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Abstract

We establish a link between games of complete information and games of incomplete

information that facilitate the characterization of equilibria in the incomplete infor-

mation game. In particular we show that many all pay auctions are closely related to

stochastic contest success functions. This relationship is used to solve for equilibria in

all pay auctions and to provide foundations for a number of contest succes functions.

1 Introduction

Consider firms participating in a procurement auction. While each firm knows its own cost

of delivering the product or good, it does not know whether this cost is likely to be higher

or lower than that of its competitors. This stems from the fact that a firm doesn’t know the

composition of common factors - such as the cost of construction material - and firm specific

factors such as the skill of workers of its competitors.

The situation described above is an example of a game where players face maximal rank

uncertainty. The term maximal rank uncertainty is used to describe situations, where despite

knowing his type, a player has no information about whether his type is likely to be higher

or lower than that of his opponents. Other examples of games with this property include
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auctions, where players do not know the distribution from which valuations are drawn and

form beliefs centered around their own valuation. The formation of asset price bubbles

studied in Abreu & Brunnermeier (2003) is an example of such a setting considered in the

literature, where players learn about the existence of a bubble, but do not know whether

they are among the first or the last players to find out.

In this paper we propose a general framework to study a certain type of game with maximal

rank uncertainty. The two key assumptions made are that (i) the information structure

satisfies an invariance property and (ii) the payoff function is scalable. The first assumption

is equivalent to assuming that players know the shape of the distribution of types, but - after

observing their type - have no information about what quantile of the distribution they were

drawn from. This ensures that a player’s type does not provide the player with information

about his rank and guarantees that players face maximal rank uncertainty.

The second assumption - scalability of the payoff function - captures a number of settings

where the structure of the game remains unchanged if all variables are scaled by a constant.

In particular this holds when utility functions are homogeneous of degree α, or are additively

invariant. This captures a large family of games including (i) models with quadratic utility,

(ii) auctions and procurement contests, (iii) certain public good problems and many others.

A game satisfying both of the key assumptions above is referred to as a scalable game. From

now on we will use the abbreviation LPG to mean scalable game.

In this paper we primarily focus on the Nash equilibria of scalable games where players play

according to linear strategies. The main contribution of this paper is to show that equilibria

of an LPG can be found by studying a related complete information game. This relationship

is illustrated by studying a certain all-pay auction under uncertainty and showing that this

game has the same equilibria as a Tullock contest introduced by Tullock (1980). In this

contest, a single prize is allocated according to a stochastic allocation rule, where a player’s

probability of winning is given by the proportion of his effort relative to the sum of efforts

across all players. This result helps characterise equilibria of all-pay auctions when priors are

possibly asymmetric, which in general is a difficult task. It also highlights a close relationship
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between certain classes of games, such as the all-pay auction under incomplete information

and the Tullock contest. In the application section links between other games are established.

1.1 Related Literature

The proposed class of games has close links with the literature on global games introduced

by Carlsson & Van Damme (1993) and Morris & Shin (2002). As in certain global games,

players face uncertainty about the state of the world θ which is drawn from a diffuse prior.

Moreover each player does not observe θ but instead receives a partially informative signal

ti about the state of the world, where ti = θ + zi and zi can be interpreted as a noise

term. However two main differences with global games is that (i) in this paper there are

not necessarily dominance regions and (ii) in this paper a player’s signal typically enters his

payoff function directly. Above all the focus of this paper lies on the characterization of

equilibria rather than equilibrium selection as is common in the global games literature.

The framework proposed also has close ties with the literature on quadratic utility models

as considered in Vives (1988), Myatt & Wallace (2012) among others. In these games the

state of the world is unknown and players receive a noisy signal of the state. As in this paper

the signal can be interpreted to be a players type and the type may enter a players payoff

function directly. On the one hand, scalable games make stronger distributional assumptions

on the state and the signals: the information structure in a quadratic utility model is affine,

satisfying the assumption that E[θ|ti] = αti + β; in scalable games E[θ|ti] = ti + β and

the shape of the distribution is known. On the other hand, scalable games make weaker

assumptions on the payoff function. While the payoff function in most quadratic utility

models depend on the actions of others only through the aggregate, the payoff assumption

in this paper is substantially weaker and allows for a much wider range of applications.

1.2 Rank uncertainity

One of the main properties of a scalable game is that all players face maximal rank uncer-

tainty. We now illustrate the concept of rank uncertainty using an example. Consider a game
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with a number of players each of whom may be in one of three positions in the distribution

low, medium or high denoted by {L,M,H}. In the standard independent private value case,

players know the distribution from which types are drawn. Hence upon observing his type

a player knows whether his position is low, medium or high relative to that of others. As

an example consider the case where types are drawn from a set {−1, 0, 1} each with equal

probability. This situation is depicted in Figure 1.

L M H

t = −1 t = 0 t = 1

Figure 1: Independent Types

Players who have type t = −1 know that they are drawn from the low part of the distribution,

those with a type t = 0 know they are drawn from the middle of the distribution, while

types in t = 1 are high types. In this game of independent types players have complete rank

information.

In order to introduce rank uncertainty consider the case where first the state θ is drawn from

the set {−1, 0, 1} with equal probability. Secondly - conditional on θ - the players’ types

are drawn from the set {θ − 1, θ, θ + 1} with equal probability: t ∈ {−2,−1, 0, 1, 2}. This

situation is depicted in Figure 2.

In this case note that types on the extreme of the type space, t = −2 (or t = 2), still possess

full rank information. This is because they can infer that the state is θ = −1 (or θ = 1) and

can hence deduce that their position in the distribution is low (or high). On the other hand

all other types face some rank uncertainty. In particular players with type t = 0 do not know

whether θ = {−1, 0, 1} and hence do not know whether their position in the distribution is
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Figure 2: Correlated Types
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Figure 3: Maximal rank uncertainty

low, medium or high relative to that of others. We say that these players face maximal rank

uncertainty, since they have no idea of their position in the distribution.

Increasing the number of values that θ can take increases the proportion of players who

face maximal rank uncertainty. In the case of a diffuse prior θ takes any integer with equal

likelihood. In this case upon observing his type no player receives information about whether

his position in the distribution is low, medium or high and hence has no rank information.

This is illustrated in Figure 3.

1.3 Structure of the paper

The remainder of the paper is structured as follows. In section two we present the model

and formally introduce the class of scalable games. Section three provides the analysis of

scalable games and establishes the link between scalable games and the corresponding game
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in complete information. Using this link, applications studying the relationship between

different all pay auctions and contests with stochastic allocation rules are presented in section

four. Section five concludes.

2 Model

2.1 Environment

The first element of an environment is a domain D, from which (i) the state θ is drawn (ii)

types (t1, ..., tn) are drawn and (iii) actions (a1, ..., an) are chosen. We assume that D ⊆ R

and that D = (D,D) is an open interval.1

The second element of an environment is a finite set of players I = {1, ..., n}, each of

whom have a type ti ∈ Ti = D and choose actions ai ∈ Ai = D. We use t = (t1, . . . , tn)

and a = (a1, . . . , an) to denote the vector of types and the vector of actions respectively.

Moreover v−i is used to mean a vector excluding the i’th element.

The third element of an environment is a strictly increasing differentiable function G which G

is a mapping from D to R. The function G captures how likely a particular state θ ∈ Θ = Dis.

For instance if G(3)−G(2) > G(2)−G(1), then - conditional on the event of θ ∈ [1, 3] - it

is more likely that the state θ ∈ [2, 3] than the state θ ∈ [1, 2]. It is further assumed that G

is a bijection and hence G is not a cumulative distribution function.2

This completes the description of an environment {D, I, G}, which can be used as the foun-

dation of many games with an improper prior g(θ) = G′(θ) where the state is drawn from

some domain D. The special case of a uniform improper prior where G(θ) = θ and g(θ) = 1,

has been used in the global games and auction literature.

We now outline some additional notation. First define 0G = G−1(0) and note that 0G ∈ D.

Secondly define a⊕G b = G−1
(
G(a) +G(b)

)
and a	G b = G−1

(
G(a)−G(b)

)
. Two special

1We allow for the case where D = −∞ or D =∞
2Note that G is related to a standard cdf in the same way as a standard improper prior is related to a

standard pdf.
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cases deserve consideration. When G(θ) = θ, then a ⊕G b = a + b and a ⊕G b = a − b.

Moreover when G(θ) = ln θ, then a⊕G b = a× b and a	G b = a÷ b. These two cases both

play an important role in applications, so in order to avoid repetition we consider the general

case.3

2.2 Scalable information structure

We now define a scalable information structure which is composed of an environment {D, I, G}

and a set of conditional distributions (Fi)i∈I . The conditional distribution associated with

player i is given by Fi : Ti ×Θ 7→ [0, 1], where Fi(ti|θ) captures the probability that - given

the state is θ - the type of player i is less than or equal to ti. It is assumed throughout that

Fi(ti|θ) is differentiable with respect to ti, with derivative fi(ti|θ). We assume that ti and tj

are conditionally independent on θ whenever i 6= j. With this in mind, we define a scalable

information structure as follows:

Assumption 1 (Scalable information structure). The conditional distribution function Fi

is scalable with respect to the environment {I,D, G} if and only if

Fi(ti|θ) = Fi(ti ⊕G k|θ ⊕G k)

This assumption captures the fact that conditional beliefs have a similar shape when θ is

changed. When a⊕G b = a+b this assumption implies that conditional beliefs are additively

invariant: that is to say players know the shape of the distribution but not their position

in it. For instance this holds when players know that the distribution is uniform over the

interval [θ−1, θ+ 1], but do not necessarily know the value of the state θ. This is illustrated

in Figure 4.

Meanwhile when a ⊕G b = a × b this assumption implies that conditional beliefs are ho-

mogenous of degree 0. For instance this holds when players know that the distribution is

3Note that the set D combined with the operation ⊕G forms a commutative group. This ensures that
(a⊕G b)⊕G c = a⊕G (b⊕G c). Moreover it is easy to check that (a⊕G b)	G c = a⊕G (b	G c). This ensures
standard addition and subtraction can be used.
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fi(ti|θ) fi(ti|θ′)

θ θ′

Figure 4: Uniform

uniform over the interval [0, 2θ], but do not necessarily know the value of the median θ. This

is illustrated in Figure 5.

fi(ti|θ)

fi(ti|θ′)

θ θ′

Figure 5: Homogeneity of degree zero
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2.3 Scalable payoff structure

We now define a scalable payoff structure which is composed of an environment {I,D, G}

and a set of payoff functions (ui)i∈I . The payoff function of player i is given by ui : (Aj)j∈I×

Θ × Ti 7→ < and maps (i) the actions (a1, ..., an) of all players, (ii) the state θ and (iii) the

type ti of player i to a payoff. Informally a payoff function is scalable if and only if, when the

inputs of ui are scaled the corresponding payoff is scaled in a similar way. For instance an

auction without entry costs is a scalable environment since scaling the valuation and the bids

of all players leaves the payoffs agents receive unchanged except for a scaling factor. However

an auction with entry costs is not a scalable environment, since scaling the valuation and

bids of all players changes the burden of the entry cost relative to the potential reward.

We now formally introduce what it means for a payoff function to be scalable. To do this

we first make two auxiliary definitions:

Definition 1.

ui(ti) := sup
a∈Dn

{
ui(a; ti; ti)

}
This is the utility that player i could achieve if the state is θ = ti and - knowing this - player

i could choose a and hence the actions of each of his opponents in addition to his own action.

Therefore ui(ti) is the highest utility that player i could achieve given the state is θ = ti. We

assume that 0 < ui(ti) <∞ for all i ∈ I and all ti ∈ D. With this measure of the maximum

utility that is achievable for player i in mind, we now make the following definition:

Definition 2.

Ui(a, θ, ti) :=
ui(a; θ; ti)

ui(ti)

The function Ui(a, θ, ti) captures the utility level achieved by player i as a proportion of the

highest utility level he could achieve when the state is θ = ti. Note that Ui measures gains and

losses relative to some well-defined benchmark, and this motivates us to make the following

scalability assumption directly on Ui. If a = (a1, ..., an), define a⊕Gk = (a1⊕Gk, ...., an⊕Gk).

4 Using this notation, formally we call a payoff function scalable if and only if it obeys the

4Throughout the paper, x⊕ y and x	 y , are used to mean componentwise operations.
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following assumption:

Assumption 2 (Scalable payoff structure). The payoff function ui is scalable with respect

to the environment {I,D, G} if and only if for all k ∈ D:

Ui(a; θ; ti) = Ui(a⊕G k; θ ⊕G k; ti ⊕G k)

To show that this payoff assumption can capture several economic environments, we now

prove two lemmas and provide a number of examples:

Lemma 2.1. Suppose D = < and G(θ) = θ. Moreover suppose for all i ∈ I and for some

α ∈ R:

tαi ui(a; θ; ti) = (ti + k)αui(a + k; θ + k; ti + k)

Then {D, I, (ui)i∈I , G} is a scalable environment

One environment that satisfies this case is a beauty contest where agents want their move

ai both to be close to the true state θ and to be close to the average move. Such a contest

can be summarised by the following payoff function, where r ∈ [0, 1] captures the relative

importance of being close to the true state and being close to the average move:

ui(a; θ; ti) = 1− (1− r)
(
ai − θ

)2
− r
(
ai −

1

|I|
∑
j∈I

kj

)2
Note here that ti does not directly enter the payoff function and is simply a signal player

i uses to gain information about the value of θ and inform his decision. Beauty contests

with similar payoff structures have been considered by Morris & Shin (2002) and Myatt &

Wallace (2012).

Lemma 2.2. Suppose D = <++ and G(θ) = ln θ. Moreover suppose for all i ∈ I and for

some α ∈ R:

tαi ui(a; θ; ti) = (ti.k)αui(a.k; θ.k; ti.k)
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Then {D, I, (ui)i∈I , G} is a scalable environment

This lemma shows that - by considering a suitable domain D and suitable distribution func-

tion G - any payoff function which is homogenous of degree α can be captured. One example

that satisfies this structure is a first price auction with a combination of private values and

common values. Let tβi capture the private value element of a player’s valuation and θ1−β

capture the common value element of a player’s valuation. Player i submits a bid ai and if

he submits the highest bid he wins the object and pays his bid. If he submits the lower bid

he does not win the object and pays nothing. This is summarised by the function below,

where β ∈ [0, 1] captures the relative importance of private values and common values:

ui(ai, aj; θ; ti) =

 tβi θ
1−β − ai if ai > aj

0 otherwise

Note that a range of quadratic utility models - which are homogenous of degree two - can

be captured in this setting. One example of a quadratic utility model that can be captured

is a model of Cournot competition with linear demand (see for instance Vives (1988)). Here

ai captures the quantity player i produces, and θ represents a demand shock about which

agents are imperfectly informed. The price is given by
(
θ −

∑
j∈I aj

)
and hence the payoff

of agents becomes:

ui(ai; θ; ti) = ai

(
θ −

∑
j∈I

aj

)
A further application with contests is studied in detail in the application section. Having

given examples of the environments that can be captured by scalable payoff functions, we

now formally define a scalable game.
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2.4 Scalable games

A game with an improper prior is composed of the following elements:

Γ = {D, I, G, (Fi)i∈I , (ui)i∈I}

We call such a game an scalable game if and only if (i) each conditional distribution function

(Fi)i∈I forms a scalable information structure with respect to the environment {D, I, G}

(Assumption 1) and (ii) each payoff function (ui)i∈I forms a scalable payoff structure with

respect to the environment {D, I, G} (Assumption 2).

In a scalable game players observe their type ti but not the state θ. Having observed their

type ti, players simultaneously choose actions ai ∈ Ai = D. Payoffs are then realised and the

game ends. Let g(θ) = G′(θ), and note that g(θ) is an improper prior over the domain D.

This means that the conditional beliefs that player i holds over the state θ can be written

as follows:

gi(θ|ti) =
fi(ti|θ)g(θ)∫

D fi(ti|θ)g(θ)dθ

This completes the description of a scalable game.

2.5 Key property

The key property of scalable games, is that all players have Laplacian beliefs about their

position in the distribution of types. This means that each player believes that his position

in the distribution from which types are drawn is uniformly distributed. Hence players belief

that the probability of being in the top x percent of the distribution is x percent. These

beliefs are maintained when agents learn their type. Formally this property can be described

as follows:

Proposition 2.3. If Γ is a scalable game, then Fi(ti|θ) = 1−Gi(θ|ti)

This proposition says that if a type ti is the result of a high realisation given the state θ then

12



given the type ti it is unlikely for the state to be below θ and the other way around. In a

scalable game this property is satisfied for every type ti. A formal proof can be found in the

appendix.

2.6 Equilibrium

The equilibrium concept used in this paper is Nash equilibrium. Formally an equilibrium is

defined as follows:

Definition 3. The strategy profile σ(t) is an equilibrium of the scalable game Γ, if and only

if for all i ∈ I, all ti, tj, ai ∈ D it holds that:

∫
Dn
gi(θ|ti)

n∏
j 6=i

fj(tj|θ)ui
(
σi(ti), σ−i(t−i); θ; ti

)
dt−idθ ≥

∫
Dn
gi(θ|ti)

n∏
j 6=i

fj(tj|θ)ui
(
ai, σ−i(t−i); θ; ti

)
dt−idθ

2.7 Value function

The focus of this paper lies on linear equilibria. In order to simplify notation when consider-

ing these equilibria, we introduce the value function, describing a player’s expected payoffs

when he has a certain type ti and everyone plays according to a linear strategy profile e.

The exact structure of the linear strategy profile depends on the game.

Take a pure strategy profile e∗ of ΓN and the corresponding linear strategy profile σ(t) =

t⊕G e∗ of the original scalable game Γ. Make the following definition:

Vi(ei|e∗, ti) =

∫
D

gi(θ|ti)
∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e∗−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

3 Analysis

First we state the main result for general scalable games. To illustrate the result, we then

consider canonical scalable games where D = R and both the payoff function and conditional
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distribution are additively invariant. Thirdly we briefly show the result for a scalable game

in multiplicative form where D = R++ and G(θ) = ln(θ), since this is a case relevant in

many applications.

3.1 General scalable games

We now introduce the complete information game ΓN induced by a scalable game. This

game is in normal form, and hence there is no uncertainty over the types of each player.

However the ex-ante uncertainty over types present in the scalable game is replaced with

interim uncertainty in the payoff function. Expectations are then taken to form the complete

information game.

Definition 4. The complete information game ΓN = {I, (Ai)i∈I , (φi)i∈I} induced by a scal-

able game Γscalablegame has the following payoff function:

φi(ei, e
∗
−i) =

∫
Dn

n∏
j=1

fj(zj|0G)ui

(
ei, e

∗
−i ⊕G z−i 	G zi; 0G 	G zi; 0G

) n∏
j=1

dzj

The following lemma says that this complete information game indeed describes a player’s

expected payoff in a scalable game, given that everyone plays according to a linear strategy

profile of the form σ(t) = e⊕ t.

Lemma 3.1. For all ti ∈ D

φi(e) =
ui(0)

ui(ti)
Vi(e|ti)

While the general lemma is proved in the appendix, we illustrate this key lemma for the case

of two player scalable game in additive form - referred to as canonical scalable game - below.

First we state the main result:

Theorem 3.2. The strategy profile σ(t) = t ⊕ e∗ is a Nash equilibrium of a scalable game

Γ, if and only if the strategy profile e∗ is a Nash equilibrium of the corresponding complete

information game ΓN .
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Consider some linear strategy profile σ∗ = (σ∗i )i∈I where σ∗i (ti) = ti ⊕ e∗i . Since Vi(e
∗|ti)

captures the expected payoffs of players who play according to these linear strategies, it

follows that:

σ∗ is an equilibrium of Γ iff Vi(e
∗
i , e
∗
−i|ti) ≥ Vi(êi, e

∗
−i|ti) for all ti, êi

From lemma 3.1 above Vi(ei, e−i|ti) = ui(ti)
ui(0)

φi(ei, e−i) for all ei, e−i. Hence:

σ∗ is an equilibrium of Γ iff ui(ti)
ui(0)

φi(e
∗
i , e
∗
−i) ≥

ui(ti)
ui(0)

φi(êi, e
∗
−i) for all êi and ti

σ∗ is an equilibrium of Γ iff φi(e
∗
i , e
∗
−i) ≥ φi(êi, e

∗
−i) for all êi

Hence σ∗ is an equilibrium of Γ if and only if e∗ is an equilibrium of ΓN .

3.2 Canonical scalable games

In this section we illustrate the result for the case of an additive or canonical scalable game

Γ0. In this example let I = {1, 2}, D = R and G(θ) = θ. The complete information game is

given as follows:

Definition 5. The complete information game ΓN = {I, (Ai)i∈I , (φi)i∈I} induced from a

canonical scalable game Γ0 has the following payoff function:

φi(e) :=

∫
z∈Rn

(
n∏
j=1

fj(zj|0)

)
ui

(
e + z− zi;−zi, 0

) n∏
j=1

dzj

To show how we can move from the scalable game to this complete information game,

removing gi(θ|ti) from the equation, we first prove a lemma:5

Lemma 3.3. If Γ0 is a canonical scalable game, then:

gi(θ|ti) = fi(ti|θ)
5Note that this lemma holds only for the canonical scalable game. When the scalable game is in a different

form, additional terms appear in the translation. This is explained in the appendix.
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Proof.

gi(θ|ti) =
fi(ti|θ)g(θ)∫

< fi(ti|θ̃)g(θ̃)dθ̃dθ̃

=
fi(ti|θ∫

< fi(ti|θ̃|0)dθ̃

=
fi(ti|θ∫

< fi(ti − θ̃|0)dθ̃

= fi(ti|θ)

Moving from the first to second line appeals to the fact that g(θ) = 1 for all θ in a canonical

scalable game. Moving from the second to third line appeals to the fact that Fi(ti|θ) =

Fi(ti − θ|0) and hence fi(ti|θ) = fi(ti − θ|0).

Having proved this lemma, consider the following transformations: ei = ai− ti which will be

referred to as a player’s mark-up and zi = ti− θ which can be interpreted as a player specific

shock. Suppose now that ti = 0 and so the state θ = θ − ti = −zi. Moreover the action of

any player j ∈ I can be written as follows:

aj = ej + tj

= ej + (tj − θ) + θ

= ej + zj − zi

Substituting in these expressions leads to the following equation:

ui(a; θ; 0) = ui(e + z− zi;−zi; 0)

This shows that the payoff function of the scalable game can be written in terms of e and z

when ti = 0. To see this relationship still holds even when ti 6= 0, note again that θ−ti = −zi,
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while aj − ti can be written as follows:

aj − ti = ej + tj − ti

= ej + (tj − θ)− (ti − θ)

= ej + zj − zi

Now by appealing to additive invariance of the payoff function and considering the expression

above, we can see that the utility function of the scalable game can be written in terms of

e and z:

ui(a; θ; ti) = ui

(
(a− ti); θ − ti; 0

)
= ui

(
e + z− zi,−zi, 0)

Meanwhile by appealing to the fact that g(θ|ti) = f(ti|θ) and additive invariance of the

conditional distribution F (tj|θ), we can show how ex-ante uncertainty term over types of the

original scalable game is related to the interim uncertainty term over payoff shocks:

gi(θ|ti)
∏
j 6=i

fj(tjθ) =
n∏
j=1

fj(tj|θ)

=
n∏
j=1

fj(tj − θ|0)

=
n∏
j=1

fj(zj|0)
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Hence by using a change of variables from {a, θ, t} to {e, z} we have shown that the canonical

scalable game with ex-ante uncertainty over types is closely related to the corresponding

game of complete information with interim uncertainty over payoff shocks.6 In particular

there is a close correspondence when players play according to linear strategies σ = (σi)i∈I

where σi(ti) = ti + ei. To show this we first define the value function which captures the

payoffs players obtain when they play according to linear strategies of this kind:

Definition 6. The value function of player i in a canonical scalable game Γ0 when all players

play according to the linear strategy profile σ(t) = e + t is given as follows:

Vi(e|ti) =

∫
Rn

(∏
j 6=i

fj(tj|θ)
)
gi(θ|ti)ui(ei + ti, e−i + t−i; θ; ti)dθ

∏
j 6=i

dtj

The value function captures a player’s expected payoff in the scalable game when all players

play according to linear strategies. This game is closely related to the game of complete

information. We can now prove Lemma 3.1 for the canonical scalable game.

Proof.

φi(ei, ej) =

∫
R2

fj(zj|0)fi(zi|0)ui

(
ei, ej + zj − zi;−zi; 0

)
dzidzj

Define θ = −zi and tj = zj − zi. Note that zj = tj − θ and zi = −θ. Substituting {zi, zj} for

{tj, θ} we obtain:

φi(ei, ej) =

∫
R2

fj(tj − θ|0)fi(−θ|0)ui

(
ei, ej + tj; θ; 0

)
dθdtj

= ui(0)

∫
R2

fj(tj − θ|0)fi(−θ|0)Ui

(
ei, ej + tj; θ; 0

)
dθdtj

6Note we have reduced a problem with 2n + 1 variables to a problem with only 2n variables. Hence we
should expect the new problem to be easier to solve.
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Using the fact that fi, fj and Ui are all homogenous of degree zero in the log transform we

reach:

φi(ei, ej) = ui(0)

∫
R2

fj(tj + ti|ti + θ)fi(ti|ti + θ)Ui

(
ei + ti, ej + tj + ti; θ + ti; ti

)
dθdtj

Now substitute t̃j = tj + ti and θ̃ = θ + ti. Using this substitution:

φi(ei, ej) = ui(0)

∫
R2

fj(t̃j|θ̃)fi(ti|θ̃)Ui
(
ei + ti, ej + t̃j; θ̃; ti

)
dθ̃dt̃j

Using the fact that gi(θ̃|ti) = fi(ti|θ̃):

φi(ei, ej) =
ui(0)

ui(ti)

∫
R2

fj(t̃j|θ̃)gi(θ̃|ti)ui(ei + ti, ej + t̃j; θ̃; ti)dθ̃dt̃j

=
ui(0)

ui(ti)
Vi(ei, ej|ti)

This lemma immediately leads to the main result stated in Theorem 3.2 for the canonical

scalable game. Hence this result allows us to characterise equilibria of canonical scalable

games by appealing to the corresponding game of complete information.

The proof for the general case uses the same steps and can be found in the appendix.

19



3.2.1 Multiplicative scalable games

In many applications, the scalable game takes a multiplicative form. In these games D = R++

and G(θ) = ln(θ). Note the similarities between the structure of those complete informa-

tion game associated with multiplicative scalable game compared to those associated with

canonical scalable games. In this case variables are multiplied and divided rather than added

and subtracted reflecting the fact that a⊕G b = a.b in a multiplicative scalable game while

a ⊕G b = a + b in a canonical scalable game. Intuition for the result could be given by

performing the substitutions zi = ti
θ

and ei = ai
ti

, much as in the case of the additive case

above where zi = ti − θ and ei = ai − ti. The complete information game corresponding to

a scalable game in multiplicative form is given as follows:

Definition 7. The complete information game ΓN = {I, (Ai)i∈I , (φi)i∈I} induced from a

multiplicative scalable game Γ has the following payoff function:

φi(e) :=

∫
z∈Rn

(
n∏
j=1

fj(zj|1)

)
ui

( 1

zi
e.z;

1

zi
, 1
) n∏
j=1

dzi

Since this game is a special case of a scalable game, we know by Theorem 3.2 that if the

strategy profile e∗ is a Nash equilibrium of the corresponding complete information game

ΓN , then the strategy profile σ(t) = t ⊕ e∗ is a Nash equilibrium of the scalable game in

multiplicative form.

4 Applications: Contests

The aim of this section is to use the theory above to establish a relationship between contests

and all-pay auctions with incomplete information. We consider multiplicative scalable games

capturing an all-pay auction, where players have the following utility function:

ui(a; θ; ti) =

 tβi θ
β−1 − ai if ai > aj whenever i 6= j

−ai otherwise
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The parameter β captures the extent to which the auction is a private value auction as op-

posed to a common value auction. We now examine different distributional assumptions and

different choices of β in order to show that the corresponding games of complete information

are contest success functions which have been introduced in the literature by Yildizparlak

(2013), Alcalde & Dahm (2007) and Tullock (1980). First this approach introduces a way

to characterise the equilibria of certain all-pay auctions by consulting the equilibria of some

complete information contest. Secondly it provides robust foundations for these contests.

4.1 Serial contest success function

We first examine the case where there are two players in a private value auction with β = 1.

It is assumed that α ∈ (0, 1] and V2 ≥ V1 > 0. Given these parameters the structure of

uncertainty is defined as follows:

Fi

(
ti|θ
)

= 1−
(θVi
ti

)α
when ti ∈ [Viθ,∞)

It can easily be checked that this game satisfies assumptions 1 and 2 and is therefore a

scalable game. Hence, using definition 4, the corresponding complete information game of

this all pay auction is given as follows:

φi(ei, ej) =


[
1
2

(
eiVi
ejVj

)α]
− ei if eivi ≤ ejvj[

1− 1
2

(
ejVj
eiVi

)α]
− ei otherwise

The unique pure strategy equilibrium of this complete information game7 is given by (e∗1, e
∗
2) =(

K,K
)

where K = α
2

(
V1
V2

)α
. Substituting Ei = eivi and multiplying the utility function of

player i by a constant Vi, leads to the following expression:

Φi(Ei, Ej) =


[
1
2

(
Ei
Ej

)α]
Vi − Ei if Ei ≤ Ej[

1− 1
2

(
Ej
Ei

)α]
Vi − Ei otherwise

7See Alcalde & Dahm (2007) for details
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This is the payoff function used in the serial contest studied by Alcalde & Dahm (2007) and

shows that the serial contest is closely linked to the all-pay auction where players have in-

complete information. Using Theorem 3.2 above we can now find a pure strategy equilibrium

of the original all-pay auction:

Proposition 4.1. Suppose uncertainty is distributed according to F SC
i and the all-pay auc-

tion is private value with β = 1. Then there exists a pure strategy equilibrium where players

play according to σi(ti) = Kti where K = α
2

(
V1
V2

)α
4.2 Tullock contest success function

Secondly we examine a case with n players I = {1, ..., n} who participate in a sealed bid pri-

vate value auction with β = 1. Associated with each player is a constant Vi and uncertainty

is distributed on the interval [0,∞) according to the following distribution:

F TC
i (ti|θ) = exp

[
−
(Viθ
ti

)α]
on [0,∞)

Again it can easily be checked that this auction satisfies the conditions of a scalable game.

The corresponding complete information game is given as follows:8

φi(ei, e−i) =
(Viei)

α∑
j∈I(Vjej)

α
− ei

An axiomatization of this contest success function was given by Clark & Riis (1998), who

interpret Ei as a contestant’s absolute level of effort and the parameters V α
i as a measure of

how far the contest is skewed towards player i. An alternative interpretation can be reached

by considering a contestant’s absolute level of effort to be Ei = Viei. Making this substitution

and multiplying the utility function of player i by a constant Vi leads to the following:

Φi(Ei, E−i) =
[ (Eα

i )∑
j∈I(Ej)

α

]
Vi − Ei

8The algebraic steps are closely related to Jia (2008) who showed how this family of contest success
functions can be founded from noisy foundations. The contribution here is to show that this noise can be
interpreted as uncertainty in an all-pay auction.
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This shows that an all-pay auction with this structure of uncertainty is closely related to

a fair Tullock contest where players have different valuations. Moreover we can use the

equilibria of the Tullock contest success function to characterise equilibria of the original

all-pay auction:

Proposition 4.2. Suppose uncertainty is distributed according to F TC
i , with α = 1 and

Vi = 1 for all i. Moreover suppose the all-pay auction is private value with β = 1 and there

are n players. Then there exists a pure strategy equilibrium where players play according to

σi(ti) = n−1
n2 ti.

This result can be extended to settings with asymmetric uncertainty structures by solving

the relevant complete information game. Such a task is normally far easier than attempting

to find the equilibria of the all-pay auction directly.

4.3 Tullock contest success function with draws

Finally we examine a case with n symmetric players I = {1, ..., n} who participate in a

common value auction with β = 0. Uncertainty is distributed on the interval [0,∞) according

to the following distribution:

F TCD
i (ti|θ) = exp

[
−
( θ
ti

)]
on [0,∞)

Again it can easily be checked that this game satisfies assumptions 1 and 2. Calculating the

corresponding complete information game of this scalable game leads to the following:

φi(ei, e−i) =

[
e2i(∑n
j=1 ej

)2 exp
( n∑
j=1

−ej
eizi

)]∞
0

− ei

=
e2i(∑n
j=1 ej

)2 − ei
This complete information game is the contest success function studied by Yildizparlak

(2013). The contest success function is used to model contests where ties occur with positive

23



probabilities, such as in soccer games. The analysis provided here demonstrates that there

exists a strong link between common value all pay auctions and contests with ties. This link

may not seem obvious in first place and it provides additional reasons for the importance of

studying contests with ties, that goes beyond straightforward applications.

5 Conclusion

In this paper we have shown that games of incomplete information with the property of

maximal rank uncertainty and hence a scalable information structure one the one hand and

a scalable payoff structure on the other hand are closely linked to corresponding games of

complete information. In particular the equilibria of the corresponding complete information

game coincide with linear equilibria of the game of incomplete information.

Considering the complete information game significantly simplifies the characterization of

equilibria in the scalable game. Moreover in some cases, the game in complete information

may itself be an interesting game studied in the literature. As an example of games where

this is the case, we have shown that all pay auctions in scalable game form correspond to

certain contest success functions, when considering a particular distribution function in the

scalable game. In many cases these relationships were not previously known and the analysis

in this paper provides additional foundations for the study of contest success functions such

as the Tullock contest, contests with ties and serial contests.

While all the applications presented in this paper were focusing on auctions and correspond-

ing contests, one can think of other games that may have interesting links to games in

complete information. Examples include Cournot competition and certain settings of public

good provision.

The analysis in this paper allows for asymmetries across players. However so far we have

assumed that conditional on the state the types of players are independent. It remains an

issue for future work to find out whether this condition can be relaxed. Another idea left
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for future work is the possibility of players receiving signals regarding their position in the

distribution.

6 Appendix A: The model

6.1 Proof of Lemma 2.1

Proof. Recall that ui(ti) = supa∈(Aj)j∈I

{
ui(a, ti, ti)

}
∈ (0,∞) and note that tαi ui(a, ti, ti) =

(ti+k)αui(a+k, ti+k, ti+k) From these properties it follows that tαi ui(ti) = (ti+k)αu(ti+k).

Hence both ui and ui are homogenous of degree α in the log transform. Therefore:

Ui

(
a, θ, ti

)
=

ui(a, θ, ti)

ui(ti)

=
tαi ui(a, θ, ti)

tαi ui(ti)

=
(ti + k)αui(a + k, θ + k, ti + k)

(ti + k)αui(ti + k)

= Ui

(
a + k, θ + k, ti + k

)

This shows that the environment is indeed scalable.

6.2 Proof of Lemma 2.2

Proof. Repeat the proof of the additive case above, replacing + with ×.

Proof. Recall that G−1(0) = 0G. Let θ−1 = G−1
(
−G(θ) and note that:

θ ⊕G θ−1 = G−1
(
G(θ)−G(θ)

)
= 0G

Note also that:
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ti ⊕G θ−1 = G−1
(
G(θ)−G(θ)

)
= ti 	G θ

Using these two facts and scale invariance we can now show the result:

Fi(ti|θ) = Fi(ti ⊕G θ−1|θ ⊕G θ−1) (1)

= Fi(ti 	G θ|0G) (2)

(3)

6.3 Proof of Proposition 2.3

Proof.

gi(θ|ti) =
fi(ti|θ)g(θ)∫
fi(ti|θ̃)g(θ̃)dθ̃

By Assumption 1 Fi(ti|θ) = Fi(ti ⊕G θ−1|θ ⊕G θ−1) = Fi(ti 	G θ|0G). Differentiating with

respect to ti gives fi(ti|θ) = d
dti

[
ti 	G θ

]
fi(ti 	G θ|0G).

gi(θ|ti) =

d
dti

[
ti 	G θ

]
fi(ti 	G θ|0G)g(θ)∫

d
dti

[
ti 	G θ̃

]
fi(ti 	G θ̃|0G)g(θ̃)dθ̃

Using the fact that g(θ) d
dti

[
ti 	G θ

]
= −g(ti)

d
dθ

[
ti 	G θ

]
yields:
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gi(θ|ti) =
−g(ti)

d
dθ

[
ti 	G θ

]
fi(ti 	G θ|0G)∫

−g(ti)
d
dθ̃

[
ti 	G θ̃

]
fi(ti 	G θ̃|0G)dθ̃

=
− d
dθ

[
ti 	G θ

]
fi(ti 	G θ|0G)∫

− d
dθ̃

[
ti 	G θ̃

]
fi(ti 	G θ̃|0G)dθ̃

Integrating the denominator:

gi(θ|ti) =
− d
dθ

[
ti 	G θ

]
f(ti 	G θ|0G)[

− Fi(ti 	G θ̃|0G)dθ̃
]∞
θ=−∞

= − d

dθ

[
ti 	G θ

]
fi(ti 	G θ|0G)

Integrating this expression gives:

Gi(θ|ti) =

∫ θ

−∞
− d

dθ̃

[
ti 	G θ̃

]
fi(ti 	G θ̃|0G)

=
[
− Fi(ti 	G θ̃|0G)

]θ
θ̃=−∞

= 1− Fi(ti 	G θ|0G)

= 1− Fi(ti|θ)
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7 Appendix B: Analysis

7.1 Proof of Theorem 3.2 and Lemma 3.1

We now prove that Lemma 3.1 also holds for general scalable games.

Proof. Take a pure strategy profile e∗ of ΓN and the corresponding linear strategy profile

σ(t) = t⊕G e∗ of the original scalable game Γ.

It is immediate to see that e∗ is a linear equilibrium of Γ if and only if Vi(e
∗
i |e∗, ti) ≥

Vi(êi|e∗i , ti) for all êi, for all ti and for all i.

Note that when Lemma 3.1 holds for general scalable games, then Theorem 3.2 is proved.

We now aim to show that indeed ui(0)
ui(ti)

V (ei|e∗, ti) = φ(ei, e
∗
−i).

From the payoff assumption note that:

ui

(
ei ⊕G ti, e∗−i ⊕G t−i; θ; ti

)
ui(ti)

=
ui

(
ei, e

∗
−i ⊕G t−i 	G ti; θ 	G ti; 0G

)
ui(0G)

Using this fact and the definition of Vi(ei, e−i|ti):

Vi(ei, e−i|ti) =

∫
Dn
gi(θ|ti)

∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e∗−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

=
ui(ti)

ui(0G)

∫
Dn
gi(θ|ti)

∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e∗−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

Recall from the previous proof that:

gi(θ|ti) = − d

dθ

[
ti 	G θ

]
fi(ti 	G θ|0G)
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Moreover:

Fj(tj|θ) = Fj(tj 	G θ|0G)

fj(tj|θ) =
d

dtj

[
tj 	G θ

]
fj(tj 	G θ|0G)

Using these two facts we reach:

Vi(ei, e−i|ti) =
ui(ti)

ui(0G)

∫
Dn
− d

dθ

[
ti 	G θ

](∏
j 6=i

d

dtj1

[
tj1 	G θ

])
fi(ti 	G θ|0G)

∏
j 6=i

fj(tj 	G θ|0G)

ui

(
ei, e

∗
−i ⊕G t−i 	G ti; θ 	G ti; 0G

)
dθ
∏
j 6=i

dtj

In order to do the substitution from {θ, tj1 , ...tjn−1} to {zi, zj1 , ...zjn−1} it is necessary to

consider the following matrix:

M =



dzi
dθ

dzj1
dθ

...
dzjn−1

dθ

dzi
dtj1

dzj1
dtj1

...
dzjn−1

dtj1

... ... ... ...

dzi
dtjn−1

dzj1
dtjn−1

...
dzjn−1

dtjn−1

 =


d
dθ

[
ti 	G θ

]
∗ ... ∗

0 d
dtj1

[
tj1 	G θ

]
... 0

0 0 ... d
dtjn−1

[
tjn−1 	G θ

]


This matrix has only zero entries apart from in the first row and along the main diagonal.

This means that the determinant is equal to the product of the main diagonal:

detM =
d

dθ

[
ti 	G θ

](∏
j 6=i

d

dtj

[
tj 	G θ

])

By the change of variables we must divide by this expression when changing variables of inte-

gration from {θ, tj1 , ...tjn−1} to {z1, z2, ...., zn}. This ensures that the initial term disappears
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and leaves us with the expression:9

Vi(ei, e−i|ti) =
ui(ti)

ui(0G)

∫
Dn

n∏
j=1

fj(zj|0G)ui

(
ei, e

∗
−i ⊕G z−i 	G zi; 0G 	G zi; 0G

) n∏
j=1

dzj

=
ui(ti)

ui(0G)
φ(ei, e

∗
−i)

Hence:

φ(ei, e
∗
−i) =

ui(0G)

ui(ti)
Vi(ei|e∗, ti)

8 Appendix D: Applications to Contests

In this appendix we show how the three families of contests considered are indeed the com-

plete information games associated with the relevant all-pay auction under complete informa-

tion. We show this result first for the asymmetric serial contest, secondly for the asymmetric

Tullock and thirdly for the Tullock with draws.

8.1 Asymmetric serial contest

First note that Fi(ti|θ) = 1−
(
Vi
zi

)α
and the utility function can be rewritten as follows:

ui

(
ai, a−i; θ; ti

)
= ti11

{
ai>aj for all j 6=i

} − ai
This leads to the following expression for the complete information game φi(ei, e−i):

9Note there are two minus signs that cancel. One minus sign in the original expression disappears and
the domain of integration is reversed.
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φi(ei, e−i) =

∫
R2
+

fi(zi|1)fj(zj|1)1{
eizi>ejzj

}dz− ei
Integrating this expression with respect to j gives:

φi(ei, e−i) =

∫
R+

fi(zi|1)Fj

(eizi
ej

∣∣∣1)dzi − ei
Case (i): If eiVi ≥ ejVj, then player i can win whenever zi ∈ [Vi,∞). Hence φi(ei, e−i) is

given by:

φi(ei, e−i) =

∫ ∞
Vi

αV α
i

zα+1
i

[
1−

(Vjej
Vizi

)α]
dzi − ei

=
[
−
(Vi
zi

)α
+

α

2α

(ViVjej
ziziei

)α]∞
Vi

=
[
1− 1

2

(Vjej
Viei

)α]
− ei

Case (ii): If eiVi < ejVj, then player i can win whenever zi ∈ [ejvj/ei,∞). Hence φi(ei, e−i)

is given by:

φi(ei, e−i) =

∫ ∞
ejvj
ei

αV α
i

zα+1
i

[
1−

(Vjej
Vizi

)α]
dzi − ei

=
[
−
(Vi
zi

)α
+

α

2α

(ViVjej
ziziei

)α]∞
ejvj
ei

=
[1

2

( Viei
Vjej

)α]
− ei

This completes the derivation of the complete information game.
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8.2 Asymmetric Tullock contest

First recall that Fi(ti|θ) = exp
[(

Vjθ

tj

)α]
and note that the utility function can be rewritten

as follows:

ui

(
ai, a−i; θ; ti

)
= ti1{

ai>aj for all j 6=i
} − ai

This leads to the following expression for the complete information game φi(ei, e−i):

φi(ei, e−i) =

∫
Rn+
fi(zi|1)

∏
j 6=i

fj(zj|1)1{
eizi>ejzj

}dz− ei
Integrating this expression with respect to all j 6= i gives:

φi(ei, e−i) =

∫
R+

fi(zi|1)
∏
j 6=i

Fj

(eizi
ej

∣∣∣1)dzi − ei

Note that fi(zi|1) =
αV αi
zα+1
i

F (zi|1). Hence:

φi(ei, e−i) =

∫
R+

αV α
i

zα+1
i

∏
j∈I

Fj

(eizi
ej

∣∣∣1)dzi − ei
=

∫
R+

αV α
i

zα+1
i

∏
j∈I

exp
[(vjej
ziei

)α]
dzi − ei

=

∫
R+

αV α
i

zα+1
i

exp
[ 1

zαi

∑
j∈I

(Vjej
ei

)α]
dzi − ei

Integrating this expression gives:
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φi(ei, e−i) =
V α
i∑

j∈I

(
Vjej
ei

)α
=

(Viei)
α∑

j∈I(Vjej)
α

8.3 Tullock with draws

First note that Fi(ti|θ) = F (ti|θ) = exp
(
−θ
ti

)
and the utility function can be rewritten as

follows:

ui

(
ai, a−i; θ; ti

)
= θ1{

ai>aj for all j 6=i
} − ai

This leads to the following expression for the complete information game φi(ei, e−i):

φi(ei, e−i) =

∫
Rn+
f(z|1)

1

zi
1{

eizi>ejzj for all j 6=i
}dz− ei

Integrating this expression with respect to all j 6= i gives:

φi(ei, e−i) =

∫
R+

f(zi|1)

zi

[∫
Rn−1
+

f(z−i|1)1{
eizi>ejzj for all j 6=i

}dz−i]dzi − ei
=

∫
R+

f(zi|1)

zi

∏
j 6=i

F
(eizi
ej

∣∣∣1)dzi − ei
Using the fact that F

(
eizi
ej

∣∣∣1) = exp
(
−ej
eizi

)
:
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φi(ei, e−i) =

∫
R+

exp
(
−1
zi

)
z3i

∏
j 6=i

exp
(−ej
eizi

)
dzi − ei

=

∫
R+

1

z3i
exp

( n∑
j=1

−ej
eizi

)
dzi − ei

=

∫
R+

[
1

zi

][
1

z2i
exp

( n∑
j=1

−ej
eizi

)]
dzi − ei

Integrating by parts gives:

φi(ei, e−i) =

[
1

zi

ei∑n
j=1 ej

exp
( n∑
j=1

−ej
eizi

)]∞
0

+

∫
R+

1

z2i

ei∑n
j=1 ej

exp
( n∑
j=1

−ej
eizi

)
dzi − ei

Note that the first term is zero, while the second term can now be integrated directly:

φi(ei, e−i) =

[
e2i(∑n
j=1 ej

)2 exp
( n∑
j=1

−ej
eizi

)]∞
0

− ei

=
e2i(∑n
j=1 ej

)2 − ei
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