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Abstract

We consider a variation of adaptive play with mistakes (Young, 1993) in extensive-

form games of perfect information, and view adaptive play as a selection mecha-

nism and mistakes as mutations in an evolutionary process. For each player in the

extensive-form game, there is a large population of individuals playing pure strate-

gies in that player’s role. The selection mechanism requires that in every period

each individual in each population adopt a current best-response strategy. A state

is stochastically stable if its long-run relative frequency of occurrence is bounded

away from zero as the mutation rate decreases to zero. We show examples of fi-

nite stopping games where the backward induction-equilibrium component is not

stochastically stable for large populations. We then give some sufficient conditions

for stochastic stability in this evolutionary process, and show that the transition

between any two Nash equilibrium components in an extensive-form game may

take a very long time.
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Extended Abstract

An equilibrium is stochastically stable if it is robust against persistent perturba-

tions. In [6], Young introduces the model of adaptive play with mistakes, where

each individual, randomly drawn from a large group for each player’s role, chooses

a best-reply strategy based on a sample of information about what other indi-

viduals have done in the past. The perturbations are modeled by occasional

mistakes made by individuals. Young then studies the invariant distribution of

the generated stationary Markov chain of this dynamic process, and defines the

stochastically stable states as those occurring with nonnegligible probability when

the mistake rate is arbitrarily small. In particular, he shows the stochastic stabil-

ity of risk-dominant equilibrium in 2×2 coordination games. In the present paper,

we would like to extend this model of adaptive play in extensive-form games of

perfect information. Can we understand equilibria in extensive-form games in a

dynamic framework, and the transition process between Nash equilibria triggered

by small stochastic perturbations? Is the backward-induction equilibrium compo-

nent always the maximum stochastically stable set in any extensive-form game of

perfect information?

This paper also continues the study initiated in [4], where we discuss the equi-

librium refinement of stochastic stability in two-player extensive-form games of

perfect information in an evolutionary context. We may view adaptive play as a

selection mechanism, and mistakes as mutations in an evolutionary process. Thus,

a state is stochastically stable if its long-term relative frequency of occurrence is

bounded away from zero as the mutation rate decreases to zero. The model is

adapted from Hart [2] and Gorodeisky [1]. Given an extensive-form game, we

consider an associated population game where for each player there is a large pop-

ulation of individuals playing pure strategies in that player’s role. In every period,

one random individual in each population is chosen. With very small probability, a

mutation happens and the individual picks a strategy randomly. When a selection

occurs with high probability, the individual picks a best-reply strategy against the

current distribution of all other populations. We need the population structure

in [2] for mixed-strategy Nash equilibria in extensive-form games, which is not

necessary for the study of pure-strategy Nash equilibria in coordination games. In

a population game, each individual plays a pure strategy, but the proportion of

those individuals playing a pure strategy s in the population represents the prob-

ability proportion of s in the mixed strategy. Moreover, as in [2], we would like

to put more inertia into the model than in [6] in the sense that, if an individual
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is currently playing a best-reply strategy, then she will not change her strategy in

the next period if the selection happens. In this way, there is no “drift” caused

by the selection mechanism when the state is already a Nash equilibrium.

We do not, however, give a characterization theorem of the stochastic sta-

bility for extensive-form games in [4]. Indeed, as we comment there, the gener-

ated Markov chain can be subtle and the dynamics of distribution of populations

needs various combinatorial results. For a simplified evolutionary framework for

extensive-form games of perfect information, we suggest modifying the model such

that in each period every individual may change her strategy, which is a “faster”

evolutionary process, but nevertheless consistent with the model in [6]. In such a

setup, we can reach a clearer result under certain conditions.

This is in fact an extreme case discussed by Kandori, Mailath, and Rob [3].

They consider a Darwinian property, where the proportion of a population us-

ing the current best-reply strategy increases in each period. Their result on 2×2

coordination games is robust with respect to any possible increase of individuals

currently using a best-reply strategy. For extensive-form games of perfect infor-

mation, we focus here on the special case where in each period every individual

can adopt their current best-reply strategy when selection takes effect.

The study of this fast evolutionary process is also closely related to continuous-

time approximate best-response dynamics in extensive-form games, discussed in

[5]. There, an ε-best-response dynamic is such that each player best responds to

a strategy profile in the ε-neighborhood of the true strategy profile at that time.

We show in [5] that along any interior approximate best-response trajectory, the

evolving state is close to the set of Nash equilibria most of the time. However,

[5] does not say in which neighborhood of the Nash equilibrium component the

evolving state spends the most time in the long run. In fact, this depends on

the exact perceived strategy profiles that each player best responds to in the

dynamic. We may perturb this process to a discrete-time stochastic dynamic

in a population game where the stochastic perturbation is consistent with some

probability distribution, e.g., uniform distribution. Our fast evolutionary model

is a simple mechanism for studying the long-run distribution in the state space.

This fast evolutionary process is the main topic of the present paper. The result

in [4] that only Nash equilibria can be stochastically stable for any population

size still holds. We can further show that, from any state that is not a Nash

equilibrium, it takes only finitely many periods, independent of population size,

to enter the set of Nash equilibria. Hence, we only need to study the transitions

between Nash equilibrium components. As in [4], we may focus on the transition
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between Nash equilibrium components under the best-reply dynamics triggered by

just one mutation, when the mutation rate is low. In terms of [6], the resistance

of such a transition is 1. Here, we call such a best-reply process triggered by

one mutation a one-mutation transition. Also as in [6], this dynamic process

can be simplified by a stationary Markov chain with states of those equilibrium

components. If each transition between components is a one-mutation transition,

then the computation of the invariant distribution of this Markov chain is indeed

much simpler than the one for the model in [4].

A finite stopping game is an extensive-form game where each player at each

node has at most one move to continue the game. We concentrate on finite stop-

ping games in this paper, as they capture the basic tree property while being free

of dynamics of strategies involving moves at multiple branches. We show some

different stability results from the ones in [4]. In particular, we show examples

where the backward-induction equilibrium component is not stochastically stable

for large populations. Hence, the fast evolutionary dynamic is not analogous to

the dynamic in the model in [4], but just involves less transition time.

In a fast evolutionary process, we have to address the choice problem when

there are multiple best-reply strategies for an individual in a period. Of course,

different choices may affect the dynamic trajectory, especially when the individuals

are responding to mutants. We here consider the case that each best-reply pure

strategy is assigned with positive probability. As in [7], we may also concentrate

on a specific case of a uniform distribution in the set of best-reply strategies. This

is a natural response when a player faces complete uncertainty. Indeed, the notion

of risk dominance in a 2×2 symmetric game is generated from the situation where

a player assigns equal probability to both pure strategies of the other player.

While we can give some sufficient conditions for stochastic stability in this

simplified model, it turns out that the stability result can be very sensitive to

payoff vectors. There exists an extensive-form game such that when populations

increase to infinity the probability of a one-mutation transition between any two

equilibrium components is approaching zero, and any other possible transition

takes a very long time in expectation.
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