̄] ⊂ R+ with some distribution. Furthermore, we impose infor-

mation asymmetry between players: player 1 knows the realization of θ but player 2 does

not. In a simultaneous-move game, from player 2’s perspective she faces different types of

player 1. Thus, a Bayesian game is played and θ refers to player 1’s type. Given player 2’s

contribution x2, a type-θ player 1’s best response is α1θ + δx2. On the other hand, facing

different types of player 1, player 2’s goal is to find the contribution level that maximizes
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her expected payoff. These collectively give rise to the following equilibrium outcomes:

x̄1(θ) = α1θ + δ
α2 + δα1

1− δ2
E[θ] =

α1 ((1− δ2)θ + δ2E[θ]) + δα2

1− δ2
, and x̄2 =

α2 + δα1

1− δ2
E[θ].

The above analysis utilizes the linearity of the best responses. Consequently, player 2, who

is uninformed about the true state, simply takes the expectation over all possible states.

Incomplete information: sequential-move game. Now suppose that player 1 moves

first. In this sequential-move game, information asymmetry complicates the players’ decision

making. Since player 1 knows the realization of θ, player 2 will infer this information from

x1. Accordingly, player 2’s contribution will reflect this inference and this conversely affects

player 1’s decision. In this sense, player 1’s contribution x1 serves as a signaling instrument

to convey her information. Later in the paper(Theorem 1) we show that there exists a

unique separating perfect Bayesian equilibrium which is linear in θ. In that equilibrium, the

strategy of player 1 is:

x̃i(θ) =
α1 + 2δα2

1− 2δ2
θ,

which suggests that player 1 contributes more when the product quality is higher. This

credibly conveys the quality information to player 2, because player 2 can simply invert this

linear function and update her belief after observing x1:

θ̂ =
1− 2δ2

α1 + 2δα2

· x1.

Thus, her best response is to choose effort θ̂α2 + δx1.

On the equilibrium path, the players’ contribution levels are:

x̂1 =
α1 + 2δα2

1− 2δ2
θ, and x̂2 = θα2 + δx̂1 =

α2 + δα1

1− 2δ2
θ,

and the aggregate contribution is (1+δ)α1+(1+2δ)α2

1−2δ2 θ. We can then compare these contributions

with the above scenarios:

x̂1 > x∗1 > xN1 and x̂2 > x∗2 > xN2 ,

(here we assume δ is small enough, specially δ <
√

1/2). Therefore, we conclude that the

signaling effect in this sequential-move game can further enhance both players’ incentives

to contribute. The informed player as the leader contributes more because she wants to
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Figure 1: Equilibrium efforts of player 1 under different scenarios
α1 = 3, α2 = 2, θ = 1; short dash line: xN1 ; long dash line: x∗1; solid line: x̂1.

credibly convey this information, and because of this the uninformed player as the follower

also contributes more.

Magnitude of effort increments. To visualize the impacts of sequential-moving and

information asymmetry, we plot player 1’s efforts in Figure 1 for different values of δ. Note

that the difference between xNi and x∗1 accounts for the effect of sequential-moving, because

they are both obtained under complete information. On the other hand, the difference

between x∗1 and x̂1 accounts for the effect of incomplete information, whereas the players

move sequentially. From Figure 1, we observe that the incremental effort from information

asymmetry is more significant than that from sequential-moving, and this dominance is

particularly apparent when δ is small. This is because the increments are of different orders

(one is of order δ, and the other is of order δ2); later we analytically verify this in Corollary

2.

Leader selection. In addition, in the sequential-move game with incomplete informa-

tion, the aggregate contribution in equilibrium is (1+δ)α1+(1+2δ)α2

1−2δ2 θ. Note that the coefficient

of α1 (1 + δ) is less than that of α2 (1 + 2δ). If we are free to target any player to disclose

information to (and make her the leader), the player with a lower intrinsic valuation should

be the leader. This is because the player with a lower intrinsic valuation is more credible if

her contribution turns out to be high, i.e., the signaling effect gets substantially amplified.

Thus, our analysis also provides a simple guideline for the selection of “key leader.” Inciden-

10



tally, this result is in strict contrast with that under complete information. When all the

players perfectly know the true state, Zhou and Chen (2013) show that the key leader in

this two-player example is the one with the higher intrinsic valuation. This illustrates the

radical difference between the information channel and the pure strategic complementarity.

We later return to this point and articulate the underlying rationale for this discrepancy.

How general are these results? To address this question in the sequel we present a general

setup with more than two players. We will also investigate other related research questions

with the help of the general setup.

4 Model

In our general model, we consider a network game with n players and their payoffs are

specified as follows:

ui(x) = θαixi −
1

2
x2i + δ

∑
j 6=i

gijxixj,

where gij ≥ 0 and gii = 0 ∀i, j. The cross term gijxixj indicates the interaction between the

pair of players i, j, and we assume that gij ≥ 0 to capture the strategic complementarity. The

matrix G = (gij) summarizes the cross effects between players. If two players are frequently

involved in the same community or group, their cross effect is strong (gij is large). We also

require that gii = 0, i.e., there is no self-loop; this indicates that the cross effect appears only

amongst different players’ contributions. In most of the paper, it is the adjacent matrix of

an undirected graph. As in our toy example, αi measures the intrinsic marginal utility for

player i, and θ captures the intrinsic product quality.

Notation. Before we proceed, we introduce some notation that will be intensively used

throughout the paper. For a matrix T , the transpose is denoted as T ′. The zero matrix

(of suitable dimensions) is denoted as 0. If T is a square matrix, then TD is a matrix with

diagonal entries TDii = tii, i = 1, · · ·N, and off-diagonal entries TDij = 0, ∀i 6= j. Unless

indicated otherwise, vector x = (x1, · · · , xN)′ is a column vector. For any subset A of N ,

xA (in bold) denotes the vector of (xi)i∈A; that is, it is a sub-vector wherein the sequence

of selected components follows their original sequence in vector x. The (non-bold) term

xA =
∑

i∈A xi is the sum of these selected components. Let 〈x,y〉 denote the inner product

of two column vectors x,y.
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We say that two matrices A, B satisfy A � B if and only if Aij ≥ Bij,∀i, j. In other

words, this dominance relationship applies to the component-wise comparisons. For any

pair of functions f1 and f2, we call f1(δ) = O(f2(δ)) as δ → 0, if lim supδ→0 |
f1(δ)
f2(δ)
| <∞, and

f1(δ) = o(f2(δ)), as δ → 0, if limδ→0 |f1(δ)f2(δ)
| = 0. In this paper, the function f2 is a power

function of δ (i.e., δk for an integer k = 1, 2, · · · ).

Simultaneous-move game with complete information. Now we introduce the two

benchmarks with complete information (i.e., θ is commonly known). The simultaneous-move

game has been studied by Ballester et al. (2006). They show that the Nash equilibrium is

characterized by

xN = αθ + δG · xN ⇔ xN = [I− δG]−1αθ. (2)

where α = (α1, · · · , αn)′. Let M := [I− δG]−1 and

mij =
+∞∑
k=0

δkg
[k]
ij = δij + δgij + δ2g

[2]
ij + · · · ,

where g
[k]
ij is the ij entry of Gk. Using mij, we can rewrite (2) as:

xNi = bi(G, δ, αθ) =
N∑
j=1

mijαjθ,

where b(G, δ, αθ) = [I − δG]−1αθ is called the weighted Katz-Bonacich Centrality of pa-

rameter δ and weight vector αθ.

Sequential-move game with complete information. Zhou and Chen (2013) intro-

duce the sequential-move feature to the above network game. In the two-stage game, we

divide the players into two groups, leader group L and follower group F . For convenience,

let us rewrite the matrix G as a block matrix: G =

(
GLL GLF

GFL GFF

)
. Let vectors xL and

xF denote the contributions chosen by the nodes in L and those in F , respectively. The

following proposition is adopted from Zhou and Chen (2013).

Proposition 1. For sufficiently small δ,1 the unique subgame perfect Nash equilibrium of

1For example, the result holds when δ < 1
2µ1(G) if G is symmetric, where µ1(G) is the largest eigenvalue

of G. The exact upper bound of the parameter δ depends on both the network G and the leader group A,
and its expression is complicated. Here we just give an upper bound which does not depend on A.
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the two-stage game is given by:2 (
xL
xF

)
= S

(
αLθ
αF θ

)
(3)

with

S =

( [
1− δ(T + TD)

]−1
δ
[
1− δ(T + TD)

]−1
GLFU

δUGFL

[
1− δ(T + TD)

]−1
U + δ2UGFL

[
1− δ(T + TD)

]−1
GLFU

)
, (4)

where
T = GLL + δGLF U GFL, and U = [I − δGFF ]−1.

Incomplete information. Having discussed the above two benchmarks, we now in-

corporate incomplete information into the setup. Ex ante, θ is drawn from the distribution

F (·) : [0, θ̄]→ [0, 1], and for simplicity we assume that F has full support on Θ = [0, θ̄]. We

assume that a group of players (leaders) move first, and then the rest follow after observing

the leaders’ contributions. We further assume that the network designer is able to make

the leaders informed about the product quality θ. This can be implemented as the network

designer invites a subset of customers/ players to experience the trial versions or to give free

samples to.

In this case, a group L of leaders with |L| = M are all fully informed about the state.

Accordingly, we use F to denote the set of the originally uninformed players, with |F | =

N − M . In such a scenario, we use {xl, l ∈ L} or xL to determine these leaders’ effort

decisions in the first stage. In the next stage, the remaining players observe the quantities

xL chosen by all the leaders, update their beliefs about the state, and subsequently choose

{xf , f ∈ F} or xF simultaneously.

5 Analysis

In this section, we carry out the equilibrium analysis.

2It is verifiable that S � M, where the matrix M captures the sensitivities of intrinsic valuations in a
simultaneous-move game. This component-wise dominance therefore implies that the equilibrium contribu-
tions in this two-stage sequential-move game are higher.
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5.1 Equilibrium characterization

Recall that in our setting, the leaders know the true state. Thus, their effort decisions shall

be made contingent on the state realization.

Signaling. We will focus on a particular form of equilibrium in which the leaders choose

their efforts according to the following:

x∗l (θ) = κlθ, l ∈ L,

where kl is a constant yet to be determined. This particular form indicates a one-to-one

correspondence between the value of θ and the effort x∗l (θ). Consequently, upon observing

the leader’s effort choice, each player perfectly infers the realization of θ. This suggests that

the equilibrium is fully separating.

Note that a follower may observe the effort choices by multiple informed players. Fur-

thermore, even though on the equilibrium path the leaders may disclose the same informa-

tion, the sequential structure of the game admits all possible deviations in the first stage.

Thus, we shall specify how a follower updates her belief in each instance, not only on the equi-

librium path but also off-equilibrium. We will adopt the pessimistic belief in the following

sense.3 After observing {xl, l ∈ L}, a follower’s belief about the state is θ̂(xL) = minl∈L(xl
κl

),

which is the same among all followers, as they observe the same effort vector xL.

Let U = [1− δGFF ]−1 and T = GLL + δGLFUGFL. The results are summarized in the

following theorem.

Theorem 1. With pessimistic beliefs, there exists a fully separating perfect Bayesian equi-
librium (PBE) in which each leader i in group L chooses

x̃i(θ) = κiθ, for all i ∈ L,

while the coefficients {κi}’s are given by (in matrix form):

κL = [1− δ(T + TD)]−1(αL + 2δGLFUαF).

The followers’ strategies are:

xF(xL) = U(θ̂(xL)αF + δGFLxL), with belief θ̂(xL) = min
l∈L

(
xl
κl

).

3If there is only a single leader, i.e., |L| = 1, this assumption degenerates.
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In a single-leader case (|L| = 1), Theorem 1 characterizes the unique separating PBE.

With multiple leaders, however, the equilibrium is not unique as there are other possible

belief systems that give rise to different equilibrium outcomes. In the sequel, we conduct

various sorts of comparative statics based on Theorem 1. For example, we can compare

the equilibrium effort characterized in Theorem 1 and that with complete information in

the two-stage game (see Proposition 1). To this end, we present the equilibrium efforts in

Theorem 1 using the following matrix form:

x̃ =

(
x̃L

x̃F

)
= Ŝ

(
θαL

θαF

)
,

with

Ŝ =

( [
1− δ(T + TD)

]−1
2δ
[
1− δ(T + TD)

]−1
GLFU

δUGFL

[
1− δ(T + TD)

]−1
U + 2δ2UGFL

[
1− δ(T + TD)

]−1
GLFU

)
.

Corollary 2. The equilibrium effort in the two-stage signaling is higher than the equilib-
rium efforts in the two-stage game without signaling, which is higher than the equilibrium
efforts in the simultaneously-move game. Moreover, the effort increase compared with the
simultaneous-move game has the following expression:

δθ

(
0 GLF

0 0

)(
αL

αF

)
+ δ2θ

(
(GLFGFL)D GLLGLF +GLFGFF

0 GFLGLF

)(
αL

αF

)
+O(δ3). (5)

It is worth mentioning that the group selection decision (L) affects the players’ payoffs

in the order of δ. In contrast, when θ is publicly known, Zhou and Chen (2013) show that

sequential-moving only gives rise to a second-order enhancement of effort exertion. Thus,

in this social network context a little incomplete information takes us a long way, since it

has a first-order materialistic effect on the equilibrium outcomes. This result therefore pro-

vides some non-trivial recommendation of the network designer’s information management

strategies.

5.2 Key leader problem

Of particular interest is a special case of the above group selection problem. If we intend to

target one player to provide information, what is the criterion for this key leader? In essence,

this problem shares a similar spirit with the key player problem in Ballester et al. (2006). In
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a simultaneous-move game, Ballester et al. (2006) consider the possibility of removing one

player from the criminal network and therefore are interested in identifying the player that

impacts the network most. To make notation simple, we assume G is the adjacent matrix of

an undirected graph in this subsection.

To identify the key leader, we consider a sequential-move game in which player i moves in

the first stage and the rest move simultaneously in the second stage. According to Theorem

1, her equilibrium strategy is

x̃i(θ) =
αi + 2δ

〈
βi, (I− δG−i)−1 α−i

〉
1− 2δ2

〈
βi, (I− δG−i)−1 βi

〉 θ, (6)

where matrix G is rewritten as follows:

G =

(
0 β′i

βi G−i

)
.

Using block matrix inversion for I− δG yields

M = [I− δG]−1 =


1

1−δ2〈βi, (I−δG−i)
−1βi〉

δβ′i[I−δG−i]
−1

1−δ2〈βi, (I−δG−i)
−1βi〉

δ[I−δG−i]
−1βi

1−δ2〈βi, (I−δG−i)
−1βi〉 [I− δG−i]−1 +

[I−δG−i]
−1βiβ

′
i[I−δG−i]

−1

1−δ2〈βi, (I−δG−i)
−1βi〉

 .

Therefore, player i’s equilibrium contribution in the simultaneous-move game is

xNi =
αi + δ

〈
βi, (I− δG−i)−1 α−i

〉
1− δ2

〈
βi, (I− δG−i)−1 βi

〉 θ = θ
N∑
j=1

mijαj. (7)

Comparing the coefficients of αj in (7), we obtain that

mii =
1

1− δ2
〈
βi, (I− δG−i)−1 βi

〉 , (8)

mij

mii

= j-th entry of (I− δG−i)−1 δβi, j 6= i.

We can then derive the equilibrium contributions of other players. Afterwards, we com-

pare across scenarios with different leaders to determine the key leader. The results are

summarized in the following proposition.

Proposition 2. Define

Si :=
bi(G, δ, 1)(bi(G, δ, α)− αi)

2−mii

(9)

as the signaling leading index of player i. The solution to the key leader problem, player i∗,
has the highest leading index (i.e., Si∗ ≥ Sj,∀j ∈ N).
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Recall that in the toy example (Section 3), we have already seen that if α1 > α2, the

player with the highest bi, ci, Li is player 1. However, player 2 has the highest Si and therefore

should be the key leader with incomplete information. Proposition 2 generalizes this result

to any complete graph : the rationale for choosing the player with the lowest αi continues to

be valid in any complete graph with N nodes.

To see this, we first rewrite bi using (2):

bi(G, δ, α) = αi + δ
∑
j

gijbj(G, δ, α).

Substituting it into the definition of Si, (9) yields

Si :=
bi(G, δ, 1)(bi(G, δ, α)− αi)

2−mii

=
bi(G, δ, 1)(δ

∑
j gijbj(G, δ, α))

2−mii

.

For a complete graph, gii = 0 and gij = 1,∀i 6= j, and bi(G, δ, 1) = bj(G, δ, 1) for any i, j by

symmetry. Therefore,

∑
gijbj(G, δ, α) =

∑
j 6=i

bj(G, δ, α) =

(∑
k

bk(G, δ, α)

)
− bi(G, δ, α).

Note that the first term is common across all players (it does not depend on the index i),

and bi(G, δ, α) > bj(G, δ, α) if and only if αi > αj.

The heterogeneity regarding the players’ intrinsic valuations constitutes the main driver

that distinguishes between the cases with complete and incomplete information. If we elim-

inate this heterogeneity (i.e., all {αi}’s are the same and normalized to 1), and G is a

regular undirected graph, i.e., every node has the same number of links, then Si simplifies

to bi(bi− 1)/(2−mii). In this case, we shall pick the one with the highest mii because bi are

the same for regular graphs with homogeneous players.4 This prediction coincides with the

key leader index Li proposed in Zhou and Chen (2013) with complete information.

5.3 Impact of incomplete information

We can also articulate the impact of incomplete information by comparing our results with

those in Zhou and Chen (2013). With incomplete information, the signaling effect leads to

4If every node in G has degree d, then G1 = d1, so [1− δG]−11 = 1
1−δd1.
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the following group selection criterion:

max
L

1′GLFαF. (10)

In contrast, when θ is publicly known, Zhou and Chen (2013) show that the optimal leader

set is determined by max 1′(GLFGFL)DαL. As a special case, suppose that the graph is

undirected, i.e., gij = gji ∈ {0, 1}, ∀i 6= j. In such a scenario, we find that

max
L

1′(GLFGFL)DαL = max
L

1′GFLαL. (11)

We can see that the optimization program (11) is exactly the same as program (10) after

we swap the roles of F and L. Here, the optimal leader group identified in Zhou and Chen

(2013) is exactly the optimal follower group when signaling is present. We formally state

this result below.

Proposition 3. Suppose that G is the adjacent matrix of an undirected graph, i.e., gij =
gji ∈ {0, 1},∀i 6= j, and gkk = 0,∀k, and the parameter δ is small enough. The optimal
follower group with incomplete information is exactly the optimal leader group in the case
with complete information.

As a corollary, the two combinatorial optimization programs are equally difficult to

solve, as they have the same complexity. Going beyond undirected graphs (i.e., G is not

symmetric), incomplete information leads to radically different group selection strategies

from the case with complete information. The following example provides a crispy contrast

between the two.

Another two-player example. In this example, there are two players with the fol-

lowing payoff functions:

u1(x1, x2) = θα1x1 −
1

2
x21 + δx1x2, and u2(x1, x2) = θα2x2 −

1

2
x22,

or equivalently

G =

[
0 1

0 0

]
.

With complete information, in the simultaneous-move game player 2’s best reply is to play

x∗2 = θα2. Thus, player 1 will choose x∗1 = θα1 + δx∗2 = θ(α1 + δα2). Notice that this is

also the equilibrium outcomes in the sequential-move game (with either player 1 or player 2

being the leader). This is because g12g21 = 1 · 0 = 0 here.
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Now let us introduce incomplete information. When player 1 is the leader, her equilib-

rium strategy is

x1(θ) = (α1 + 2δα2)θ.

Accordingly, player 2’s belief is θ̂(x1) = x1
α1+2δα2

, and hence player 2 chooses x∗(x1) =

θ̂(x1)α2 = x1α2

α1+2δα2
. Therefore, on the equilibrium path, their efforts are ((α1 + 2δα2)θ, α2θ);

these dominate ((α1 + δα2)θ, α2θ). On the other hand, when player 2 is the leader, this

signaling effect disappears (because g21 = 0). Therefore, players’ equilibrium efforts are the

same as those in the case with complete information about θ.

The above discussions reveal that in this case, the sequence of moves does not matter

in the case of complete information. However, with incomplete information player 1 should

be the leader. Note that in this example, player 1’s payoff is positively affected by her

neighbor’s effort. This is precisely where her signaling incentive comes from. We summarize

these results in Table 1.

players mii bi ci Li Si
1 1 α1 + δα2 α1 + δα2 0 δα2

2 1 α2 (1 + δ)α2 0 0

Table 1: Comparison of different measures: m12 = δ, m21 = 0, m11 = m22 = 1.

As indicated in Table 1, player 1 has a higher Si (because S2 = 0). Nevertheless, if

α2 > α1/(1− δ), player 2 has higher values of bi and ci than player 1 does; however, player 1

has the highest Si. If α1 < α2 < α1/(1− δ), then player 2 has a higher ci but lower bi, Si; if

α2 < α1, then player 1 has higher values of bi, ci, Si. These indicate the substantial differences

amongst the various indices proposed in the existing literature. In the sequential-move game

with incomplete information, player 1 should be the leader (S1 < 0 = S2). With complete

information, however, both players are key leaders (L1 = L2 = 0). In the simultaneous-move

game, the selection of key player depends on the relative sizes of α1, α2, δ. For example,

when α1 = 0.8, α2 = 1, δ = 0.1, b1 = 0.9 < b2 = 1; thus, player 1 is the key player. With

other parameters, the choice may be different.

Revisiting the two-player toy example. Finally, let us return to the toy example.

The corresponding network matrix G is G =

[
0 1

1 0

]
, and we summarize the results in Table
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2. If α1 > α2, then player 1 has higher values of bi, ci, and Li but a lower Si.

players mii bi ci Li Si

1 1
1−δ2

(α1+δα2)
1−δ2

(α1+δα2)
1−δ

δ2(α1+δα2)
(1−δ)(1−2δ2)

δ(α2+δα1)
(1−δ)(1−2δ2)

2 1
1−δ2

(α2+δα1)
1−δ2

(α2+δα1)
1−δ

δ2(α2+δα1)
(1−δ)(1−2δ2)

δ(α1+δα2)
(1−δ)(1−2δ2)

Table 2: Comparison of different measures: m11 = m22 = 1
1−δ2 , m12 = m21 = δ

1−δ2 (δ ∈
(0,
√

1/2)).

6 Some specific network structures

In this section, we consider several special cases to illustrate the results of group selection

problems.

6.1 Hierarchical structure or out-tree

In the organization structure context, sometimes it is sensible to assume that the externality

is generated only one way from a player to another. Putting it in our network setup, this can

be conveniently modeled as a a hierarchical structure,5 which is represented by a pyramidal

network, A single individual, called the root/principal, is at the top, and each other individual

is assigned a unique direct superior. Each hierarchical structure defines a matrix G: gij = 1 if

and only if i is the direct superior of j. A hierarchical structure, in graph theory literature,

is also defined as out-tree: an oriented tree with only one vertex of in-degree zero, see Bang-

Jensen and Gutin (2008) for classical notation and concepts.

The two-player example given in Section 5.3 is a special case of the directed trees: player

2’s effort generates some externality to player 1’s payoff, but the converse is not true. In

the economics of organization literature, a player’s decision is impacted by her subordinates,

thereby giving rise to an out-tree structure.

For any given hierarchical structure, we can now provide the exact indices for different

5See Demange (2004) for the example of hierarchical structures.
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purposes as follows:

ci =
(
∑

jmji)bi(G, δ, α)

mii

, (12)

Si =
(
∑

jmji)(bi(G, δ, α)− αi)
2−mii

,

Li =
(mii − 1)

(2−mii)

(
∑

jmji)

mii

bi(G, δ, α).

In other words, we just substitute bi(G, δ, 1) by
∑

jmji in the original index. Note that if

a network is undirected, then G is symmetric and M is symmetric and mij = mji. This

returns to the original definitions of those indices. To visualize the generalization from the

example in Section 5.3, consider the following directed chain:

1 2 3 4 5

The adjacent matrix G is as follows:

G =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0


, and M = [I− δG]−1 =



1 δ δ2 δ3 δ4

0 1 δ δ2 δ3

0 0 1 δ δ2

0 0 0 1 δ

0 0 0 0 1


.

Notice that mii = 1,∀i as there is no loop in any directed tree, and mij is the number of

paths from i to j with discounting. In the simultaneous-move game, the Nash equilibrium is

xN = b(G, δ, θα) =



1 δ δ2 δ3 δ4

0 1 δ δ2 δ3

0 0 1 δ δ2

0 0 0 1 δ

0 0 0 0 1





θα1

θα2

θα3

θα4

θα5


.

Different measures are calculated in Table 3.

In the following discussions, we assume δ ∈ (0, 1) to restrict the impact of social inter-

actions. From Table 3, we observe that if αi = 1, then player 1 has the highest bi, player

2 has the second highest bi, ..., and player 5 has the lowest bi. Since the externality is only

one-way (mii = 1), all of them have zero-value Li. Interestingly, the key leader problem in
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node bi ci Li Si
1 (α1 + δα2 + δ2α3 + δ3α4 + δ4α5) (α1 + δα2 + δ2α3 + δ3α4 + δ4α5) 0 (δα2 + δ2α3 + δ3α4 + δ4α5)
2 (α2 + δα3 + δ2α4 + δ3α5) (α2 + δα3 + δ2α4 + δ3α5)(1 + δ) 0 (δα3 + δ2α4 + δ3α5)(1 + δ)
3 (α3 + δα4 + δ2α5) (α3 + δα4 + δ2α5)(1 + δ + δ2) 0 (δα4 + δ2α5)(1 + δ + δ2)
4 (α4 + δα5) (α4 + δα5)(1 + δ + δ2 + δ3) 0 (δα5)(1 + δ + δ2 + δ3)
5 (α5) (α5)(1 + δ + δ2 + δ3 + δ4) 0 0

Table 3: Comparison of different measures for directed chain C5: Bonacich centrality measure
bi; Inter-centrality measure ci (Ballester et al. (2006)); Leading index Li (Zhou and Chen
(2013)); Signaling index Si;

our context turns out to be the one that stays in the middle, because she is more likely to

have the highest Si; moreover, it is not necessarily exactly the central player in the network.

In this example, it could be either player 2 or player 3 depending on the value of δ, i.e., de-

pending on the relative importance between the intrinsic valuations and social interactions.

This result also has an intriguing implication on the information management problem in

the organization structure. In the literature on economics of organizations, two common

approaches have been widely studied and proposed: top-down (passing information from the

root of the tree) and bottom-up (starting from the end leaves). However, our analysis reveals

that neither of these two is optimal, despite their popularity.

To articulate the underlying rationale, let us first revisit the key player index ci. In this

example, it should be exactly in the middle of the chain (i.e., player 3) because

(1 + δ + δ2)2 > (1 + δ)(1 + δ + δ2 + δ3) > (1 + δ + δ2 + δ3 + δ4).

From (12), the index ci has the following interpretation:

ci =
(
∑

jmji)bi(G, δ, α)

mii

= (
∑
j

mji))(
∑
k

mik)).

mii = 1,∀i as there is no loop in any out-tree. Note that
∑

jmji counts the number of paths

from any player to i, and
∑

kmik counts the number of paths that start from i to any player.

Therefore, the product of them simply counts all the paths that go through player i with

discounting. Remember that in the example C5, player 1 has the largest number of paths

that start from herself (the highest
∑

kmik), and the smallest number of paths that end with

herself (the lowest
∑

jmji). Yet, the player 3 has the highest ci, as it lies in the center of

the figure, because the key-player selection has to balance between
∑

kmik and
∑

jmji.
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The same logic applies to the key-leader selection as well, but with some minor twist. In

a directed tree, there is a unique path from i to j, if such a path exists. Therefore,
∑

kmik

counts the number of followers discounted by the distance, while
∑

jmji counts the number

of predecessors of i discounted by the distance. We can then express the index Si as follows:

Si =
(
∑

jmji)(bi(G, δ, α)− αi)
2−mii

= (
∑
j

mji)(
∑
k

mik − 1).

The term
∑

kmik − 1 counts the number of paths from player i that have a length of at

least 2 with discounting (excluding the trivial path from player i to herself). Therefore, the

product is the discounted number of paths that go through player i but do not end with her.

In closing this subsection, we present another out-tree with three tiers of branches in

Figure 2. The root player (player R) has q direct followers (“children”), and each child Mi

has p direct followers; all the grandchildren {Fj}’s have no followers in this three-tier tree.

Table 4 summarizes the measures in this example. To be concrete, let us take p = 4, q = 3,

and δ = 0.1. In this case, bR = 1.42 > bM = 1.4 > bF = 1, and cM = 1.54 > cR = 1.42 >

cF = 1.11 and SM = 0.44 > SR = 0.42 > SF = 0. Therefore, player R has the highest bi,

while each player in the second tier Mi has the highest ci and Si.

R

M1

F1 · · · Fp

· · ·

F1 · · · Fp

Mq

F1 · · · Fp

Figure 2: A branched tree.
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node bi ci Li Si
R (1 + qδ + pqδ2) (1 + qδ + pqδ2) 0 (qδ + pqδ2)
M (1 + pδ) (1 + pδ)(1 + δ) 0 pδ(1 + δ)
F 1 (1 + δ + δ2) 0 0

Table 4: Comparison of different measures for a branched tree: αi = 1.

6.2 Complete graphs

The second example we investigate is the family of complete graphs. In this case, let Jmn be

the matrix of 1s with size m by n, and Ik be the identity matrix with size k by k. Then the

network matrix of a complete graph can be expressed as G = JNN − IN , and (5) is reduced

to

∆x = δθ

(
0 JLF

0 0

)(
αL

αF

)
+ δ2θ

(
FIL (N − 2)JLF

0 LJFF

)(
αL

αF

)
+O(δ3).

Hence the aggregate difference is:

∆x = δLθαF + δ2θ (FαL + L(N − 2)αF + LFαF ) +O(δ3). (13)

As a special case, when αi = 1,∀i, (13) reduces to δθL(N−L)+O(δ2). Although the optimal

group size when players are homogeneous on a complete graph is still bN
2
c, but the optimal

choice of players with heterogeneous {αi}’s is different for any fixed group size L. To see

this, we note that from (13) the dominant term is δLθαF . Therefore, the players with higher

{αi}’s should be placed in the follower group F . In contrast, with complete information they

are selected as leaders (Zhou and Chen (2013)).

6.3 Complete bipartite graphs

Next, we examine complete bipartite graphs. This is appropriate for situations in which

there is a natural separation between players (e.g., buyers and sellers, boys and girls, and

employers and workers). Figure 3 is a bipartite graph with M = 3 nodes on one side,

and N = 5 nodes on the other side. In general, the network matrix G can be written as

G =

(
0 JMN

JNM 0

)
. Let αi, i ∈M and βj, j ∈ N denote the intrinsic valuations of players in

the leader and follower groups, respectively. Define ᾱ =
∑

i∈M αi

M
, β̄ =

∑
j∈N βh

N
as the average
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Figure 3: A complete bipartite graph K5,3.

intrinsic valuations. Using (5) in Corollary 2, the increment of effort contribution is

∆x = δθ

(
0 JMN

0 0

)(
αM

βN

)
+ δ2θ

(
NIM 0

0 MJNN

)(
αM

βN

)
+O(δ3),

and the aggregate increment is

∆x = δθMβN + δ2θ (NαM +MNβN) +O(δ3) = δθMNβ̄ + δ2θMN(ᾱ +Nβ̄) +O(δ3).

When δ is relatively small, the dominant term is δθMNβ̄.

Similarly, if players of group N move first, the aggregate difference is

∆′x = δθMNᾱ + δ2θMN(β̄ +Mᾱ) +O(δ3).

Corollary 3. In a complete bipartite graph, when δ is small the group with a lower average
intrinsic valuation should be the leader group.

Again, this corollary provides a recommendation that is exactly the opposite of that in

Zhou and Chen (2013) when we eliminate incomplete information. Moreover, when ᾱ = β̄,

the first term, which is dominant, is the same: δθMNβ̄ = δθMNᾱ. The second term

δ2θMN(ᾱ + Nβ̄) in ∆x is greater than the term δ2θMN(β̄ + Mᾱ) in ∆′x if and only if

N > M . This suggests that the leader group should be of a smaller size.

Corollary 4. If δ is small and the average characteristic numbers are the same across two
sides, i.e., ᾱ = β̄, the group with a smaller size should be the leader group.

The above corollary provides a theoretical ground for why focus groups and fashion

influentials are typically small. This result holds both with and without incomplete infor-

mation, thereby suggesting some form of robustness. In particular, for a star (hub-spoke)

network, the center or the star player, or the hub, should be the unique leader.

25



7 Conclusions

Motivated by the targeted information release practice, this paper studies how network

designers identify influential players that serve as the seeds for information dissemination.

We build upon our earlier work Zhou and Chen (2013) in which the players in a network

game with complete information move sequentially. We consider a two-stage version of the

same setup and introduce information asymmetry amongst players. In such a scenario, the

leaders’ actions serve as effective signaling instruments that convey their private information

to the followers. We show that this signaling incentive leads to first-order contribution

improvement; this stands in strict contrast with the second-order improvement in Zhou and

Chen (2013), irrespective of whether it is a restricted two-stage game or a general hierarchy

design problem. This subsequently leads us to prove that the group selection problem is

substantially different from the weighted maximum-cut problem.

We propose a novel index for the key leader selection and show that it can be substan-

tially different from the indices in Ballester et al. (2006) and Zhou and Chen (2013). We also

show that in undirected graphs, there is a swap between leader and follower groups when

incomplete information is introduced. Furthermore, for complete graphs, the pecking order

suggests that the leader should be selected by the ascending order of intrinsic valuations.

This is exactly the opposite criterion used in the case with complete information (Zhou and

Chen (2013)). Thus, while Zhou and Chen (2013) study a context in which the industry

is mature, the current paper shows that a fast changing industry, for which informational

issues are critical, may demand substantially different design principles. We also examine the

out-tree hierarchical structure that is representative in the organization structure context.

We prove that two common approaches – top-down and bottom-up – are both generically

suboptimal despite their popularity, as the key leader turns out to stay around the mid-

dle but not exactly the center of the network. Overall, the analysis provides a theoretical

ground for some marketing practitioners’ recommendations of influencer choices or opinion

leaders, and complements the existing literature of network economics by incorporating both

signaling and strategic complementarity in a sequential-move context.
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A Appendix. Proofs

Proof of Theorem 1. In the second-stage, after observing xL the followers in F form a

common belief θ̂. Accordingly, their effort choices are:

xF(xL) = [1− δGFF ]−1(θ̂αF + δGFLxL) = U(θ̂αF + δGFLxL).

The individual effort by player j can be expressed as xj(xL) =
∑

k∈F Ujk(θ̂αk+δ
∑

l∈L gklxl),

∀j ∈ F . We can then go backwards and characterize the equilibrium outcomes. Going

backwards, in the first stage, the players i’s payoff is given by

ui = θαixi −
1

2
x2i + δxi

(∑
j∈L

gijxj +
∑
j∈F

gijxj(xL)

)

= θαixi −
1

2
x2i + δxi

(∑
j∈L

gijxj +
∑
j∈F

gij
∑
k∈F

Ujk(θ̂αk + δ
∑
l∈L

gklxl)

)

=

(
θαi + δθ̂

∑
j∈F

∑
k∈F

gijUjkαk

)
xi −

1

2
x2i + δxi

(∑
j∈L

gijxj + δ
∑
j∈F

∑
k∈F

∑
l∈L

gijUjkgklxl

)
.

Recalling T = GLL + δGLFUGFL, we can rewrite the above equation as follows:

ui =

(
θαi + δθ̂

∑
j∈F

∑
k∈F

gijUjkαk

)
xi −

1

2
x2i + δ

∑
j∈L

Tijxixj, ∀i ∈ L. (14)

Assuming linear strategies xi(θ) = κiθ, i ∈ L and the pessimistic belief, the equilibrium

condition for each player i in L is the following:

κiθ ∈ arg max
xi∈R


(
θαi + δmin(θ, xi

κi
)
∑

j∈F
∑

k∈F gijUjkαk

)
xi − 1

2
x2i

+δ
∑

j∈L,j 6=i Tijxiκjθ + δTiix
2
i

 . (15)

Notice that here we have plugged in xj = κjθ for j ∈ L\{i}; thus, θ̂ = min(θ, xi
κi

). Observe

that θ̂ is not differentiable at xi = κiθ. Therefore, the first-order condition for (15) comprises

two parts: (
θαi + δθ

∑
j∈F

∑
k∈F

gijUjkαk

)
− κiθ + δ

∑
j∈L,j 6=i

Tijκjθ + 2δTiiκiθ ≤ 0.(
θαi + δθ

∑
j∈F
∑

k∈F gijUjkαk

)
+ δ 1

κi

∑
j∈F
∑

k∈F gijUjkαkκiθ

−κiθ + δ
∑

j∈L,j 6=i Tijκjθ + 2δTiiκiθ
≥ 0.
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Rewriting these inequalities using matrices, we obtain that:

αL + δGLFUαF − κL + δ(T + TD)κL ≤ 0 ≤ αL + 2δGLFUαF − κL + δ(T + TD)κL. (16)

The above equation leads to multiple equilibria. We will choose the largest solution to

(16), which gives the result in Theorem 1. Actually, the smallest one corresponds to the

case with complete information characterized in Zhou and Chen (2013). In other words, if

we make the first inequality in (16) bind, then κL = [1 − δ(T + TD)]−1(αL + δGLFUαF).

This gives exactly the equilibrium effort in the unique subgame NE of the two stage game

in Proposition 1. �

Proof of Corollary 2. In the sequential-move game with complete information, Propo-

sition 1 shows that the equilibrium efforts are characterized by the matrix S

(
θαL

θαF

)
, and

the NE with complete information is M

(
θαL

θαF

)
, where

M = [1−δG]−1 =

( [
1− δ(T + 0TD)

]−1
1δ
[
1− δ(T + 0TD)

]−1
GLFU

δUGFL

[
1− δ(T + 0TD)

]−1
U + 1δ2UGFL

[
1− δ(T + 0TD)

]−1
GLFU

)
.

Zhou and Chen (2013) have calculated the difference between S and M as

S−M = δ2

(
(GLFGFL)D 0

0 0

)
+O(δ3).

Note that Ŝ−M = (Ŝ−S)+(S−M), so it’s suffice to show that the difference between

Ŝ and S has the following expression.

(Ŝ− S) =

(
0 δ

[
1− δ(T + TD)

]−1
GLFU

0 δ2UGFL

[
1− δ(T + TD)

]−1
GLFU

)

= δ

(
0 GLF

0 0

)
+ δ2

(
0 GLLGLF +GLFGFF

0 GFLGLF

)
+O(δ3).

To this end, note that U = [I−δGFF ]−1 = I+δGFF +O(δ2). Also T = GLL+δGLFUGFL =

GLL +O(δ), and TD = (GLL +O(δ))D = O(δ) because GD
LL = 0 (the diagonal entries of G
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are zeros). Combing these equations yields:

δ
[
I − δ(T + TD)

]−1
GLFU = δ

[
I + δ(T + TD) +O(δ2)

]
GLFU

= δ
[
I + δGLL +O(δ2)

]
GLF (I + δGFF +O(δ2)) +O(δ3)

= δGLF + δ2(GLLGLF +GLFGFF ) +O(δ3).

Similarly,

δ2UGFL

[
I − δ(T + TD)

]−1
GLFU = δ2(I +O(δ))GFL(I +O(δ))GLF (I +O(δ))

= δ2GFLGLF +O(δ3).

�

Proof of Proposition 2. Comparing (6) and (7) gives us the relation between player

i’s equilibrium contribution under the two scenarios:

xi(θ) =
2(αi + δ

〈
βi, (I− δG−i)−1 α−i

〉
)− αi

1− 2δ2
〈
βi, (I− δG−i)−1 βi

〉 θ =

2bi(G,δ,α)
mii

− αi
1− 2(1− 1

mii
)
θ (17)

=
2bi(G, δ, α)− αimii

2−mii

θ

Here we have used the fact that δ2
〈
βi, (I− δG−i)−1 βi

〉
= 1− 1

mii
by (8).

The next step is to study the impact of i’s contribution on other players. Note that the

rest of the group (N\{i}) play their best-responses in both scenarios, i.e.,

x∗−i(xi) = b(G−i, δ, α−iθ + δxiβi) = (I− δG−i)−1 (α−iθ + δxiβi). (18)

If the player i’s contribution changes by ∆xi, the incremental contributions of players in

N\{i} are given by:

∆x∗−i(xi) = (I− δG−i)−1 δ∆xiβi (19)

According to (8), we obtain the following expression: ∆x∗j(xi) =
mij

mii
∆xi, ∀j 6= i. Therefore,

the change of aggregate contribution due to ∆xi is

(1 +
∑
j 6=i

mij

mii

)∆xi =

∑N
k=1mik

mii

∆xi =
bi(G, δ, 1)

mii

∆xi. (20)

Here we use the fact that
∑N

k=1mik = bi(G, δ, 1).

29



Notice that player i’s contribution increases from xNi = bi(G, δ, α)θ to xLi = 2bi(G,δ,α)−αimii

2−mii
θ.

Thus, if i is selected as the leader, the change of aggregate contributions is

bi(G, δ, 1)

mii

(
2bi(G, δ, α)− αimii

2−mii

θ − bi(G, δ, α)θ

)
=
bi(G, δ, 1)(bi(G, δ, α)− αi)

2−mii

θ. (21)

This then leads to the S-index specified in the proposition. �
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Corbo, J., A. Calvó-Armengol, and D. Parkes (2006). A study of Nash equilibrium in

contribution games for peer-to-peer networks. Operating Systems Review 40 (3), 61–66.

Coulter, R. A., L. L. Price, and L. Feick (2003). Rethinking the origins of involvement

and brand commitment: insights from postsocialist central europe. Journal of Consumer

Research 30 (2), 151–169.

Demange, G. (2004). On group stability in hierarchies and networks. Journal of Political

Economy 112 (4), 754–778.

Dye, R. (2000). The buzz on buzz. Harvard Business Review 78 (6), 139–146.

Economides, N. (1996). The economics of networks. International Journal of Industrial

Organization 14, 673–699.

Farrell, J. and G. Saloner (1986). Installed base and compatibility: Innovation, product

pre-announcement, and predation. American Economic Review 76, 940–955.

Gladwell, M. (2006). The tipping point: How little things can make a big difference. Little,

Brown.

Jackson, M. (2008). Social and economic networks. New Jersey: Princeton University Press.

Katz, M. and C. Shapiro (1985). Network externalities, competition, and compatibility. The

American Economic Review 75 (3), 424–440.
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