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Abstract

In markets which are dominated by a relatively small amount of firms
which can form bilateral (cost reducing) R&D agreements we often ob-
serve that firms end up forming R&D coalitions. The main contribution
of this paper is to show that when we introduce farsightedness through
the concept of indirect dominance we can support a particular network
of two asymmetric groups of firms as a von Neumann Morgenstern Far-
sightedly Stable Set. This particular network consists of a large group of
connected firms and a small group of connected firms and, interestingly,
coincides with the equilibrium partition in Bloch’s endogenous coalition
formation game (1995). Introducing farsightedness thus allows us to bet-
ter explain empirically observed network structures. In addition we show
that that neither pairwise stable networks (Goyal and Joshi, 2003), nor
effi cient networks (Westbrock, 2010) can be a singleton farsightedly sta-
ble set. Effi cient networks can thus not be sustained, on their own, as
a farsighted standard of behavior: forward looking firms cannot fully in-
ternalize the negative externalities they impose on each other through
network formation.
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Keywords: R&D Networks, Oligopoly, von Neumann-Morgenstern

stable sets, Farsighted Stability.

PRELIMINARY AND INCOMPLETE - PLEASE DO NOT CITE

1 Introduction

In markets which are dominated by a relatively small amount of firms which
can form bilateral (cost reducing) R&D agreements we often observe that firms
end up forming R&D alliances. With an alliance we mean a subset of firms who
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systematically form bilateral links with the other members of this subgroup
(insiders) and very few links with firms not belonging to this subset (outsiders).
In network terms, we observe that there is a tendency toward the formation of
bilateral R&D networks displaying complete components.
Two examples make clear what we have in mind. The first is the successful

attempt, as documented in Bekkers et al. (2002) of Motorola in the eighties to
create a group of 5 dominant firms in the GSM industry through strategically
forming bilateral R&D links with these firms and refusing R&D agreements with
outsiders. That is, Motorola (and its competitors) formed its network taking into
consideration future moves of competitors (insiders and outsiders) in order to
influence the market structure and end up with the insiders dominating the
GSM market.
The seeds industry provides another striking example: over the last decade

or so, six of the largest nine firms have formed an (almost) complete network
of bilateral R&D cross-license agreements while to a great extent leaving three
other players out of this network. These outsiders also started to form bilat-
eral R&D agreements, through joint ventures. The following picture, taken and
adjusted from Howard (2013), summarizes the situation in 2013:

These two examples make clear that 1) R&D network formation often leads
to the existence of strategic asymmetric alliances and 2) these alliances (coali-
tions) are formed by firms who take into account the impact of the formation
of a bilateral link on the future formation of links between all firms.
So far the literature on network formation, mainly based on myopic link for-

mation (Jackson and Wolinsky, 1996), has not been able to predict asymmetric
alliance formation in oligopoly models. The conclusions obtained for network
formation in cost reducing oligopolies (e.g. Goyal and Joshi (2003), Goyal and
Moraga (2001)) are that when linking costs are low, then any two firms who
are not linked to one another would like to form that link. As a consequence,
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any pairwise stable network is such that all participating agents are linked to
eachother. When linking costs become important, only the complete network or
a group dominant network, in which a large group of agents is completely linked
while all other agents, if any, have no links, can arise in equilibrium.
We point out that these conclusions are largely at odds with empirically

observed network behavior in many modes of competition. In line with the two
examples above, the empirical literature on R&D networks tends to emphasize
that observed cooperative networks of competitors often times display the prop-
erty that they are asymmetric and display clusters of cooperating agents. The
above models, on the other hand, predict that observed networks should either
be complete or only the set of participating rivals should be completely linked.
Interestingly, models of R&D driven coalition formation between rivals do

predict asymmetric network structures (e.g. Bloch (1995)). However, these mod-
els assume that components are formed in a multilateral way and benefits fully
spill over to all agents who belong to any component. Nonetheless, the data
show that even when links are formed in a bilateral way, often different clusters
of bilaterally linked agents are observed.
The main goal and contribution of this paper is to show that when we intro-

duce farsightedness through the concept of indirect dominance we can suppport
asymmetric groups of firms as candidate stable networks in the Cournot oligo-
ply, even if links are formed bilaterally and not through coalitions. We do so by
establishing the existence of a von Neumann Morgenstern Farsightedly Stable
Set of networks which consist of a unique (up to a permutation) network which
consist of a large group of fully connected agents and a small group of agents.
The latter group is either fully linked. Thus, the large cluster manages get a cost
advantage over the smaller group but has to accept the presence of a smaller
competing cluster which, through forming bilateral links manages to ’stay in
the game’. Introducing farsightedness thus allows us to use network formation
models in order to obtain predictions generated by coalition formation models
(ill fittted in a network environment) and by doing so, allow us to generate more
realistic predictions: it allows us to better explain empirically observed network
structures.
In addition, assuming farsighted agents and thereby giving up the myopic

concept of pairwise stability is a myopic stability concept seems realistic in the
study of R&D cooperation in oligopolies: firms have to anticipate the effect of
a link on the future formation of the R&D network. The concept of indirect
dominance (Harsany 1974 and Chwe 1994) takes this into account: network
A indirectly dominates network B if there exists a sequence of networks that
implements network A from network B in which at any point of that sequence
all agents who ’move’do so because their payoff is higher in the end network
(network B) than their current situation. It is easy to see that no network
indirectly dominates all other networks and is not indirectly dominated by some
network. That is, replacing the dominance concept used in pairwise stability,
direct dominance, to indirect dominates yields an empty solution concept: the
farsighted core is empty.
This result motivates the use of the concept of stable set (vNM 1944), based
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on indirect dominance (Chwe 1994). The stable set is the set of networks which
is both internally stable - no network of the set indirectly dominates another
network of the set - and externally stable - every network outside the set is
indirectly dominates by a network belonging to the set. The farsightedly stable
set can then be interpreted as a standard of behavior when agents are farsighted.
In this paper we will restrict our attention to stable sets which yield a unique
prediction: they contain one particular network (up to all permutations).
To the best of our knowledge, we are the first to study farsightedly stable

sets in R&D cost reducing oligopolies. In a Cournot setting we first establish the
existence of the farsighted stable set: a network containing two clusters, one
grouping about 80% of the firms, another about 20% of the firms is always a
farsightedly stable set. What is more, this particular network is equivalent to the
equilibrium partition in Bloch’s endogenous coalition formation game (1995).
This result is not totally accidental since the concept of Bloch incorporates
forwardlooking behavior when firms form a coalition as they take into account
which other coalitions will form in equilibrium. What is surprising though is
that this network of two asymmetric coalitions and its permutations indirectly
dominate all other networks, not just all other coalition structures.
What we thus show, is that when firms are farsighted and form links strategi-

cally we can obtain a stable network structure which is equivalent to a partition
structure of differently sized networks, yielding an empirically relevant predic-
tion.
But how do other networks predictions porposed in the literature fare? Can

they be supported as a singleton farsightedly stable set (up to a permutation)?
We show that neither pairwise stable networks (Goyal and Joshi, 2003), or effi -
cient networks (Westbrock, 2010) can be a singleton farsightedly stable set. The
latter result means in particular that effi cient networks can never be sustained
on their own as a farsighted standard of behavior: forward looking firms cannot
fully internalize the negative externalities they impose on eachother through
network formation.
To the best of our knowledge only Roketskiy (2012) has studied the von

Neumann Morgenstern Stable set in network formation models between com-
petitors. In a stylized model of a contest in which the payoffs of the agents
only depend on the distribution of links and not on a subsequent competition
stage he also shows the existence of a singleton farsightedly stable set (up to a
permutation) consisting of a network displaying a small and a large component.
We show that his results do not immediately translate to oligopoly competition.
First, the (socially) effi cient network is not the complete network and can never
be, on itself, a farsighted stable set. Second, if there are at least five firms, the
complete network can never be a farsightedly stable set. Third, we show that
only one (asymmetric) alliance network can be a singleton farsightedly stable set
and that this network is equivalent to the the sequential equilibrium association
structure in the coalition formation game proposed by Bloch (1995).
The paper is organized as follows. In Section 2 we present the network for-

mation stage. In Section 3 we describe the oligopoly model given the R&D
collaboration network structure and present our main results. Section 4 con-
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cludes.

2 Network Formation

2.1 Networks

We now describe the two stage game. In the first stage, bilateral collabora-
tion links are formed among agents. In the second stage, the agents engage in
Cournot competition (other forms of competition to be developed). We consider
a finite set of ex-ante identical agents, N = {1, . . . , n} with n > 3.
They are connected through bilateral collaboration links in some network.

These network relationships are reciprocal and the network is modeled as a non-
directed graph. Agents are the nodes in the graph and links indicate bilateral
relationships between agents. A network g is a list of pairs of agents who
are linked. Relationships between agents are captured by the binary variables
gij ∈ {0, 1} which denote a relationships between agent i and j. In particular,
if there exists a link between agents i and j then gij takes the value of 1, and of
0 otherwise. As a consequence, the set of agents and the relationships between
them define a network g while the set of all possible networks is G. Let Ni(g)
be the set of agents that have a link with player i given some network g and let
ηi(g) = |Ni(g)| be the degree of agent i : the number of agents linked with i.
Denote η̄(g) =

∑
i∈N

ηi(g)
n as the average degree of network g.

We say that there exists a path between agents i and j if either gij = 1 or
if there exists a sequence of l distinct players {k1, k2, . . . , kl} such that gik1 =
gk1k2 = . . . = gklj = 1. A network g is connected if there exists a path between
any two agents i and j. Network ĝ ⊂ g is said to be a component of network g
if for all i, j, i 6= j belonging to ĝ, the there exist a path between i and j and
for i ∈ ĝ and j ∈ g, if gij = 1 then j ∈ ĝ. A component ĝ ⊂ g is complete if
gij = 1 for all i, j ∈ ĝ.
These are all the basic features which allow us to describe some network

structures we will refer to later on. In particular,

• the complete network gN is characterized by ηi(gN ) = n−1 for all i ∈ N ,

• the empty network g0 is characterized by ηi(g0) = 0 for all i ∈ N ,

• a network gκ is a dominant group network of size κ when the component
ĝκ = {i ∈ N, ηi(ĝκ) > 0}  N is complete and all j /∈ ĝκ have no links:
ηj(g

κ) = 0.

• A network gL,N\L is two− group network is characterized by a two com-
plete components: one of size L where L ≥ N/2 and the other of size
N − L.

• A network gx is an interlinked star network when it induces a degree
partition such that the firms with the highest degree (the center) are
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connected to all firms with positive degree and the firms with the lowest
positive degree are connected only to the center.

To simplify notation, g + ij means that the link gij is added to the network
g while, g − ij corresponds to the network g without the link gij .

2.2 Network game and (myopic) stability

A network game is a game where every agent i ∈ N announces its intended link
sij ∈ {0, 1} which all other agents j 6= i. If i wants to make a link with j, then
sij = 1 and sij = 0 otherwise. A strategy in the network game for agent i is
given by si = {sij}j 6=i, which is a n − 1 vector which belongs to the set of all
possible strategies of agent i, i.e. Si. We then have that gij = 1 if sij = 1 = sji
and gij = 0 otherwise. A strategy profile s = {si, . . . , sn} induces a network
g(s) ∈ G. Once a network is formed, we assume that each agent pays a negligible
but positive cost c > 0 per link formed. Given a strategy profile s, the payoff
of agent i is given by

Πi(si, s−i) = πi(g(s))− c× ηi(g(s))

where, πi(g(s)) is the agent i expected gain to participate in the contest.1 Given
this framework we look for the pairwise stable networks according to the defin-
ition proposed by Jackson and Wolinsky [10], namely
[Pairwise Stability] A network g is pairwise stable (PWS) if the following

two conditions hold:

1. if gij ∈ g ⇒ Πi(g + ij) > Πi(g) and Πj(g + ij) > Πj(g)

2. if gij /∈ g and Πi(g + ij) > Πi(g)⇒ Πj(g + ij) < Πj(g)

Intuitively, the two conditions state that, starting form a network g, no one
wants to delete a link and no pair of agents want to form a new link respectively.
The notion of pairwise stability is a myopic stability concept: agents do not take
into account the fact that the formation or deletion of a link may lead to further
deviations.

2.3 Von Neumann-Morgenstern farsighted stability

To take the possibility of further deviations into account we use the concept
of indirect dominance. The indirect dominance relation was first introduced
by Harsanyi (1974) but was later formalized by Chwe (1994). It captures the
idea that coalitions of agents can anticipate the actions of other coalitions. In
other words, the indirect dominance relation captures the fact that farsighted

1 In what follows, we we slight abuse the notation to simplify the exposition. In particular we
let depend agent i’s payoff only on network structures and we no longer refer to its dependence
on agent i’s strategy.
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coalitions consider the end network that their deviations may lead to. A network
g′ indirectly dominates g if g′ can replace g in a sequence of networks, such that
at each network along the sequence all deviators are strictly better off at the end
network g′ compared to the status-quo they face. Formally, indirect dominance
is defined as follows.
A network g is indirectly dominated by g′, or g � g′, if there exists a

sequence of networks g0, g1, ..., gK (where g0 = g and gK = g′) and a sequence
of coalitions S0, S1, ..., SK−1 such that for any k ∈ {1, ...,K},

(i) gK �i gk−1 ∀i ∈ Sk−1, and

(ii) coalition Sk−1 can enforce the network gk over gk−1.

Definition 2.3 gives us the definition of indirect dominance. The indirect
dominance relation is denoted by �. Direct dominance is obtained by setting
K = 1 in Definition 2.3. Obviously, if g < g′, then g � g′. Another way
of introducing farsighted stability is to replace direct dominance by indirect
dominance in the definition of the (pairwise stability). Diamantoudi and Xue
(2003) have defined the farsighted core (or abstract core) as follows:

C(G,�) = {g ∈ G | @g′ ∈ G such that g′ � g}

In many instances the farsighted core is empty and this has motivated the
use of the vNM farsightedly stable set.
Now we give the definition of a vNM farsightedly stable set due to Chwe

(1994).
A set of networks G ⊆ G is a vNM farsightedly stable set if

(i) for all g ∈ G, there does not exist g′ ∈ G such that g′ � g;

(ii) for all g′ /∈ G there exists g ∈ G such that g � g′.

Definition 2.3 introduces the notion of a vNM farsightedly stable set G(�).
Part (i) in Definition 2.3 is the internal stability condition: no network inside
the set is indirectly dominated by a network belonging to the set. Part (ii) is the
external stability condition: any network outside the set is indirectly dominated
by some network belonging to the set.
In this paper we will try to indentify farsightedly stable sets which are sin-

gletons (up to a permutation). The reason is twofold; first, identifying all far-
sightedly stable sets is a formidable task and second, we choose and prefer to
look for a solution concept that provides a solution consisting of a uniquely
predicted network (up to a permutation) structure.

2.4 About network formation and coalitions

Since we will show thah farsighted network formation can lead to the predic-
tion that coalitions are formed we now define the set of all possible coalition
structures, C, simply by restriction the set of networks:
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C = {g ∈ G |∀ĝ ⊂ g and ∀i, j ∈ ĝ : gij = 1} .

In principle, the set C can serve as the primitive of an ex ante symmet-
ric coalition formation game with negative externalities. Such games have been
studied intentively in the literature: the set C induces an (ex ante) symmet-
ric association-formation game (Bloch (1995, 1996), Ray and Vohra (1997), Yi
(1997)). Even if networks, in the sense described above, are more general than
coalitions, we want to stress that the paper does not try to integrate network
formation theory (which networks will form?) and coalition formation theory
(which coalitions will form) per se. What the paper does do is to show how net-
work formation between farsighted agents can lead to stable network structures
that take the form of coalitions: even when agents do not ’decide’multilaterally
we can support coalition formation through bilateral link formation.

3 R&D Network formation in Oligopoly

3.1 R&D cooperation in the linear Cournot model

We assume that n firms compete à la Cournot but have the opportunity, before
the competition stage, to cooperate through bilateral R&D collaboration links
which jointly reduce their marginal costs. We assume as in Goyal and Joshi
(2003) that the constant marginal cost of each firm is a linear function of the
amount of links they have:

ci(g) = λ− µηi(g)

We assume as in Bloch (1995) that firms compete à la Cournot in a market
for homogenous products with the following linear inverse demand curve:

p = α−
∑
i∈N

qi where α > λ.

A network g induces a vector of marginal costs c(g).Assuming that all firms
produce positive quantities in equilibrium2 the Cournot equilibrium output can
then be written as:

q∗i (g) =
1

n+ 1

(
α− λ+ nµηi(g)− µ

∑
j 6=i

ηj(g)

)
whereas profit for each firm is written as πi(g) = (q∗i (g))

2
.

2This is the case when (α− λ)− (n− 1)(n− 2)µ > 0.
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3.2 Pairwise strong stability and the farsighted core

Goyal and Joshi (2003) have shown that when linking costs are negligible, the
only pairwise stable network is the complete network. However, it is easy to
verify that the farsighted core is empty when n > 33 .

Proposition 1 The farsighted core is empty.
Proof. See appendix.

3.3 Existence of a von Neumann Morgenstern Farsight-
edly Stable Set

As we mentioned above, C can serve as the primitive of an ex ante symmetric
coalition formation game with negative externalities. In Cournot competition as
described above, Bloch (1995) shows that there exist a unique (up to a permuta-
tion) sequential equilibrium association structure that is given by S∗ = {S∗1 , S∗2}
where |S∗1 | = k∗ is the closest integer to 3n+1

4 and k∗ maximizes the payoff of the
largest association; or in network terms, the largest complete component of any
bigroup network gL,N\L : k∗ ∈ arg

L
maxπi(g

L,N\L)4 .Denote π∗(G) or simply π∗

as the payoff received by the members of a the ’large’component of any g ∈ G∗.
Likewise, denote π∗(G) or simply π∗ as the payoff received by the members of
a the ’small’component of any g ∈ G∗.
We now present our main result: a singleton von Neumann Morgensterns

farsightedly stable set always exists. We do so by proving, through a sequence of
lemmas, that Bloch’s solution to the coalition formation game (S∗ = {S∗1 , S∗2}
is,), is, in fact, always a singleton (up to a permutation) von Neumann Mor-
genstern Farsightedly Stable Set (vNMFSS). Denote G∗ ⊂ G as the set of all
networks with coalition structure S∗ = {S∗1 , S∗2} .
The first lemma shows the intuition behind the result of Bloch (1995). Of all

bi-group networks, the one with the highest averag payoff for the large group
(insiders): with coalition structure S∗ = {S∗1 , S∗2} .

Lemma 2 Consider any bi-group network gL,N\L, then for all i : πi(g
L,N\L) ≤

π∗.

Proof. See Appendix.
A diffi culty we need to resolve is that the G∗ should indirectly dominate all

other networks. That is, from any network structure, forward looking agents
must be wanting to form links in order to belong to a complete component with
payoff π∗ or π∗. We therefore introduce the following two lemmas:

3When linking costs are negligible but positive, the condition for emptiness of the farsighted
core becomes n > 2 which always holds.

4 It is uniquely defined whenever n is even or when n is uneven and n = 5 + p4 where p
is a natural number. If n = 7 + p4 then there are 2 solutions to the problem of finding the
maximum of πi(gL,N\L).

9



Lemma 3 Let g ∈ G \G∗ such that g contains a complete component gk of k
agents. Then there exists an agent i ∈ g r gk such that πi(g) < π∗.

Proof. See Appendix.

Lemma 4 Let g ∈ G \G∗ such that g contains a complete component gk of k
agents. Then there exists an agent i ∈ g r gk such that πi(g) < π∗.

Proof. See Appendix.

The significance of this lemma is if that agents, by isolating themselves into
a complete component, and by doing all the other agents do not form a complete
component, then some of these other agents has a payoff lower than π∗. These
players would then be willing to ’cooperate’with the isolating agents towards a
network belonging to G∗. This is what we show below:

Lemma 5 Let g ∈ G \G∗ such that g contains a complete component gk∗ of
k∗ agents. Then there exists a network g′ ∈ G∗ such that g′ � g.
Proof. See Appendix.

Lemma 6 Let g ∈ G \G∗ such that g contains a complete component gn−k∗ of
n− k∗ agents. Then there exists a network g′ ∈ G∗ such that g′ � g.
Proof. See Appendix.

We are now ready to show that G∗ is a vNMFSS.

Theorem 7 Let G∗ =

{
gS,N−S ∈ G, |S| = k∗ ∈ arg

L
maxπi(g

L,N\L)

}
. Then

G∗ is a vNMFSS.

Proof. internal stability: take any g and g′ ∈ G∗ and suppose that g′ � g.
Since g′ is a permutation of g, then along the farsightedly improving path from g
to g′ there must be some members of the component of size S who initiated the
formation of links with members of the component N − S. However the payoff
of these members of S at the time when they form their links can never be
lower than they payoff they will receive at g′ since before these links ’between’
components, agents of component N−S can not create ’additional’links, there-
by lowering the payoffs of agents in the component S.
external stability: take any g /∈ G∗.Let B(g) = {i ∈ N, πi(g) ≥ π∗} and

W (g) = {i ∈ N, πi(g) < π∗} . Denote b(g) = |B(g)| and w(g) = |W (g)| .Clearly:
b(g) = n− w(g).
Case 1: w(g) ≥ k∗.
Step 1: g → g1. If w(g) ≥ k∗ then let k∗ members of W (g) form a complete

component (of size k∗). The remaining n−k∗ agents then either form a complete
component and we have shown that then show that there must exist a g1 ∈ G∗
such that g1 � g. If they do not form a complete complement then we know
from lemma 5 that there exists a g2 ∈ G∗ such that g2 � g1.
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Case 2: w(g) < k∗.
Step 1: g → g1. Then all w(g) members of W (g) cut all their links. The aim

of these agents is to end up in the large coalition of some g′ ∈ G∗ and hence to
earn π∗. They do so by ’luring’the weakest agents of B(g) into joining them by
making themselves stronger:
step 2: g1 → g2. Let η(g1) = min

i∈B(g)
ηi(g

2). Network g2 is formed, from g1, by

having the agents of W (g) add m(g1) = min
(
w(g)− 1, η(g1)

)
links amongst,

with the possible exception that one member of W (g) has m(g1)− 1 links. It is
then the case that for all i ∈ W (g), πi(g

2) < π∗ and equally, for all j ∈ B(g)
such that ηj(g

2) = ηj(g
1) = η(g1) we have that πj(g2) < π∗. Let n(g2) =∣∣{j ∈ B(g) such that ηj(g
2) = η(g1)

}∣∣
Step 3: g2 → g3. If w(g) +n(g2) ≥ k∗ then we are in case 1. If not we repeat

step 2 and obtain n(g3). After a finite amount of repetitions, say T, it must be
that w(g) + n(gT ) ≥ k∗ and we end up in case 1. But then there exists, as
shown above gT � g.

3.4 Further results

We have just shown that the farsighted stable set concept can single out the
solution of Bloch (1995) as a singleton vNMSS. This brings about two related
questions: 1) are there other ’singleton’vNMSS and if so, can we characterize
them? and 2) if we cannot positively answer 1) are other common stable network
(or coalition) predictions singleton vNMS sets? How about effi cient network
structures, can they be farsightedly stable sets? How about industry profit
maximizing network structures? So far, we have not been able to characterize
the set of all networks which survive farsighted stability. That being said, we
have, so far not found any other network structure constituting a vNMSS. We
thus have the following negative results.

3.4.1 No other coalition structure is a (singleton) farsightedly stable
set

That is, G∗ contains the only ’coalition structures’that arise as stable sets if
agents form networks in a farsighted way. There is thus a clear link between
farsighted network formation and the predictions obtain by Bloch in symmetric
coalition formation games with externalities, but not with predictions obtained
by other endogenous coalition formation models. This is result is summarized
in the following lemma and proposition.

Lemma 8 Take any g ∈ C \G∗, then any permutation g′ is such that g′ � g.
Proof. See Appendix.

Proposition 9 Take any g ∈ C \G∗, then {g} is not a vNMFSS.

Proof. See Appendix.
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3.4.2 No effi cient network structure is a (singleton) farsightedly sta-
ble set

Let E ⊂ G be the set of effi cient networks in the sense that they maximize total
surplus. Westbrock (2010) shows that for any network g to be effi cient the it
must either be regular, group dominant or an interlinked star. The following
proposition show that

Lemma 10 Take any g ∈ E, then any permutation g′ of g is such that g′ � g.
Proof. See Appendix.

Proposition 11 No g ∈ E can be a singleton farsightedly stable set .
Proof. See Appendix.

4 Conclusion

In many markets which are dominated by a relatively small amount of firms and
these firms can form bilateral (cost reducing) R&D agreements we often observe
that firms end up forming alliances. With an alliance we mean a subset of firms
who systematically form bilateral links with the other members of this subgroup
(insiders) and very few links with firms not belonging to this subset (outsiders).
In network therms, we observe that there is a tendency toward the formation
of bilteral R&D networks which all tend to have complete components.
The main goal and contribution of this paper is to show that when we in-

troduce farsightedness through the concept of indirect dominance we can supp-
port asymmetric groups of firms as candidate stable networks in the Cournot
oligopoly, even if links are formed bilaterally and not through coalitions. We do
so by establishing the existence of a von Neumann Morgenstern Farsightedly
Stable Set of networks which consist of a unique (up to a permutation) network
which consist of a large group of fully connected agents and a small group of
agents. The latter group is either fully linked. Thus, the large cluster manages
get a cost advantage over the smaller group but has to accept the presence of
a smaller competing cluster which, through forming bilateral links manages to
’stay in the game’. Introducing farsightedness thus allows us to reconcile net-
work formation models and coalition formation models and by doing so, allow us
to generate more realistic predictions: it allows us to better explain empirically
observed network structures.
To the best of our knowledge, we are the first to study farsightedly stable

sets in R&D cost reducing oligopolies. In a Cournot setting we first establish the
existence of the farsighted stable set: a network containing two clusters, one
grouping about 80% of the firms, another about 20% of the firms is always a
farsightedly stable set. This particular network is equivalent to the equilibrium
partition in Bloch’s endogenous coalition formation game (1996). This result
is not totally accidental since the concept of Bloch incorporates forwardlooking
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behavior when firms form a coalition as they take into account which other coali-
tions will form in equilibrium. What is surprising though is that this network
of two asymmetric coalitions and its permutations indirectly dominate all other
networks, not just all other coalition structures. What we thus show, is that
when firms are farsighted and form links strategically we can obtain a stable
network structure which is equivalent to a partition structure of differently sized
networks, yielding an empirically relevant prediction.
But how do other networks predictions proposed in the literature fare? Can

they be supported as a singleton farsightedly stable set (up to a permutation)?
We show that neither pairwise stable networks (Goyal and Joshi, 2003), or effi -
cient networks (Westbrock, 2010) can be a singleton farsightedly stable set. The
latter result means in particular that effi cient networks can never be sustained
on their own as a farsighted standard of behavior: forward looking firms cannot
fully internalize the negative externalities they impose on each other through
network formation.
We leave the characterisation of all (singleton) farsightedly stable sets as

future research.
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5 Appendix

Proposition 12 The farsighted core is empty.
Proof. Starting from the complete network gN , which is the only candidate that
can belong to the farsighted core, let n− 1 agents isolate one agent j by deleting
their link with this agent j : gN → gj . The quantity produced by any agent i 6= j
in gj is:

qi(g
j) =

1

n+ 1
(α− λ+ nµ(n− 2)− µ [(n− 2)(n− 2)])

> qi(g
N ) =

1

n+ 1
(α− λ+ nµ(n− 1)− µ [(n− 1)(n− 1)])

⇔ (n− 2)(n− n+ 2) > (n− 1)(n− n+ 1)

⇔ 2(n− 2) > (n− 1)

⇔ n > 3

Lemma 13 Consider any bi-group network gL,N\L, then for all i : πi(g
L,N\L) ≤

π∗.

Proof:πi(gL,N\L) ≤ 1
n+1

(
α− λ+ nµ(l − 1)− µ

[
(l − 1)2 + (n− l)(n− l − 1)

])
≤

π∗

Lemma 14 Let g ∈ G \G∗ such that g contains a complete component gk of k
agents. Then there exists an agent i ∈ g r gk such that πi(g) < π∗.
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Proof. Suppose not, then for all i /∈ gk∗ it must be that qi(g) ≥ q∗ where q∗
is the quantity produced by an agent i /∈ gk∗ in a network g∗ ∈ G∗. Consider
q(g) = mini/∈gk qi(g). Take i such that i has the lowest amount of links in
gr gk∗ .Then ηi(g) ≤ n− k− 2 (otherwise gr gk∗would be complete and hence

g∗ ∈ G∗).It is then the case that
grgk

∗∑
j 6=i

qj(g) ≥ (n − k∗ − 1)q∗ where q∗ is the

quantity produced by an agent i /∈ gk∗ in a network g∗ ∈ G∗. But then:

qi(g) =
1

n+ 1

(
α− λ+ nµηi(g)− µ

[
k∗(k∗ − 1) +

n−k∗∑
j 6=i

ηj(g)

])

≥ 1

n+ 1

(
α− λ+ nµηi(g)− µ

[
k∗(k∗ − 1) + (n− k∗ − 1)2

])

n−k∗∑
i∈grgk

qi(g)− (n− k∗)q∗

> 0

⇔
n−k∗∑
i∈grgk

1

n+ 1

 α− λ+ nµηi(g)

−µ
[
k∗(k∗ − 1) +

n−k∗∑
j 6=i

ηj(g)

] 
>

n− k∗
n+ 1

(
α− λ+ n(n− k∗ − 1)

−µ
[
k∗(k∗ − 1) + (n− k∗ − 1)2

] )
⇔

n−k∗∑
i∈grgk

(
nηi(g)−

n−k∗∑
j 6=i

ηj(g)

)
> (n− k∗)

(
n(n− k∗ − 1)− (n− k∗ − 1)2

)
⇔

n−k∗∑
i∈grgk

(
nηi(g)−

n−k∗∑
j 6=i

ηj(g)

)
> (n− k∗)(n− k∗ − 1)(k∗ + 1)

and we have that

n−k∗∑
i∈grgk

(
nηi(g)−

n−k∗∑
j 6=i

ηj(g)

)

= n
n−k∗∑
i∈grgk

ηi(g)− (n− k∗ − 1)
n−k∗∑
i∈grgk

ηi(g)

= (k∗ + 1)
n−k∗∑
i∈grgk

ηj(g)

< (k∗ + 1)(n− k∗)(n− k∗ − 1)
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Hence we obtain a contradiction.�

Lemma 15 Let g ∈ G \G∗ such that g contains a complete component gk of k
agents. Then there exists an agent i ∈ g r gk such that πi(g) < π∗.

Proof. Suppose not, then for all i ∈ grgk it must be that qi(g) ≥ q∗.Consider
q(g) = min qi(g).

∑
i∈grgk

qi(g) ≥ (n− k)q∗.

n−k∑
i∈grgk

qi(g) =
n−k∑

i∈grgk

1

n+ 1

 α− λ+ nµηi(g)

−µ
[
k(k − 1) +

n−k∑
j 6=i

ηj(g)

] 
Let qn−k be the quantity produced by an agent with n − k − 1 links in a

network gk,n−k or gn−k,k. We know that qn−k ≤ q∗.

n−k∑
i∈grgk

qi(g)−
n−k∑

i∈grgk
qn−k

=
n−k∑

i∈grgk
qi(g)− (n− k)qn−k

=
n−k∑

i∈grgk

1

n+ 1

(
nµηi(g)− µ

n−k∑
j 6=i

ηj(g)

)

−(n− k)
1

n+ 1

(
nµ(n− k − 1)

−µ(n− k − 1)(n− k − 1

)
)

=
µ

n+ 1

 n
n−k∑

i∈grgk
ηi(g)−

n−k∑
i∈grgk

n−k∑
j 6=i

ηj(g)

−(n− k)(n− k − 1)(k + 1)


=

µ

n+ 1

 n
n−k∑

i∈grgk
ηi(g)− (n− k − 1)

n−k∑
i∈grgk

ηi(g)

−(n− k)(n− k − 1)(k + 1)


=

µ

n+ 1

[
(k + 1)

n−k∑
i∈grgk

ηi(g)− (k + 1)(n− k)(n− k − 1)

]

=
µ

n+ 1

[
(k + 1)

(
n−k∑

i∈grgk
ηi(g)− (n− k)(n− k − 1)

)]
< 0 whenever the n− k agents do not form a complete component.

To end the proof we know that qn−k ≤ q∗.�

Lemma 16 Let g ∈ G \G∗ such that g contains a complete component gk∗ of
k∗ agents. Then there exists a network g′ ∈ G∗ such that g′ � g.

Proof:By lemma 3 there exists an agent i ∈ gr gk∗ such that πi(g) < π∗.Let
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all these agents i : S1 cut all their links in g1: g → g1. Starting from g1 then
let the agents of S1 form new links sequentially respecting that the amount of
links between these agents cannot differ more than one, until one member of
g r (gk

∗ \ S1) sees her payoff drop below π∗ : g1 → g1t → ...→ g2. Suppose this
is not the case, then the lowest payoff πk(g2) of k ∈ g r (gk

∗ \ S1) when S1 is a
complete component is larger or equal to π∗ :

πk(g2) ≥ π∗

qk(g2) ≥ q∗

qk(g2) =
1

n+ 1

(
α− λ+ nµηk(g2)− µ

[
k∗(k∗ − 1) + (s1 − 1)s1 +

n−k∗−s1∑
l

ηl(g2)

])

But also:

qk(g2) ≤ 1

n+ 1

(
α− λ+ nµηk(g2)

−µ [k∗(k∗ − 1) + (s1 − 1)s1 + (n− k∗ − s1 − 1)ηk(g)]

)
≤ 1

n+ 1

(
α− λ+ nµ(n− k∗ − s1 − 1)

−µ
[
k∗(k∗ − 1) + (s1 − 1)s1 + (n− k∗ − s1 − 1)2

] )

π∗ − qk(g2) ≥ π∗ −
1

n+ 1

(
α− λ+ nµ(n− k∗ − s1 − 1)

−µ
[
k∗(k∗ − 1) + (s1 − 1)s1 + (n− k∗ − s1 − 1)2

] )
π∗ − qk(g2) ≥ 0 ⇔

(n− k∗ − 1)(k∗ + 1) ≥ (n− k∗ − s1 − 1)(k∗ + s1 + 1))− (s1 − 1)s1

(n− k∗ − 1)(k∗ + 1) ≥ (n− k∗ − 1)(k∗ + s1 + 1))− s1(k∗ + s1 + 1)− (s1 − 1)s1

s1(k
∗ + 2) ≥ (n− k∗ − 1)s1

2k∗ + 3 ≥ n which holds for all k∗(n)

At g2 all agents in g r gk
∗
with lower payoff than π∗ Starting from g2 then

let the agents the set S2( S1 $ S2) delete all their links in g2 and start to form
new links sequentially respecting that the amount of links between these agents
cannot differ more than one, until one member of g r (gk

∗ \ S2) sees her payoff
drop below π∗ : g2 → ...→ g2t → ...→ g3.

Iteratively, after a finite amount of steps, say q steps, we will will obtains
obtain a network gqwhere Sq = gr gk∗ . In the next step all members of gr gk∗

form a complete component: gq → g′ ∈ G∗. �

Lemma 17 while maintaining payoffs of members of N \ B(g) below π∗ since
they will always have less links this member of B(g)Then there exists an agent
j /∈ Si and j ∈ g r gk

∗
such that πj(g1) < π∗.
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qi(g) =
1

n+ 1

(
α− λ+ nµηi(g)− µ

[
k∗(k∗ − 1) +

n−k∗∑
j 6=i

ηj(g)

])

≥ 1

n+ 1

(
α− λ+ nµηi(g)− µ

[
k∗(k∗ − 1) + (n− k∗ − 1)2

])
Lemma 18 Let g ∈ G \G∗ such that g contains a complete component gn−k∗

of n− k∗ agents. Then there exists a network g′ ∈ G∗ such that g′ � g.
Proof:By lemma 2 there exists an agent i ∈ gk∗ such that πi(g) < π∗.Let all

these agents i : S1 cut all their links in g1: g → g1. Starting from g1 then let
the agents of S1 form new links sequentially respecting that the amount of links
between these agents cannot differ more than one, until one member of gk

∗ \ S1
sees her payoff drop below π∗ : g1 → g1t → ...→ g2. Suppose this is not the case,
then the lowest payoff πk(g2) of k ∈ gk

∗ \ S1 when S1 is a complete component
is larger or equal to π∗ :

πk(g2) ≥ π∗

qk(g2) ≥ q∗

qk(g2) =
1

n+ 1

 α− λ+ nµηk(g2)

−µ
[

(n− k∗ − 1)(n− k∗) + (s1 − 1)s1 +
k∗−s1−1∑

l

ηl(g2)

] 
But also:

qk(g2) ≤ 1

n+ 1

(
α− λ+ nµηk(g2)−

µ [(n− k∗ − 1)(n− k∗) + (s1 − 1)s1 + (k∗ − s1 − 1)ηk(g2)]

)
≤ 1

n+ 1

(
α− λ+ nµ(k∗ − s1 − 1)−

µ
[
(n− k∗ − 1)(n− k∗) + (s1 − 1)s1 + (k∗ − s1 − 1)2

] )
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π∗ − qk(g2) ≥ π∗ − 1

n+ 1

(
α− λ+ nµ(k∗ − s1 − 1)

−µ
[
(n− k∗ − 1)(n− k∗) + (s1 − 1)s1 + (k∗ − s1 − 1)2

] )
π∗ − qk(g2) ≥ 0

⇔
⇔ (n(k∗ − 1)− (k∗ − 1)2 − (n− k∗ − 1)(n− k∗)
≥ n(k∗ − s1 − 1)− (n− k∗ − 1)(n− k∗)− (s1 − 1)s1 − (k∗ − s1 − 1)2

⇔ n(k∗ − 1)− (k∗ − 1)2

≥ n(k∗ − s1 − 1)− (s1 − 1)s1 − (k∗ − s1 − 1)2

⇔ (k∗ − 1)(n− k∗ + 1)

≥ (k∗ − s1 − 1)(n− k∗ + s1 + 1)− (s1 − 1)s1

⇔ (k∗ − 1)(n− k∗ + 1)

≥ (k∗ − s1 − 1)(n− k∗ + 1) + s1(k
∗ − s1 − 1)− (s1 − 1)s1

⇔ s1(n− k∗ + 1)

≥ (n− k∗ − 1)s1

⇔ 2k∗ + 3 ≥ n which holds for all k∗(n)

At g2 all agents in g r gk
∗
with lower payoff than π∗ Starting from g2 then

let the agents the set S2( S1 $ S2) delete all their links in g2 and start to form
new links sequentially respecting that the amount of links between these agents
cannot differ more than one, until one member of g r (gk

∗ \ S2) sees her payoff
drop below π∗ : g2 → ...→ g2t → ...→ g3.

Iteratively, after a finite amount of steps, say q steps, we will will obtains
obtain a network gqwhere Sq = gr gk∗ . In the next step all members of gr gk∗

form a complete component: gq → g′ ∈ G∗. �

Lemma 19 Take any g ∈ C \G∗, then any permutation g′ ∈ ϕ(g) is such that
g′ � g.
Proof. To be added.

Proposition 20 Take any g ∈ C \G∗, then {g} is not a vNMFSS.

Proof. To be added.

Lemma 21 Take any g ∈ E, then any permutation g′ of g is such that g′ � g.
Proof. To be added.

Proposition 22 No g ∈ E can be a singleton farsightedly stable set .
Proof.
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• If g is regular then internal stability is satisfied but for external stability
to be satisfied it must be that there exists a regular network g such that
g � g′ for all g′ ∈ G∗. But that must mean that there exists a regular
network with higher payoffs for all players than π∗. Since the payoff in
regular networks is increasing in the amount of links then this means that
the complete network should yield higher payoffs than π∗. By lemma 1,
this is impossible.

• If g is group dominant, then suppose that the dominant group has at least
two elements. Then at most 1 permutation can belong to the singleton
vNMSS, since all permutation indirectly dominate each other: all the sin-
gletons form links after which they lure in members of the dominant group
who saw their payoff decrease. However this singleton does not indirectly
dominate the network g + ij where i nor j belong to the dominant group.
Now consider g such that the dominant group contains n or n−1 members,
then we know that g cannot indirectly dominant g′ ∈ G∗

• If g is an interlinked star then no permutation of g can belong to the
stable set since all permutations indirectly dominate each other. On the
other hand, consider g+ ij where i and j have the lowest amount of links
and ηj < n− 1.Then g does not indirectly dominate g + ij.
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