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Abstract

This paper tries to extend the Crawford-Sobel's model on cheap talk (1982, Econometrica 50,

1431-1451) assuming that the sender's private information is endogenously learned with a costly ef-

fort. The receiver can reward the sender's undertaking through a monetary transfer. This analysis is

conducted in a setting without commitment and with limited liability. Two di�erent cases are treated:

the overt and the covert e�ort. It results that in both situations there exists an equilibrium in which

information transmission is possible, even without a monetary transfer.

Jel Classification: C72, D82

1 Introduction

There are circumstances in which two parts are involved in a deal, but only one of them has some relevant

information that a�ects the welfare of both. In some cases the only way in which the informed part can

reveal what she knows is through a costless message. That is, she can not produce evidences, or the

listener is not able to understand the information content. Consider the lawyer - defendant relationship.

Usually a lawyer avoids all technical details about laws and procedures and she prefers to summarize her

knowledge with some recommendations. Or again, consider a �nancial broker facing a potential investor.

There are a lot of technical details that the �nancial broker keeps in mind but when she makes the o�er,

she highlights only elements that can be easily understood by the counterpart: in general a person with

a poor �nancial literacy. The unveri�ability of the message can depend by the qualities of the listener of

by the considered framework. In the above examples the �nal outcome of the deal depends only by the

uninformed part's action: follow the advice or not, invest or not. Hence, the role played by the message is

to induce the listener to choose a particular option instead of another one. From a game theoretic point

of view, this kind of framework falls in the so called �cheap talk� games. Any message sent by one of the

parts is cheap, in the sense that it does not a�ect the outcomes directly but it in�uences the counterpart's

behavior. Starting from the seminal work of Crawford and Sobel (1982) the literature on cheap talk has

extremely grown. Di�erent development paths have been followed, i.e. letting the use of costless and

costly messages (Austen-Smith and Banks, 2000; Kartik, 2007) in order to augment the communication

structure; or increasing the dimension of the information and the number of informed parties (Battaglini,

1999). There are many valuable contributions to this literature, i.e. some scholars devoted their e�orts

to make a comparison between the cheap talk setting and the delegation scheme as in Homlström (1984).

Among many others, deserve to be mentioned Ottaviani (2000) and Xie (2013). They make comparisons
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with the cheap talk setting and the delegation schemes, analyzing also the case in which the listener could

be naive1 or the informed part's knowledge is not so accurate. The extreme point of this approach is to

consider a consultant that ex ante is totally uninformed. In this case she2 must endogenously learn the

information and then, she chooses how much of it to share with the other part. In both the previously

cited works, the learning process is costly but there is no monetary transfer between the involved parts.

The new contribution of our work is to introduce the possibility of a reward for the expert's e�ort. This

kind of setting is a more likely representation of what happens in reality. There are two involved parties, a

principal and an expert. Ex ante both are uninformed but only the expert has the qualities which let her to

acquire some information. The learning process depends by a costly e�ort. We can interpret it as the time

spent to collect data or the cost of making experiments and researches. The principal can not credibly

commit to a plan of transfers, in order to refund the expert for the e�ort. To justify this assumption

consider this situation: both sides signed a contract in the past for a counseling, during their relationship

one unexpected task must be done by the expert and it is costly. They cannot renegotiate the payment or

this decision does not depend by the will of the principal. Finally, from this task depends the �nal outcome

of the contract. We will analyze two possible cases: in the �rst one the e�ort is observable by the principal

and in the second one it is not. In both situations we will characterize the equilibria for the expert's and

the principal's �take-it-or-leave-it� o�er about a possible monetary transfer. It turns out that in either

cases there exist an equilibrium in which information transmission is possible even without any transfer.

The key role is played by the information surplus that the expert can obtain following the equilibrium

strategy, with respect to the pro�table deviation. The remainder of the article is organized as follows: in

Section 2 we present the model. In Section 3 we analyze the case in which the e�ort is observable, we

establish the existence and the uniqueness of the optimal e�ort, and we give a full characterization of the

equilibria. In Section 4 we repeat the analysis when the e�ort is not observable. Section 5 concludes. In

the Appendix are relegated some computations and some proofs.

2 The Model

A principal � from now on the receiver � has the right to choose a project a ∈ [0, 1] and its outcome

depends by the unknown state of the world θ ∈ Θ = [0, 1]. In order to make his choice, the receiver is

advised by an expert � from now on the sender. The sender can make a costly e�ort in order to infer

about the true value of θ. This inference produces a signal s ∈ S = [0, 1] whose accuracy depends by the

e�ort level. Only the sender can observe the signal's realization. The only way with which the sender

can report the signal value is through a costless and unveri�able message m ∈ M = [0, 1]. Both sender

and receiver share the same prior uniform distribution on θ ∼ U([0, 1]). The outcome of the undertaken

project a a�ects one as well the other, us(·) is the sender's utility function and ur(·) is the receiver's one

us(a, θ, b) = −(a− (θ + b))2 − c(p) + t

ur(a, θ) = −(a− θ)2 − t

where b ∈ R++ is bias among their preferences, the function c(p) : [0, 1]→ R+ describes the sender's costly

e�ort and t ∈ R is a monetary transfer between them. Given a state θ̂ the sender's preferred project is

as(θ̂) = a(θ̂, b) = θ̂ + b, while the receiver's one is ar(θ̂) = a(θ̂, 0) = θ̂. We make the following assumption

Assumption 2.1. The function c(p) is continuous, strictly increasing and convex, moreover c(0) = 0.

1For naive listener we mean an agent that blindly trust the message, without taking in account any kind of strategic

behavior from the counterpart.
2From now on we will use the pronoun she for the sender and he for the receiver.
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The bias b, the functions us(·), ur(·) and the distribution of the signals s are common knowledge. With

probability p the sender observes the true state of the world, that is the realization of s coincides with

the true value θ ∈ Θ. The complementary event corresponds to the observation of a totally noisy and

non informative signal, drawn from a uniform distribution on [0, 1]. Given the assumption (2.1) for every

e�ort level c(p) there is a unique probability p and without any e�ort, the posterior belief coincides with

the prior. Between the true value of θ and the probability p there is no correlation. An higher e�ort does

not imply an higher state of the world, so the receiver can not infer on it, even if he observes the e�ort

level. Unless p = 0 an higher realization of the signal s corresponds to an higher posterior estimate of θ.

For a given pair (θ̂, p) ∈ S× [0, 1] the expected value of the true state of the world is

Ep[θ|s = θ̂] = p · θ̂ + (1− p) · 1

2

with

Ep[θ|s] ∈
[
(1− p)1

2
, (1 + p)

1

2

]
In this case the sender's preferred action is such that

a(θ̂, b, p) = arg max
a∈[0,1]

Ep[us(a, θ, b)|s = θ̂]

= arg max
a∈[0,1]

−
[
p · (a− (θ̂ + b))2 + (1− p) ·

∫ 1

0

(a− (x+ b))2dx+ t− c(p)
]

= p · θ̂ + (1− p) · 1

2
+ b

while the receiver's one is

a(θ̂, 0, p) = arg max
a∈[0,1]

Ep[ur(a, θ)|s = θ̂]

= arg max
a∈[0,1]

−
[
p · (a− θ̂)2 + (1− p) ·

∫ 1

0

(a− x)2dx− t
]

= p · θ̂ + (1− p) · 1

2

Notice that when p = 1, a(θ̂, b, 1) = as(θ̂) and a(θ̂, 0, 1) = ar(θ̂) as in the standard cheap talk setting,

where the sender is perfectly informed about the true state of the world. We assume limited liability for

the sender that is, t ∈ R+ and the receiver can not credibly commit to a plan of transfers. Moreover, the

monetary transfer t occurs before the e�ort c(p) and at the time of the signal's realization both are sunk

costs. Once the sender learned her type that is, after she has observed the signal, both play a standard

cheap talk game.

3 Equilibria under Overt E�ort

In this part we assume that the sender's e�ort was observable, then for each c(p) we can identify a proper

subgame. What happens before is given, so both tries to maximize their continuation value of the game.

Due to the preferences misalignment, the sender will never use a strictly monotonic message strategy

σ(s | p) : S → M otherwise the receiver, after hearing the message, could apply the inverse function

σ−1(m | p) and implement the action a(σ−1(m | p), 0, p) obtaining the best possible outcome for him. So,

she will introduce some noise in the message strategy. It is easy to see that for all (θ, p) ∈ Θ × [0, 1] and

b ∈ R++

a(θ, b, p) 6= a(θ, 0, p)

so the following Lemma holds
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Lemma 3.1 (Crawford and Sobel (1982)). If a(θ, b, p) 6= a(θ, 0, p) for all θ ∈ Θ, then there exists an ε > 0

such that if a′ and a′′ are actions induced in equilibrium, |a′− a′′| ≥ ε. Further, the set of actions induced
in equilibrium is �nite.

from Crawford and Sobel (1982) we know that the equilibrium will be formed by a �nite partition of Θ

([θ0, θ1], [θ1, θ2], . . . , [θi−1, θi], . . . , [θN−2, θN−1], [θN−1, θN ])

with θ0 = 0 and θN = 1. For all θ′, θ′′ ∈ Θ with θ′ < θ′′ let us de�ne

a([θ′, θ′′], 0, p) = arg max
a∈[0,1]

−

[
p · 1

θ′′ − θ′
·
∫ θ′′

θ′
(a− x)2dx+ (1− p) ·

∫ 1

0

(a− y)2dy

]
(1)

and for θ′ = θ′′ = θ

a([θ′, θ′′], 0, p) = a(θ, 0, p) = arg max
a∈[0,1]

−
[
p · (a− θ)2 + (1− p) ·

∫ 1

0

(a− y)2dy

]
(2)

the functions (1) and (2) represent the receiver's best responses, when the sender randomizes uniformly

over the interval [θ′, θ′′] or when she reports the signal's realization truthfully. It results

a([θ′, θ′′], 0, p) = p · θ
′ + θ′′

2
+ (1− p) · 1

2
(3)

and for p→ 1

lim
p→1

a([θ′, θ′′], 0, p) =
θ′ + θ′′

2

the best response coincides with Crawford and Sobel (1982), for p→ 0

lim
p→0

a([θ′, θ′′], 0, p) =
1

2

any message sent by the sender is totally uninformative. The receiver takes the best project with respect

to his own prior probability distribution. In order to characterize the equilibrium, the so called arbitrage

condition (equation (A) in Crawford and Sobel (1982)) must holds

us(a([θi, θi+1], 0, p), θi, b)− us(a([θi−1, θi], 0, p), θi, b) = 0 (4)

for i = 1, 2, . . . , N − 1 where us(a([θi, θi+1], 0, p), θi, b) is de�ned as

−

[
p ·
(
p · θi + θi+1

2
+ (1− p) · 1

2
− (θi + b)

)2

+ (1− p) ·
∫ 1

0

(
p · θi + θi+1

2
+ (1− p) · 1

2
− (y + b)

)2

dy

]

Condition (4) makes the sender of type θi indi�erent between any messages in [θi−1, θi] and [θi, θi+1]. As

in Ottaviani (2000) the solution of (4) is represented by this second order di�erence equation

θi+1 · (2p · θi − p · θi+1 + 4b) = θi−1 · (2p · θi − p · θi−1 + 4b)

solved by

θi+1 − θi = θi − θi−1 + ∆ , ∆ = 4 · b
p

(5)

The intervals [θi−1, θi] are of increasing length, with ∆ as the increase of the step size. Except for the

presence of the parameter p, the equilibrium equation has the same structure as in the case of a perfectly

informed sender. Whenever p > 0 the monotonicity condition (M) de�ned in Crawford and Sobel (1982)

holds. This result will be useful when we will discuss the uniqueness of the partition. Set θ0 = 0, then

θi = iθ1 + 2i(i− 1)
b

p
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for i = 0, 1, 2, . . . , N and

N = N(b, p) =

⌈
−1

2
+

1

2

√
1 + 2

p

b

⌉
(6)

where dxe is the smallest integer greater than x. For p→ 1 this model coincides with the standard cheap

talk and for p → 0 the value of N(b, p) becomes 1, which corresponds to the babbling equilibrium. Since

θN = 1 we can compute

1 = Nθ1 + 2N(N − 1)
b

p

that is

θ1 =
1

N

[
1− 2N(N − 1)

b

p

]
then

θi =
i

N
− 2i(N − i) b

p
(7)

for i = 0, 1, 2, . . . , N and

θi − θi−1 =
1

N
+ 2(2i− 1−N)

b

p
(8)

for i = 1, . . . , N . When p ≤ 4b the only possible equilibrium is the uninformative one. The sender's

expected utility in the cheap talk subgame, when she reports θ ∈ [θi−1, θi] is

EUs([θi−1, θi], b, p) = −

[
p

(
θi−1 + θi

2
− (θ + b)

)2

+ (1− p)
∫ 1

0

(
θi−1 + θi

2
− (y + b)

)2

dy

]
=

−

[
p

(
θi−1 + θi

2
− (θ + b)

)2

+ (1− p)

(
1

3
− θi−1 + θi

2
+ b+

(
θi−1 + θi

2
− b
)2
)]

(9)

and the ex ante expected utility3 is

Vs(b, p) =

N∑
i=1

EUs([θi−1, θi], b, p) = −(1− p)1

6
− (2p− 1)

(
1

12N2
+
b2(N2 − 1)

3p2

)
− b2

while the receiver's one is

Vr(b, p) = −(1− p)1

6
− (2p− 1)

(
1

12N2
+
b2(N2 − 1)

3p2

)
It is easy to see that when p→ 0

lim
p→0

Vs(b, p) = −
(

1

12
+ b2

)
= Vs(b, 0)

lim
p→0

Vr(b, p) = − 1

12
= Vr(b, 0)

the utilities correspond with the babbling outcome and when p→ 1

lim
p→1

Vs(b, p) = −
(

1

12N2
+
b2(N2 − 1)

3

)
− b2 = Vs(b, 1)

lim
p→1

Vr(b, p) = −
(

1

12N2
+
b2(N2 − 1)

3

)
= Vr(b, 1)

they are as in Crawford and Sobel (1982).

3See the Appendix for the detailed computation.
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Existence and Uniqueness of the Optimal E�ort

In order to understand how the previous part of the game is played, we must provide the existence and

the uniqueness of an optimal e�ort for the sender. The �rst issue regards the continuity of the ex ante

utilities. Notice that Vs(b, p) and Vr(b, p) di�er only by the constant b2. Now let P ≡ (p0, p1, . . . , pN ) be

a partition of the [0, 1] interval, with p0 = 0 and

−1

2
+

1

2

√
1 + 2

pi
b

= i

it is easy to see that N(b, p0) = 1 and N(b, pi) jumps from i to i + 1 at p = pi. The following Lemma

guarantee the continuity of the two functions

Lemma 3.2. Vs(b, p) and Vr(b, p) are continuous in p.

From (6) the number of induced actions in equilibrium depends by the parameters (b, p). More precisely

in order to have a N sized maximal equilibrium, these conditions must hold⌈
−1

2
+

1

2

√
1 + 2

p

b

⌉
> N − 1 and

⌈
−1

2
+

1

2

√
1 + 2

p

b

⌉
< N

that is
1

2N(N + 1)
<
b

p
<

1

2N(N − 1)
(10)

for N ≥ 2. Now let us consider the �rst derivative of Vs(b, p) with respect to p ∈ (pi−1, pi) that is, for the

values in which N is constant. When N ≥ 2

dVs(b, p)

dp
=

1

6

(
N2 − 1

N2

)
− 2 · b

2(N2 − 1)

3p2

(
1− p
p

)
in a N sized maximal equilibrium

dVs(b, p)

dp
>

1

6

(
N2 − 1

N2

)
− 2

3
·
(

1

2N(N − 1)

)2

· (N2 − 1) ·
(

1− p
p

)
the right hand side of the above inequality is positive if and only if

1− p
p

< (N − 1)2

Since we are looking for the most informative equilibrium � when N ≥ 2 � the above inequality is true for

p >
1

(N − 1)2 + 1

Now let us consider the second derivative

d2Vs(b, p)

dp2
= 2 · b

2(N2 − 1)

3p2
·
(

3− 2p

p2

)
> 0 for N ≥ 2

so we can state the following Lemma

Lemma 3.3. Let p ∈ (pi−1, pi) with i ≥ 2, the functions Vs(b, p) and Vr(b, p) are strictly convex in p.

Moreover Vs(b, p) and Vr(b, p) are strictly increasing for p ∈ (pi−1, pi) if and only if

p >
1

(N − 1)2 + 1

where N is the maximal number of induced actions in equilibrium.
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Let us consider the following maximization problem

max
p∈[0,1]

Vs(b, p)− c(p) + t (P1)

it represents the optimal choice of the e�ort level c(p) for the sender, before she undertakes it. From

Lemma 3.2 we know that Vs(b, p) is continuous in p and since we assume that also c(p) is continuous in p

� even in the points in which the number N of intervals makes a jump � we can state the following result

Lemma 3.4. The maximization problem (P1) admits at least one solution.

the proof is a direct application of the Weierstrass Extreme-Value Theorem. To get rid of the multiple

solutions of the maximization problem (P1) we can: 1) Assume that ex ante the sender will choose the

e�ort corresponding to this probability

p̂ = max

{
p′ ∈ [0, 1] : p′ ∈ arg max

p∈[0,1]
Vs(b, p)− c(p) + t

}
(11)

between the probabilities that give her the same ex ante maximal expected utility, for which she is indif-

ferent, she chooses the highest one. Or 2) we can assume that the function c(p) is such that

d2c(p)

dp2
>
∂2Vs(b, p)

∂p2

for all p ∈ [0, 1].

Uniqueness of the Partition Equilibrium

From Lemma 3 in Crawford and Sobel (1982) we know that for any given values of (b, p) ∈ R++ × [0, 1],

if 1 ≤ k ≤ N(b, p) there is exactly one partition equilibrium of size k. The main issue is that ex ante

there are multiple possibile equilibria. More precisely one for each k between 1 and N(b, p). To rule out

this circumstance we need a re�nement. It is well known that all re�nements in the signalling games fail

to reduce the number of equilibria in cheap talk games. For this reason we will use the �no incentive to

separate� (NITS) condition stated in Chen and Kartik and Sobel (2008). Di�erently by the �neologism

proof� re�nement, proposed by Farrell (1993), it adapts perfectly to the uniform quadratic model. An

equilibrium satis�es the NITS if the sender of the lowest type prefers the project induced in equilibrium,

rather than the best one that the receiver would take if he knew the sender's true type.

De�nition 3.5 (Chen and Kartik and Sobel (2008)). An equilibrium satis�es the no incentive to separate

(NITS) condition if

us(a([0, θ1], 0, p), 0, b) ≥ us(a(0, p), 0, b)

It means that this condition must hold

−

[
(1− p) ·

∫ 1

0

(
p
θ1
2

+ (1− p)1

2
− x− b

)2

dx+ p ·
(
θ1
2

+ (1− p)1

2
− b
)2
]
≥

−

[
(1− p) ·

∫ 1

0

(
(1− p)1

2
− x− b

)2

dx+ p ·
(

(1− p)1

2
− b
)2
]

for all (θ, p) ∈ [0, 1]× (0, 1], and it is true if and only if

p · θ1 ≤ 4b (12)

since we know that

θ1 =
1

N

[
1− 2N(N − 1)

b

p

]
< 1
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inequality (12) holds if and only if

p

b
≤ 2N(N + 1) ⇐⇒ b

p
≥ 1

2N(N + 1)

but from (10) we know that it is always strictly satis�ed. As we observed previously, condition (M) from

Crawford and Sobel (1982) holds for equation (5) so we can use this result

Proposition 3.6 (Chen and Kartik and Sobel (2008)). If condition (M) is satis�ed, only the unique

equilibrium with the maximum number of induced actions satis�es NITS.

to establish that the only equilibrium played in the subgame is the more informative, the one in which

the number of induced action is maximal. Now since for all p ∈ [0, 1], Vs(b, p) and Vr(b, p) di�ers up to a

constant, it results that

Vs(b, p)−Vs(b, 0) = Vr(b, p)−Vr(b, 0) = δ(b, p) ≥ 0

where Vs(b, 0) and Vr(b, 0) are respectively the outcomes of the babbling equilibrium for sender and

receiver. Let c(p̂) be the optimal e�ort level under the most informative equilibrium, as de�ned in (11).

Let

δ(b, p̂) =
1

12
− (1− p̂)1

6
− (2p̂− 1)

(
1

12N2
− b2(N2 − 1)

3p̂2

)
≥ 0

be the information surplus obtained when the sender acts optimally, that is when she maximizes her ex ante

expected utility taking in account that in the subgame she will induces the maximum partition equilibria.

Sender's Take-it-or-leave-it - ΓS

Now we will analyze the game in which the sender makes a �take-it-or-leave-it� o�er to the receiver.

1. The sender asks for a transfer t ≥ 0.

2. The receiver can accept it and pay t ≥ 0 or he can reject the requested transfer.

3. The sender undertakes the observable e�ort c(p).

4. The sender observes the signal s ∈ [0, 1] and then she reports a message m ∈ [0, 1].

5. The receiver chooses the project a ∈ [0, 1] and then the outcomes are realized.

What it follows is a brief description of the game and of its information sets. As usual the function ϕ : H→
{s, r} identi�es for each information set h ∈ H the active player, while the function A : H → Aϕ(h)(h)

speci�es the feasible actions, where Aϕ(h)(h) is the action set of the active player in h. The �rst who moves

is the sender asking a transfer (ϕ(h1) = s,As(h1) = t ∈ R+). The receiver can accept and pay it or he can

reject (ϕ(h2) = r,Ar(h2) = {p, np}). After that, the sender must choose to undertake the optimal e�ort

or not. We can identify two information sets for the sender: h3 after the history (t, p) and h4 after the

history (t, np), then (ϕ(h3) = s,As(h3) = {u, nu}) and (ϕ(h4) = s,As(h4) = {u, nu}). Given the actions

taken in h3 and h4 the sender can be informed or uninformed. These situations are represented by the

information sets h5, h6, h7, h8 reached after the histories

(t, p, u) → h5

(t, p, nu) → h6

(t, np, u) → h7

(t, np, nu) → h8
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Since the receiver can observe the e�ort he can distinguish all of them. At this stage of the game the

sender must report the signal's realization through a costless message m, so

ϕ(h5) = ϕ(h6) = ϕ(h7) = ϕ(h8) = s

As(h5) = As(h6) = As(h7) = As(h8) = m ∈ [0, 1]

an then for the receiver we can identify four information sets h9, h10, h11, h12 reached after these histories

(t, p, u,m) → h9

(t, p, nu,m) → h10

(t, np, u,m) → h11

(t, np, nu,m) → h12

in which

ϕ(h9) = ϕ(h10) = ϕ(h11) = ϕ(h12) = r

Ar(h9) = Ar(h10) = Ar(h11) = Ar(h12) = a ∈ [0, 1]

Given this description of the game, an equilibrium would be a pair of strategies (σs, σr) with

σs(h) = (σs(h1), σs(h3), σs(h4), σs(h5), σs(h6), σs(h7), σs(h8))

σr(h) = (σr(h2), σr(h9), σr(h10), σr(h11), σr(h12))

and for the receiver we can de�ne four posterior beliefs distributions µr9, µ
r
10, µ

r
11, µ

r
12 over the messages

received in the respective information sets h9, h10, h11, h12. For example, µr9 corresponds to the receiver's

posterior beliefs about the quantity of information contained in a message received in h9, in order to induce

a maximal partition equilibrium in the following cheap talk subgame. Before describing the equilibria, we

must discuss the reciprocals incentives to pay the transfer and make the e�ort. From the previous section,

we know that δ(b, p̂) is the information surplus obtained when the sender acts optimally. Now, let us

assume that c(p̂) > δ(b, p̂), the sender will undertake the e�ort if and only if Vs(b, p̂)− c(p̂) + t ≥ Vs(b, 0).

This implies a transfer t ≥ c(p̂) − δ(b, p̂), but after the payment was made, the sender has a pro�table

deviation from undertaking the costly e�ort. In fact, if she undertake the e�ort her payo� would be

Vs(b, p̂)− c(p̂) + t and if she deviates she would obtain Vs(b, 0) + t. Now notice that

Vs(b, p̂)− c(p̂) + t < Vs(b, 0) + t

to see this

Vs(b, p̂)− c(p̂) < Vs(b, p̂)− δ(b, p̂) = Vs(b, 0)

the receiver anticipates this deviation, so for him it is optimal to reject any requested transfer. In this

case the only possible equilibrium is the babbling one.

Proposition 3.7. For c(p̂) > δ(b, p̂) this pair of strategies

σs(h) = (t, nu, nu,mb,mb,mb,mb)

σr(h) =

(
np,

1

2
,

1

2
,

1

2
,

1

2

)
with this system of beliefs

µr9 = µr10 = µr11 = µr12 = 0

is the only equilibrium for the extensive form game ΓS, where t ∈ R+ and mb ∈ ∆(M).
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Now let us assume c(p̂) < δ(b, p̂) as in the previous case the babbling equilibrium is still one of the

possible equilibria of the game. There are also two other equilibria in which the information transmission

is attainable. In the �rst one, the sender undertakes the e�ort even without receiving any transfer

Proposition 3.8. For c(p̂) < δ(b, p̂) this pair of strategies

σs(h) = (t, u, u,ma,mb,ma,mb)

σr(h) =

(
np, am,

1

2
, am,

1

2

)
with this system of beliefs

µr9 = µr11 = 1 , µr10 = µr12 = 0

is an equilibrium for the extensive form game ΓS, where t ∈ R+, m
a ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi], where

θi's are determined by (7), mb ∈ ∆(M) and am = a([θi−1, θi], 0, p̂) as in (1).

in the second one, the sender undertakes the e�ort and she receives a transfer

Proposition 3.9. For c(p̂) < δ(b, p̂) this pair of strategies

σs(h) = (t, u, nu,ma,mb,mb,mb)

σr(h) =

(
p, am,

1

2
,

1

2
,

1

2

)
with this system of beliefs

µr9 = 1 , µr10 = µr11 = µr12 = 0

is an equilibrium for the extensive form game ΓS, with t = c(p̂)−δ(b, p̂), ma ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi],

where θi's are determined by (7), mb ∈ ∆(M) and am = a([θi−1, θi], 0, p̂) as in (1).

Receiver's Take-it-or-leave-it - ΓR

Now we will analyze the game in which the receiver makes a �take-it-or-leave-it� o�er to the sender.

1. The receiver o�ers a transfer t ≥ 0.

2. The sender can accept it and get t ≥ 0 or she can reject the proposed transfer.

3. The sender undertakes the observable e�ort c(p).

4. The sender observes the signal s ∈ [0, 1] and then she reports a message m ∈ [0, 1].

5. The receiver chooses the project a ∈ [0, 1] and then the outcomes are realized.

The �rst who moves is the receiver o�ering a transfer (ϕ(h1) = r,Ar(h1) = t ∈ R+). The sender can

accept it or she can reject it (ϕ(h2) = s,As(h2) = {a, r}). After that, the sender must choose to undertake
the optimal e�ort or not. We can identify two information sets for the sender: h3 after the history (t, a)

and h4 after the history (t, r), then (ϕ(h3) = s,As(h3) = {u, nu}) and (ϕ(h4) = s,As(h4) = {u, nu}).
Given the actions taken in h3 and h4 the sender can be informed or uninformed. These situations are

represented by the information sets h5, h6, h7, h8 reached after the histories

(t, a, u) → h5

(t, a, nu) → h6

(t, r, u) → h7

(t, r, nu) → h8

10



Since the receiver can observe the e�ort he can distinguish all of them. At this stage of the game the

sender must report the signal's realization through a costless message m, so

ϕ(h5) = ϕ(h6) = ϕ(h7) = ϕ(h8) = s

As(h5) = As(h6) = As(h7) = As(h8) = m ∈ [0, 1]

an then for the receiver we can identify four information sets h9, h10, h11, h12 reached after these histories

(t, a, u,m) → h9

(t, a, nu,m) → h10

(t, r, u,m) → h11

(t, r, nu,m) → h12

in which

ϕ(h9) = ϕ(h10) = ϕ(h11) = ϕ(h12) = r

Ar(h9) = Ar(h10) = Ar(h11) = Ar(h12) = a ∈ [0, 1]

Given this description of the game, an equilibrium would be a pair of strategies (σs, σr) with

σs(h) = (σs(h2), σs(h3), σs(h4), σs(h5), σs(h6), σs(h7), σs(h8))

σr(h) = (σr(h1), σr(h9), σr(h10), σr(h11), σr(h12))

and for the receiver four posterior beliefs distributions µr9, µ
r
10, µ

r
11, µ

r
12 over the messages received in the

respective information sets h9, h10, h11, h12. The same reasoning conducted about the relation between

c(p̂) and δ(b, p̂) in the sender's �take-it-or-leave-it� game still apply in this one. When c(p̂) > δ(b, p̂) the

sender has an incentive to deviate, from the signal's acquisition, so the receiver will not o�er any transfer.

Hence the sender does not undertake any e�ort. The resulting equilibrium is the babbling one

Proposition 3.10. For c(p̂) > δ(b, p̂) this pair of strategies

σs(h) = (∆({a, r}), nu, nu,mb,mb,mb,mb)

σr(h) =

(
0,

1

2
,

1

2
,

1

2
,

1

2

)
with this system of beliefs

µr9 = µr10 = µr11 = µr12 = 0

is the only equilibrium for the extensive form game ΓR, where m
b ∈ ∆(M).

When c(p̂) < δ(b, p̂) as in the previous case the babbling equilibrium is one of the possible equilibria of

the game. There are also two other equilibria in which the information transmission is attainable. In the

�rst one, the sender undertakes the e�ort even without receiving any transfer

Proposition 3.11. For c(p̂) < δ(b, p̂) this pair of strategies

σs(h) = (∆({a, r}), u, u,ma,mb,ma,mb)

σr(h) =

(
0, am,

1

2
, am,

1

2

)
with this system of beliefs

µr9 = µr11 = 1 , µr10 = µr12 = 0

is an equilibrium for the extensive form game ΓR, where m
a ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi], where θi's

values are determined by (7), mb ∈ ∆(M) and am = a([θi−1, θi], 0, p̂) as in (1).
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in the second one, the sender undertakes the e�ort and she receives a transfer

Proposition 3.12. For c(p̂) < δ(b, p̂) this pair of strategies

σs(h) = (a, u, nu,ma,mb,mb,mb)

σr(h) =

(
t, am,

1

2
,

1

2
,

1

2

)
with this system of beliefs

µr9 = 1 , µr11 = µr10 = µr12 = 0

is an equilibrium for the extensive form game ΓR, with t = c(p̂)−δ(b, p̂), ma ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi],

where θi's values are determined by (7), mb ∈ ∆(M) and am = a([θi−1, θi], 0, p̂) as in (1).

4 Equilibria under Covert E�ort

In this section we assume that sender's e�ort is not observable. All the other elements of the game remain

the same. At the time in which the sender learns her type, transfer and costly e�ort are sunk costs. In

this setting the receiver's information sets shrink. Without the observation of the e�ort, the receiver must

form a consistent system of beliefs about the meaningfulness of the messages m ∈ [0, 1]. We will see that

they strictly depend by the optimal e�ort and by the incentive to deviate from the equilibrium strategy.

As usual, when dealing with cheap talk games, the babbling equilibrium still remains.

Sender's incentive to deviate

Now suppose the receiver expects the sender to undertake the e�ort and to communicate her informa-

tion inducing N distinct projects. Where N = N(b, p) is the maximum number of actions induced in

equilibrium. For an uninformed sender the best project is

as =
1

2
+ b

but for a given message m ∈ [θi−1, θi] the receiver will implement the project

aNi = aN (θi−1, θi) =
θi−1 + θi

2
=
i− 1

N
+

1

2N
− 2i(N + 1− i) b

p
+ (N + 1)

b

p
(13)

with i = 1, 2, . . . , N . So the sender will choose a message m such that the induced action aN (θj−1, θj)

solves the following problem

j ∈ arg min
i∈N

∣∣as − aN (θi−1, θi)
∣∣ (14)

That is, between all the possible equilibrium actions she will choose the nearest one to as. From (5) we

know that at each step i the di�erence (θi− θi−1) is increasing so, (θi− θi−1) < (θi+1− θi) and then there

are no two adjacent actions aN (θj−1, θj), a
N (θj , θj+1) that solve the above minimization problem. Before

providing three examples, we will discuss some properties of the action induced in this way. Suppose N

odd number with N > 3, for i = N+1
2

aN(N+1
2 ) =

1

2
−
(
N2 − 1

2

)
b

p

and for i = N+1
2 + 1

aN(N+1
2 )+1

=
1

2
−
(
N2 − 1

2

)
b

p
+

(
1

N
+ 2

b

p

)
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In order to simplify the computations we assume that the optimal e�ort is such that p̂ = 1. Evaluating

the di�erences as − aN
(N+1

2 )
and aN

(N+1
2 )+1

− as we obtain

as − aN(N+1
2 ) < aN(N+1

2 )+1
− as

if and only if
1

2N(N + 1)
< b <

1

N(N2 − 1)

where the left inequality comes from from (10). It is easy to see that for N > 3 odd it is impossible, so

Lemma 4.1. Let N odd with N > 3 and p̂ = 1, under the covert e�ort the sender will never choose any

action aN (θi−1, θi) with i = 1, 2, . . . ,
(
N+1
2

)
as a pro�table deviation from the equilibrium strategy.

Now suppose N even with N > 4, for i = N
2 + 1

aN(N
2 +1) =

1

2
+

1

2N
−
(
N2 − 2

2

)
b

p

and for i = N
2 + 2

aN(N
2 +2) =

1

2
+

1

2N
−
(
N2 − 2

2

)
b

p
+

(
1

N
+ 4

b

p

)
As we did before let us assume p̂ = 1. Evaluating the di�erences as − aN

(N
2 +1)

and aN
(N

2 +2)
− as we obtain

as − aN(N
2 +1) < aN(N

2 +2) − a
s

if and only if
1

2N(N + 1)
< b <

2

N(N2 − 4)

where the left inequality comes from from (10). It is easy to see that for N > 4 even it is impossible, so

Lemma 4.2. Let N even with N > 4 and p̂ = 1, under the covert e�ort the sender will never choose any

action aN (θi−1, θi) with i = 1, 2, . . . ,
(
N
2 + 1

)
as a pro�table deviation from the equilibrium strategy.

We did not say anything about the cases N = 2, 3, 4 because in the following they will be analyzed in

details.

Example 4.3. Let N = 2 and p̂ = 1, from (10) this implies b ∈
(

1
12 ,

1
4

)
applying (7) we �nd

θ0 = 0 , θ1 =
1

2
− 2b , θ2 = 1

and from (13)

a21 =
1

4
− b , a22 =

3

4
− b

the sender would choose a22 as pro�table deviation and she would obtain this expected utility

Vs

d
(b, p) =

∫ 1

0

(
3

4
− b− (θ + b)

)2

dθ = −
(

7

48
− b · (1− 4b)

)
which is always greater than the outcome obtained with the babbling equilibrium

Vs(b, 0) = −
(

1

12
+ b2

)
and always lower than the outcome obtained with the maximum partition equilibrium

Vs(b, p̂) = −
(

1

48
+ 2b2

)
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then Vs(b, 0) < Vs

d
(b, p) < Vs(b, p̂). For the receiver the situation is di�erent. If the sender deviates, his

expected utility becomes

Vr

d
(b, p) =

∫ 1

0

(
3

4
− b− θ

)2

dθ = −
(

7

48
− b ·

(
1

2
− b
))

which is the worst possible outcome Vr

d
(b, p) < Vr(b, 0) < Vr(b, p̂) where

Vr(b, 0) = − 1

12

and

Vr(b, p̂) = −
(

1

48
+ b2

)
Example 4.4. Let N = 3 and p̂ = 1, from (10) this implies b ∈

(
1
24 ,

1
12

)
applying (7) we �nd

θ0 = 0 , θ1 =
1

3
− 4b , θ2 =

2

3
− 4b , θ3 = 1

and from (13)

a31 =
1

6
− 2b , a32 =

1

2
− 4b , a33 =

5

6
− 2b

the sender would choose a33 as pro�table deviation and she would obtain this expected utility

Vs

d
(b, p) =

∫ 1

0

(
5

6
− 2b− (θ + b)

)2

dθ = −
(

7

36
− 2b ·

(
1− 9

2
b

))
which is always greater than the outcome obtained with the babbling equilibrium Vs(b, 0) but it is always

lower than Vs(b, p̂) with

Vs(b, p̂) = −
(

1

108
+

11

3
b2
)

As the case N = 2 for the receiver the situation is quite di�erent Vr

d
(b, p) < Vr(b, 0) < Vr(b, p̂) where

Vr(b, p̂) = −
(

1

108
+

8

3
b2
)

Example 4.5. Let N = 4 and p̂ = 1, from (10) this implies b ∈
(

1
80 ,

1
24

)
applying (7) we �nd

θ0 = 0 , θ1 =
1

4
− 6b , θ2 =

1

2
− 8b , θ3 =

3

4
− 6b , θ4 = 1

and from (13)

a41 =
1

8
− 3b , a42 =

3

8
− 7b , a43 =

5

8
− 7b , a44 =

7

8
− 3b

the sender would choose a43 as pro�table deviation and she would obtain this expected utility

Vs

d
(b, p) =

∫ 1

0

(
5

8
− 7b− (θ + b)

)2

dθ = −
(

49

192
+ 2b · (32b− 1)

)
which is always greater than the outcome obtained with the babbling equilibrium Vs(b, 0) but it is always

lower than Vs(b, p̂) with

Vs(b, p̂) = −
(

1

192
+ 6b2

)
As the case N = 3 for the receiver the situation is quite di�erent Vr

d
(b, p) < Vr(b, 0) < Vr(b, p̂) where

Vr(b, p̂) = −
(

1

192
+ 5b2

)
Di�erently from the overt case, the receiver can form his beliefs only on the willingness of the sender to

undertake the costly e�ort, with respect to the bene�t that she will obtain deviating from the equilibrium

strategy. We have de�ned δ(b, p̂) as the information surplus � under the overt e�ort � obtained when the

sender acts optimally. We can do something similar for the covert e�ort case. Let ηs(b, p̂) be

ηs(b, p̂) = Vs(b, p̂)−Vs

d
(b, p)

since Vs

d
(b, p) > Vs(b, 0) it result that ηs(b, p̂) < δ(b, p̂).
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Sender's Take-it-or-leave-it - Γ̂S

1. The sender asks for a transfer t ≥ 0.

2. The receiver can accept it and pay t ≥ 0 or he can reject the requested transfer.

3. The sender undertakes the unobservable e�ort c(p).

4. The sender observes the signal s ∈ [0, 1] and then she reports a message m ∈ [0, 1].

5. The receiver chooses the project a ∈ [0, 1] and then the outcomes are realized.

The �rst who moves is the sender asking a transfer (ϕ(h1) = s,As(h1) = t ∈ R+). The receiver can accept it

and pay or he can reject it (ϕ(h2) = r,Ar(h2) = {p, np}). After that, the sender must choose to undertake
the optimal e�ort or not. We can identify two information sets for the sender: h3 after the history (t, a)

and h4 after the history (t, r), then (ϕ(h3) = s,As(h3) = {u, nu}) and (ϕ(h4) = s,As(h4) = {u, nu}).
Given the actions taken in h3 and h4 the sender can be informed or uninformed. These situations are

represented by the information sets h5, h6, h7, h8 reached after the histories

(t, p, u) → h5

(t, p, nu) → h6

(t, np, u) → h7

(t, np, nu) → h8

Since the receiver can not observe the e�ort he can not distinguish all of them. In particular he can

not distinguish between h5, h6 and h7, h8. At this stage of the game the sender must report the signal's

realization through a costless message m, so

ϕ(h5) = ϕ(h6) = ϕ(h7) = ϕ(h8) = s

As(h5) = As(h6) = As(h7) = As(h8) = m ∈ [0, 1]

an then for the receiver we can identify two information sets h9, h10 reached after these histories

{(t, p, u,m), (t, p, nu,m)} → h9

{(t, np, u,m), (t, np, nu,m)} → h10

in which

ϕ(h9) = ϕ(h10) = r

Ar(h9) = Ar(h10) = a ∈ [0, 1]

Given this description of the game, an equilibrium would be a pair of strategies (σs, σr) with

σs(h) = (σs(h1), σs(h3), σs(h4), σs(h5), σs(h6), σs(h7), σs(h8))

σr(h) = (σr(h2), σr(h9), σr(h10))

and for the receiver two posterior beliefs distributions µr9, µ
r
10 over the messages received in the respective

information sets h9, h10. For example, µr9 corresponds to the receiver's posterior beliefs about the quantity

of information contained in a message received in h9, in order to induce a maximal partition equilibrium

in the following cheap talk. Let us assume that c(p̂) > ηs(b, p̂), in this case the sender does not have any

incentive to undertake the costly e�ort. The receiver knows it and he forms his beliefs accordingly. So the

only possible equilibrium is the babbling one.
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Proposition 4.6. For c(p̂) > ηs(b, p̂) this pair of strategis

σs(h) = (t, nu, nu,mb,mb,mb,mb)

σr(h) =

(
np,

1

2
,

1

2

)
with this system of beliefs

µr9 = µr10 = 0

is the only equilibrium for the extensive form game Γ̂S, where t ∈ R+ and mb ∈ ∆(M).

Now let us assume c(p̂) < ηs(b, p̂) as in the previous case the babbling equilibrium is still one of the

possible equilibria of the game. There are also two other equilibria in which the information transmission

is attainable. In the �rst one, the sender undertake the e�ort even without receiving any transfer

Proposition 4.7. For c(p̂) < ηs(b, p̂) this pair of strategis

σs(h) = (t, u, u,ma,md,ma,md)

σr(h) = (np, am, am)

with this system of beliefs

µr9 = µr10 = 1

is an equilibrium for the extensive form game Γ̂S, where t ∈ R+, m
a ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi],

θi's values are determined by (7), md ∈ [θj−1, θj ] for the value of j that solves problem (14) and am =

a([θi−1, θi], 0, p̂) as in (1).

In the second one, the sender undertakes the e�ort and she receives a transfer

Proposition 4.8. For c(p̂) < ηs(b, p̂) this pair of strategis

σs(h) = (t, u, nu,ma,md,md,md)

σr(h) =

(
p, am,

1

2

)
with this system of beliefs

µr9 = 1 , µr10 = 0

is an equilibrium for the extensive form game Γ̂S, where t = c(p̂) − ηs(b, p̂), ma ∈ ∆([θi−1, θi]) for s ∈
[θi−1, θi], θi's values are determined by (7), md ∈ [θj−1, θj ] for the value of j that solves problem (14) and

am = a([θi−1, θi], 0, p̂) as in (1).

Receiver's Take-it-or-leave-it - Γ̂R

1. The receiver o�ers a transfer t ≥ 0.

2. The sender can accept it and get t ≥ 0 or she can reject the proposed transfer.

3. The sender undertakes the unobservable e�ort c(p).

4. The sender observes the signal s ∈ [0, 1] and then she reports a message m ∈ [0, 1].

5. The receiver chooses the project a ∈ [0, 1] and then the outcomes are realized.
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The �rst who moves is the receiver o�ering a transfer (ϕ(h1) = r,Ar(h1) = t ∈ R+). The sender can

accept or she can reject (ϕ(h2) = s,As(h2) = {a, r}). After that, the sender must choose to undertake the
optimal e�ort or not. We can identify two information sets for the sender: h3 after the history (t, a) and

h4 after the history (t, r), then (ϕ(h3) = s,As(h3) = {u, nu}) and (ϕ(h4) = s,As(h4) = {u, nu}). Given
the actions taken in h3 and h4 the sender can be informed or uninformed. These situations are represented

by the information sets h5, h6, h7, h8 reached after the histories

(t, a, u) → h5

(t, a, nu) → h6

(t, r, u) → h7

(t, r, nu) → h8

Since the receiver can not observe the e�ort he can not distinguish all of them. In particular he can

not distinguish between h5, h6 and h7, h8. At this stage of the game the sender must report the signal's

realization through a costless message m, so

ϕ(h5) = ϕ(h6) = ϕ(h7) = ϕ(h8) = s

As(h5) = As(h6) = As(h7) = As(h8) = m ∈ [0, 1]

an then for the receiver we can identify two information sets h9, h10 reached after these histories

{(t, a, u,m), (t, a, nu,m)} → h9

{(t, r, u,m), (t, r, nu,m)} → h10

in which

ϕ(h9) = ϕ(h10) = r

Ar(h9) = Ar(h10) = a ∈ [0, 1]

Given this description of the game, an equilibrium would be a pair of strategies (σs, σr) with

σs(h) = (σs(h2), σs(h3), σs(h4), σs(h5), σs(h6), σs(h7), σs(h8))

σr(h) = (σr(h1), σr(h9), σr(h10))

and for the receiver two posterior beliefs distributions µr9, µ
r
10 over the messages received in the respective

information sets h9, h10. The same reasoning conducted about the relation between c(p̂) and ηs(b, p̂) in

the sender's "take-it-or-leave-it" game still apply in this one. When c(p̂) > ηs(b, p̂) the sender has an

incentive to deviate, from the signal's acquisition, so the receiver will not o�er any transfer and moreover

he will not listen to any message m ∈ [0, 1]. So the sender does not undertake any e�ort. The resulting

equilibrium is the babbling one

Proposition 4.9. For c(p̂) > ηs(b, p̂) this pair of strategies

σs(h) = (∆({a, r}), nu, nu,mb,mb,mb,mb)

σr(h) =

(
0,

1

2
,

1

2

)
with this system of beliefs

µr9 = µr10 = 0

is the only equilibrium for the extensive form game Γ̂R, where m
b ∈ ∆(M).

When c(p̂) < ηs(b, p̂) as the previous case the babbling equilibrium is one of the possible equilibria of the

game. There are also two other equilibria in which the information transmission is attainable. In the �rst

one, the sender undertake the e�ort even without receiving any transfer
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Proposition 4.10. For c(p̂) < ηs(b, p̂) this pair of strategies

σs(h) = (∆({a, r}), u, u,ma,md,ma,md)

σr(h) = (0, am, am)

with this system of beliefs

µr9 = µr10 = 1

is an equilibrium for the extensive form game Γ̂R, where m
a ∈ ∆([θi−1, θi]) for s ∈ [θi−1, θi], θi's values

are determined by (7), md ∈ [θj−1, θj ] for the value of j that solves problem (14) and am = a([θi−1, θi], 0, p̂)

as in (1).

In the second one, the sender undertakes the e�ort and she receives a transfer

Proposition 4.11. For c(p̂) < ηs(b, p̂) this pair of strategies

σs(h) = (a, u, nu,ma,md,md,md)

σr(h) =

(
t, am,

1

2

)
with this system of beliefs

µr9 = 1 , µr10 = 0

is an equilibrium for the extensive form game Γ̂R, where t = c(p̂) − ηs(b, p̂), ma ∈ ∆([θi−1, θi]) for

s ∈ [θi−1, θi], θi's values are determined by (7), md ∈ [θj−1, θj ] for the value of j that solves problem (14)

and am = a([θi−1, θi], 0, p̂) as in (1).

5 Conclusions

We found that either in the overt and covert e�ort case, there are equilibria in which the sender undertakes

the e�ort even without receiving any transfer. This result is not surprisingly. The sender's payo�s depend

by the action a undertaken through the number of actions induced in equilibrium. As we see, a coarsening

of communication decreases the expected utilities of both. When the bene�t of being informed δ(b, p̂) or

η(b, p̂) is greater than its cost c(p̂), the sender has an unilateral incentive to undertake the costly e�ort.

The receiver anticipates this and then he refuses any kind of transfer. For this reason there exist equilibria

in which communication takes places even without a transfer. An ulterior motive for this is the total

absence of receiver's commitment about the transfer structure. Due to this, the only determinant for the

acquisition of the signal is the di�erence between its cost and the bene�t obtained. If we allow the receiver

to commit about a plan of transfers, the equilibria commented before disappear and the sender will be

able to undertake more costly e�orts. But this kind of framework is beyond the scope of this work. Here

we analyzed what happens in a model in which the relations between two agents can not be regulated by a

contract. It is interesting to note that under the covert e�ort, the bene�t of being informed is always lower

than the overt one. In the overt case for an o� path equilibrium behavior, the receiver can threaten the

sender with the babbling equilibrium, the worst possible outcome for her. In the covert case the situation

is reversed. The outcome originated by a sender's deviation, induces for the receiver a payo� even worst

than the babbling equilibrium. Suppose that before playing the game, the principal can choose between k

di�erent projects y1, y2, . . . , yk and each of them has an optimal e�ort c(p̂1), c(p̂2), . . . , c(p̂k). Depending

on the possibility of observing or not the e�ort, there will be project that he will discard a priori. For any

project yi such that c(p̂i) > δ(b, p̂i) we know that the only possible outcome is the babbling equilibrium.
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For projects yi such that δ(b, p̂i) > c(p̂i) > η(b, p̂i) we know that the only way to avoid the babbling

equilibrium is to be able to observe the e�ort, and for projects yi such that η(b, p̂i) > c(p̂i) there is no

di�erence between the overt or the covert e�ort. A possible extension of this work is introducing the

possibility of a naive principal. That is, a principal that blindly trust the received message as in Ottaviani

(2000) or the possibility of partial commitment by one of the two parts.

6 Appendix

The ex ante expected utility of the sender is

Vs(b, p) = −

[
(1− p)

N∑
i=1

∫ θi

θi−1

(
1

3
− θi−1 + θi

2
+

(
θi−1 + θi

2
− b
)2
)
dθ+

+p

N∑
i=1

∫ θi

θi−1

(
θi−1 + θi

2
− b− θ

)2

dθ

]
consider the �rst summation

(1− p)
N∑
i=1

∫ θi

θi−1

(
1

3
− θi−1 + θi

2
+

(
θi−1 + θi

2
− b
)2
)
dθ =

(1− p)
N∑
i=1

[
1

3
(θi − θi−1)−

θ2i − θ2i−1
2

+ b(θi − θi−1)+

+
(θi + θi−1)2

4
(θi − θi−1) + b2(θi − θi−1)− b(θ2i − θ2i−1)

]
notice that

N∑
i=1

(θi − θi−1) = 1

N∑
i=1

(θ2i − θ2i−1) = 1

and
N∑
i=1

(θi + θi−1)2 · (θi − θi−1) =
1

3

[
4 +

4b2(1−N2)

p2
− 1

N2

]
the �rst summation becomes

(1− p)
[

1

12

(
2− 1

N2

)
+
b2(1−N2)

3p2
+ b2

]
now consider the second summation

p

N∑
i=1

∫ θi

θi−1

(
θi−1 + θi

2
− b− θ

)2

dθ =

p

N∑
i=1

[
b2 + (θi − θi−1) +

θ3i − θ3i−1
3

− (θi + θi−1)2

4
(θi − θi−1)

]
=

p

[
1

12N2
+
b2(N2 − 1)

3p2
+ b2

]
and then

Vs(b, p) = −(1− p)
[

1

12

(
2− 1

N2

)
+
b2(1−N2)

3p2
+ b2

]
− p

[
1

12N2
+
b2(N2 − 1)

3p2
+ b2

]
=

−(1− p)1

6
− (2p− 1)

(
1

12N2
+
b2(N2 − 1)

3p2

)
− b2

and

Vr(b, p) = −(1− p)1

6
− (2p− 1)

(
1

12N2
+
b2(N2 − 1)

3p2

)
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The left derivative of V (b, p) with respect to p is

d−V (b, p)

dp
= lim
h→0+

V (b, p− h)− V (b, p)

h

and it resuts

d−V (b, p)

dp
= lim
h→0+

−1

6
− (2p− 1)

b2(N2 − 1)

3p2
· 2p− h

(p− h)2
+ 2

(
1

12N2
− b2(N2 − 1)

3(p− h)2

)
=

d−V (b, p)

dp
= −1

6
·
(
N2 − 1

N2

)
+ 2 · b

2(N2 − 1)

3p2
·
(

1− p
p

)
from (10) it is easy to see that

b2

p2

(
1− p
p

)
<

1

4N2(N − 1)2

(
1− p
p

)
<

1

4N2

but then for

p >
1

(N − 1)2 + 1

it results
d−V (b, p)

dp
< 0

Proof of Lemma 3.2

For any p ∈ (pi, pi+1) the number N(b, p) is constant and so continuity is trivial. Now it must be shown

that

lim
ε→0+

Vs(b, pi − ε) = Vs(b, pi) = lim
ε→0+

Vs(b, pi + ε)

the �rst equality is satis�ed since

lim
ε→0+

N(b, pi − ε) = N(b, pi)

for the second equality notice that

lim
ε→0+

N(b, pi + ε) = N(b, pi) + 1

and so

lim
ε→0+

Vs(b, pi + ε)−Vs(b, pi) = (2p− 1)

[
1 + 2i

12i2(i+ 1)2
− b2

p2
1 + 2i

3

]
= 0

where the last equality comes from

−1

2
+

1

2

√
1 + 2

pi
b

= i

by de�nition. This complete the proof for Vs(b, pi − ε). Given that Vs(b, p) and Vr(b, p) di�er only for a

constant, the continuity of the �rst implies the continuity of the second and vice versa.
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