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Abstract

We examine a dynamic principal-agent model in which the output is
correlated over time. The optimal contract determines the players’ share of
the firm cash-flow and a liquidation policy. Incentive compatibility, together
with the agent’s limited liability, requires that the firm is liquidated following
a history of low returns. With correlated outcome, the optimal liquidation
decision depends both on the firm profitability and the players’ shares of
the firm cash-flow. The firm is liquidated more inefficiently if the principal’s
share is high. The payments to the agent are delayed, and he is rewarded by
promising him a higher share of the future returns. Once the agent’s share
grows high enough, the firm is operated efficiently. In particular, the firm
is only liquidated if it is efficient to do so.

1 Introduction

This paper studies dynamic incentives in a real option problem. A principal invests
in a firm that produces a stochastic cash-flow. At any point in time, she has the
option to terminate the operations and realize a liquidation payoff. As long as
the firm is operated, the principal needs to employ an agent to handle the daily
operations. The agent has superior knowledge about the firm value and can use
the informational advantage to generate a private benefit. To prevent the agent
from enjoying private benefits, the principal rewards him by leaving him a share
of the firm cash-flow as a compensation, and punishes him by liquidating the
firm. The players’ shares of the firm cash-flow, as well as its liquidation policy,
are determined in a contract on which the players agree in the beginning of the
relationship.

Our model describes a natural connection between agency problems and firm
profitability. In practice, firm efficiency and leverage are important factors ex-
plaining why firms are liquidated under circumstances of financial distress. Such
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a phenomenon can be interpreted as a natural consequence of an asymmetric in-
formation problem between an entrepreneur (agent) and a financier (principal).
Because of the agency problem, the financier has to punish the entrepreneur for
low outcome realizations, and leave him part of a high surplus as a reward.

In more leveraged firms, the financier has higher claims on the firm cash flow
whereas the entrepreneur’s share of the output is lower. To provide the agent
incentives, the optimal contract threatens to liquidate the firm inefficiently. More-
over, if the agent’s share is high, liquidation is not as crucial for incentive provision.
However, the firm might still be liquidated if its operations become unprofitable.
Firms with low profitability are always liquidated for efficiency reasons. The phe-
nomenon is well documented in Zingales (1998) who provides empirical evidence
in tracking industry.

Our starting point is a dynamic principal-agent model in which both players
are risk-neutral, but the agent is protected by limited liability. Limited liability
implies that the contract cannot impose negative payments to the agent, and that
losses have to be covered by the principal. The firm produces a stochastic cash-flow
that is unobservable by the principal. The cash-flow is reported by the agent who
has the opportunity to conceal part of it from her. Such diversion generates the
agent a private benefit, but is related with a social cost. To prevent the agent from
diverting cash-flows, the principal has to reward him for reporting high returns.

The principal has two instruments to provide the agent incentives: nonnegative
payments and liquidation. If the agent reports high cash-flows, the principal leaves
him part of the surplus as a compensation for his report. The agent has no
incentives to misreport cash-flows if his share of the cash-flow compensates for the
private benefit that he enjoys if he diverts.

The liquidation is irreversible. Firm assets are sold in fire sales and the returns
are collected by the principal. With correlated cash-flows the firm value depends
on the output, and the liquidation decision corresponds to the realization of a real
option. If the cash-flow is high, the expected future returns are high and so is
the expected value of future operations. When the output decreases, liquidation
becomes more attractive. If the output is low, the firm value is low and the
liquidation option relatively more valuable.

With correlated cash-flows past returns predict future outcomes. If the agent
reports truthfully, he reveals the expected future cash-flow. If he conceals cash-
flows, the players’ perceptions of the firm value diverge. The information is payoff
relevant. If the agent diverts cash-flows, the principal becomes more pessimistic
about the future. Therefore, she has an additional incentive to liquidate the firm
following a low cash-flow report.

In our framework, the liquidation also works as an incentive mechanism. If
the firm is liquidated, the agent loses the possibility to enjoy future payments or
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private benefits. The liquidation threat makes low reports less attractive for the
agent and saves on the incentive cost in the high states. Thus, the principal has
two motives for liquidating the firm: incentive provision and efficiency.

The correlation implies that the agent’s action carries information about the
current economic environment. If the agent deviates, the contract conditions the
incentive scheme on the principal’s misperception of the current state. Therefore,
the agent’s current deviation may distort his incentives in following periods.1 As a
consequence, the agent’s optimal strategy might not include truthtelling following a
deviation. We need to verify that the agent cannot increase his payoff by deviating
and gaining a more beneficial environment.

If the agent deviates, the principal does not know his true continuation value.
The agent has persistent private information, which provides a challenge from
modeling point of view. To keep the analysis tractable, we restrict the attention
on environments in which the agent’s private benefit is proportional to the di-
verted cash-flow, and the outcome follows a Markov process. In such a Markov
environment, any divergence in expectations is corrected once the agent reports
truthfully. We show that the agent’s incentive compatibility conditions can be
derived by identifying his payoff of a particular kind of deviation. The devia-
tion strategy prescribes that the agent returns to the equilibrium path after his
deviation, and reports truthfully from there onwards. Then we verify that the
agent has the right incentives to report truthfully even if he deviated in the past.
Interestingly, it turns out that since the agent is risk-neutral, and his private ben-
efit proportional to the diverted cash-flow, he cannot benefit from the principal’s
misperception of the current state.

Models in which the agent has private information about the underlying eco-
nomic environment are generally known to be challenging. Adopting an approach
that is common in the literature,2 we solve a relaxed problem where we replace the
agent’s global incentive compatibility conditions by a weaker necessary condition
that we obtain by examining a particular kind of deviation. Then we show that,
at the optimum of the relaxed problem, the agent’s necessary incentive constraint
is satisfied with equality. Finally, we verify that the agent’s global incentive com-
patibility condition is satisfied at the optimum. This implies that the solution of
the relaxed problem is the optimum of the unrelaxed problem as well.

The optimal contract admits the following dynamics. In the beginning of the

1Similar issues have been examined in adverse selection literature. Besanko (1985), and more
recently, Battaglini (2005), Garrett and Pavan (2011, 2012), Pavan, Segal and Toikka (2012),
and Eso and Szentes (2013) find conditions under which the optimal contract can be found by
using a first-order approach. Battaglini and Lamba (2012) provide a set of counterexamples in
which the first-order approach fails.

2See, for example, DeMarzo and Sannikov (2011), Pavan, Segal and Toikka (2012) and Eso
and Szentes (2013).
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relationship, the optimal contract relies on an inefficient liquidation threat to pro-
vide the agent incentives. The payments to the agent are delayed, and the agent
is rewarded by promising him a higher continuation value for the future. With
high performance, the agent’s continuation value increases such that the first-best
solution becomes attainable. The firm is liquidated efficiently, and the agent is
rewarded with immediate payments.

We contribute to the fast growing literature on dynamic principal-agent models
with risk-neutrality and limited liability. The seminal continuous-time cash-flow
diversion model was presented in DeMarzo and Sannikov (2006). They derive
the optimal contract with independently and identically distributed cash-flows,
and show how to implement it using a credit line. Biais, Mariotti, Plantin and
Rochet (2007) prove that the discrete time counterpart of the model converges to
its continuous-time limit, and provide an alternative implementation using cash-
reserves.3 In these models, the firm value is independent of the past performance,
and the firm is never liquidated in the first-best solution. We extend the framework
by allowing the cash-flow to be correlated such that the efficient solution solves a
standard real option problem.

Our solution concepts borrow from DeMarzo and Sannikov (2011) who examine
a related model in which the players learn about the unknown mean of the cash-
flow process over time. Our framework differs from theirs in several important
dimensions. First, in our model, the firm value is known at equilibrium, but
stochastically changes over time. Thus our model has no learning at equilibrium,
but the players are contracting in a changing environment. Besides, in DeMarzo
and Sannikov, the players’ outside options depend on the firm value. We assume
that the liquidation value is independent of the cash-flow.

The optimal contracting problem can be arbitrarily complex, because the op-
timal decision might depend on the entire history of past returns. To reduce the
complexity, we adopt a classical approach that uses the agent’s continuation value
as a state variable to summarize the dependence of the optimal contract on the
entire history. The reduction allows us to characterize the optimal contract in a
complex economic environment, and is justified by Spear and Srivastava (1989)
who show that the agent’s continuation value is a sufficient statistic for the history
in the optimal contract. Besides, because of correlation, we need a second state
variable, the current cash-flow, to summarize the firm value.

Our model is also related with literature on principal-agent framework with
a risk-averse agent. In continuous time, the benchmark model with independent
output in was presented by Sannikov (2008) who derives the optimal contract using

3DeMarzo and Fishman (2007) derive the optimal contract in a discrete-time version of the
model. Biais, Mariotti, Rochet and Villeneuve (2010) consider Poisson distributed shocks and
allow for investment.
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the agent’s continuation value as a state variable. Our work also greatly benefits
from Sannikov (2013) who examines a model in which the agent’s actions have long-
term consequences. When designing the optimal incentive scheme, the principal
has to take into account that the agent’s action today affects his incentives in the
future, as well as the future output directly. In our framework, the agent’s action
has no effect on the future output, and any divergence in expectation is corrected
once the agent reports truthfully.

To model correlation of output, we adopt an approach that defines cash-flow as
the level of a diffusion process, rather than as the increment. In the principal-agent
framework, the approach was first considered by Williams (2011) who examines a
model in which the cash-flow is persistent, but the agent is risk-averse. Strulovici
(2011) extends the model to allow for the players to renegotiate the contract.
The models do not consider liquidation. When the agent is risk-neutral, there
is no motive for consumption smoothing. The assumption simplifies the problem
considerably. The simplicity of the setting allows us to explore the connection
between the agency problem and the real option problem in more detail.

2 The Model

We examine a game with two players: a principal and an agent. The principal has
access to unlimited funds, but the agent is protected by limited liability. In our
framework this assumption implies that the agent cannot make negative payments.
Both players discount the future by a common rate r > 0.

At time t, the firm produces a cash-flow xt. The cash-flow is stochastic and
evolves according to a Brownian motion. Under this assumption, the cash-flow at
period t is

xt = x0 +

∫ t

0

dxs, (1)

where x0 is the initial cash-flow.
The true cash-flow is unobservable by the principal and is reported by the

agent. The agent has the opportunity to conceal part of the cash-flow from the
principal. Formally, we let x̂t denote the cash-flow that the agent delivers to the
principal. At time t, the agent’s report evolves according to

dx̂t = dxt − ltdt. (2)

From the principal’s point of view, the process x̂t is a Brownian motion. The
agent observes the true Brownian motion xt, and chooses the drift lt, potentially
reducing the principal’s payoff. The initial cash-flow x0 is common knowledge.

Our formulation only allows the agent to choose reporting strategies that are
absolutely continuous with respect to the true probability measure. That is, we
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do not allow the agent’s reported process to exhibit jumps. Since we only consider
full commitment contracts under which the agent reports truthfully at equilibrium,
the restriction is without loss of generality.

If the agent conceals part of the cash-flow, he earns a private benefit that is
proportional to the diverted amount. Formally,

λ(xt − x̂t) = λ

∫ t

0

lsds.

Under this specification, the agent enjoys a private benefit of λ for each dollar that
he diverts. We assume that λ ∈ (0, 1) such that cash-flow diversion is inefficient.
Hence there is a social loss of 1 − λ for each diverted dollar. The agent cannot
save privately, but has to cover the cost of his report from the current outcome.
Thus x̂t ≤ xt by limited liability.

We solve for the optimal contract that provides the agent the right incentives to
report cash-flows truthfully. That is, we restrict the attention on contracts under
which the agent optimally chooses xt = x̂t for all t. The restriction is without loss
of generality, and is justified by the revelation principle.

In the beginning of the relationship, the players agree on a contract. The
contract specifies payments {wt ≥ 0 : t ≥ 0} from the principal to the agent, and
a stopping time τ , at which the firm is liquidated. Both the payment process and
the stopping time are adapted to the filtration generated by the past reported
cash-flows, Ft = σ{x̂s : 0 ≤ s ≤ t}. We assume that both players can fully commit
to the contract for its lifetime.

The liquidation is irreversible, and generates a value L ≥ 0 for the principal.4

Given that the agent reports truthfully, the principal’s total expected profit is

v0 = E

[∫ τ

0

re−rt(xt − wt)dt+ e−rtL

]
. (3)

Let U0 denote the agent’s promised utility from the contract at time 0. The
promise-keeping constraint at time 0 guarantees that the agent receives his ex-
pected payoff

U0 = E

[∫ τ

0

re−rtwtdt

]
(4)

under the contract if he chooses the truthful reporting strategy x̂t = xt for all t.
The agent’s incentive compatibility constraint guarantees that the agent receives
at least the same utility

U0 ≥ Ê

[∫ τ

0

re−rt(wt + λ(xt − x̂t))dt
]

(5)

4To simplify the expressions, we normalize L = rL̃.
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for reporting truthfully from t onwards than for any arbitrary reporting strategy
{x̂s ≤ xs : s ≥ t}. To simplify expressions, we normalize the agent’s liquidation
value to 0.

The optimal contract determines an intertemporal payment rule and a liq-
uidation policy that satisfy the agent’s promise-keeping condition, the incentive
compatibility constraints, and the limited liability constraints, and maximize the
principal’s expected payoff. Formally, it chooses a nonnegative payment process
w and a stopping time τ to maximize (3) subject to the constraints (4) and (5),
and the nonnegativity constraints on the payment process.

3 Incentive Compatibility

As is standard in the principal-agent framework, we first solve for conditions for
the agent to report the cash-flow truthfully. In this section, we derive a necessary
condition for the agent to report truthfully. In the next section we show that it is
optimal for the principal to let the necessary condition bind at the optimum. Fi-
nally, we verify in Section 5.1 below that the agent’s global incentive compatibility
condition is satisfied at the optimum.

To derive conditions for the agent to report truthfully, we need to specify how
his continuation value Ut depends on the reported cash-flow. Following the stan-
dards in the literature,5 we derive a representation for Ut as a stochastic process,
and determine how the process evolves in response to the reported Brownian mo-
tion. Then we derive necessary conditions for truthful reporting on the equilibrium
path.

At t ≤ τ , the agent’s promised value from the contract is

Ut = Et

[∫ τ

t

re−r(s−t)wsds

]
. (6)

If the agent reports truthfully from t on, such that the true output xt, and the
reported cash-flow x̂t agree from t onwards, (6) describes the agent’s continuation
value. Whenever x̂t < xt, the principal’s assessment of the agent’s continuation
value differs from his actual value.

Moreover, we need to rule out contracts that delay payments to the agent
forever. In particular, we allow for the principal only to choose contracts such
that Ut <∞ for all t.

The following lemma describes how the agent’s promised value Ut evolves in
response to his reports

5See, for example, Sannikov (2008).
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Lemma 1. Fix a contract {w, τ} with Ut < ∞ for all t. The process Ut is the
agent’s promised value from the contract if and only if the following conditions are
satisfied. (i) At t ≤ τ , Ut admits the representation

dUt = r(Ut − wt)dt+ βtdx̂t. (7)

β is a progressively measurable process in L2 that describes the sensitivity of the
agent’s promised value to his reports.6 (ii) Ut satisfies the transversality condition
lim
s→∞

Et[1s≤τe
−rsUt+s] = 0 almost everywhere.

Proof. See Appendix.

Next, we determine necessary conditions for the agent to report cash-flows
truthfully. The challenge here is that if the agent deviated in the past, the pro-
cess (6) is not the agent’s continuation value. To deal with the challenge, we
first determine necessary conditions for incentive compatibility by examining the
agent’s gain of a particular kind of deviation. To be more concrete, we consider a
deviation strategy that prescribes that the agent returns to the equilibrium path
after his deviation, and reports truthfully from there onwards. Such a deviation
strategy describes the counterpart of a one-shot deviation in our continuous-time,
Markov environment. Of course, we need to verify that the conditions we derived
are sufficient for incentive compatibility.

First, notice that, because of limited liability, Ut cannot become negative.
Therefore, if the agent’s continuation value decreases to 0, the only way to provide
him incentives to report truthfully is to liquidate the firm. Besides, since the agent
is risk-neutral, and cannot gain from a deviation after τ , the principal has no in-
centive to provide him income after τ . Therefore, it is without loss of generality
to concentrate on contracts that determine liquidation as the first time that the
agent’s continuation value hits 0. Formally, let

τ = inf{t : Ut = 0}. (8)

Next, we derive necessary conditions for the agent to report truthfully. The
challenge here is that we need to compare the flow value of the agent’s private
benefit, λ(xt − x̂t)dt, with the instantaneous loss of his continuation value, βtltdt.
To overcome the challenge, we consider a particular deviation strategy. The devi-
ation strategy prescribes that the agent departs from the equilibrium path at time
t on a time interval of length ∆, and returns to the equilibrium path on a time
interval of length ∆2. By letting ∆→ 0, we can identify the agent’s instantaneous
gain from diverting cash-flows.

To be more concrete, consider the following strategy chosen by the agent. At
period t, the agent

6A process β is in L2 if E
[∫ t

0
1s≤τβ

2
sds
]
<∞.
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• Departs from the equilibrium path by choosing the drift l on the time interval
[t, t+ ∆].

• Returns to the equilibrium path by choosing the drift −l/∆ on the time
interval (t+ ∆, t+ ∆ + ∆2].

• Reports truthfully from t+ ∆ + ∆2 onwards.

Then at time t + ∆ + ∆2, x̂t+∆+∆2 = xt+∆+∆2 . If l is not too large, such that
τ is not reached, we can identify the agent’s instantaneous gain from diverting
cash-flows.

Of course, the agent is only willing to report truthfully if his continuation
value increases at least as much as his private benefit would have increased if he
had concealed the cash-flow. At t, the agent’s instantaneous gain from diverting
a dollar is λ. Therefore, it is optimal for the agent to report truthfully if his
continuation value changes by βt ≥ λ for each dollar reported.

The results are summarized in the following proposition

Proposition 1. A necessary condition for truthtelling to be incentive compatible
is that βt ≥ λ for all t ≤ τ .

Proof. See Appendix.

In the next sections, we derive the optimal incentive compatible contract from
the principal’s problem. In our framework, choosing the optimal incentive compat-
ible contract amounts to choosing the optimal sensitivity of the agent’s continua-
tion value to the reported output, {βt : 0 ≤ t ≤ τ}, and the optimal intertemporal
allocation of the payments to the agent {wt : 0 ≤ t ≤ τ}.7 Thereby the sensitivity
process has to satisfy the incentive compatibility condition βt ≥ λ for all t ≤ τ , and
the payment process has to satisfy the agent’s limited liability constraint wt ≥ 0
for all t ≤ τ .

4 First-Best Solution

In the optimal contract, the principal has two ways of rewarding the agent with
income: she can either deliver him immediate payments, or increase his continua-
tion value for the future. By the definition of the liquidation policy (8), a higher
continuation value Ut implies a later stopping time τ . In our framework, the firm
value is persistent, and this choice determines the efficiency of the firm operations.
A later stopping time translates to a liquidation of a less profitable firm.

7Note that by the definition of τ in (8), together with the representation in Lemma 1, the
two choices imply a liquidation policy.
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It turns out that once the contract has accumulated a sufficiently high value to
the agent, the firm can be operated efficiently. In that case, the liquidation policy
(8) reaches the first-best solution. As we will see in the next section, the optimal
contract delays payments to the agent until his continuation value is high enough.
It remains to determine the first-best optimal liquidation policy and the agent’s
continuation value that is needed to reach the first-best solution.

At time t, the expected joint profit is the sum of the principal’s and the agent’s
value

E

[∫ τ

t

re−r(s−t)(xs − ws)ds+ e−r(τ−t)L

]
+ Ut

= E

[∫ τ

t

re−r(s−t)xsds+ e−r(τ−t)L

]
. (9)

The first-best value is the solution of a standard real option problem.8 The objec-
tive is to choose an optimal stopping time τ to maximize (9).

The optimal liquidation policy is Markov in the cash-flow xt. Since the cash-
flow follows a Markov process, the current output reflects future expectations, and
is a sufficient statistic for the firm value. The higher the cash-flow is, the more
valuable the firm. If the cash-flow falls too low, xt < xL, the liquidation value
becomes relatively more valuable, and the firm is liquidated. The firm is operated
so long as the cash-flow stays above the threshold, xt ≥ xL, and it is liquidated as
soon as the cash-flow reaches xL.

From the real option literature we know that the firm is liquidated later than is
myopically optimal. The result reflects the option value of liquidation. If the firm
is operated further, a positive shock may occur that increases the firm value. If a
negative shock occurs, the firm is liquidated. Liquidation, in turn, is irreversible.
Indeed, it turns out that the firm is liquidated if the cash-flow reaches

xL = L− (2r)−1/2.

The first-best solution is only feasible if the agent’s continuation value is high
enough. If the agent’s value is high enough, the limited liability constraint does
not bind. The principal is able to punish the agent for reporting lower outcomes
by lowering his continuation value until the first-best optimal stopping time is
reached.

When implementing the first-best solution, it is without loss of generality to
reward the agent with immediate income. Since both players are risk neutral and
discount the future by the common rate r, the intertemporal allocation of wealth
is irrelevant for efficiency. The result holds as long as the agent’s limited liability
constraint is not violated.

8See, for example, Dixit and Pindyck (1994).
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We determine the agent’s smallest possible continuation value UFB(xt) for
which the first-best solution is attained. From the analysis of Section 3 we know
that the agent’s continuation value has to decrease by at least λ for each dollar
that he reports. Next, to reach the first-best solution, the agent’s continuation
value Ut has to reach 0 at the same time that xt reaches the efficient liquidation
threshold xL. It turns out that if the agent’s continuation value is at least

UFB(xt) = λ(xt − xL),

the optimal contract avoids inefficient liquidation and attains the first-best solu-
tion.

The intuition behind the result is straightforward. Notice that besides the lim-
ited liability condition, x̂t ≤ xt, we do not impose any restriction on the agent’s
strategy lt. In particular, the agent always has the opportunity to react instanta-
neously, and return to the equilibrium path. Therefore, the agent’s deviation does
not impose him any additional risk of termination at some level xτ > x̂τ = xL.

Next, the agent’s liquidation payoff is 0, whereas continuation has nonnegative
value. Therefore, the agent never diverts cash-flows such that the firm is liquidated
at a level xτ > x̂τ = xL. As a consequence, the principal only has to compensate
the agent for reporting a cash-flow of xt ≥ xL. Furthermore, we know from
Proposition 1 that the agent has to earn at least λ for each dollar he reports in
the continuation region.

The optimal contract can be summarized in the following proposition

Proposition 2. Under the efficient solution, the firm is operated as long as xt >
xL, and is liquidated as soon as xt reaches xL, where

xL = L− (2r)−1/2. (10)

The principal’s payoff is vFB(x) = s(x)− UFB(x), where

s(x) =x− xLe−
√

2r(x−xL) + Le−
√

2r(x−xL) (11)

UFB(x) =λ(x− xL) (12)

if x ≥ xL, and s(x) = L and U(x) = 0 otherwise.

Proof. See Appendix.

5 Optimal Contract

In this section, we derive the optimal contract heuristically. We show that the
principal’s optimality requires that whenever the agent’s report does not trigger
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liquidation, the incentive constraints bind. That is, the principal leaves the agent
the smallest possible compensation that is compatible with truthful reporting.

Moreover, if the agent’s continuation value Ut reaches 0, the limited liability
constraint becomes binding. As discussed in Section 3, the only way to provide
the agent incentives is to liquidate the firm. Notice that the incentive constraints
do not bind at the cash-flow levels that are not reached before Ut reaches 0.9

The optimal contract relies on an inefficient termination threat to provide the
agent incentives in the beginning of the relationship. The payments to the agent
are delayed and he is rewarded by promising him a higher continuation value.
With good enough past performance, the contract has accumulated a high enough
value to the agent. Then the first-best solution is implemented.

Using the results obtained in Section 3, we can rewrite the optimal contracting
problem (3)-(5) as

v(U, x) = max
w,β

E

[∫ τ

0

re−rt(xt − wt)dt+ e−rτL

]
,

subject to the law of motion of the state variables xt and Ut in (1) and (7). Thereby
the sensitivity β of the agent’s continuation value to the Brownian motion has to
satisfy the incentive compatibility constraints, βt ≥ λ for all t ≤ τ , and the
payment process w the nonnegativity constraints, wt ≥ 0 for all t ≤ τ .

The principal’s optimal choice of {w, β} at any point can be derived from her
Hamilton-Jacobi-Bellman equation

rv(U, x) = max
w≥0,β≥λ

{
r(x− w) + r(U − w)vU(U, x)

+
β2

2
vUU(U, x) + βvUx(U, x) +

1

2
vxx(U, x)

}
. (13)

The boundary condition is v(0, x) = L.10

First, we discuss the principal’s optimal choice of the agent’s income w. The
principal can either reward the agent with immediate payments, or increase his
continuation value for the future. The marginal cost of providing immediate in-
come to the risk-neutral agent is −1, whereas the cost of increasing the agent’s
continuation value can be higher or lower. The opportunity to provide immediate
income ensures that at the optimum, the marginal cost of providing incentives can
never exceed the marginal cost of providing immediate income.

9In general, we cannot assume that the incentive constraints bind, and indeed, they do not
bind everywhere. See Rochet and Chone (1998) for a related discussion in a multidimensional
screening setting.

10Notice that the boundary condition is only determined in terms of the state variable U . The
boundary value of the state variable x is free and must be determined as part of the solution.
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Indeed, by optimizing (13) with respect to w, we find that if

vU(U, x) ≥ −1, (14)

it is optimal to set w = 0. In the beginning of the relationship, the payments to
the agent are delayed, and the principal rewards the agent by promising him a
higher continuation value for the future. The optimal contract provides the agent
incentives by threatening to liquidate the firm inefficiently following a period of
low cash-flow realizations.

The marginal cost of delaying payments depends on the agent’s continuation
value relative to the cash-flow level. If the cash-flow is high, but the continuation
value is low, the risk of inefficient termination is high. Delaying payments increases
the agent’s continuation value, which protects the firm against liquidation. If Ut <
UFB(xt), the principal can gain by increasing the agent’s continuation value. The
payments to the agent are delayed until his continuation value reaches UFB(xt),
and the first-best solution is attainable. Thereafter Ut = UFB(xt), the firm is
liquidated at the efficient level, and the agent is rewarded with immediate income.

Next, we discuss the principal’s optimal choice of the sensitivity process β.
To show that the incentive constraints bind in the continuation region, we adopt
the following approach, developed in DeMarzo and Sannikov (2011). We first
conjecture that, at the optimum, β = λ. Then we compare the principal’s profit
from this contract with her profit from any other incentive compatible contract
with the sensitivity β ≥ λ. We show that the contract with β = λ attains the
highest feasible profit for the principal. Therefore, the principal optimally lets the
agent’s incentive compatibility constraints bind for any cash-flow report that does
not trigger liquidation.

For β = λ, the principal’s Hamilton-Jacobi-Bellman equation (13) can be writ-
ten as

rv(U, x) = max
w≥0

{
r(x− w) + r(U − w)vU(U, x)

+
λ2

2
vUU(U, x) + λvUx(U, x) +

1

2
vxx(U, x)

}
. (15)

By comparing (13) and (15), we find that β = λ is optimal for the principal only
if

1

2
(β − λ)2vUU(U, x) + (β − λ)(λvUU(U, x) + vUx(U, x)) ≤ 0. (16)

First, as we can see from (7), β determines the volatility of the agent’s con-
tinuation value Ut. If Ut varies more, the risk that it reaches 0 increases. As in
the framework with uncorrelated cash-flows, excess volatility of the agent’s con-
tinuation value increases the risk of unnecessarily early liquidation. Increasing the
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probability of inefficient liquidation is costly for the principal. Therefore,

(β − λ)2vUU(U, x) ≤ 0, (17)

which is maximized at β = λ. The principal optimally imposes the firm with the
minimal inefficient termination risk that is necessary to sustain incentives.

Next, the shocks are persistent in our framework. Increasing β today increases
the agent’s share of the total cash-flow in the future. Conversely, the principal’s
share of the cash-flow decreases. In the future, the agent has to receive a compen-
sation of λ for each dollar that he reports. Formally,

(β − λ)(λvUU(U, x) + vUx(U, x)) ≤ 0. (18)

At the optimum, the principal only increases the agent’s share of the cash-flow so
much that the incentive constraint just binds. That is, (18) is maximized at β = λ.
Finally, (16) together with (17) and (18) imply that the principal optimally sets
the sensitivity at its lowest admissible level β = λ.

The intuition behind the results is straightforward. In the beginning of the
relationship, the principal can extract rents from the agent by threatening to
liquidate the firm inefficiently if he reports low cash-flow returns. To minimize
the risk of inefficient termination, the principal sets the variance of the agent’s
continuation value at the lowest admissible level. The result is consistent with
the results obtained earlier in the framework with independently distributed cash-
flows.

Next, the principal can profit by delaying payments to the agent. Instead of
rewarding the agent with immediate payments, she can promise him a higher share
of the returns in the future. As is standard in the principal-agent framework, the
firm can be operated more efficiently if the agent owns a higher share of it. Then
his income varies more with the fluctuations of the output, and he cares more
about efficiency. This relaxes the incentive constraint. Increasing the agent share
is profitable since the firm value increases towards efficiency. The principal is able
to extract all the surplus from the increase from the agent.

The results are summarized in the following proposition

Proposition 3. Starting from the initial cash-flow x0, and the agent’s initial value
U0 ∈ [0, UFB(x0)], the optimal contract attains the profit v(U0, x0) for the princi-
pal. The players’ values evolve stochastically in response to the fluctuations of the
output, and admit the following dynamics:

1. When the agent’s continuation value Ut is on the interval (0, UFB(x)), it
evolves according to

dUt = rUtdt+ λdxt. (19)
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The payments to the agent are delayed, and his flow payment is set to wt = 0.
The principal’s expected profit at any point is v(U, x), which is the unique
solution of the following partial differential equation

rv(U, x) = x + rUvU(U, x) +
λ2

2
vUU(U, x) + λvUx(U, x) +

1

2
vxx(U, x) (20)

with the boundary conditions vU(UFB(x), x) = −1, v(UFB(x), x) = vFB(x),
and v(0, x) = L.

2. When Ut reaches UFB(xt), the first-best solution is implemented. The agent
receives a flow payment wt = λ(xt − xL), where xL = L − (2r)−1/2. At any

point, the principal’s expected payoff is v(x) = x−UFB(x)−xLe−
√

2r(x−xL) +

Le−
√

2r(x−xL), where UFB(x) = λ(x− xL).

3. When Ut reaches 0, the contract is terminated. The players receive their
liquidation payoffs v(0, x) = L, and U = 0.

5.1 Full Incentive Compatibility

In this section, we verify heuristically that the agent’s global incentive compati-
bility constraint is satisfied at the optimal contract. The formal proof follows by
showing that the if βt = λ for all t ≤ τ , the agent’s global incentive compatibility
is satisfied at the optimum, and is delegated to the Appendix. The result guaran-
tees that the agent has the right incentives to report truthfully starting from an
arbitrary history, possibly off the equilibrium path.

Before τ is reached, the agent’s incentives to report truthfully are independent
of his past actions. Since the agent is risk-neutral and the private benefit is pro-
portional to the cash-flow, the agent’s incentives to divert an additional dollar are
independent of the cash-flow level. Therefore, the conditions that guarantee that
the agent reports truthfully at equilibrium, guarantee that the agent cannot gain
from additional deviations off the equilibrium path.

Starting from a history that is on the equilibrium path, the agent’s continuation
value increases by βt = λ for each additional dollar that he reports. The increase
compensates him for his private benefit of λ that he would have received if he would
have concealed the cash-flow. Similarly, we can consider the agent’s incentive to
divert starting from a history that is off the equilibrium path. Again, reporting an
additional dollar increases the agent’s continuation value by βt = λ, which exactly
offsets the value of concealing the cash-flow. The agent’s gain of concealing an
additional dollar, λ, is the same both on and off the equilibrium path.

Next, notice it is never optimal for the agent to choose a strategy such that the
reported cash-flow x̂t and the actual output xt do not agree at t = τ . The result
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follows from the fact that the agent’s liquidation value is 0 whereas the contract
has nonnegative value to the agent.

The result is summarized in the following proposition

Proposition 4. The optimal contract with βt = λ for all t ≤ τ satisfies the agent’s
global incentive compatibility constraint.

Proof. See Appendix.

5.2 Initialization of the Contract

In this section, we discuss how the contract is initialized. That is, we discuss the
principal’s optimal choice of the agent’s initial value U0 in (4), given that the initial
cash-flow is x0. We call the time t = 0 the contracting stage. We assume that the
principal makes a take-it-or-leave-it offer to the agent.

The principal’s optimal choice of U0 is a standard constrained optimization
problem. At t = 0, the principal solves

max
U0≥0

v(U0, x0) (21)

subject to the players’ participation constraints

U0 ≥ U (22)

and
v(U0, x0) ≥ v, (23)

where v and U denote the principal’s and the agent’s reservation utilities at the
contracting stage. We can examine different divisions of the players’ bargaining
power, or allow for investment cost, by varying the players’ reservation utilities.

To focus attention on the interesting cases, we assume that x0 > xL, and
v +U < s(x0), where s(x0) is the first-best optimal value of the firm at time 0, as
defined in Proposition 2. Under these conditions, contracting is always efficient at
time 0.11

If U ≥ UFB(x0), the first-best solution can be attained at time 0. The agent
receives an upfront payment of size U−UFB(x0) as a compensation for participat-
ing in the contract. If U < UFB(x0), the firm is eventually liquidated inefficiently
in the beginning of the relationship.

Next, suppose that the optimal solution is such that the constraint (22) does
not bind. Let U∗0 denote the solution of (21). Then the maximal pledgeable

11Of course, contracting may become inefficient after time 0 if xt reaches xL.
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income is v(U∗0 , x0). The contract is initialized only if the principal’s participation
constraint (23) is satisfied at the optimum. That is, only if

v(U∗0 , x0) ≥ v. (24)

If the condition (24) fails, the contract is not initialized even if it would be efficient
to do so. The moral hazard problem is so severe that it prevents contracting
altogether.

6 Conclusions

This paper examines a real option problem in which the investor needs to employ
an agent to handle the daily operations of the firm she is investing in. To ensure
that the agent runs the firm efficiently, the investor has to reward him for delivering
high returns and punish him if the output falls. To provide the agent incentives, the
principal has the opportunity to deliver him nonnegative payments, or to liquidate
the firm and receive a liquidation value. In the beginning of the relationship, the
players write a contract that determines the optimal incentive scheme. We assume
that the players can fully commit to the contract.

We find that the optimal contract is of the following form. In the beginning
of the relationship, the payments to the agent are delayed, and the contract relies
on liquidation threat to sustain incentive compatibility. The firm is eventually
liquidated inefficiently to save on the incentive costs for the principal. Payments
to the agent are delayed until his continuation value becomes sufficiently high.
Then the first-best solution is implemented.

Our results deliver interesting insights about the connection between moral
hazard and efficiency of the firm liquidation policy. In particular, we find that the
firm is liquidated more efficiently if the agent’s share of the cash-flow is high. If
the agent’s share is high, he receives a higher compensation for his report, which
increases his incentives for truthful reporting. Conversely, if the agent’s share is
low, the liquidation threat has to be severe. Otherwise the agent will engage in
inefficient activities to gain private benefits.
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7 Appendix

Proof of Lemma 1. First, we prove that Ut admits the representation (7). Consider
the process

At =

∫ t∧τ

0

re−rswsds+ e−rt∧τUt∧τ . (25)

From the principal’s point of view, the process At is a martingale. By the Mar-
tingale Representation Theorem, there exists a progressively measurable process
β in L2 such that for t ≤ τ ,

dAt = e−rtβtdx̂t. (26)

Applying Itô’s lemma on (25), we can write

dAt = re−rtwtdt− re−rtUt + e−rtdUt = e−rtβtdx̂t,

where the last equality follows from (26). By reorganizing, and multiplying by ert,
we obtain (7).

To prove that the transversality condition holds, notice that since Uτ = 0,12∫ t∧τ

0

re−rswsds→
∫ τ

0

re−rswsds

as t → ∞. Then, since 0 ≤ Ut < ∞, 0 ≤
∫ τ

0
re−rswsds < ∞. Hence by the

Dominated Convergence Theorem

E[1s≤τe
−rtUt] = E

[∫ τ

0

re−rsws

]
− E

[∫ t∧τ

0

wsds

]
→ 0

as t→∞. The argument that lim
s→∞

Et[1s≤τe
−rsUt+s]→ 0 follows similarly.

Finally, suppose that Ut satisfies the conditions (i) and (ii). Then from (26),
we can see that the process At is a martingale. Therefore,

U0 = A0 = E[At] = E

[∫ t∧τ

0

re−rswsds

]
+ e−rt∧τUt∧τ →

t→∞
E

[∫ τ

0

re−rsws

]
.

since Uτ = 0, and the transversality condition holds. The argument for t > 0
follows similarly.

Proof of Proposition 1. Recall from the Section 2 that the contract {w, τ} is in-
centive compatible if and only if for all t and for all strategies such that x̂t = xt
after t,

E

[∫ τ

0

re−rswsds

]
≥ Ê

[∫ τ

0

re−rs(ws + λ(xs − x̂s))ds
]
. (27)

12The results can easily be extended to the case in which Uτ > 0. See, for example, DeMarzo
and Sannikov (2011).
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The operator Ê denotes the agent’s expectation under the strategy x̂.
To derive necessary conditions for incentive compatibility, we consider a par-

ticular kind of deviation. Under the deviations strategy, the agent departs from
the equilibrium strategy at time 0 and returns to truthful reporting at ∆ + ∆2.13

Notice that at ∆ + ∆2, the process (7) again describes the agent’s continuation
value. Therefore, we can write (27) as

U0 ≥ Ê

[∫ ∆+∆2

0

re−rs(ws + λ(xs − x̂s))ds+ e−r(∆+∆2)U∆+∆2

]
. (28)

Next, notice that

d(e−rtUt) =− re−rtUtdt+ e−rtdUt

=− re−rtUtdt+ re−rt(Ut − wt)dt+ e−rtβtdx̂t, (29)

where the first equality follows by Itô’s Lemma, and the second by (7). Integrating
(29) from 0 to t, we obtain

e−rtUt = U0 −
∫ t

0

re−rswsds+

∫ t

0

e−rsβsdx̂s. (30)

Using (30) with t = ∆ + ∆2, we can rewrite (28) as

U0 ≥ U0 + Ê

[∫ ∆+∆2

0

re−rs(ws + λ(xs − x̂s))ds

]

− Ê
[ ∫ ∆+∆2

0

re−rswsds−
∫ ∆+∆2

0

e−rsβs dx̂s︸︷︷︸
=dxs−lsds

]

= U0 + Ê

[∫ ∆+∆2

0

re−rsλ

∫ s

0

ludu− e−rsβslsds

]
(31)

The last equality uses the fact that from the agent’s point of view, xt is a standard
Brownian motion, and therefore,

Ê

[∫ ∆+∆2

0

e−rsβsdxs

]
= 0.

Next, we consider the following deviation strategy. At the time interval s ∈
[0,∆], the agent departs from the equilibrium path and diverts cash-flows at rate

13A similar argument shows the necessary conditions for incentive compatibility at t > 0.
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l. On the time interval s ∈ [∆,∆ + ∆2], he returns to the equilibrium path by
choosing a drift −l/∆. Notice that

x∆+∆2 − x̂∆+∆2 =

∫ ∆

0

lds+

∫ ∆+∆2

∆

l

∆
ds = 0

such that the agent has returned to the equilibrium path at time s = ∆+∆2. The
principal chooses a sensitivity of β.

The agent’s deviation strategy can be illustrated in the following phase diagram

∆ ∆ + ∆2

l∆

slope l slope − l

∆

t

Using the particular deviation strategy, we can rewrite (31) as

Ê

[∫ ∆

0

re−rsλ

∫ s

0

ldu− e−rsβlds
]
− Ê

[∫ ∆+∆2

∆

re−rsλ

∫ s

∆

l

∆
du− e−rsβ l

∆
ds

]

=

∫ ∆

0

re−rsλsl − e−rsβlds−
∫ ∆+∆2

∆

re−rs
s−∆

∆
− e−rsβ l

∆
ds

=− λle−rss
∣∣∆
0

+ λl

∫ ∆

0

e−rsds+ βl
e−rs

r

∣∣∣∣∆
0

+ λl
e−rss

∆

∣∣∣∣∆+∆2

∆

− λl
∫ ∆+∆2

∆

e−rs

∆
ds

− λl e−rs
∣∣∆+∆2

∆
− βl e

−rs

r∆

∣∣∣∣∆+∆2

∆

=− λl∆e−r∆ − λl e
−rs

r

∣∣∣∣∆
0

− βl1− e
−r∆

r
+ λl(1 + ∆)e−r(∆+∆2) − λle−r∆

− λle−r(∆+∆2) + λle−r∆ + λl
e−rs

r∆

∣∣∣∣∆+∆2

∆

− βle
−r(∆+∆2) − e−r∆

r∆

=− λl∆e−r∆ + λl
1− e−r∆

r
− βl1− e

−r∆

r
+ λl∆e−r(∆+∆2)
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+ λl
e−r(∆+∆2) − e−r∆

r∆
− βle

−r(∆+∆2) − e−r∆

r∆

=− (β − λ)l

(
1− e−r∆

r
+
e−r(∆+∆2) − e−r∆

r∆

)
+ λl(e−r(∆+∆2) − e−r∆)∆ ≤ 0.

Dividing both sides by ∆2 yields

−(β − λ)l

(
1− e−r∆

r∆2
+
e−r(∆+∆2) − e−r∆

r∆3

)
+ λl

e−r(∆+∆2) − e−r∆

∆
≤ 0.

Taking the limits as ∆→ 0, we find that the condition becomes

−r
2

(β − λ)l ≤ 0.

The result follows since by L’Hôpital’s rule

lim
∆→0

e−r(∆+∆2) − e−r∆

∆
= lim

∆→0

−r(1 + 2∆)e−r(∆+∆2) + re−r∆

1
= 0

such that the last term vanishes. Moreover,

lim
∆→0

1− e−r∆

r∆2
+
e−r(∆+∆2) − e−r∆

r∆3
= lim

∆→0

∆(1− e−r∆) + e−r(∆+∆2) − e−r∆

r∆3

= lim
∆→0

1− e−r∆ + r∆e−r∆ − r(1 + 2∆)e−r(∆+∆2) + re−r∆

3r∆2

= lim
∆→0

2re−r∆ − r2∆e−r∆ − 2re−r(∆+∆2) + r2(1 + 2∆)2e−r(∆+∆2) − r2e−r∆

6r∆

= lim
∆→0

1

6r
(−3r2e−r∆ + r3∆e−r∆ + 6r2(1 + 2∆)e−r(∆+∆2)

− r3(1 + 2∆)3e−r(∆+∆2) + r3e−r∆)

=
1

6r
(−3r2 + 6r2) =

r

2
.

Proof of Proposition 2. From the real option literature, we know that the first-best
value (11) is the unique solution of the ordinary differential equation

rs(x) = rx+
1

2
sxx(x) (32)

with the boundary conditions s(xL) = L and sx(xL) = 0.
We argue that given that the agent earns the value UFB(x), the maximal

attainable value for the principal is vFB(x). Towards this end, consider the process

St =

∫ t

0

e−rsrxsds+ e−rts(xt).
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We show that St is a supermartingale. Using Itô’s lemma, we find that

ertdSt = rxtdt− rs(xt)dt+
1

2
sxx(xt)dt+ sx(xt)dxt.

By (32), St is a martingale when xt ≥ xL and a supermartingale if xt < xL. The
principal’s profit at time 0 satisfies

E

[∫ τ

0

re−rt(xt − wt)dt+ e−rτL

]
= E

[∫ τ

0

rertxtdt+ e−rτL

]
− U0

≤ E[Sτ ]− U0 ≤ S0 − U0 = s(x0)− U0

with equality only if the principal chooses the optimal stopping time such that τ
is reached as xt reaches xL.

Next, we derive the lower bound UFB(x) of the agent’s continuation value
that is required to implement the first-best solution. Since both players are risk-
neutral and discount the future at a common rate, it is without loss of generality
to concentrate on contracts in which the agent is compensated with immediate
income. Furthermore, the agent’s continuation value reaches 0 in the same time
that xt reaches xL.

Since the agent is rewarded with immediate payments, his flow income is
rwtdt = rUtdt. Substituting in (7) with βt = λ, we find that the agent’s con-
tinuation value Ut solves

dUt = λdxt.

Solving the stochastic differential equation with the boundary conditions such that
Ut hits 0 at the same time that xt hits xL, we find that the agent’s value at the
point xt = x is given by (12).

Next, we verify that the contract conjectured in Section 5 is indeed optimal.
The proof proceeds as in DeMarzo and Sannikov (2011).

Before proving the dynamics of the optimal payment schedule, we examine
some key properties of the principal’s equilibrium value function. We then use the
properties to prove the results in Proposition 3.

We show that the principal’s value function satisfies the following conditions

vUU(U, x) ≤ 0,

and
λvUU(U, x) + vUx(U, x) ≤ 0.

for all (U, x). Moreover, since vUU(Ut, xt) ≤ 0 and vU(Ut, xt) = −1 if Ut ≥ UFB(xt),
vU(Ut, xt) ≥ −1 for all Ut.

14

14The result can be seen graphically: Since vU (Ut, xt) is (weakly) decreasing, and we know
that it is −1 from Ut ≥ UFB(xt) onwards, we must have vU (Ut, xt) ≥ −1. Otherwise vU (Ut, xt)
would not be decreasing.
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The state variable Ut evolves according to (19) so long as Ut ≤ UFB(xt), and
takes the value Ut = UFB(xt) as soon as it reaches UFB(xt). The value of the state
variable xt is given in (1).

To understand the idea behind the proof, notice that the principal’s marginal
value vU(Ut, xt) changes as the state variables Ut and xt evolve in two directions:
in the direction of volatilities and in the direction of drifts. Both the agent’s
continuation value and the cash-flow change in the direction of volatilities, in which
dU/dx = λ. For each unit that the cash-flow increases, the agent’s continuation
value increases by λ. In particular, both processes are driven by the same Brownian
motion.

Moreover, the agent’s continuation value increases in the direction of drifts.
Intuitively speaking, the optimal contract accumulates value to the agent to protect
the firm from an inefficient liquidation. That is, whenever the payments to the
agent are delayed, his continuation value grows at the rate rUtdt. Notice that if
the agent’s continuation value is higher, it grows at a (weakly) higher rate.

We need to show that the principal’s value function is (weakly) concave in both
of the directions. The different directions can be illustrated in a phase diagram.

x

U

xL

dU

dx
= λ

UFB(x)

Lemma 2. Given that the state of the world (Ut, xt) evolves according to (1) and
(19), vU(Ut, xt) is a martingale.

Proof. Differentiating (20) with respect to U , we find that

rvU(U, x) = rvU(U, x) + rUvUU(U, x) +
λ2

2
vUUU(U, x) + λvUUx(U, x)

or,

0 = rUvUU(U, x) +
λ2

2
vUUU(U, x) + λvUUx(U, x).
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Applying Itô’s lemma with (19) on vU(Ut, xt), we can see that the right hand side
corresponds to its drift when Ut ≤ UFB (xt).

Furthermore, if Ut ≥ UFB (xt), vU(Ut, xt) = −1. By combining the results, we
conclude that vU(Ut, xt) is a martingale.

The next lemma shows that the marginal value of continuing is always weakly
higher if the cash-flows are terminated at a higher level. The result follows from
the fact that the liquidation value is constant while the cash-flow is higher if the
current cash-flow is higher. Therefore, the marginal gain from continuation is
higher for higher levels of xt.

Lemma 3. vU(0, x) weakly increases in x.

Proof. Consider two processes (U i
t , x

i
t)s≥t, starting from the values U1

0 = U2
0 = ε,

and x1
0 = x2

0 + δ, for some ε > 0 and δ > 0.
Since U1

0 = U2
0 , we have by (19) for any path of the Brownian motion that

U1
t − U2

t =

∫ t

0

r(U1
s − U2

s )︸ ︷︷ ︸
=0

ds+

∫ t

0

λ(dxs − dxs)︸ ︷︷ ︸
=0

= 0

and, therefore, U1
t = U2

t . Therefore, τ(U1) = τ(U2) = τ . Moreover, by (1),
x1
t − x2

t = δ. Substituting in the principal’s value function, we find that

v(x1
0, ε)− v(x2

0, ε) = E

[∫ τ

0

re−rt(x1
t − x2

t )dt

]
+ E

[
e−rτ (L− L)

]
− ε+ ε

= E

[∫ τ

0

re−rτδdt

]
≥ 0,

which implies further that

v
(
ε, x1

0

)
≥ v

(
ε, x2

0

)
⇐⇒ v

(
ε, x1

0

)
− L ≥ v

(
ε, x2

0

)
− L

⇐⇒ v
(
ε, x1

0

)
− v

(
0, x1

0

)
≥ v

(
ε, x2

0

)
− v

(
0, x2

0

)
.

The result follows since δ and ε were chosen arbitrarily.

The next lemma implies that vUU(U, x) ≤ 0. That is, the principal’s value is
concave in U .

Lemma 4. vU(U, x) weakly decreases in U .
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Proof. We show that for any x0, and for any two values U1
0 > U2

0 , vU(U1
t , xt) ≤

vU(U2
t , xt).

Consider two processes (U i
s, xs)s≥0, i = 1, 2, starting from the values U1

0 = U2
0 +δ

and xi0 = x0. That is, both processes start from the same initial cash-flow, but the
first process starts at a higher promised value to the agent. Let τ 1 ≡ τ(U1) and
τ(U2) ≡ τ 2 denote the first time at which each process reaches 0.

Since U1
0 > U2

0 , it holds by (19) for any path of the Brownian motion

U1
t − U2

t =

∫ t

0

r(U1
s − U2

s )︸ ︷︷ ︸
≥0

ds+

∫ t

0

λ(dxs − dxs)︸ ︷︷ ︸
=0

≥ 0

Therefore, for any path of the Brownian motion, the process U1 never reaches 0
earlier than the process U2. This implies that τ 1 ≥ τ 2, and, therefore, x1

τ1 ≤ x1
τ2 .

Furthermore, by (1), x1
τ2 = x2

τ2 . Combining the two observations, we find that
x1
τ1 ≤ x2

τ2 .
Using Lemmas 2 and 3, we obtain

vU(U1
0 , x0) = E

[
vU(0, x1

τ1)
]
≤ E

[
vU(0, x2

τ2)
]

= vU(U2
0 , x0).

The next lemma proves that vU(U, x) weakly decreases in the direction of
volatilities.

Lemma 5. vU(U, x) weakly decreases in the direction in which U and x increase
according to dU/dx = λ.

Proof. Consider the processes (U i
s, x

i
s)s≥0, i = 1, 2, that follow (1) and (19) starting

from the values that satisfy

x1
0 − x2

0 = δ > 0 and U1
0 − U2

0 = λδ.

Again, let τ 1 ≡ τ(U1) and τ 2 ≡ τ(U2).
Again, we can see from (19) that

U1
t − U2

t =

∫ t

0

r(U1
s − U2

s )︸ ︷︷ ︸
≥λδ

ds+

∫ t

0

λ(dxs − dxs)︸ ︷︷ ︸
=0

≥ 0

Hence, for any path of the Brownian motion and t > 0,

U1
t − U2

t ≥ λδ.

Thus, we find that τ 1 > τ 2.
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Next,

U1
τ2 − U2

τ2︸︷︷︸
=0

≥ λδ

⇐⇒ U1
τ2 − U1

τ1︸︷︷︸
=0

≥ λδ,

or,

U1
τ2 − U1

τ1 =

∫ τ1

τ2
(rU1

t + dxt) ≤ −λδ

by rewriting we find that

x1
τ1 − x1

τ2 =

∫ τ1

τ2
dxt ≤ −δ −

∫ τ1

τ2

rU1
t

λ
dt ≤ −δ

from which it follows that x1
τ2 − x1

τ1 ≥ δ. Moreover, x2
τ2 = x1

τ2 − δ by (1). By
combining the results, we can conclude that x2

τ2 ≥ x1
τ1 .

Using Lemmas 2 and 3,

vU(U1
0 , x

1
0) = E

[
vU(0, x1

τ1)
]
≤ E

[
vU(0, x2

τ2)
]

= vU(U2
0 , x

2
0).

Proof of Proposition 3. Consider the process

Pt = e−rtv(Ut, xt) +

∫ t

0

re−rs(xs − ws)ds. (33)

The state variables xt and Ut evolve according to (1) and (7).
We show that given βt ≥ λ and wt ≥ 0, Pt is a supermartingale. It is a

martingale only if βt = λ, and wt = 0 whenever vU(Ut, xt) > −1.
Using Itô’s lemma on (33), taking the expectations, and multiplying by ert, we

can write

ertE [dPt]

dt
= r(xt − wt)− rv(Ut, xt) + r(Ut − wt)vU(Ut, xt)

+
β2
t

2
vUU(Ut, xt) + βtvUx(Ut, xt) +

1

2
vxx(Ut, xt).

Adding (20) we find that

ertE [dPt]

dt
= −r(1 + vU(Ut, xt))wt

+
1

2

(
β2
t − λ2

)
vUU(Ut, xt) + βt (βt − λ) vUx(Ut, xt).
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or,

ertE [dPt]

dt
= −r(1 + vU(Ut, xt))wt +

1

2
(βt − λ)2 vUU(Ut, xt)

+ (βt − λ) (λvUU(Ut, xt) + vUx(Ut, xt)) . (34)

Since wt ≥ 0, vU(U, x) ≥ −1 implies that

−r(1 + vU(Ut, xt))wt ≤ 0,

with equality only if wt = 0 whenever vU(Ut, xt) > −1.
Moreover, since

vUU(Ut, xt) ≤ 0

by Lemma 4, the second term of (34) is nonpositive, and it is 0 only if βt = λ.
Finally, since βt ≥ λ, and

λvUU(Ut, xt) + vUx(Ut, xt) ≤ 0

by Lemma 5, the last term of (34) is always nonpositive, and it is 0 only if βt = λ.
Therefore, Pt is a supermartingale for an arbitrary incentive compatible contract,
and a martingale if the optimal contract is chosen.

Finally, notice that for Ut ≥ UFB(xt), vU(Ut, xt) = −1, vUU(Ut, xt) = vUx(Ut, xt) =
0. Therefore, (20) can be rewritten as

r(v(Ut, xt) + Ut)︸ ︷︷ ︸
=s(xt)

= x+
1

2
vxx(Ut, xt)︸ ︷︷ ︸

=sxx(xt)

.

From the analysis of Section 4 we know that the principal optimally lets Ut hit
0 at the same time that xt hits xL. That is, whenever Ut reaches UFB(xt), it is
optimal to implement the first-best solution as described in Proposition 2.

The next step is to evaluate the principal’s profit for an arbitrary incentive
compatible contract. That is,

E

[∫ τ

0

re−rs(xs − ws)ds+ e−rτL

]
= E [Pτ ] ≤ P0 = v(U0, x0),

with equality if and only if the optimal contract is chosen. This proves that the
principal earns the highest feasible value if she chooses the contract as described
in Proposition 3.

Finally, we verify that restricting the attention to payment schedules of the
form dwt = wtdt is without loss of generality.
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Lemma 6. The optimal income process w is absolutely continuous with respect to
t.

Proof. We show that the principal chooses the income process {wt : t ≥ 0} such
that it does not exhibit jumps. We show that adding a jump in the income process
weakly decreases the principal’s value.

Suppose that at t, the principal can profit by adding a jump of size dwt = ∆
in the agent’s income process. Note that then dUt = −dwt = −∆. Intuitively, the
principal increases the agent’s income by a lump-sum today, which decreases his
continuation value by the same lump-sum for tomorrow.

To be more precise, let wt jump from wt to wt+∆. Then Ut jumps from Ut+∆
to Ut. Again, we can evaluate the effect of the principal’s value by looking at the
process Pt in (33). Pt jumps by

ertdPt = v(Ut, xt)︸ ︷︷ ︸
Principal’s value after jump

− (v(Ut + ∆) + ∆)︸ ︷︷ ︸
Principal’s value before the jump

= −∆vU(Ut, xt)−∆

= −∆(vU(Ut, xt) + 1)

≤ 0.

The second equality follows from the fact that jumps have bounded variation,
and the last inequality follows from the fact that vU(Ut, xt) ≤ −1. Note that for
Ut ≥ UFB

t , vU(Ut, xt) = −1 such that it is only weakly suboptimal to let the agent’s
income process exhibit jumps if the first-best solution is reached. This reflects the
fact that the implementation of the first-best solution is not unique.

Proof of Proposition 4. Consider an arbitrary, full strategy l chosen by the agent.
The agent’s expected value from the strategy is

U0(l) = Ê

[∫ τ

0

re−rt
(
wt + λ

∫ t

0

lsds

)
dt

]
. (35)

We compare the agent’s expected value from the strategy l with his expected
value for the truthful reporting strategy U0. Notice that Uτ = Uτ (l). Reasoning
along the same lines than in the proof of Proposition 1, we find that

U0(l) = U0 − Ê
[∫ τ

0

e−rt
(
βtlt − λr

∫ t

0

lsds

)
dt

]
.

By comparing the agent’s expected value under the different strategies, we find
that truthtelling is optimal only if

U0(l)− U0 =− Ê
[∫ τ

0

e−rt
(
βtlt − λr

∫ t

0

lsds

)
dt

]
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=− Ê
[∫ τ

0

(e−rt − e−rτ + e−rτ )︸ ︷︷ ︸
=
∫ τ
t re

−rsds+e−rτ

βtlt − re−rtλ
∫ t

0

lsdsdt

]

=− rÊ
[∫ τ

0

∫ τ

t

e−rsdsβtlt − e−rtλ
∫ t

0

lsdsdt

]
− Ê

[∫ τ

0

e−rτβtltdt

]
=− rÊ

[∫ τ

0

e−rt
∫ t

0

βslsds− e−rtλ
∫ t

0

lsdsdt

]
− Ê

[∫ τ

0

e−rτβtltdt

]
=− rÊ

[∫ τ

0

e−rt
∫ t

0

(βs − λ)lsds

]
− Ê

[
e−rτ

∫ τ

0

βtltdt

]
. (36)

The forth line uses Fubini’s Theorem to exchange the order of integration.
Using the result that at equilibrium, βt = λ for all t ≤ τ , we can write (36) as

U0(l)− U0 =−rÊ
[∫ τ

0

e−rt
∫ t

0

(λ− λ)lsds

]
︸ ︷︷ ︸

=0

− Ê
[
e−rτ

∫ τ

0

λltdt

]

=− λÊ
[
e−rτ

∫ τ

0

ltdt︸ ︷︷ ︸
=xτ−x̂τ≥0 by limited liability

]
≤ 0 a.s. (37)

The last term of (37) arises because of persistence. It describes the agent’s expected
loss from choosing his strategy such that the true cash-flow xt and the reported
value x̂t do not agree as τ is reached.
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