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Abstract

I consider how cognitive biases affect the evolution of behavior. In my model, a popula-
tion of non-Bayesians repeatedly are matched together to play 2×2 coordination games.
Members of the population have systematically biased beliefs about the distribution
of strategies in the population, to which they noisily best respond. Their cognitive
biases lead players to make more simultaneous errors than Bayesian players would,
changing the evolutionary dynamics. For a large class of biases, the long-run outcome
is unchanged from the Bayesian outcome, but behavior can evolve much more quickly
as a result of correlated errors.
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1 Introduction

Over the past thirty years much attention has been paid by economists to biases in probability

judgement and how they affect decision-making, but less attention has been paid to how these

biases affect how aggregate behavior changes over time. I analyze the evolution of behavior

in populations in which errors stem from two sources: first, there is a small probability that

players do not make optimal strategy choices given their beliefs about how other players are

acting, and second, players are not Bayesians in forming these beliefs. Each player places too

much weight upon one or more observed strategies – his focal observations – and consequently

places too little weight upon the other strategy choices in the population. I show that the

presence of these biases generally does not change the long-run evolutionary outcome, but

that convergence to that outcome can occur much faster than in a population of Bayesians.

In my model n players repeatedly play a 2× 2 coordination game with pairwise random

matching, noisily best-responding to their beliefs about the other players’ strategies, as

in Kandori, Mailath, and Rob (1993). Players generate new beliefs each period based on

observing the exact history of play that period, but treat r strategy observations differently

than the remaining n − r observations. They assign weight (1 − η)/n to every strategy

observation but also assign an additional weight η/r to their focal strategy observations.

For instance, some players could assign additional weight to their own strategy choices,

believing the population to be behaviorally more similar to themselves than it actually is,

corresponding to beliefs influenced by the false consensus effect. Alternatively or in addition,

some players could overweight the same (random) focal observation each period because that

observation “sticks out” for some reason. This overweighting corresponds to the availability

heuristic, a heuristic in which people estimate probabilities of events by how easy it is to recall

instances of the event. Some players could have idiosyncratic random focal observations,
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corresponding to the representativeness heuristic, which causes people to treat small samples

from a population as more representative of the population than they actually are. I describe

these biases further in Section 2 and use them as examples throughout, but my results apply

to all non-Bayesian belief formation processes that do not explicitly favor one strategy over

the other.

Loosely speaking, the additional weights on focal observations cause strategy choices that

are not the best response to the population’s aggregate behavior – “errors” – to be positively

correlated either within a period or over time. Because players are playing a coordination

game, when a player’s focal observations are errors, she is more likely to make one herself. If

players share focal observations, then “clusters” of errors occur. If players have different focal

observations, more errors in the current period make it more likely that players overweight

errors, making errors more likely the next period as well. In that case, errors are serially

correlated. Exactly how these correlations change the evolutionary dynamics is the focus of

this paper.

My paper makes two contributions.1 First, while there is considerable evidence that

many people are biased in some ways, and by now many different models address how biases

affect equilibrium predictions in various contexts, to my knowledge no research exists which

addresses this question for stochastic evolutionary models. My first contribution is to present

a tractable model that encompasses a variety of probability judgement biases and makes

sharp predictions about the long-run behavior of biased populations. I show that as long

as biases are not too severe and the focal strategy observations do not explicitly favor a

particular strategy, then the risk-dominant equilibrium is uniquely stochastically stable.2

1I defer relating my paper to the existing literature until after stating my my main results.
2In 2 × 2 games, the risk-dominant equilbrium is to play the strategy which provides a higher payoff

against an opponent who is equally likely to play either strategy (Harsanyi and Selten 1988). This stochastic
stability result is well-known for models with Bayesian populations. Young (1993) and Kandori, Mailath, and
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This result applies to a large category of unrelated biases and mixtures of biases, so if one

doubts that people are perfect Bayesians, but is agnostic about exactly how people are biased,

my results apply.

My second contribution is to show that optimization errors – the typical assumption

about the source of noise in stochastic stability models – and errors in beliefs are qualitatively

different. Populations with errors in beliefs converge much more quickly to the risk-dominant

equilibrium as a result of their irrationality. Ellison (2000) shows that for small enough

probability of optimization error ε, convergence to the stochastically stable state can take

O(ε−cn) periods, where c is a constant derived from the payoffs of the game, which can be

extremely slow.3 The speed of evolution is generally limited by how often players make

sufficiently many simultaneous errors to move the system between basins of attraction of

states corresponding to each pure-strategy equilibrium of the underlying game. The positive

correlation between errors produced by biases in beliefs leads to lower order convergence times

as η increases for fixed population sizes n. The asymptotic behavior as n grows large depends

on the exact form the biases take; I show that, given moderate levels of bias, convergence

times are bounded as n→∞ under the false consensus effect and the availability heuristic,

while under the representativeness heuristic convergence times are bounded as n becomes

large as long as optimization errors are frequent enough.

Ironically, the long-run evolutionary outcome for a Bayesian population is a better pre-

diction of behavior for populations with moderate probability judgement biases than for

Bayesian populations. The identical outcome is reached more quickly by a biased population.

Rob (1993) were the first to show that a population subjected to persisent small noise in choosing strategies
settles in the long-run on the risk-dominant equilibrium, using techniques developed in Freidlin and Wentzell
(1998) and initially applied to evolutionary dynamics by Foster and Young (1990). It is one of the more
robust results in evolutionary game theory (see, e.g, Blume (2003)).

3If f(x) is of order g(x), written O(g(x)), as x → 0, then ∃C, x̄ such that | f(x) |< C | g(x) | for all
x ∈ (0, x̄).

4



2 Biases in Probability Judgement

Before proceeding with my model, I describe three well-known probability-judgement biases

which the model applies to. Of course there are other plausible – and many implausible –

ways that people may fall short of the Bayesian ideal, such as confirmation bias (ignoring

data not consistent with prior beliefs) or the false uniqueness effect (essentially the opposite

of the false consensus effect). Most of my results would apply to these other biases as well.

Representativeness Heuristic: Kahneman and Tversky first introduced the represen-

tativeness heuristic, sometimes referred to as the “law of small numbers” (Tversky and

Kahneman 1971, 1974). It is a probability estimation heuristic where biased individuals take

small samples from a population as more representative of that population than the samples

truly are. Rabin (2002) is a contemporary model of how the bias affects individual behavior

while Kahneman (2011) is a popular exposition.

Most research on how the representativeness heuristic affects economic behavior are for

settings where news arrives over time, such as investors evaluating stock performance. In

that case, biased individuals under-react (relative to Bayesians) to short-run trends, because

they under-estimate the probability of sequences with high variance and consequently expect

mean-reversion. However, they over-react to longer trends, because they take these sequences

as more informative than they are about the underlying direction of the market. This pattern

is consistent with the real-world patterns of short-run momentum and long-run reversals

in stock returns (Rabin and Vayanos 2010; Barberis et al. 1998). Similarly, Barber et al.

(2009) show that individual investors’ trading is positively correlated across time and across

investor, which they explain as (partially) produced by overextrapolation of past returns due

to common employment of the representativeness heuristic by these investors. My model
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predicts similar positive correlation stemming from the representativeness heuristic.

False consensus effect: The false consensus effect refers to an egocentric bias in which

people overestimate how much other people’s judgements are similar to their own (Ross

1977; Marks and Miller 1987). For instance, students take their own performance on a test

of ‘social sensitivity’ as more informative about overall pass rates on the test than another

student’s performance (Alicke and Largo 1995).4

Many studies have found that the the false consensus effect plays an important role in

simple games where social preferences influence behavior. Blanco, Engelmann, Koch, and

Normann find that in sequential prisoner’s dilemmas, first-movers who cooperate are more

likely to cooperate reciprocally as second-movers. Much of this behavior is caused by a

subject’s second-mover decisions influencing their beliefs about what other subjects would

choose in the same situation, in addition to the direct influence of subject altruism on both

decisions (Blanco et al. 2009). Other researchers have found similar belief-driven correlations

in subjects’ choices in trust games (Vanberg 2008b; Ellingsen et al. 2010) and in a sequential

voluntary contributions game (Gächter et al. 2012).

Proto and Sgroi (2013) directly test the false consensus effect by asking student subjects to

predict the distribution of such decisions as mobile phone purchase or restaurant choice in the

overall student population. Their subjects perceive themselves as closer to the middle of the

distribution than they in fact are. Similarly, Engelmann and Strobel find that in predicting

other subjects’ behavior, subjects overweight their own decisions relative to observed other

subjects’ decisions, as long as effort is required to calculate the other subjects’ decisions from

the available information (Engelmann and Strobel (2012); see also Engelmann and Strobel

4In many circumstances, treating one’s own choice as informative may be rational, and so many of the
early papers in the psychology literature do not conclusively document that the false consensus effect is a
bias (Dawes 1989; Vanberg 2008a). Subsequent papers corrected this problem.
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(2000)).

Availability Heuristic: People following the availability heuristic judge how probable an

event is based on how easy it is to recall examples from memory (Tversky and Kahneman

1974). In a representative study, Schwarz et al. asked subjects to list 12 examples of assertive

behaviors on their part. These subjects rated themselves as less assertive than subjects who

were only asked to list 6 examples. Constructing a list of 12 examples is difficult for most

people, and subjects treated the difficulty of the task as providing information that they

were not assertive. Indeed, subjects who are asked to list 12 unassertive examples judge

themselves to be more assertive than subjects who are asked to list 12 assertive examples

(Schwarz et al. 1991).

Research on the availability heuristic in economic decision-making is more limited. Kuran

and Sunstein argue that the availability heuristic is important to understanding which risks

to consumers will be regulated, and that “availability entrepreneurs” understand this and

try to manipulate public discourse to take advantage of the heuristic (Kuran and Sunstein

1999).

3 Model

Players in a population N = {1, 2, . . . , n} are repeatedly randomly matched together to play

the simultaneous-move coordination game in Figure 1. (A,A) and (B,B) are Nash equilibria

along with a mixed-strategy equilibrium in which A is played with probability

p∗ =
d− b

a− c+ d− b
.
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I assume throughout that a− c > d− b so that p∗ < 1/2, and (A,A) is risk-dominant.

At the start of each period t, every player is matched with another player, with every

match being equally likely, and plays the game once. At the end of the period, each player

then forms a belief p̂i,t about the population frequency of period-t A choices. That player

then chooses a strategy for the next period, si,t+1, based on that belief. Players are myopic

in that they respond to current behavior, not taking into account that it might change.

si,t+1 =


BR(p̂i,t) with probability 1− ε

WR(p̂i,t) with probability ε

(S)

where BR(p) is the best response to an opponent playing A with probability p and and

WR(p) is the other strategy.

All players observe the vector st but form p̂i,t using a process that places too much

weight on r players’ observed strategy choices and too little weight on the true frequency

of players playing A. Let F , the set of all possible focal strategy combinations, be the

set of all r-combinations of N . Then Fit ∈ F , player i’s focal observation set, records

which players player i overweights in period t. All j ∈ Fit are overweighted equally. Let

afi,t =| {j ∈ Fit : sj,t = A} | be the number of A-players in i’s focal set, and let at denote the

number of players playing A in period t.

A B

A a, a b, c

B c, b d, d

Figure 1: Coordination Game. a > c, d > b, a− c > d− b.

8



Definition 1. A player i who forms his beliefs about the fraction of players playing A with

a focal-observation belief-formation process has beliefs

p̂i,t = η

(
afi,t
r

)
+ (1− η)

(at
n

)

where η ∈ [0, 1] parameterizes the severity of the players’s bias.

Different members of the population can have different focl-observation biases, but I

focus on biases that increase the variance of players’ beliefs without explicitly biasing players

towards a particular strategy by requiring them to satisfy a “no directional bias” condition

under which each focal observation is an A observation with probability pt.

Definition 2. A focal-observation bias has no directional bias if the focal observations are

assigned such that the probability of a focal strategy observation being strategy S is equal

to the the true probability that a strategy is S: E[afi,t | at] = rat/n.

Example 1 (Focal assignment processes without directional bias). Under the false consensus

effect (FCE), each player’s own strategy is focal for herself, so r = 1 and

Fi,t = {i}, (FCE)

If pt ≡ at/n = 1/3 and player i has si,t = A then p̂i,t = η+(1−η)(1/3) = (1+2η)/3, while for

si,t = B, p̂i,t = (1− η)/3. Therefore E[afi,t|at] = (1/3)(1 + 2η)/3 + (2/3)(1− η)/3 = 1/3 = pt

satisfying no directional bias.

Under the availability heuristic (AH) and the representativeness heuristic (RH), focal

observation sets are random draws from F . Let Z be a probability distribution assigning

equal probability to any element of F . Imagine one strategy choice is broadcast to the
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entire population; players with the availability heuristic then overweight the easily-recalled

broadcast. Then r = 1 and

Fi,t = kt where kt ∼ Z. (AH)

Under RH each player overweights a different small sample (of size r ≥ 1):

Fi,t = ki,t where ki,t ∼ Z. (RH)

In both cases, there is no directional bias because Z assigns equal probability to all possible

focal observation sets, so the probability of each focal observation being A is pt.

The strategy updating function together with a belief formation process define a Markov

process with state at on a state space A = {0, . . . , n}. This Markov process is ergodic

for ε > 0 and hence has a unique stationary distribution placing probability µ(a) on each

state a, which the system converges to as t → ∞ from any initial state. An equilibrium is

stochastically stable if for the state a corresponding to that equilibrium, µ∗(a) ≡ lim
ε→0

µ(a) > 0.

A basic result of the literature is that in 2× 2 coordination games with Bayesian players (i.e.,

p̂i,t = pt), if A is risk-dominant, then µ∗(n) = 1 and A is the unique stochastically stable

equilibrium.

In many cases µ∗ can be completely determined from properties of the unperturbed (ε = 0)

Markov process. A limit state of the unperturbed process is a state for which at+1 = at, and

I denote limit state a = i by ωi. The basin of attraction of a limit state ω, D(ω), is the

set of states from which ω is eventually reached with probability 1 under thr unperturbed

dynamic. Finally, let WA(n, ε) be the expected wait time before the system reaches the basin

of attraction of the all-A state, D(ωn), if there are n players and the optimization error
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probability is ε.5

4 False consensus and availability in 2× 2 coordination

games

This section focuses on two biases for which focal observation sets are singletons – the false

consensus effect and the availability heuristic – both because they are of independent interest

and as a means of providing intuition for my more general results. Foe these r = 1 cases, let

f(i, t) be i’s focal observation at time t, simplifying notation. It is useful to think of player

i’s focal observation as shifting p∗, the minimum fraction of players playing A such that A is

a best response: either reducing it if sf(i,t),t = A causes p̂i,t > p, or increasing it if sf(i,t),t = B

causes p̂i,t < p. Let p∗ be the minimum p such that BR(p̂i,t | sf(i,t) = A) = A and let p∗ be

the minimum p such that BR(p̂i,t | sf(i,t) = B) = A. These cutoffs are

p∗ ≡ max
{

0,
p∗ − η
1− η

}
and p∗ ≡ min

{ p∗

1− η
, 1
}
. (1)

They form an interval around p∗ within which the movement of the system is influenced by

the realized focal observations as well as by optimization errors.

False consensus effect: Players with this bias place undue weight on their own strategy

choice, producing a “solipsistic region” around p∗ where BR(p̂i,t | sf(i,t),t = A) = A and

BR(p̂i,t | sf(i,t),t = B) = B. These states a ∈
(
np∗, np∗

)
are never exited except through

5The Appendix contains formal definitions and proofs. WA(n, ε) is defined in terms of reaching the basin
of attraction of a = n because once that basin of attraction is reached, there is a high probability that the
system reaches a state close to a = n the next period, and is unlikely to leave the basin of attraction for
many periods.
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p∗p∗ p∗ 1
2

0 1
p

BR( ˆpi,t) = B if si,t = B

BR( ˆpi,t) = A if si,t = A

D(ω0) D(ωn)

Figure 2: Best-Response Regions Under the False Consensus Effect. In shaded region, p
drifts towards to 1/2; to left of shaded region, p jumps to close to 0; and to right of shaded
region, p jumps to close to 1.

optimization errors, which cause the state to drift towards a = n/2.6 Outside of the solipsistic

region standard myopic best response dynamics operate. Figure 2 depicts this adjusted

dynamic.

For η ∈ [p∗, 1− 2p∗), the solipstic region encompasses D(ω0), the entire basin of attraction

of the all-B state, and so the state drifts towards D(ωn) due to optimization errors. Because

η < 1 − 2p∗, p∗ < 1/2, so the system drifts into D(ωn) rather than drifting all the way to

a = n/2 and remaining there, which would occur if p = 1/2 were in D(ω0). For this η range,

numerical solution for WA(n, ε) finds that WA(n, ε) ≈ ε−1 for any n.

For η /∈ (p∗, 1− 2p∗), the fastest transition path from B to A combines (fast) linear

increases in p in the solipsistic region with (slow) waiting for enough simultaneous errors to

enter it from D(ω0) or to exit it into D(ωn). For low biasedness η < p∗, the fastest transition

path from B to A involves first a jump from D(ω0) to p > p∗, the point at which linear

growth takes over, after which p grows quickly until it reaches the basin of attraction of A.

For high biasedness, the fastest transition path begins with quick growth to p = 1/2 and then

requires a jump from around p = 1/2 into D(ωn). By replacing a large jump with a smaller

6There are approximately ε(n− a) switches from si,t = B to si,t+1 = A each period and εa switches from
si,t = A to si,t+1 = B, so if a Q n/2, E[at+1 | at] Q at.
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jump plus linear growth, a population’s bias reduces WA(n, ε). However, as n increases, the

smaller jump still takes more and more time in expectation to occur, so lim
n→∞

WA(n, ε) =∞.

While WB(n, ε) also falls as η increases, it remains of higher order than WA(n, ε) as long

as η ≤ 1− p∗. However, if η > 1− p∗, then the entire state space is a solipsistic region. The

stationary distribution puts mass on all a ∈ A with greatest weights on states near a = n/2.7

Availability heuristic: Players following the availability heuristic place too much weight

on the same focal observation f(t) = f(1, t) = · · · = f(n, t) when considering which strategy

to adopt. They either overestimate p, if sf(t) = A, or underestimate it, if sf(t) = B. If

sf(t) = A and p ≥ p∗, then for all players p̂i,t ≥ p∗, so all members of the population switch

to A unless they make an optimization error. The most likely transition path out of D(ω0)

is for random optimization errors to lead to pt ≥ p∗ and then for the entire block of biased

players to switch to A when the focal observation is A.

Instead of changing part of the transition process to a fast linear one, the availability

heuristic instead makes large numbers of simultaneous errors more likely. Because it does not

produce serially correlated errors, there is no intermediate region in the state space in which

the state can “get stuck” around p = 1/2. For degree of bias η > p∗, WA(n, ε) is low even for

large n, although for η > 1 − p∗, the A equilibrium is no longer the long-run outcome, for

similar reasons to the false consensus effect.

7 The stochastic process is completely symmetric with regards to strategy labels, due to the symmetry
of optimization errors and BR( ˆpi,t) being independent of pt. As ε → 0, the stochastic process resembles a
logistic birth-death process with µ ∼ B(n, 1/2).
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5 General Asymptotic theory

As is typical in the stochastic stability literature, I analyze the limiting behavior of the system

as ε → 0 or n → ∞. I employ Ellison (2000)’s radius-coradius technique to establish the

ε-limit results and a deterministic approximation of the evolutionary process as a difference

equation for the n-limit results.8 The small-ε results apply to any mixture of focal-observation

biases with no directional bias, while the large-n results depend on the exact bias or biases

the population suffers from.

Two conditions simplify the small-ε theory without substantially limiting the results:

(C1) η < 1− p∗.

(C2) Let Yt ⊂ N . Then for all i ∈ N , (i) if Yt 6= ∅, ∀y ∈ Yt, Pr(y ∈ Fit) > 0, and (ii)

∀k ∈ Fit \ Yt, either k = i or Pr(k ∈ Fit) > 0.

The first condition rules out cases in which the degree of bias η is large enough that the

payoff advantages of strategy A are too small to overcome the additional noise introduced by

the bias, in which case the A equilibrium is no longer the unique long-run outcome.9 It seems

likely that this assumption is satisfied for all applications of the theorems: if η > 1−p∗ > 1/2,

the evidence on cognitive biases would be much more conclusive than it is. (C2) rules setting

focal observation sets to generate fixed networks and seems likewise to be satisfied for most

applications of interest. It essentially requires that focal observation sets be formed in a

random way, either being drawn from a set of shared observations Yt, as with the availability

8Sandholm (2010) devotes considerable attention to treating the large-population limits of stochastic
evolutionary processes as deterministic evolutionary processes. See also Sandholm (2001) or Benaim and
Weibull (2003).

9(C1) is a necessary condition in Theorems 1 and 2 for r = 1 and sufficient for r > 1. If the bias is too
severe, then the increased noise is large enough that the ergodic distribution µ is symmetric (µ(a) = µ(n−a)),
with the exact form dictated by the particular focal-agent assumption made. I discuss this issue further
following my proof of Theorem 1.
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heuristic, or being drawn from the population as a whole.

Finally for small n, integer problems cause the risk-dominant equilibrium to not be stable,

so I assume the population size is n > n ≡ max{ r(1−η)
1−p∗−η ,

1−η
1−2p∗

}. Provided these conditions

are satisfied, the long-run outcome duplicates that of a Bayesian population.

Theorem 1. For 2× 2 coordination games played by a population of size n > n with every

member forming his belief through a (possibly different) focal-observation process without

directional bias that satisfies (C1) and (C2), then the risk-dominant strategy is uniquely

stochastically stable.

In addition transitions between equilibria are faster in biased populations:10

Theorem 2. For 2× 2 coordination games played by a population of size n > n with every

member forming his belief through a (possibly different) focal-observation process without

directional bias that satisfies (C1) and (C2), then as ε→ 0,

i) there is a cA > 0 such that the expected wait time to reach the risk-dominant equilibrium

WA(n, ε) < cAε
−dp∗ne) if η < p∗ or WA(n, ε) < cAε

−r otherwise; and

ii) there is a cB > 0 such that the expected wait time to leave the risk-dominant equilibrium

WB(n, ε) > cBε
−d(1−p∗)ne.

Biases increase transition speeds because they cause correlation in errors. As η increases,

the speed of exits from D(ω0) are still faster that the speed of exits from D(ωn) as long as the

increased noise from the biases does not fully counteract the advantage of the A equilibrium

in the best-response dynamics. Hence the system spends almost all time in D(ωn), and for

low ε most of the time it is spent at a = n. Figure 3 shows calibrated WA(N, ε) as η varies

for my illustrative biases.

10Recall that dxe denotes the smallest integer greater than x. In the following theorem, because at is an
integer, conditions like p > p∗ become a > dp∗ne after accounting for the state space.
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Figure 3: Speeds of Transition to Risk-Dominant Equilibrium by Bias for r = 1, p∗ = 1/3,
n = 50, and ε = 1/12. With Bayesians (η = 0) the transition speed WA(50, 1/12) ≈ 6
million periods, while for biases with η > 2/10, WA(50, 1/12) < 150 periods. In contrast,
WB(50, 1/12) > 6 million periods for any η < 0.58.

With Bayesian populations all states within a basin of attraction, share the same best

response, so players’ strategy choices are not correlated between players during a period or

over time:11

corr
(
ai,t, aj,t

∣∣at−1 ∈ D(ω0)
)

=
E[(ai,t − ε)(aj,t − ε) | at−1 ∈ D(ω0)]

σai,t σaj,t
= 0.

Likewise, conditional on which basin of attraction the system is in at t − 1, errors are

uncorrelated over time. Because movement between basins of attraction requires sufficiently

many simultaneous errors, uncorrelated errors cause the population to converge slowly to

the long-run distribution. Focal-observation beliefs cause correlated errors in the region a ∈
11Here with a slight abuse of notation, ai,t is an indicator taking the value 1 if si,t = A and 0 otherwise.
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(p∗n, p∗n). For lower η, the evolutionary system blends these dynamics and the uncorrelated

dynamic, making exits from both D(ω0) and D(ωn) easier.

The transition speeds in Theorem 2 are for fixed n. Even when WA(n, ε) is less than cAε
−r,

the expected wait time can still increase sharply with population size if cA increases with n, so

I also consider large-population convergence times. Here the exact form of focal-observation

bias affects the limiting behavior, so in what follows I focus on the conditions under which a

homogenous population sharing one of the three biases described in Section 2 will have “small”

wait times even for large population sizes. For these theorems, let WA(ε) ≡ sup {WA(n, ε) :

n ∈ N} denote an upper bound on the expected wait time to reach the A basin of attraction,

if the wait time is bounded.12 The idea behind these theorems is that for populations with

serial-correlation-producing biases and large n, pt+1(pt) ≈ f(pt) ≡ E[pt+1 | pt]. If outside of

D(ωn), f(pt)− pt > δ > 0, then D(ωn) will be reached in finite time regardless of n.

Theorem 3. For in 2×2 coordination games played by a population with a focal-observation

belief-formation process with sample size r = 1, if

i) the process is (RH) or (FCE), WA(ε) exists if and only if p∗ ≤ η < 1− 2p∗, while if

ii) the process is (AH), WA(ε) exists if and only if p∗ ≤ η < 1− p∗.

With r = 1, numerical calculations find that WA(n, ε) ≈ ε−1 regardless of n if the above

conditions hold, so transitions to A are also fast in practical terms for intermediate η.

Theorem 4. In 2 × 2 coordination games played by a population with the (RH) belief-

formation process with sample size r > 1, WA(ε) exists if and only if

(i) η ≥ p∗, and

12Kreindler and Young (2013), who look at n → ∞ behavior in an environment similar to that in my
Theorem 4, say an evolutionary system displays “fast selection” if WA(ε) exists.
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(ii) for some ε(r, η) ∈ [0, 1/2), ε > ε(r, η), and

(iii) if r is odd, η ≤ r(1− 2p∗).

Like the false consensus effect, the representativeness heuristic produces serial correlation

in error rates in states a ∈ (np∗, np∗). For instance, with r = 1, in this region player i’s best

response is sf(i,t),t, so

Pr(si,t+1 = A | pt) = (1− ε) Pr(sf(i,t),t = A | pt) + εPr(sf(i,t),t = B | pt) = ε+ pt(1− 2ε)

(2)

and f(pt) = Pr(si,t+1 = A | pt) = ε+ pt(1− 2ε). With r > 1, players’ best responses depend

on the the exact composition of their focal-observation sets. There is a threshold af (p) such

that when pt = p, if afi ≥ af (p), then BR(p̂i,t) = A. af (p) is

af (p) = min
{
a ∈ {0, . . . , r} ∪ {n} :

ηa

r
+ (1− η)p ≥ p∗

}
, (3)

where I adopt the convention that af(p) = n if BR(p̂i,t) = B even when afi,t = r. Then

equation (2) generalizes to

f(pt) = ε+ (1− 2ε) Pr(afi ≥ af (pt)). (4)

Typically af (p∗) = r, but as p increases af (p) falls.

Theorem 4 enumerates three possible causes for slow convergence to the A equilibrium

under the representativeness heuristic for large n, all of which are illustrated in Figure 4. For

r = 1, because pt+1 = ε + (1 − 2ε)pt, in the region (p∗, 1/2), pt+1 > pt. However, if p∗ > 0

because η < p∗, as in Figure 4(a), the system gets stuck around p = ε for arbitrarily long
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4(a): Dynamics with η < p∗ and r = 1. In this case, as
n grows large, the system remains stuck at p = ε < p∗.
If for some t, pt > p∗, the share of A players grows
linearly (because E(pt+1|pt

) > pt) until the A basin
of attraction is reached. Here ε = 0.05, η = 0.2, and
p∗ = 0.3.

1
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4(b): Dynamics with η > p∗ and varying number of
focal observations. For r = 1 (blue line), the share of
A players grows quickly to p = 1/2 but never reaches
the A basin of attraction. For r = 3 (brown line), the
system converges to the marked point. Focal Obseva-
tions. For r = 4 (dashed red line) pt grows linearly
and reaches the basin of attraction of A in finite time
for any n. In all cases ε = 0.125, η = 0.5, and p∗ = 0.3.

Figure 4: Dynamics under Representativeness Heuristic for Large Population Size n. In the
region (p∗, p∗) surrounding p∗, st+1 is influenced by the expected composition of players’ focal

observation sets. The distribution of afi,t conditional on pt consequently influences the shape
of E[pt+1], and there is positive feedback, reducing the expected time in B, WA(N, ε). If for
all p in [0, p∗], E[pt+1 | pt] > pt, then the feedback everywhere is strong enough for D(ω0) to
exited in finite time for arbitrarily large n.
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times as n becomes large.

Even when η ≥ p∗ the system can become stuck, though, for two reasons. First, p

converges to 1/2 for r = 1, so if p∗ > 1/2, or equivalently η > 1 − 2p∗, the system takes

arbitrarily long to reach D(ωn) as n becomes large. See the blue curve in Figure 4(b), This

phenomenon can occur with every odd r > 1 if at p = 1/2, af (1/2) = (r + 1)/2.13 For r > 1,

af (1/2) = (r+ 1)/r if η is large and p∗ close to 1/2. Condition (iii) of Theorem 4 guarantees

that at p = 1/2, Pr(afi ≥ af (p)). This condition is an artifact of the modeling assumptions I

make; if players’ focal observation set sizes varied, then this condition would be unnecessary.

The final reason that wait times can grow large for large n is if positive feedback in (p∗, p∗)

is not strong enough to produce E[pt+1 | pt] > pt over the entire interval. In the r = 3 case in

Figure 4(b), there is a small interval when p is slightly below p∗ in which E[pt+1 | pt] < pt. As

n grows large the system spends an arbitarily long time at the first root of E[pt+1 | pt]− pt,

the point marked in the figure, instead of reaching D(ωn). Generally, however, for high

enough ε the positive feedback is sufficiently strong that this second reason for unbounded

wA(n, ε) does not apply, which is the rationale behind condition (ii). Intuitively, an increase

in ε causes the E[pt+1 | pt] curve to rotate clockwise,14

13f(1/2) = 1/2 in this case because Pr(afi ≥ (r + 1)/2) = Pr(afi < (r + 1)/2):

Pr(afi ≥
r + 1

2
| p = 1/2) =

r∑
k= r+1

2

(
r

k

)
(1/2)k(1/2)r−k =

1

2
=

r−1
2∑

k=0

(
r

k

)
(1/2)k(1/2)r−k = Pr(afi <

r + 1

2
| p = 1/2).

14The exact ε cutoff is sensitive to the particular form that optimization errors take and has no closed-form
solution given my trembles specification. Kreindler and Young (2013) analyze a similar evolutionary system
with logit errors, under which fast convergence occurs for a larger range of optimization noise levels than my
trembles specification.

20



6 Discussion

I first discuss how robust the results in the previous section are to alternate modeling

assumptions. I then discuss what my paper adds to related theory literatures.

Additional heterogeneity in the population: The assumption that all members of the

population have a focal-observations belief-formation process can be weakened in two ways.

First, players could vary in the number of observations r which they overweight. The order

of WA(n, ε) would be reduced for η > p∗, because there the transition speed away from ω0 is

determined by speed at which the first few players switch to s = B, and r = 1 players switch

to s = B faster than r > 1 players. Second, the assumption that the entire population is

biased can be weakened. My results follow as long as at least p∗ fraction of the population

has focal-observation biases with η ≥ p∗. If that is the case, enough biased players can switch

swiftly to playing B to take the system out of D(ω0) with WA(N, ε) larger but of the same

order.15

Directional bias in focal-agent choice: In the base model the no directional bias assump-

tion ensures that focal observations are representative of the current population distribution,

rather than biased towards either A or B. If instead B strategies are β times more likely to

be sampled than A strategies, then E[afi,t] = rpt
β+pt(1−β)

. This form of directional bias does not

change the basins of attraction of the unperturbed system, so analysis of the ε→ 0 behavior

is unaffected. However, although the stochastically stable state does not change, convergence

speeds in the large-population limit in are affected. For serial correlation-producing biases,

if β > 1 the E[pt+1|pt] curves in Figure 4 shift downwards, so that wait times are unbounded

15Oyama et al. (forthcoming) model of sampling best response dynamics is a deterministic model in which
there are similar kinds of heterogeneity.
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for more parameter combinations. Conversely, if A strategies are more likely to be sampled,

then wait times will be bounded for more parameter combinations.

Relation to other papers: While theoretical models of social learning with biased agents

exist (for instance, Eyster and Rabin (2010) or Guarino and Jehiel (2013)). I am unaware

of any models that address how cognitive biases affect the evolution of behavior in strategic

situations as opposed to decision-theoretic ones. Sethi (2000) examines the dynamic stability

of S(1) equilibria, an equilibrium concept based on an model of procedural rationality in

which players sample the effect of playing each action exactly once and the action they

perceive to be best based on the sample of payoffs (Osborne and Rubinstein 1998). However,

that model is about the dynamic effects of cognitive limitations rather than psychological

biases. Blume (2003) probably comes closest to investigating how psychological biases impact

evolution, though never in those terms. He shows that noisy strategy revision processes that

are skew-symmetric – roughly, noise processes where strategy labels do not matter – lead to

risk-dominant equilibria being stochastically stable. That result implies my Theorem 1 but

is silent on the convergence speed results in this paper.

Several varieties of stochastic evolutionary model address the problem of long wait times.

Many look at evolution on networks or where populations have some form of local interaction,

which often increases transition speeds (for instance Ellison (1993) or Montanari and Saberi

(2010)). For some applications these structual assumptions are hard to justify, though, and

this paper instead focuses on evolution in populations that interact globally.

Given that focus, the papers closest to this one are Binmore and Samuelson (1997) and

Kreindler and Young (2013) which show in different ways that adding additional noise leads

to waiting times of lower order than the standard model. Binmore and Samuelson combines

optimization errors with a learning model that is an additional source of noise. The noise
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from the learning process makes convergence to the stationary distribution fast as ε → 0.

My paper analyzes an opposite source of noise, but mechanically the biases in my model are

akin to learning in Binmore and Samuelson.

Kreindler and Young instead consider a logit response dynamic where ε is small but

non-vanishing and show that convergence is fast if p∗ (in their model parameters, 1/(2 + α))

is low enough and ε (1/β) is high enough. The mechanism generating fast transitions is

essentially serial correlation similar to the representativeness heuristic in this paper.

My work complements these papers on both substantive and technical levels. Sub-

stantively, I address a much different question than either of these papers: how do well-

documented behavioral biases change the evolution of behavior. Technically, both Binmore

and Samuelson (1997) and Kreindler and Young (2013) are birth-death models that allow

simple closed-form solutions for the steady-state distribution but limit the analysis from

being extended to non-2× 2 games, which would be possible in my framework.

In addition, several papers consider evolution when players best-respond to a sample of

observations of play. In Young (1993)’s adaptive play dynamics, players respond to a sample

of the strategies that other players recently played. Oyama et al. (forthcoming) consider

deterministic best response dynamics where a continuum of players randomly samples a

random number of observations and show that when samples of no more than size k are

likely enough, the population converges quickly to an iterated 1
k
-dominant equilibrium. Focal-

observation belief formation generalizes sampling in these papers.

Finally, Norman (2009) analyzes evolution when players incur a switching cost for changing

strategies. These costs produce intermediate limit states similar to those that occur with the

false consensus effect in my model. In both cases, the intermediate limit states cause faster

transitions due to the faster nature of step-by-step evolution initially described by Ellison
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(2000). Norman does not analyze transition times in the large population limit, while I show

that considering the large population limit is important in my model environment.

7 Conclusion

I show that populations following perturbed best response dynamics whose members hold

biased beliefs about the distribution of strategies they face converge to playing the stochasti-

cally stable equilibrium more quickly. Under best response dynamics the limiting factor on

the speed of the convergence is that achieving enough simultaneous errors to switch equilib-

ria is a rare event. Biases accelerate behavioral evolution because they introduce positive

correlation in errors across players or over time, which increases the likelihood of these events.

Whether probability judgement heuristics are on net beneficial or harmful in decision-

making is much debated – see for instance Gigerenzer et al. (2000) – but my work suggests

they might also be beneficial due to their effect on aggregate behavior. In a separate paper

(Wood 2013) I explore conditions under which the “speed-up” effect of heuristics lead to

positive selection for non-Bayesian reasoning. Biased players can be favored in situations

such as coordinating on fads or or coordinating on adoption of technological innovations.

In these environments, members of small groups repeatedly play coordination games with

occasionally changing payoffs. The small-group interaction allows the positive externality

to be partially internalized, in a manner similar to reciprocal preferences in Herold (2012),

while the changing payoffs makes faster transitions persistently useful.

In other settings, biases can have intermediate-run equilibrium selection implications

in addition to their speed-up effect. Consider a 3 × 3 pure coordination game played by

multiple types, where si, 1 = A for all players but one type prefers coordinating on B to

coordinating on C and a second type has the opposite preferences. This situation might
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arise in the evolution of a political party’s platform. If η is exogenous and type-specific, a

long-lasting intermediate-run outcome is likely to be the one that the higher η type favors,

as the system will reach the favored equilibrium of the more biased type relatively quickly,

and that equilibrium is more difficult to leave than the initial equilibrium.
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A Proofs

Several proofs use the radius-coradius technique of Ellison (2000), which bounds transition

speeds by comparing how difficult it is for the system to move between different sets of states

defined by the unperturbed process, the Markov process for parameter ε = 0 (but note η > 0

is assumed under the unperturbed process). A limit state ω of a Markov process is a state

such that Pr(at+1 = ω | at = ω) = 1. The basin of attraction of ω is the set of states from

which ω is eventually reached with probability 1: D(ω) = {a ∈ A | Pr(∃T s.t. ∀t > T, at =

ω | ao = a) = 1}. I adopt the notation that ωk is a limit state such that at+1 = at = k.

Let c(x, y) be the minimum number of errors necessary to reach state a = y from state

a = x and ω be a limit state of the unperturbed process given by some belief-formation

function defined in Section 3 and the strategy-updating function (S) where ε = 0. Then the

radius of ω, R(ω), is the minimum cost to leave D(ω):

R(ω) = min
a/∈D(ω)

c(ω, a),

and the coradius of ω, CR(ω), the cost of reaching ω from the most costly a ∈ A:

CR(ω) = max
a∈A

c(a, ω).

Finally, consider a path a = y to a = x that passes through intermediate limit states

l(1), l(2), . . . , l(r) ∈ {x, . . . , y}. Then the modified cost of that path is c∗(x, y) = c(x, y) −∑r−1
i=2 R(l(i)) and the modified coradius is CR∗(ω) = maxa∈A c

∗(a, ω).. These modified costs

take into account that a series of small jumps is faster than a single large jump.16 Then

16An analogy is that the evolution of wings is much more likely if it can proceed via small mutations that
produce increasingly wing-like structures that are each evolutionarily stable, that if it must occur through a
single large evolutionary step requiring many mutations.
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(Ellison (2000), Theorem 2)

Lemma A1. Suppose that limit state ω is such that R(ω) > CR∗(ω). Then

i) ω is the long-run stochastically stable state of the system, and

ii) ∀a 6= ω, the expected wait to reach ω from a is O(ε−CR∗(ω)) as ε→ 0.

Two wait times of interest are the expected wait time before the system reaches either

the basin of attraction D(ω0) or D(ωn) from the state state a = n or a = 0 respectively.

unperturbed dynamic, which depends on parameters n and ε. Let WA(n, ε) be the expected

wait time to reach the A basin of attraction, so

WA(n, ε) ≡ E[min{t | at ∈ D(ωn), a0 = 0}],

and let WB(n, ε) be defined accordingly.

A.1 Proof of Theorem 1

First, the set of limit states is ω0, ωn, and possibly some or all of the intermediate states

ωa such that a ∈ (np∗, np∗). Transitions for intermediate limit states under the unperturbed

dynamic are entirely determined by each player’s focal observation set Fi,t.

I first show that these intermediate limit states, if they exist, are relatively easy to escape.

Lemma A2. If ωk is an intermediate limit state, then R(ωk) = 1.

Proof. Assume towards contradiction that R(ωk) > 1. Then under the unperturbed dynamic,

from state a = k − 1, state a = k is reached almost surely as t→∞. Clearly this cannot be

the case given (C2) if r > 1. If r = 1, at all times t such that at = k − 1, n− k players must
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have focal sets such that sf(i,t),t = A and k players must have focal sets such that sj(i,t),t = A,

so E[afi,t] = k/n 6= at/n = (k − 1)/n. Hence R(ωk) > 1 contradicts the no directional bias

assumption for r = 1.

A lower bound on R(ωn) given errors in beliefs can be calculated by letting all players i

have Fi,t such that afi,t = 0. This bound may not be tight depending on the belief-formation

process. Given afi,t = 0, p̂i,t = (1− η)p, and so all states a ≥ np∗/(1− η) are still in D(ωn),

so R(ωn) ≥ dn − np∗/(1 − η)e = dn(1 − p∗)e as long as p∗ < 1 − η. Now, to bound R(ω0),

consider first η < p∗ and assume towards contradiction that ā ≡ dn(p∗−η)/(1−η)e ∈ D(ω0).

ā ≥ r because n > n̄, so if at at = ā, then the probability that each sit = A player has afit = r

is positive under (C2), in which case

p̂i,t(sit = A | afit = r) = η + (1− η)
ā

n
≥ η +

(
1− η
n

)(
n(p∗ − η)

(1− η)

)
≥ p∗

so at+1 = at, implying ā /∈ D(ω0). Therefore R(ω0) ≤ dn(p∗ − η)/(1− η)e = dnp∗e, as long

as η < p∗. Next, consider η ≥ p∗ and assume towards contradiction that a = ā ≡ drp∗/ηe ∈

D(ω0). The probability that each sit = A player has afit = ā is positive under (C2), so

p̂i,t(sit = A | afit = r) >
η

r

(
rp∗

η

)
+ (1− η)

(
rp∗

η

)
≥ p∗

in which case at+1 = at, implying ā /∈ D(ω0). For η ≥ p∗, R(ω0) ≤ drp∗/ηe.

Now, consider c∗(a, n) for any a ∈ A. The cost of intermediate limit states between

a + 1 and n is both added and subtracted from c∗(a, n), so c∗(a, n) = R(a). Together with

Lemma A2, this implies that maxa c
∗(a, n) = c∗(0, n), so CR∗(ωn) = R(ω0).
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Comparing R(ωn) and CR∗(ωn), if η < p∗, then

R(ωn)− CR∗(ωn) ≥ dn(1− p∗)e − dnp∗e

≥ n(1− p∗ − η)

1− η
− n(p∗ − η)

1− η
− 1 =

n(1− 2p∗)

1− η
− 1

so R(ωn) > CR∗(ωn) if n > n ≥ 1−η
1−2p∗

. If η ≥ p∗, then CR∗(ωn) ≤ drp∗/ηe ≤ r, while

R(ωn) ≥ n(1− p∗ − η)/(1− η) > r provided n > n ≥ r(1−η)
1−p∗−η . Because R(ωn) > CR∗(ωn), ωn

is uniquely stable from Lemma A1.

I now show why condition (C1) is necessary for r = 1. In the case of r > 1, there are

η > 1− p∗ such that A is not uniquely stable, but η > 1− p∗ such that A is stable, and the

exact η is a non-monotonic function of r and p∗, due to integer problems.

Theorem A1. If r = 1 and (C1) is not satisfied (η > 1 − p∗), then ωn is not uniquely

stochastically stable.

Proof. If η > 1− p∗, then

si,t+1 = BR(p̂i,t) = sf(i,t),t. (5)

Because the focal strategy sample is so overweighted, it follows that the stationary distribution

is symmetrical: consider the state space B = {0, . . . , n}, where b = n − a. Then due to

(5) and [E[a(f(i, t))] = pt, the Markov transition matrix MB under B is identical to the

transition matrix MA under A. As the stationary distribution µA under the original state

space µA = MAµA is unique and µB = MBµB = MAµB, µA = µB for any ε. Hence

µ∗(a) = µ∗(n− a) and A cannot be uniquely stochastically stable.

It is apparent that the distribution µ∗ will depend on the exact focal-observation bias.

32



A.2 Proof of Theorem 2

For WA(n, ε), the claim is an immediate consequence of Lemma A1’s claim (ii), applying the

same logic as the proof of Theorem 1 above. For WB(n, ε), an analogous calculation to that

claim’s is valid for any limit state (Ellison (2000), Lemma 6). CR∗(ω0) = R(ωn) ≥ dn(1−p∗)e

so there is some cB > 0 such that WB(n, ε) > cBε
−dn(1−p∗)e if n(1−η−p∗)/(1−η) > r, which

is the case given (C1).

A.3 Proof of Theorem 3

I first prove that for large n , a deterministic approximation holds.

Lemma A3. If Var(at) is O(n), then lim
n→∞

pt+1(pt) = E[pt+1|pt].

Proof. Var(at) < cn so Var(pt) < c/n. From Chebyshev’s inequality, for any e,

Pr(|pt+1 − E[pt+1|pt]| > e) <
Var(pt)

e2
=

c

ne2

For any e > 0, as n→∞, the probability approaches zero.

Now I separate the theorem’s claims into several parts.

For all biases and η < p∗: in an interval around ω0, all p̂’s are such that BR(p̂) = B.

Hence from any at < ā ≡ min{a | a 6= D(ω0)}, at+1 ∼ B(n, ε). From application of

Chebyshev’s inequality, limn→∞ Pr(at+1 > ā) = 0. Because WA(n, ε) ≥ E[min{t | at+1 >

ā}] = Pr(at+1 > ā)−1, limn→∞WA(n, ε) =∞, so for this case WA(ε) does not exist.

Availability heuristic for η ≥ p∗: in this high biasedness case, p̂i,t > p∗ if sf(t),t = A,

so if shared focal strategy observation had s = A, then ∀i, BR(p̂i,t) = A. Pr(sf(t),t = ε | at ∈

D(ω0)) ≥ ε and WA(ε) is the inverse of that probability.
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False consensus effect for η ≥ p∗: For the false consensus effect and representativeness

heuristic, I show that a deterministic difference equation approximates pt well for large n

and then work with the difference equation. Consider at+1. Let aat+1 ∼ B(at, 1 − ε) be

the number of players with st = A who have st+1 = A as well, and abt+1 ∼ B(n − at, ε)

be the number of players with st = B who have st+1 = A. Then at+1 = aat+1 + abt+1 and

E[at+1 | at] = nε+ at(1− 2ε). while Var(at+1) = Var(aat+1) + Var(abt+1) = nε(1− ε).

Now applying Lemma A3, if at t = 0, p0 = 0, then p1 = ε, p2 = ε(1− ε) + ε(1− ε), and in

general pt = ε(1−pt−1) + (1− ε)pt−1. Alternately, pt = 1
2
(1− (1−2ε)t). For any n the system

reaches D(ωn) in finite time as long as 1− 2p∗ > η > p∗: taking logs of p∗ < 1
2
(1− (1− 2ε)t),

for t > ln(1−2p∗)
ln(1−2ε)

, pt > p∗. To show that WA(n, ε) is unbounded for 1− 2p∗ ≤ η, assume that

some WA(ε) exists. But then for n large enough, at t = WA(ε), p = 1
2
(1−(1−2ε)WA(ε)) < 1/2,

a contradiction.

Representativeness heuristic for η ≥ p∗: consider at+1. This a binomial random

variable constructed out of n Bernoulli trials with probability of success Pr(si,t+1 = A)

Pr(si,t+1 = A) = (1− ε) Pr(sf(i,t),t = A) + εPr(sf(i,t),t = B) = ε+ p(1− 2ε). (6)

i.e., at+1 ∼ B(n, ε+ pt(1− 2ε)). Since E[pt+1 | pt] = ε+ (1− 2ε)pt, the argument for the false

consensus effect applies to this case as well.

A.4 Proof of Theorem 4

Let g(p) ≡ Pr(afi ≥ af(p)). As in the proof of Theorem 3, I show that a deterministic

difference equation, pt+1 = f(pt) = ε+ (1− 2ε)g(pt), approximates the evolutionary process

well for large n and then work with the difference equation. The following characteristic of
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g(p) is used in Theorem 4’s proof:

Lemma A4. There is a point p̄ ∈ [0, 1/2) such that g(p̄) = p and g(p) > p for p > p̄.

Proof. Note that g(p) = 1− F (af (p), r, p) where F (z, n, p) is the binomial cumulative distri-

bution function.

The binomial CDF with parameters z and r can be written as

F (z, r, p) = (r − z)

(
r

z

)∫ 1−p

0

tr−z−1(1− t)z.

It follows that ∂F/∂p < 0 and

∂2F

∂p2
= −(z − (r − 1)p)(r − z)

(
r

z

)
(1− p)r−z−2pz

so ∂2F/∂p2 < 0 for p < π ≡ z/(r − 1) and ∂2F/∂p2 > 0 for p > π. Because 1− g(z, r, p) is

strictly convex for p < π, strictly concave for p > π, 1−F (z, r, 1) = 1, and 1−F (z, r, 0) = 0,

it follows that 1− g(z, r, p) > p for p > π.

Because g(0) = 0 and g(1) = 1, and g(·) is monotonically increasing, there is exactly one

point p̄ such that

lim
p→p̄−

g(p) ≤ p̄ ≤ lim
p→p̄+

g(p).

Then for p > p̄,

g(p) = 1− F (af (p), r, p) ≥ 1− F (af (p̄), r, p) > p,

using the preceeding property of the binomial CDF, so g(p) > p for p > p̄.

If g(af (1/2), r, 1/2) > 1/2 then p̄ < 1/2. If r is even then because p∗ < 1/2 that condition

is necessarily satisfied. For r odd, if af (1/2) = r+1
2

, then g(p) = 1− g(1− p), and p̄ = 1/2.17

17This follows from the symmetry of the binomial probability mass function m(z, n, p), for which
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If on the other hand af (1/2) ≤ r−1
2

, then it will be satisfied. That condition is

η

(
r − 1

r

)
+ (1− η)

(
1

2

)
≥ p∗

or equivalently η ≤ r(1− 2p∗).

Now for the main proof, consider at+1 ∈ [0, np∗]. For z ∈ {0, . . . , r}, let nzt be the number

of players with afi,t = z and azt+1 be the number of players with afi,t = z and si,t+1 = A; then

azt+1 ∼ B(nzt , πzt) where πzt = Pr(si,t+1 = A | afi = z, pt). Finally at+1 = a0
t+1 + · · ·+ art+1 so

E[at+1] =
r∑
z=0

πzt n
z
t

Var(at+1) =
r∑
z=0

Var(azt ) =
r∑
z=0

nztπzt(1− πzt) < n

(
r∑
z=0

πzt(1− πzt)

)
<
nr

4

Now let pt+1 = at+1/n. E[pt+1 | pt] is

E[pt+1 | pt] =
1

n

r∑
z=0

πzt n
z
t

=
1

n

ε af (pt)−1∑
z=0

nzt + (1− ε)
r∑

z=af (pt)

nzt


From the strong law of large numbers lim

n→∞
(
∑af (pt)−1

z=0 nzt )/n = Pr(afi < af (pt)), so

lim
n→∞

E[pt+1 | pt] = (1− ε)g(pt) + ε(1− g(pt)) = ε+ (1− 2ε)g(pt).

Let ∆(p) ≡ E[pt+1 | pt = p]− p = ε+ (1− 2ε)g(p)− p and δ = min{∆(p) : p ≤ p∗}. Then

m(z, n, p) = m(r − z, n, 1 − p), so m(z, n, 1/2) = m(r − z, n, 1/2), combined with the additional sym-
metry of af (1/2) = r − af (1/2). For lower η, the second symmetry does not occur, and for even r, the first
symmetry does not occur.
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from Lemma A4 there is some ε such that δ > 0: consider ε = p̄+ δ where 0 < δ < 1/2− p̄.

Then for p ≤ p̄, because p̄ < 1/2,

∆(p) = p̄+ δ + (1− 2p̄− 2δ)g(p)− p > p̄+ δ − p > δ.

For δ > 0, if p0 = 0, p1 ≥ δ, and in general pt ≥ tδ. Then for t such that pt > p∗, the system

is in D(ωn) almost surely as n→∞. Hence WA(n, ε) ≤ WA(ε) ≡ p∗/δ + 1.
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