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Abstract

This paper studies an infinite-horizon bilateral bargaining model with alternating

offers and private correlated values. The correlation of values is given by a global

games style information structure: players’ types are positively correlated with the

underlying fundamental and values are given by strictly increasing functions of

types. The paper analyzes two classes of equilibria: common screening equilibria

and segmentation equilibria. In common screening equilibria, both parties make

offers to screen the opponent’s type and all types of either party follow the same

path of offers. In segmentation equilibria, types partially separate themselves by

the initial offer. These equilibria classes have drastically different trade dynamics

and efficiency properties. Equilibrium behavior under infrequent offers is examined

by numerical simulations, and limits of equilibria as both the time between offers

vanishes and the correlation of values becomes nearly perfect are characterized.
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1 Introduction

Bargaining is an important feature of many economic transactions, and differences in

information about preferences are particularly important in determining equilibrium ef-

ficiency and trade dynamics. The bargaining game with infinite horizon and one-sided

incomplete information was extensively studied and by now is well understood.1 When

the seller’s cost is commonly known and the buyer’s valuation is private information, the

ability of the seller to extract profits beyond the competitive level depends crucially on

the support of the distribution of the buyer’s valuation. When there is a gap between the

seller cost and lowest buyer valuation, the seller loses all price discriminatory power as

offers become frequent (see Fudenberg, Levine, and Tirole (1985), Gul, Sonnenschein, and

Wilson (1986), Grossman and Perry (1986), Gul and Sonnenschein (1988)). This is the

manifestation of Coasian forces. The inability of the seller to commit to future price offers

drives seller offers down to the lowest buyer valuation, ensuring the competitive outcome.2

In the case of no gap, a folk-theorem type of result obtains and a variety of outcomes are

sustainable in equilibrium. In particular, both an outcome close to the static monopoly

outcome and the competitive outcome are feasible (see Ausubel and Deneckere (1989a,b),

Ausubel and Deneckere (1992a)).

In a recent work, Deneckere and Liang (2006) explored the case of interdependent

values in a model with one-sided incomplete information. In their model, a fundamental

determines values of both parties, but only one party is informed about the fundamental,

while the other party holds prior beliefs about it that are commonly known. The equilib-

rium exhibits interesting dynamics with long periods of almost no trade interrupted by

bursts of trade. This model was further studied in Fuchs and Skrzypacz (2010), Gerardi,

Hörner and Maestri (2013), and Fuchs and Skrzypacz (2013).3

The literature on bargaining with two-sided incomplete information has thus far fo-

cused exclusively on the case of independent private values. Cramton (1984), Cho (1990),

and Ausubel and Deneckere (1992) investigated the relationship between two-sided uncer-

tainty and efficiency.4,5 These papers restrict offers to one side which is shown in Ausubel

1Most of the results in the literature as well as in this paper are obtained in the limit of frequent
offers. The qualifier “in the frequent-offer limit” is omitted in the description of the results.

2I refer to the sale of the good at the price equal to the lowest valuation of the buyer as the competitive
outcome and to the sale at the optimal monopoly price as the static monopoly outcome.

3An earlier analysis of this model is given in Vincent (1989).
4See Section 7 for an overview of these results.
5See also Fudenberg and Tirole (1983) for the analysis of the model with two bargaining rounds, and

Chatterjee and Samuelson (1987) for a neat characterization of the bargaining dynamics under additional
restriction of type and action space to only two types and two offers. Watson (1998) studies a model
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and Deneckere (1993) to be ex-ante efficient for a variety of welfare weights. The current

paper is the first to study a bargaining model with two-sided incomplete information and

private correlated values. The correlation of values spans a variety of environments that

are intermediate between perfectly correlated and independent values.

Specifically, I consider a bargaining game in which values are determined by a global

games information structure, as in Morris and Shin (1998). An unobserved fundamental

ω is drawn from interval [0, 1], and buyer and seller types are related to the fundamental

by b = ω+ηB and s = ω+ηS, respectively. Random variables ηB and ηS are conditionally

independent draws from distributions with support
[
−η

2
, η

2

]
where η > 0 is the individual

uncertainty parameter. Types are mapped into values by strictly increasing functions v(b)

and c(s) so that for any realization of ω, ηB and ηS, there are strict gains from trade. As

the individual uncertainty parameter η varies from 0 to 1, the model spans environments

ranging from perfectly correlated to independent values. Players negotiate the price of

trade in a standard infinite-horizon bargaining game with alternating offers.

The information structure described above captures essential features of many eco-

nomically significant negotiations. For example, in over-the-counter markets for corporate

bonds, the price that the trader is willing to pay or accept for a particular bond depends

on characteristics of the bond such as yield, maturity, credit rating, additional features

like provisions and covenants, as well as the trader’s portfolio strategy and hedging needs.6

Moreover, evaluating risks associated with the bond is a complicated task that requires

expertise on the side of the trader and so, traders differ in their evaluation of a particular

bond. Although traders ultimately differ in their valuation of particular bonds, public

trading data and use of related modeling techniques implies a degree of correlation in

their assessments.

Another example is the inter-dealer market for used cars.7 The dealer’s value of a

particular car is determined by characteristics of the car as well as the current state of

the dealer’s inventory and the preferences of the dealer’s customer base. The evaluation

of the car characteristics depends on the familiarity of the dealer with a particular car

brand, previous experience of holding the car in stock or results of the pre-sale test drive.

Despite heterogeneity in values, the fact that dealers are experienced in the car evaluation

with two-sided private information about discount factors.
6See Saunders, Srinivasan, and Walter (2002) for a detailed field study of the OTC market for corporate

bonds.
7See Larsen (2013) for a comprehensive empirical analysis of the wholesale used-auto industry. On

this market, every year 15 million cars are sold in the United States, and in about 20% of the cases prices
are determined by the over-the-phone alternating-offer bargaining.
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implies that their values are positively correlated.

In these examples, the significant idiosyncratic component in preferences resulting from

the dealer’s business specifics justifies the assumption of private values. At the same time,

the fact that evaluation is done by professionals ensures a positive correlation in values.

Moreover, although some of allocations on these markets happen through auctions, many

trades are conducted through alternating-offer bargaining.

I analyze two tractable classes of equilibria of the described bargaining game. Section

3 characterizes a class of common screening equilibria (CSEs). In these equilibria, both

parties make price offers to screen the type of the opponent, and all types of either party

follow the same path of price offers. In other words, types pool on price offers and separate

by the time at which they accept the opponent’s price offer. Section 5 analyzes a different

class of segmentation equilibria, in which types partially separate themselves into several

segments by the initial price offer. Together, these two equilibria classes describe a variety

of possible equilibrium trade dynamics and sources of inefficiency.

To characterize frequent-offer limits of CSEs, I first introduce a related game which I

refer to as a concession game. The concession game is a continuous-time counterpart of

the described bargaining game except that players take price-offer paths as given and only

choose the time at which they accept the opponent’s offer. Competitive equilibria of the

concession game consist of a pair of price-offer paths and a pair of acceptance strategies

such that each player type chooses an optimal acceptance time given the price paths and

the strategy of the opponent. I restrict the analysis to competitive equilibria in monotone

(acceptance) strategies. Monotone strategies can be described at any time by a threshold

type of the buyer and the seller. All buyer types above the threshold type of the buyer

and all seller types below the threshold type of the seller accept the current price offer

of the opponent. In Theorem 1, incentives of threshold types are described by a system

of differential equations giving the relationship between monotone acceptance strategies

and the dynamics of price offers. Threshold types are indifferent between accepting the

current offer of the opponent, and marginally delaying the acceptance.

In general, the ability to choose price-offer paths puts additional restrictions on price

paths and acceptance strategies in CSEs. However, as Theorem 2 shows, in the frequent-

offer limit such restrictions on the CSE’s equilibrium behavior are minimal. In particular,

at any time players prefer to continue bargaining rather than stay out or make an un-

favorable price offer that is guaranteed to be accepted by any type of opponent in any

equilibrium.

The CSE characterization provides a realistic trade dynamics and uncovers new sources
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of bargaining inefficiency. The trade dynamics in a CSE can be described as a two-sided

screening process. The screening policy is common for all types on each side, but it is

not profitable to the same degree to all of them. A rejection of an offer does not lead

to reduction in uncertainty about the opponent for all types but only a subset of types.

This subset of types could be small if the individual uncertainty is small at the onset.

The common screening policy “prioritizes” higher seller types and lower buyer types. At

the beginning of the game, highest seller types and lowest buyer types benefit from the

common screening policy as only their offers are accepted with positive probability. As

the game proceeds, the common screening policy becomes efficient for types in the middle

of the type range. It is possible that a wide range of types of the seller at the bottom and

types of the buyer at the top never benefit from following the common screening policy,

and with probability one they accept some price offer of the opponent.

Equilibrium behavior also provides a new perspective on how bargaining postures are

formed. In CSEs, both parties start the negotiation by claiming that their values are at

the extremes, even though such postures are commonly known to be unreasonable when

the individual uncertainty is small.8 Over time the common screening policy narrows

down the range of types possible in the game. As bargaining continues, parties make

concessions and moderate their demands to more reasonable levels.

There are three sources of inefficiency in CSEs. First, the surplus is dissipated through

the channel analogous to the standard monopoly deadweight loss. In order to efficiently

screen player types, each offer is targeted at a particular group of types and the allocation

is delayed for the rest of the types. The second source of inefficiency is signaling costs.

Higher seller types and lower buyer types prefer to reject the offer of the opponent and

continue screening to signal their value and convince the opponent to accept their screen-

ing offer. These inefficiencies were already present in the model with independent private

values.9

The third source of inefficiency arises from common screening. Since players use

common screening policies, a significant time could pass until the common screening

policy becomes efficient for buyer and seller types in the middle of the type range. This

source of inefficiency is novel and was not present in the model with independent types.

When types are independent, decreasing uncertainty about gains from trade reduces the

inefficiency from the first two sources. In contrast, in CSEs, types in the middle of the type

8That is, it is common knowledge that at most one of the parties is telling the truth when claiming
that his/her value is at the extreme.

9See Ausubel and Deneckere (1992b) for an excellent analysis of these two sources of inefficiency in
the model with independent values.
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range go through a routine of offers in the common screening policy that are guaranteed

to be rejected by the opponent. This could result in a significant CSE inefficiency, even

when the individual uncertainty is small.

In Section 4, I consider an extreme case when the only source of inefficiency is the

common-screening inefficiency. Theorem 3 characterizes CSE limit outcomes when both

the individual uncertainty and the time between rounds vanish. The characterization is in

terms of static common screening mechanisms (CSMs). In CSMs, types are divided into

strong and weak types, and only weak types truthfully reveal themselves. Terms of trade

are determined solely by the announcement of the weak type. Despite vanishingly small

individual uncertainty, the equilibrium behavior still exhibits rich two-sided screening

dynamics. This is in contrast with the complete information game analyzed in Rubinstein

(1982), in which trade is immediate with equal split of the gains from trade in the limit

of frequent offers.

The possibility of a variety of outcomes with non-trivial predictions about delay is

an attractive feature for using the described bargaining model as a component of a more

general economic model. As the individual uncertainty is vanishingly small, it allows the

modeler to abstract from the uncertainty outside the bargaining part of the model, while

the bargaining part still exhibits interesting two-sided screening dynamics.

Theorem 3 shows that small individual uncertainty of players is not sufficient for the

efficient trade, as long as there is large common uncertainty, that is, the range of types

in the game is large. One way to reduce common uncertainty is by exogenously divid-

ing the market into several segments. In the examples described above, rating agencies

assign credit ratings to corporate bonds, and used-car dealers trade through platforms

with the pre-sale inspection and established quality standards. These features divide the

market into several segments. The market for corporate bonds is divided into prime,

investment grade and non-investment grade bonds. In used-car markets, luxury lots are

traded separately from regular lots.

In Section 5, I show that such segmentation happens endogenously in segmentation

equilibria. As opposed to CSEs, in segmentation equilibria constructed in Theorem 4,

there is no inefficiency of common screening, and the waste is only due to the standard

deadweight loss and signaling costs. For small individual uncertainty, in segmentation

equilibria most of the types trade shortly after the start of bargaining. However, bargain-

ing may take an arbitrarily long time for types at the boundaries of the segments. In the

equilibrium, such types build reputation for belonging to a segment with a more favorable

price by delaying trade and insisting on that price.
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Segmentation equilibria allow us to draw a connection between the complete infor-

mation bargaining game studied in Rubinstein (1982) and the model in this paper. In

Theorem 5, I construct a sequence of segmentation equilibria with vanishing individual

uncertainty and time between bargaining rounds that approximates Rubinstein (1982)’s

immediate equal split of the realized surplus. Along this sequence, the number of segments

increases and the definition of segments becomes finer.

For a wide range of types, the common screening policy in CSE can bring zero ex-

pected payoff for an extended time. Hence, it is important to understand what prevents

players from deviating from this policy. Section 6 constructs the punishing equilibrium

in which the punishing side holds optimistic beliefs. For example, in the seller punishing

equilibrium, any type b buyer puts probability one on the seller type max{0, b−η}. In the

frequent-offer limit, the utility of the deviator in the punishing equilibrium is independent

of the individual uncertainty parameter η, and the utility of all types of the deviator is

equal to the lowest utility achievable in any equilibrium (Theorem 7). Therefore, de-

tectable deviations from the CSE’s equilibrium path can be punished equally harshly (in

the frequent-offer limit) for all levels of individual uncertainty. I further demonstrate by

numerical simulations that when offers are infrequent, the amount of individual uncer-

tainty restricts the severity of the punishing equilibrium.

The structure of the paper is as follows. Section 2 describes the bargaining game and

the information structure. Section 3 characterization the limit equilibrium behavior in

CSEs in terms of competitive equilibria in the concession game. Section 4 characterizes

double limits of CSE outcomes in terms of equilibrium outcomes of CSMs. Section 5

analyzes segmentation equilibria. Punishing equilibria play a key role in the results of

this paper, and I study them in Section 6. Section 7 relates the paper to the existing

literature. Section 8 concludes and gives directions for future research. To maintain

continuity of the argument, all proofs are relegated to the Appendix.

2 The Model

This section introduces an infinite-horizon bargaining model with alternating offers and

private correlated values. A buyer and a seller meet to trade one unit of a good.10 The

seller’s type s ∈ [0, 1] and the buyer’s type b ∈ [0, 1] are jointly uniformly distributed on

SB ≡ {(s, b) ∈ [0, 1]2 : max{0, s− η} ≤ b ≤ min{1, s+ η}}. The individual uncertainty

10Female pronouns are used to refer to the seller and male pronouns are used to refer to the buyer.
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parameter η ∈ (0, 1) controls the degree of correlation of types. Types are almost perfectly

correlated when η ≈ 0 and close to independent when η ≈ 1.11,12

The valuation of the good of a type b buyer is v(b), and the cost of selling the good

to a type s seller is c(s), where v : [0, 1] → R and c : [0, 1] → R are strictly increasing,

differentiable functions with derivatives bounded from below by some positive constant

and bounded from above by ` > 0.13 Let ξ ≡ min
(s,b)∈SB

{v(b) − c(s)} be the minimal gains

from trade possible in the game. Assume ξ > 0.14 The gains from trade are positive for any

buyer and seller type, but the size of the gains from trade is not common knowledge due

to the imperfect correlation of types. As a result, players are uncertain about how much

the opponent gains from trade at a particular price and have incentives to pretend that

the gains from trade are small to get a better price. However, for η < 1 the profitability

of such pretense is potentially limited, as the opponent may detect that certain low gains

are not possible.

Additionally, I impose the following mild technical condition on valuation and cost

functions. A function f(x) on a compact set X is regular if it is smooth and there exists

D > 0 such that 1
l!
dlf(x)
dxl

< D for all l ∈ N and all x ∈ X. This condition is slightly

stronger than the analyticity, and many functions used in applications are regular (for

example, all polynomial functions are regular).15,16

Assumption R. Functions v(b) and c(s) are regular.

One can interpret the type space as follows. There is a fundamental ω drawn from

[0, 1] and the buyer and the seller types b = ω+ ηB and s = ω+ ηS, respectively, where ηb

11Formally, the correlation coefficient between b and s is decreasing in η, and it is equal to 1 for η = 0
and to 0 for η = 1.

12To focus on the novel features of the model, the extreme cases η = 0 and η = 1 are left out from
the analysis. The case η = 0 has been studied in Rubinstein (1982). The analysis of the case η = 1 is
simpler than the general case η ∈ (0, 1), but requires a separate treatment in proofs. All results of the
paper carry to this case.

13When types are independent, it is a standard result that types can be taken to be uniformly dis-
tributed on the unit interval without loss of generality. For any distribution of values, there is a trans-
formation of the valuation and cost functions that preserves the distribution of values and changes the
distribution of types into uniform on the unit interval. With correlated types this result is no longer true
as no such transformation is guaranteed to preserves the correlation structure. In this paper, I consider a
general class of valuation and cost functions, but restrict the distribution of types to uniform. Relaxing
this assumption is left for the future research.

14Observe, that this assumption does not preclude the possibility that c(1) < v(0), and there is no
trade at a single price that gives non-negative utility to all types.

15For analytic function f(x) on a compact set there exists D > 0 such that 1
l!
dlf(x)
dxl

< Dl for all l ∈ N.
16Assumption R is used in the proof of Lemma 4 and all subsequent theorems which apply this theorem.

It is not needed for results about the punishing equilibria in Section 6 and the necessity part of Theorem
2.

8



and ηs are independent conditional on ω and have support [−η
2
, η

2
] ∩ [−ω, 1 − ω].17 This

type of information structure is commonly used in the global games literature (see Morris

and Shin (1998) and Morris and Shin (2003) for a survey). The information structure

used in this paper is referred to as a global games information structure primarily to

distinguish it from a different kind of interdependence in values studied in Deneckere and

Liang (2006).

Given their types, players hold prior beliefs about their opponent’s type. Prior beliefs

of seller type s are uniform on the interval Bs ≡ [bαs , b
ω
s ] where bαs ≡ max{0, s − η} and

bωs ≡ min{1, s+ η}. Analogously, prior beliefs of buyer type b are uniform on the interval

Sb ≡ [sαb , s
ω
b ] where sαb ≡ max{0, b− η} and sωb ≡ min{1, b + η}. Players’ types and their

priors are illustrated on Figure 1.
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Figure 1: Types and beliefs. Red (filled) triangles capture the support of seller beliefs
and blue (dashed) triangles capture the support of buyer beliefs. Seller type s puts
probability one on buyer types in Bs, and buyer type b puts probability one of sellers in
Sb. The support of the buyer and seller beliefs has length at most 2η and is truncated
from below at 0 and from above at 1.

Bargaining occurs in rounds n ∈ N, and the length of a time interval between bar-

gaining rounds is ∆ > 0. Players discount the future at the common discount rate r > 0.

The seller is active in odd rounds, and the buyer is active in even rounds. An active

player can either accept the last offer of the opponent or make a counter-offer. Once a

price offer is accepted, the game ends and payoffs are determined. An outcome (N∆, p)

17The joint distribution of ω, ηb and ηs is such that (s, b) is distributed uniformly on SB.

9



consists of the time of trade N∆ ≤ ∞ (where N is the round of trade) and the price of

trade p. The utility of type b buyer is e−r(N−1)∆(v(b)− p) and the utility of type s seller

is e−r(N−1)∆(p− c(s)).18

In any round n by which trade has not happened, a history hn is a sequence of rejected

price offers up to round n−1. A (pure) behavioral strategy of the buyer σnb : [0, 1]×Rn−1 →
R∪{accept} is a measurable function which for any history hn gives the acceptance decision

or a counter-offer of buyer type b. The posterior beliefs µnb : [0, 1]× Rn−1 → ∆(S) of the

buyer is a measurable function that maps any buyer type b and any history hn into a

probability distribution over seller types. The behavioral strategy σns and the posterior

beliefs µns are defined analogously for the seller.

A sequential equilibrium, which I further refer to simply as equilibrium, is pair of

strategy profiles (σnb , σ
n
s ) and beliefs (µnb , µ

n
s ) that satisfy sequential rationality and con-

sistency.19 Sequential rationality requires that after any history, players best respond

to the strategy of the opponent given their posterior beliefs. Consistency implies that

beliefs are updated by Bayes rule whenever possible and, in addition, µnb ∈ ∆(Sb) and

µns ∈ ∆(Bs) for any history hn. The latter requirement implies that the global games

information structure is common knowledge among players. Both on and off the equilib-

rium path, players put positive probability only on types of the opponent that lie in the

support of their priors, players are certain that their opponent also puts positive proba-

bility only on a subset of the support of his/her prior beliefs, and the regress continues

indefinitely.

3 Common Screening Equilibria

This section characterizes the dynamics of CSE frequent-offer limits. The approach is to

temporarily turn to a related game, referred to as a concession game in which players take

price paths as given. The main result of this section (Theorem 2) relates CSE frequent-

18By convention, if the trade does not happen in a finite number of rounds, N =∞ and both players
get payoff zero.

19It is standard in the bargaining literature to restrict attention to equilibria in pure strategies with the
reservation that mixing is possible off the equilibrium path (see Gul, Sonnenschein and Wilson (1986),
and Fudenberg, Levine, and Tirole (1985) for a discussion of mixing off the equilibrium path). In this
paper mixing could be necessary only for seller type 0 and buyer type 1 off the equilibrium path of the
punishing equilibrium analyzed in Section 6. With minor adjustments the results in this paper could be
formulated to incorporate this possibility. Instead, for notational convenience this possibility is assumed
away in Section 6 (this assumption is not vacuous as verified by the numerical example in the end of
Section 6).
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offer limits to competitive equilibria of the concession game (characterized in Theorem

1). At the end of this section, I highlight main steps of the proof of the main result. In

particular, Lemma 4 is at the heart of all equilibria constructions in this paper.

Concession game

The concession game is defined as follows. Types of the buyer and the seller are drawn

uniformly from SB as in Section 2. There is a continuous path of buyer price offers

qBt : t 7→ qBt and a continuous path of seller price offers qSt : t 7→ qSt , Players take as

given paths of price offers and choose the time at which they accept the opponent’s offer.

Outcome (T c, qc) consists of the time T c ∈ R̄+ and the price qc at which trade happens.20

Given outcome (T c, qc), the utility of buyer type b is e−rT
c
(v(b) − qc), and the utility of

seller type s is e−rT
c
(qc − c(s)).

Strategies are acceptance times t∗B(b) and t∗S(s) for each type b buyer and type s seller,

respectively. For any types b, s and strategies t∗B(b), t∗S(s), the outcome is determined by

T c = min {t∗B(b), t∗S(s)}, and qc = qBt∗B(b) if t∗B(b) ≤ t∗S(s) and qc = qSt∗S(s) if t∗S(s) < t∗B(b).21

I assume that price paths are continuously differentiable, qSt ≥ qBt for all t ≥ 0, and

additionally22

c−1(qB∞)− v−1(qS∞) ≥ η. (1)

Condition (1) guarantees that all gains from trade can be eventually realized through

one of the players accepting the opponent’s offer.23 Observe that the concession game is

static, even though payoffs are determined by a dynamic procedure. I define a competitive

equilibrium of the game as follows.

Definition 1. A competitive equilibrium of the concession game is a tuple (t∗B(b), t∗S(s), qBt , q
S
t )

such that given price paths qSt and qBt and the strategy of the opponent (given by t∗S(s) or

t∗B(b)), players choose acceptance times t∗B(b) and t∗S(s) optimally.

The definition of the competitive equilibrium is in the spirit of the Walrasian equilib-

rium. Each player takes price paths as given and chooses the acceptance time to maximize

20I use notation R+ ≡ [0,∞) for a set of positive reals, and R̄+ ≡ R+ ∪ {∞}.
21In equilibria that I analyze, players assign probability zero to ties, and the tie-breaking rule could be

specified arbitrarily.
22Define x∞ ≡ limt→∞ xt whenever the limit exists.
23To see this, notice that the set of types that get negative payoffs from accepting any opponent’s offer is

a subset of [0, v−1(qS∞)] for the buyer and a subset of [c−1(qB∞), 1] for the seller. By c−1(qB∞)−v−1(qS∞) ≥ η,[
c−1(qB∞), 1]× [0, v−1(qS∞)]

)
∩ SB = ∅ giving the desired conclusion.
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his/her expected utility. However, unlike in the standard general equilibrium theory, in

the concession game players’ preferences are interdependent. If the buyer chooses an ear-

lier acceptance time, then for a fixed strategy of the seller, it is more likely that bargaining

will end earlier and that it will end by the acceptance of the seller price offer. This in-

creases the expected utility of the seller and could give the seller additional incentives

to delay the acceptance. Because of the preference interdependence, in general, finding

a competitive equilibrium in the concession game is a difficult task. To circumvent this

difficulty, I restrict the analysis of competitive equilibria to monotone strategies. The

restriction to monotone strategies is common in Bayesian games with a continuum of

types.24

Definition 2. Acceptance strategies t∗B(b) and t∗S(s) are monotone if there exist processes

b∗t : t 7→ b∗t and s∗t : t 7→ s∗t such that

1. t∗B(b) ≡ inf{t : b∗t = b} and t∗S(s) ≡ inf{t : s∗t = s},25

2. for some TB, TS ∈ R̄+, b∗t is strictly decreasing for 0 ≤ t ≤ TB and constant for

t ≥ TB, and s∗t is strictly increasing for 0 ≤ t ≤ TS and constant for t ≥ TS.

Say that b∗t and s∗t are smooth monotone strategies if, additionally, b∗t and s∗t are contin-

uously differentiable.

Monotone strategies specify the lowest type b∗t of the buyer and the highest type s∗t

of the seller remaining in the game at time t. I use t∗B(b) and b∗t interchangeably to refer

to the monotone strategy of the buyer, and analogously, I use both t∗S(s) and s∗t for the

monotone strategy of the seller. The strict monotonicity of b∗t and s∗t implies that there

are no periods with no acceptance until times TB and TS, respectively, when players stop

accepting the opponent’s offers. During “quiet” periods, price offers that are not accepted

can be specified arbitrarily, as long as no types choose to accept them. The focus of

this section is on the relationship between the dynamics of price paths and acceptance

strategies and so, the strict monotonicity is necessary to pin down such relationship. I

also make the following assumption about the monotonicity of price paths.

Condition M. Seller price path qSt is decreasing, and buyer price path qBt is increasing.

24Pure-strategy equilibria in monotone strategies were studied by Athey (2001), McAdams (2003),
Reny (2011) in the context of auctions and by Van Zandt and Vives (2007) in the context of games with
strategic complementarities.

25By convention, inf ∅ =∞.
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The monotonicity of offers required by Condition M is fairly natural, and it reflects the

fact that over time parties converge in their demands. In the characterization of CSEs, I

will need a stronger version of Condition M, which requires that price paths are strictly

monotone up to some time after which they remain constant.

Condition M′. There exists T̂ ∈ R̄+ such that seller price path qSt is strictly decreasing

on [0, T̂ ], and buyer price path qBt is strictly increasing on [0, T̂ ], and price paths are

constant after T̂ .

The next theorem characterizes competitive equilibria in smooth monotone strategies.

Theorem 1. Consider a competitive equilibrium of the concession game in smooth mono-

tone strategies described by (b∗t , s
∗
t , q

B
t , q

S
t ). Then the following conditions hold.

1. There exists a time T ∈ R̄+ such that

b∗T = bαs∗T and qBT ≤ qST with equality if T <∞. (2)

2. For all t ∈ [0, T ),

r
(
v(b∗t )− qSt

)
= λSt

(
qSt − qBt

)
− q̇St , (3)

r
(
qBt − c(s∗t )

)
= λBt

(
qSt − qBt

)
+ q̇Bt ; (4)

where λBt ≡ −
ḃ∗t

b∗t−bαs∗t
1

{
bωs∗t ≥ b∗t

}
and λSt ≡

ṡ∗t
sω
b∗t
−s∗t

1

{
sαb∗t ≤ s∗t

}
.

Conversely, consider a tuple of smooth monotone strategies and price paths (b∗t , s
∗
t , q

B
t , q

S
t )

that satisfies condition M, and conditions (2), (3), (4). Then (b∗t , s
∗
t , q

B
t , q

S
t ) is a competi-

tive equilibrium of the concession game.

Theorem 1 justifies the validity of the first-order approach for the analysis of compet-

itive equilibria in smooth monotone strategies. To see this, consider the problem of type

b buyer. Suppose that the seller uses smooth monotone strategy s∗t and price paths are

given by qBt and qSt . Let F S
t (b) ≡ max{min{s∗t ,sωb }−sαb ,0}

sωb −s
α
b

be the CDF of the seller’s accep-

tance time evaluated by type b buyer and fSt (b) be the corresponding density function.

Type b buyer maximizes his expected utility,

uB(t, b) =

ˆ t

0

e−ru
(
v(b)− qBu

)
fSu (b)du+ (1− F S

t (b))e−rt
(
v(b)− qSt

)
→ max

t∈R̄+

,
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and the first order condition for his problem is

r(v(b)− qSt ) =
fSt (b)

1− F S
t (b)

(
qSt − qBt

)
− q̇St . (5)

Condition (3) is the first-order condition (5) evaluated at b = b∗t . It describes the incentives

of the threshold type of the buyer. The buyer balances the cost due to discounting (left-

hand side), and the benefit from the possible concession of the seller (the first term on

the right-hand side) and from the change in the seller price offer (the second term on

the right-hand side). Function uS(t, s) and the problem of type s seller are defined and

analyzed analogously.

The first-order condition in (5) is only a necessary condition for optimality of the

monotone strategy b∗t . The following property of expected utility is key in proving that the

first-order condition is also sufficient. Function uB(t, b) satisfies the strict single-crossing

property in (t, b) if for t < t′ and b < b′, uB(t, b) > uB(t′, b) implies that uB(t, b′) >

uB(t′, b′), and uB(t, b) ≥ uB(t′, b) implies that uB(t, b′) > uB(t′, b′) (see Milgrom and

Shannon (1994)).

Lemma 1. Suppose that qBt and qSt satisfy (1) and condition M. If s∗t is a monotone

seller strategy, then uB(t, b) on TB ≡ {(t, b) : b ∈ [0, 1], t ∈ [0, t∗S(sωb )]} satisfies the strict

single-crossing property. If b∗t is a monotone buyer strategy, then uS(t, s) on TS ≡
{(t, s) : s ∈ [0, 1], t ∈ [0, t∗B(bαs )]} satisfies the strict single-crossing property.

Observe that for any b, uB(t, b) is constant for t > t∗S(sωb ), as buyer type b expects that

the seller accepts by time t∗S(sωb ) with probability one. Hence, the restriction to sets TB

and TS is necessary to guarantee strict inequalities in the definition of the strict single

crossing property.

There are several implications of the strict single crossing property of expected utilities.

By Theorem 4′ in Milgrom and Shannon (1994), any best-reply t∗B(b) to a monotone seller

strategy s∗t is a weakly decreasing function. This is weaker than saying that a best-reply

t∗B(b) is itself a monotone strategy (let alone a smooth monotone strategy), as t∗B(b) need

not be strictly decreasing. In this case, it is possible that the solution to (3) gives only a

local maximum or even a minimum. The next lemma rules out this possibility.

Lemma 2. Suppose that price paths qBt and qSt satisfy (1) and condition M. If b∗t is

a smooth monotone strategy in the concession game that satisfies (3) for some smooth

monotone strategy of the seller s∗t , then b∗t is a best-reply to s∗t .

14



Theorem 1 reduces the the analysis of competitive equilibria of the concession game

to the mathematical problem of solving a system of ordinary differential equations. For

given monotone strategies b∗t and s∗t such that for some T < ∞, bαs∗t = b∗t , for all t ≥ T ,

system (3)−(4) is linear in qBt and qSt , and by the Picard-Lindelöf theorem, it has a unique

solution satisfying qBT = qST = q for some q ∈ (c(s∗T ), v(b∗T )). To guarantee that strategies

b∗t and s∗t are indeed optimal, one needs to verify that this solution gives monotone price

paths qBt and qSt .

In the next subsection, I show that under additional restrictions, competitive equilib-

ria described in Theorem 1 can be obtained as equilibria limits in the bargaining game

where players are not restricted in their price offers. The restrictions are formulated in

terms of continuation utilities of players, and it is useful to denote by UBt (b) and USt (s)

the continuation utilities at time t of buyer type b and seller type s, respectively, in a

competitive equilibrium of the concession game. More precisely, for t ≤ t∗B(b), let UBt (b) ≡
uB(t∗B(b), b)− uB(t, b), and analogously, for t ≤ t∗S(s), let USt (s) ≡ uS(t∗S(s), s)− uS(t, s).

Characterization of CSE

Competitive equilibria in the concession game are appealing because of their analytic

tractability. However, the assumption that price paths are fixed seems far from innocuous

at first sight. Next, I present the central result of this section justifying this assumption.

Even if players are allowed to change their price offers, there are equilibria in the bar-

gaining game, in which they choose not to do so and follow a given paths of offers. I first

define the class of CSEs.

Definition 3. Common screening equilibria (CSEs) are equilibria of the bargaining game

in which on-path equilibrium strategies are described by the tuple (bn, sn, p
B
n , p

S
n) which

satisfies the following properties.

1. A path of seller offers pSn changes only in odd rounds, and in any odd round n, all

seller types that do not accept the buyer’s offer make counter-offer pSn.26 All buyer

types follow a sequence of offers pBn , which changes only in even rounds.

2. Sequence pSn is (weakly) decreasing, and sequence pBn is (weakly) increasing.

3. There is a non-increasing sequence of threshold buyer types bn and a non-decreasing

sequence of threshold seller types sn. In even rounds, all remaining buyer types above

26In the text, I refer to a sequence {xn}∞n=1 by its member xn and to a continuous time process {xt}t≥0

by its member xt.
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bn accept the seller’s offer pSn−1, and in odd rounds all remaining seller types below

sn accept buyer’s offer pBn−1, so long as there were no deviations from price paths pSn

and pBn in the past.

4. c−1(pB∞)− v−1(pS∞) ≥ η.

A CSE is active if on the equilibrium path a positive mass of remaining buyer or seller

types accepts the opponent’s offer in every round up to some N̄ ≤ ∞.

In a CSE, both sides screen the opponent’s type and all types on either side use a

common screening policy, i.e. they follow the same sequence of offers. In CSEs, both

price paths and acceptance strategies are monotone. The property that higher buyer

types accept the seller’s offer earlier than lower types (and the reverse for the seller) is

referred in the bargaining literature as a skimming property. The skimming property

greatly simplifies the Bayesian updating of beliefs. In any round n, the posterior beliefs

of any remaining type b buyer is a truncation of the uniform distribution on Sb at the

bottom at sn, and symmetrically, the beliefs of any remaining type s seller is a truncation

of the uniform distribution on Bs at the top at bn.27

Subsequently, I define the limit of CSEs as the round length ∆ converges to zero.

First, I extend strategies in the discrete-time game to continuous time. For any sequence

of real numbers {fn}n∈N, say that a function ft is an extension of {fn}n∈N to a continuous

domain if ft|t=n∆ = fn for all n ∈ N and ft is linear on each interval [(n − 1)∆, n∆].28

To distinguish CSE on-path strategies bn, sn, p
B
n , p

S
n from their extensions bt, st, p

B
t , p

S
t ,

respectively, I use time index t instead of round index n, whenever I refer to the extensions.

Additionally, since the characterization of CSE limits is in terms of competitive equilibria

of the concession game, with a slight abuse of notation, I use the same notation for the

27The role of the monotonicity restrictions in CSEs is similar to that in the analysis of the concession
game. In the Appendix, I show that counterparts of Lemmas 1 and 2 hold for CSEs in the bargaining
game. Lemma 9 demonstrates that if price paths are monotone and the seller uses a strategy satisfying
the skimming property, then the expected utility of the buyer satisfies the strict single-crossing property.
Moreover, for any strategy sn of the seller that satisfies the skimming property, if a decreasing sequence
bn of threshold buyer types is such that for any n < N̄ , threshold types are indifferent between accepting
the current offer and the offer in the next round, then bn is the best-response to sn (see Lemma 11 in the
Appendix). This guarantees global optimality of the on-path strategies in the construction of the CSE
equilibrium path. I additionally require that in CSEs an analogue of condition (1) holds. This way I
focus on the inefficiencies that arise due to timing of the acceptance, but not because some of the gains
from trade are not realized.

28Perhaps, it is more natural to define the extension of fn to continuous domain to be a right-continuous
function that coincides with fn at times t = n∆. The results of the paper carry through for this definition
with only slight modifications of the proofs.
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CSE limit as for strategies in the concession game. The following definition formalizes

the notion of convergence.

Definition 4. A sequence (b∆
t , s

∆
t , p

B∆
t , pS∆

t ) of CSEs indexed by ∆ → 0 has a smooth

limit if

1. processes b∆
t , s

∆
t , p

B∆
t , pS∆

t converge pointwise to continuously differentiable limit pro-

cesses b∗t , s
∗
t , q

B
t , q

S
t , respectively;

2. T = lim sup
∆→0

T∆, where T ≡ inf{t ≥ 0 : b∗t′ = b∗t and s∗t′ = s∗t for all t′ ≥ t} and

T∆ ≡ inf{t ≥ 0 : b∆
t′ = b∆

t and s∆
t′ = s∆

t for all t′ ≥ t};

3. b∗T = lim
∆→0

b∆
T∆

and s∗T = lim
∆→0

s∆
T∆

.

The tuple (b∗t , s
∗
t , q

B
t , q

S
t ) is called the smooth limit of the sequence.

Condition 1 in Definition 4 implies that in the limit, no positive mass of types accepts

the opponent’s price offer in any arbitrarily short interval of time, and moreover prices do

not change drastically. Condition 2 guarantees that the limit preserves information about

when the trade ends with certainty. Condition 3 ensures that the sets of accepting types

(b∆
T∆
, 1] and [0, s∆

T∆
) do not collapse in the limit.29

In contrast to the concession game, in the bargaining game players choose price offers

that they make. This puts additional restrictions on price paths and acceptance strategies.

The next lemma gives weak restrictions on equilibrium price offers in the bargaining game.

Lemma 3. In any equilibrium and after any history,

1. any buyer’s offer above c(1)+e−r∆v(1)
1+e−r∆

is accepted by the seller, and the buyer never

accepts any offer higher than v(1)+e−r∆c(1)
1+e−r∆

;

2. any seller’s offer below v(0)+e−r∆c(0)
1+e−r∆

is accepted by the buyer, and the seller never

accepts any offer lower than c(0)+e−r∆v(0)
1+e−r∆

.

29The following two examples clarify the difference between conditions 2 and 3 in Definition 4. In both
examples suppose that s∆

n = 0 for all n ∈ N and ∆ > 0 and so, s∗t = 0 for all t ≥ 0. In the first example,

suppose that for some T ′ > 0, b∆n = T ′−n∆
T ′ + n∆

T ′ ∆, for n ∈ N ∩
[
0, T

′

∆

)
, and b∆n = ∆e−(n∆−T ′), for

n ∈ N ∩
[
T ′

∆ ,∞
)

. Then T∆ =∞, but for all t ≥ T ′, b∆t → 0 as ∆→ 0 and so, T = T ′. Hence, condition

2 is not satisfied, however, b∆T∆
= b∗T = 0 and condition 3 holds.

In the second example, suppose that b∆n = 1
2

(
1 + e−n∆

)
, for n ∈ N ∩

[
0,∆−2

)
, and b∆n =

1
2

(
1 + e−∆−1

)
e−n∆+∆−2

, for n ∈ N ∩ [∆−2,∞). Then b∆T∆
= 0, but for all t ≥ 0, b∆t → 1

2 (1 + e−t)

as ∆ → 0 and so, b∗T = 1
2 . Hence, condition 3 is not satisfied, however, T∆ = T = ∞ and condition 2

holds.
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The bounds in Lemma 3 rely on the fact that it is common knowledge among play-

ers that valuations belong to the interval [v(0), v(1)] and costs belong to the interval

[c(0), c(1)]. The interpretation is as follows. Suppose that the seller manages to convince

the buyer that he has the highest possible costs, c(1), and the buyer’s valuation turns

out to be v(1), thus maximizing the size of the surplus. Then the outcome would be as

in the unique subgame perfect equilibrium of the complete information game with valua-

tion v(1) and cost c(1) analyzed by Rubinstein (1982). In such an equilibrium, the seller

makes offer v(1)+e−r∆c(1)
1+e−r∆

and rejects any offer below c(1)+e−r∆v(1)
1+e−r∆

, and the buyer makes offer
c(1)+e−r∆v(1)

1+e−r∆
and rejects any offer above v(1)+e−r∆c(1)

1+e−r∆
. By Lemma 3, the seller cannot get a

higher payoff than in the scenario described. Moreover, Lemma 3 implies that the buyer

always has the option to trade immediately at price v(1)+e−r∆c(1)
1+e−r∆

by admitting that he has

the highest valuation v(1) and recognizing that the seller has the highest costs c(1).

Lemma 3 together with the fact that players can always reject any offer implies that in

the frequent-offer limit, seller type s gets at least her reservation utility max
{
v(0)+c(0)

2
− c(s), 0

}
,

and theorem reservation utility of buyer type b is max
{
v(b)− v(1)+c(1)

2
, 0
}

. This trans-

lates into the following restriction on the utilities that players get in the competitive

equilibrium in the concession game. For all t ∈ [0, T ) and all b and s,

UBt (b) ≥ max

{
v(b)− v(1) + c(1)

2
, 0

}
, (6)

USt (s) ≥ max

{
v(0) + c(0)

2
− c(s), 0

}
. (7)

The next theorem shows that in the limit of frequent offers, conditions (6) and (7) are the

only restrictions that the ability to choose price offers puts on the equilibrium price paths

and acceptance strategies. In particular, it establishes that under additional generic con-

ditions on equilibrium strategies, the sets of active CSE smooth limits and of competitive

equilibria in smooth monotone strategies coincide.

Theorem 2. Consider a sequence of active CSEs indexed by ∆ → 0 with a smooth

limit. Then the smooth limit of the sequence constitutes a competitive equilibrium in the

concession game, and in addition, satisfies conditions (6) and (7).

Conversely, consider a competitive equilibrium of the concession game in smooth mono-

tone strategies (b∗t , s
∗
t , q

B
t , q

S
t ) satisfying Condition M′ and date T specified in condition (2).

In addition, suppose that b∗∞ ∈ (0, 1), s∗∞ ∈ (0, 1), c(s∗T ) < qBT ≤ qST < v(b∗T ), and strict

versions of inequalities (6) and (7) hold. Then there exists a sequence of active CSEs
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indexed by ∆→ 0 with a smooth limit (b∗t , s
∗
t , q

B
t , q

S
t ).

Theorem 2 sheds light on the limit dynamics of trade and sources of inefficiency in

CSEs. In CSEs, players simultaneously screen each other’s types. There are three cate-

gories of types determined endogenously: weak, strong, and pliable. Strong types never

accept the opponent’s offer. In contrast, offers of weak types are never accepted. Hence,

strong types are the screening types and weak types are the screened types. The behavior

of pliable types is ambiguous. With positive probability, their offers are accepted by the

opponent, but if not they will eventually give in and accept the opponent’s offer. By the

skimming property, these categories are ordered as follows. There exists time θ such that

b∗θ = bωs∗θ . At time θ, threshold types start putting positive probability on the acceptance of

their price offer by the opponent. Highest buyer types [b∗θ, 1] are weak types, lowest buyer

types [0, b∗T ] are strong types and pliable types are in the interval (b∗T , b
∗
θ). The categories

of seller types are ordered in the opposite way: weak types are in [s∗T , 1], pliable types are

in (s∗θ, s
∗
T ) and strong types are in [0, s∗θ]. Since all types use a common screening policy,

the profitability of the policy is different for different types. In particular, the common

screening policy is most profitable for strong types, while weak types do not benefit from

the screening policy at all.

Equilibrium conditions allow us to understand sources of inefficiency in the bargaining

model with a global games information structure. Two standard sources of inefficiency are

reflected in conditions (3) and (4). For example, consider equation (3), which describes

the evolution of threshold buyer types. A faster decrease in seller price offers qSt leads

to higher b∗t and creates an inefficient delay. This is the standard deadweight loss from

screening. If the seller were not discriminating, then qSt would not change and this would

lead to a lower b∗t , hence, faster trade.

To see the inefficiency due to signaling, consider the likelihood λSt that the buyer’s

offer is accepted. In equation (3), an increase in λSt results in higher threshold buyer

type b∗t . By delaying trade, the buyer signals the seller that his valuation is low and

further delay could be costly for the seller. The stronger the impact of such a signal

on the seller’s behavior (higher λSt ), the higher the incentives of the buyer to signal by

inefficiently delaying trade.

The fact that there is a “pecking order” of types, and it could take a long time until

the common screening policy becomes efficient for the types in the middle of the type

range creates a new source of bargaining inefficiency. To see this effect, observe that seller

type s expects positive profit from her screening offers only after time t when b∗t ≤ bωs , and

buyer types in the support of her beliefs start accepting seller’s screening offers. Suppose
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type s is such that time t when b∗t ≤ bωs is finite. Until this time, seller type s follows

the common screening path qSt , even though she knows that such offers are rejected with

certainty. As a result, the delay for seller type s is increased by the amount of time it

takes to screen buyer types above bωs .

Theorem 2 has an important empirical implication. Irrespective of individual uncer-

tainty, bargaining may start from offers that are far from the equal division of the realized

surplus and trade can be significantly delayed. An important predictor of the spread of of-

fers is the range of values commonly known, while the individual knowledge of the players

might matter very little.

Proof Sketch of Theorem 2

I next describe the main methodological contribution of this paper. To show that a

competitive equilibrium (b∗t , s
∗
t , q

B
t , q

S
t ) satisfying conditions of Theorem 2 can be obtained

as a smooth limit of the sequence of CSEs, I construct a sequence of CSEs in grim trigger

strategies. Equilibria in grim trigger strategies contain two ingredients: the main path and

the punishment path. Players start the game by following the main path and continue

to follow it unless a detectable deviation occurs. Detectable deviations from the CSE

equilibrium path trigger the punishment, and players switch to the punishing path for the

deviating side given by punishing equilibria analyzed in detail in Section 6. By Theorem

7, as ∆→ 0, the utility of any type of the deviator in the punishing equilibrium converges

uniformly to the lowest utility possible in the equilibrium which in conjunction with the

strict versions of inequalities (6) and (7) allows us to support the main path. In this

subsection, I focus on the steps in the construction of the main path.

The construction of the main path is based on the approximation of differential equa-

tions (3) and (4) by difference equations. For T <∞, there is an approximating sequence

of strategies (b∆
t , s

∆
t , p

B∆
t , pS∆

t ) that converges uniformly to (b∗t , s
∗
t , q

B
t , q

S
t ) as ∆ → 0. By

the uniform convergence, deviations from the main path can be deterred by the threat of

switching to the punishing path.

The key in the construction is to guarantee that it extends to the case T = ∞, since

by condition (2), competitive equilibria of the concession game need not end in finite

time. The difficulty is that it is no longer possible to construct a uniform approximation

of competitive equilibrium strategies as for T <∞. To circumvent this difficulty, Lemma

4 constructs particular continuation CSEs with T =∞, in which on the equilibrium path,

price offers are constant over time and the mass of the remaining types could be arbitrarily
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small. Given this result, an equilibrium in which negotiation continues indefinitely is

approximated with an equilibrium in which after a certain time T ′ price offers become

constant. For times before T ′, a uniform approximation of (b∗t , s
∗
t , q

B
t , q

S
t ) is available, and

I can proceed as in the case T <∞.

Lemma 4. Consider b0 ∈ (0, 1− η], s0 ∈ [b0 − η, b0 + η) ∩ [η, 1), PB, P S that satisfy

max

{
c
(
sωb0
)
,
v(0) + c(0)

2

}
< PB < P S < min

{
v
(
bαs0
)
,
v(1) + c(1)

2

}
, (8)

Then for all ∆ sufficiently small, there exists an active continuation CSE such that

1. b0 and s0 are the highest buyer type and the lowest seller type, respectively, remaining

in the game,

2. pBn = PB and pSn = P S for all n ∈ N,

3. max{bn−1 − bn, sn − sn−1} < ∆C for all n ∈ N, where C is a constant independent

of ∆.

Lemma 4 constructs a continuation CSE that starts from the moment when only buyer

types below b0 and seller types above s0 remain in the game. There are two price offers

PB and P S that are made on the equilibrium path, and each player decides whether to

accept the less favorable offer of the opponent, or delay the acceptance in the hope that

the opponent will accept earlier.30 In every round, a positive mass of types of the active

player accepts. Condition (8) ensures that for all types remaining in the game the utility

from accepting the opponent’s offer exceeds their reservation utility.31 Given that there is

30The equilibrium constructed in Lemma 4 is similar to equilibria in war of attrition game. See
Fudenberg and Tirole (1991) for a survey of the literature on the war of attrition. Abreu and Gul (2000)
establish a connection between reputational bargaining and the war of attrition. Krishna and Morgan
(1997) analyze the war of attrition with affiliated values as an auction form, in which the winning bidder
pays the highest loosing bid and loosing bidders pay their bids. The literature on the war of attrition
has a different payoff structure and is mostly formulated in continuous time, so I was not able to build
on the techniques used in this literature.

31To understand the requirement on b0 and s0 in Lemma 4, observe that in the sufficiency part of
Theorem 2, it holds b∗∞ ∈ (0, 1) and s∗∞ ∈ (0, 1), and together with condition (2), this implies b∗∞ ∈
(0, 1 − η) and s∗∞ ∈ (η, 1). I use Lemma 4 to construct a continuation CSE, in which the remaining
buyer types are below b0 and the remaining seller types are above s0, and b0 and s0 are close to b∗∞
and s∗∞, respectively. Therefore, I place the restriction b0 ∈ (0, 1 − η] and s0 ∈ [η, 1). The requirement
s0 ∈ [b0−η, b0+η) guarantees that starting from the first round in the continuation equilibrium both sides
assign positive probability to the acceptance of their offer in the next round. This makes the concession
continuous in the limit ∆→ 0 with no mass positive mass of types accepting in any instant of time, and
in particular, implies that the bound on max{bn−1 − bn, sn − sn−1} in Lemma 4 holds.
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a positive difference in players’ payoffs from trading at PB or P S, bargaining necessarily

continues indefinitely.32 The last property of the continuation equilibrium constructed in

Lemma 4, guarantees that in the limit concession happens continuously.33

It should be mentioned that the equilibrium construction in Lemma 4 is significantly

harder for the case of global games information structure compared to the case of in-

dependent values (η = 1). In this paper, under the skimming property, buyer types

with higher valuations also put lower probability on the acceptance by the seller, and the

reverse for the seller. Players have additional incentives to accept the opponent’s offer

earlier, which makes it harder to guarantee that bargaining continues indefinitely. For

intuition of differences in the analysis, compare the incentives of the threshold types in

the case η = 1 and η < 1. To keep the threshold buyer type indifferent between accepting

and rejecting the current offer, the probability of the seller acceptance in the next round

should be sufficiently high. When types are independent (η = 1), it is possible to vary

this probability from 0 to 1 by varying the threshold seller type in the next round. In

this case, for any initial choice of b2, it is possible to construct recursively the subsequent

thresholds.

However, when types are interdependent (η < 1), there is an upper bound on how high

the probability of seller acceptance evaluated by buyer type b can be. This comes from

the fact that for the buyer type b, all seller types in the interval [s∞, s
ω
b ] never accept the

buyer price offer. In this case, if the construction starts from an arbitrary choice of the

first threshold types b2 and proceeds recursively, it can happen that in some round n there

is no threshold type of the active player in round n+ 1 that makes the threshold type of

the active player in round n indifferent between the acceptance and delay. Nevertheless,

Lemma 4 establishes that it is possible to find an initial threshold type b2 so that the

recursive construction of thresholds is possible.

4 Common Screening Mechanisms

The previous section, shows that in addition to the standard sources of bargaining inef-

ficiency, such as deadweight loss from screening and signaling costs, in CSEs surplus is

dissipated through the common-screening inefficiency. In this section, I show that even if

32Otherwise, for sufficiently small ∆, players would prefer to marginally delay the acceptance before
the final date. This would give a discontinuous gain in the payoff, making the acceptance at times close
to the final date suboptimal.

33Indeed, in an interval of length ∆ at most mass ∆C of types concedes and so, the speed of acceptance
is bounded above by C.
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the individual uncertainty of players is vanishingly small, efficiency is not guaranteed, and

in fact, a variety of equilibria with screening dynamics is possible. Theorem 3 characterizes

outcomes of CSEs as both ∆ and η converge to zero in terms of CSMs.

I start by defining interim CSE outcomes and describing CSMs. For any CSE and

buyer type b, define the discounted probability of allocation by PB(b) ≡ E
[
e−r∆N |Sb, σb

]
and the discounted transfer by XB(b) ≡ E

[
e−r∆Np|Sb, σb

]
.34 Functions P S(s) and XS(s)

for the seller are defined analogously. Tuple (PB, XB, P S, XS) determines the interim

outcome of the game, that is, the expected outcome of each player after the type of the

player is realized, but before the type of the opponent is known.

The characterization of almost-sure limits of interim CSE outcomes that I will present

in Theorem 3 is given in terms of truthful equilibria in a class of static mechanisms.35

Consider the following mechanism design problem. The values are determined by a com-

monly known fundamental ω ∈ [0, 1] that is not observed by the mechanism designer. A

mechanism specifies a set of messages that each player sends, and a mapping from mes-

sages into outcomes that consists of a probability of trade and a transfer from the buyer

to the seller.

Definition 5. A common screening mechanism (CSM) is a game in which both players

announce simultaneously the fundamental. There is a threshold ω∗ ∈ [0, 1] such that

the outcome is determined by the buyer announcement if both announcements lie to the

right of ω∗, the outcome is determined by the seller announcement if both announcements

lie to the left of ω∗. Outcome (P̄ (ω∗), X̄(ω∗)) is implemented if both players announce

ω∗, and the outcome (0, 0) is implemented otherwise. The mapping (P̄ (ω), X̄(ω)) from

fundamentals to outcomes satisfies the following conditions.

1. For all ω, ω′ > ω∗,

P̄ (ω)v(ω)− X̄(ω) ≥ P̄ (ω′)v(ω)− X̄(ω′) (9)

and

P̄ (ω)v(ω)− X̄(ω) ≥ max

{
0, v(ω)− v(1) + c(1)

2

}
. (10)

34The expectations are taken conditional on the event that buyer type b follows the equilibrium strategy
σb, a seller type is drawn from a uniform distribution on Sb and the seller follows the equilibrium strategy
σs.

35Ausubel and Deneckere (1989a) and Ausubel, Cramton and Deneckere (2001) used mechanism-design
approach to characterize frequent-offer limits of equilibria in bargaining models with one-sided incomplete
information and offers by uninformed side.
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2. For all ω, ω′ < ω∗,

X̄(ω)− P̄ (ω)c(ω) ≥ X̄(ω′)− P̄ (ω′)c(ω) (11)

and

X̄(ω)− P̄ (ω)c(ω) ≥ max

{
0,
v(0) + c(0)

2
− c(ω)

}
. (12)

3. Left and right limits of X̄(ω) exist at ω∗ and X̄(ω∗ + 0) ≥ X̄(ω∗ − 0) .

Conditions (9) and (11) are standard incentive compatibility constraints that are re-

quired to hold only for the party that determines the outcome. Conditions (10) and (12)

are individual rationality constraints, adjusted for the fact that by Lemma 3, in the bar-

gaining game the equilibrium price of trade should lie in the interval
[
v(0)+c(0)

2
, v(1)+c(1)

2

]
in

the limit of frequent offers. Observe that if the inequality in condition 3 of the definition

is strict, then the seller prefers that the mechanism designer implements an outcome for

ω slightly above ω∗, rather than slightly below ω∗, and the buyer preferences are reverse.

Intuitively, by condition 3, fundamentals above ω∗ correspond to terms of trade more

favorable for the seller, and fundamentals below ω∗ are more favorable for the buyer.

It is a simple observation that for any equilibrium of a CSM, there is an equivalent

CSM in which players announce the fundamental truthfully in equilibrium. Since values

are common knowledge among players, probabilities of allocation P̄B(b) and P̄ S(s) and

transfers X̄B(b) and X̄S(s) in the truthful equilibrium of any CSM are determined by the

outcome (P̄ (ω), X̄(ω)) with P̄B(ω) = P̄ S(ω) = P̄ (ω) and X̄B(ω) = X̄S(ω) = X̄(ω). I will

refer to the tuple (P̄B(b), P̄ S(s), X̄B(b), X̄S(s)) as the outcome of the truthful equilibrium

of the CSM.

Even though players have common knowledge about the fundamental, the mechanism

designer needs to extract this information to implement the CSM outcome. For this

purpose, the mechanism designer screens buyer types for high fundamentals (above ω∗)

and seller types for low fundamentals (below ω∗). This parallels the dynamics in CSEs

where strong player types screen weak types of the opponent. The exact relation between

CSM outcomes and CSE interim outcomes is given in the following theorem.

Theorem 3. For any truthful equilibrium outcome of some CSM that satisfies

P̄ (ω) > 0 for all ω 6= ω∗ and P̄ (ω∗ + 0) = P̄ (ω∗ − 0), (13)

there is a sequence of CSEs indexed by (∆, η) → (0, 0) such that CSE interim outcomes
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converge to the equilibrium CSM outcome for almost all types.

Conversely, consider a sequence of CSEs indexed by (∆, η)→ (0, 0). Then the sequence

of CSE interim outcomes converges over subsequence to the truthful equilibrium outcome

of some CSM for almost all types.

Condition (13) states that there cannot be unrealized gains from trade, and that

probabilities of allocation near the threshold state ω∗ should be similar. Theorem 3 shows

that unlike in the global games literature, taking individual uncertainty to zero in the

model does not lead to sharp predictions about equilibrium behavior. On the one hand,

this is not surprising as the bite of the global games refinement is much weaker in the

dynamic framework and when there is enough public information (see Angeletos, Hellwig

and Pavan (2007) and Chassang (2010)).

On the other hand, Theorem 3 allows for qualitative predictions about delay that

were not possible based on the bargaining model with complete information. For exam-

ple, consider the inter-dealer market for corporate bonds. Index bonds by their normalized

expected payoff ω ∈ [0, 1]. The selling side is willing to sell the bond, because of the liq-

uidity needs or other considerations. Traders differ in their value of a particular bond both

because of the specifics of their portfolio strategy and because of subjective differences in

the evaluation of the bond. I consider the limit when these differences become negligible,

which is a natural limit for the OTC markets on which traders have a significant expertise

in evaluating the bonds.

By Theorem 3, the liquidity of an asset ω in general depends non-monotonically on ω,

even if the heterogeneity in traders’ values is very small. Observe that by the standard

argument from the mechanism design (see Myerson (1981)), the incentive compatibility

constraints (9) and (11) imply that P̄ (ω) is decreasing for ω > ω∗ and increasing for

ω < ω∗. In particular, bonds with the highest expected payoff (ω close to one) and the

lowest expected payoff (ω close to zero) are expected to be more liquid than the assets in

the middle of the range of expected payoffs. Moreover, if the common uncertainty on the

market about the quality of the bond is large (the range of v(b) and c(s) is large), then

very inefficient equilibria are possible, in which the spread between the buyer and seller

offer is big, and it takes a significant time to complete trades for bonds in the middle of

the range.

Theorem 3 presents a simple way to take common uncertainty into account in the

context of a more general model. In applied work one might be willing to incorporate the

effect of uncertainty on the delay and the price. A natural way to do this is by introducing

incomplete information into the model. However, this often complicates the analysis and
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could turn out to be intractable in the more general framework. Therefore, many models

assume that the gains from trade are common knowledge and trade happens according to

the Nash bargaining solution (Nash (1953)). An important drawback of this concept is

that it implies that trade occurs immediately. By Theorem 3, one could assume instead

that the individual uncertainty is negligible so it does not affect the decisions not directly

related to the bargaining process, but at the same time, there is a non-trivial common

uncertainty. Theorem 3 shows that a wide range of outcomes is possible and they have a

simple and intuitive static characterization.

5 Segmentation Equilibria

In CSEs, as individual uncertainty vanishes, common-screening inefficiency becomes a

dominant source of the surplus dissipation. In this section, I analyze a very different class

of equilibria which I call segmentation equilibria. In this class of equilibria, common-

screeninig inefficiency is completely eliminated shortly after the start of bargaining. The

trade dynamics and efficiency properties of these equilibria drastically differ from those

of CSEs.

In segmentation equilibria, types partially separate by their first offers into Z segments

so that after the first rounds of acceptance, both sides assign positive probability to the

opponent accepting their offer in each following round. In this sense, common-screening

inefficiency is eliminated after the first rounds. Each segment z ∈ {1, · · · , Z} is associated

with a particular offer of the seller qSz and the buyer qBz , and on the equilibrium path only

offers from {qS1 , . . . , qSZ} and {qB1 , . . . , qBZ } are made. The next theorem provides conditions

on the number of segments and price offers in each segment, under which the construction

of a segmentation equilibrium is possible.

Theorem 4. Suppose an integer Z, an increasing sequence of offers {qBz }Zz=1, and increas-

ing sequences {bz}Zz=1 and {sz}Zz=1 of buyer and seller types are such that b0 = s0 = 0,

bZ = sZ = 1 and

1. sz = bz − η and c(sz) < qBz < v(bz−1) for z = 1, Z − 1,

2. bz+1 − bz > 4η for z = 1, Z − 2.

Then for sufficiently small ∆, there exists a segmentation equilibrium with Z segments

and buyer price offers {qB1 , . . . , qBZ } such that there is no almost sure upper bound on the
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delay on the equilibrium path, but ex-ante probability of delay longer than two rounds is

bounded above by 4η(Z−1)
2−η .

The proof of Theorem 4 generalizes the construction of Lemma 4 and condition 1 of

Theorem 4 ensure that such generalization is possible. Condition 2 ensures that segments

are significantly far apart, so that every player type puts positive probability on at most

two opponent’s offers on the equilibrium path. Given the assumption of strict gains from

trade (recall ξ > 0), condition 1 of Theorem 4 holds for any η sufficiently small.

To understand how the segments are constructed, it is useful to consider the limiting

case of low individual uncertainty η ≈ 0 and frequent offers ∆ ≈ 0. All buyer types in

(bz−1, bz) and seller types in (sz−1, sz) belong to segment z. All of those types but a small

η−neighborhood around boundaries trade almost immediately at the prices corresponding

to the segment, qBz or qSz , and qBz ≈ qSz . Types near boundaries of segments have incentives

to delay trade and form reputation for belonging to a segment with more favorable terms of

trade. These types could continue bargaining for arbitrarily long time. In the constructed

segmentation equilibrium, the probability that the trade is delayed is at most 4η(Z−1)
2−η , and

this upper bound is increasing in both η and Z. As the individual uncertainty η increases,

the mass of the types that form a reputation increases and the equilibrium becomes less

efficient. For the same reason, more segments reduce the efficiency.

Theorem 4 could be reformulated to allow for the segmentation to happen over time

rather than all at once in first rounds. Together with Theorem 2, this gives a rich de-

scription of possible equilibrium behavior. Intervals of gradual (common) screening, as in

CSEs, are interrupted by rounds, in which remaining types split into endogenous segments

and the common uncertainty is drastically reduced.

It is common in the economic literature to use the Nash bargaining solution (Nash

(1953)) to make predictions about the division of the surplus.36 In this paper, the Nash

bargaining solution corresponds to equal division of the realized surplus. Rubinstein

(1982) provides non-cooperative foundations for the Nash bargaining solution. He shows

that the frequent-offer limit of the unique subgame perfect equilibrium of the complete

information bargaining game with alternating offers is immediate trade with the division of

surplus as in the Nash bargaining solution. Correspondingly, define the Nash outcome to

be
(

0, v(b)+c(s)
2

)
. The next theorem constructs a sequence of segmentation equilibria with

36For example, the Nash bargaining solution was used to study the relationship between unemploy-
ment and search on labor market (see Mortensen and Pissarides (1994)), liquidity on over-the-counter
markets (see Duffie, Gârleanu, and Pedersen (2005)), renegotiation in contract theory (see Tirole (1999)),
equilibrium selection in repeated games (see Miller and Watson (2013)).
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increasingly fine definition of segments such that outcomes of these equilibria approximate

the Nash outcome.

Theorem 5. There exists a sequence of segmentation equilibria indexed by (∆, η)→ (0, 0)

such that outcomes (N∆, p) of segmentation equilibria converge in probability to the Nash

outcome
(

0, v(b)+c(s)
2

)
, i.e. for any ε > 0 there exists a segmentation equilibirum in the

sequence such that

P
(
N∆ > ε,

∣∣∣∣p− v(b) + c(s)

2

∣∣∣∣ > ε

)
< ε. (14)

To prove Theorem 5, I apply Theorem 4 to construct segmentation equilibria with

Z ∼ 1√
η

segments and prices qBz = v(bz−1)+c(sz)
2

. As η → 0, the probability of any given

delay is bounded from above by 4η(Z−1)
2−η ∼ √η and converges to zero. The length of each

segment
√
η also converges to zero and so, qBz is close to the Nash division for types in

each segment z.

Section 4 shows that as individual uncertainty vanishes, equilibrium outcomes in the

bargaining model can differ drastically from Nash outcomes. This section establishes that

reduction in the common uncertainty is crucial in achieving the Nash outcome. Observe

that a public announcement restricting the range of values of both sides to s, b ∈ [ω, ω] for

some 0 < ω < ω < 1 reduces the range of possible prices. As this announcement become

more informative (ω−ω decreases), by Lemma 3, the frequent-offer limit of the equilibrium

outcome converges to immediate equal division of the realized surplus.37 Combining this

observation with Theorem 5, the Nash outcome is the limit of equilibrium outcomes in the

bargaining game, when common uncertainty is reduced exogenously (by making v(b) and

c(s) flatter) or endogenously (by decreasing individual uncertainty η and increasing the

number of segments Z). Unlike previous models, this paper stresses the role of common

uncertainty as opposed to individual uncertainty in achieving the Nash outcome as the

limit of the equilibrium outcomes.

6 Punishing Equilibria

This section introduces and analyzes the seller punishing equilibrium which is key in

deterring seller deviations from the equilibrium paths of CSEs. Since a buyer punishing

equilibrium is constructed analogously, in this section, I refer to the seller punishing

37To see this, notice that this is equivalent to making functions v(b) and c(s) flatter while keeping
s, b ∈ [0, 1]. By Lemma 3, the range of possible prices (in the limit of frequent offers) shrinks to that
giving an immediate equal division of surplus.
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equilibrium as simply the punishing equilibrium. In the punishing equilibrium, the buyer

holds optimistic beliefs and puts probability one on the lowest seller type in the support

of his beliefs Sb, while the seller has her prior beliefs. As a result, in the subgame

following a detectable deviation from the CSE path, beliefs are not common-prior beliefs.

I first describe carefully strategies in the punishing equilibrium and prove the existence

in Theorem 6. I next present in Theorem 7 the crucial uncertainty invariance property of

the punishing equilibrium. In the limit of frequent offers, the utility of the seller in the

(seller) punishing equilibrium converges to the lowest utility possible in equilibrium. In

the end of the section, I demonstrate by numerical simulations that this property does

not hold for a given frequency of offers.

Description of strategies

Beliefs. The punishing equilibrium is an equilibrium of the game in which seller types

hold their original beliefs, while buyer types hold optimistic beliefs. More precisely, buyer

types put probability one on the lowest seller type in the support of their prior beliefs,

i.e.

µnb (sαb ) = 1 (15)

for all histories hn with some seller detectable deviation.38

Beliefs described in (15) are a natural counterpart of optimistic beliefs commonly

used in the bargaining literature. Since optimistic beliefs of the buyer might exclude the

realized seller’s type, the buyer and the seller may have different expectations regarding

the path of play.39 I refer to the path of play expected by the seller in the punishing

equilibrium as the equilibrium path of the punishing equilibrium.

38Such beliefs could be justified by the following trembles in the model with a finite number of types
and finite grid of price offers. Seller’s and buyer’s types come from {k/K}Kk=1 for some integer K. Let
η ≡ i/K for some integer i ∈ {1, ..,K}. Suppose price offers come from a discrete set P. Seller type s
trembles with probability (1 − s)m/2 for some integer m and conditional on trembling chooses a price
offer uniformly from P. As m→∞, the probability of tremble converges to zero. Yet, conditional on the

buyer type b the probability that the tremble comes from seller type sαb is
(1−sαb )n

(1−sαb )m+
∑
s∈Sb\s

α
b

(1−s)m → 1

as m→∞, since 1−s
1−sαb

< 1.
39For example, suppose that buyer type b and seller type s ∈ Sb\sαb are realized. In the punishing

equilibrium, beliefs of buyer type b assign probability one to type sαb . If the punishing equilibrium
strategies prescribe different actions for seller types s and sαb , then buyer type b will observe seller’s
deviations from the expected path of play. In turn, seller type s knows that any buyer type b in the
support of her beliefs is optimistic. The seller takes into account the fact that the buyer could perceive
her action as a deviation from the equilibrium strategy.
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Buyer on-path strategy. All buyer types pool on the lowest acceptable price offer
c(0)+e−r∆v(0)

1+e−r∆
(cf. Lemma 3). Buyer type b accepts any price offer less than or equal to his

willingness to pay P (b) which is left-continuous and strictly increasing in b. Since P (b) is

strictly increasing, for any history hn without buyer deviations, there exists a buyer type

β ∈ [0, 1] such that only buyer types in the interval [0, β] remain in the game. Whenever

β ≥ bαs , posterior beliefs of seller type s are uniform on Bs ∩ [0, β].

Seller on-path strategy. The seller faces the static demand function given by P (b)

and makes price offers to screen buyer types by their willingness to pay. Since P (b) is

left-continuous, it is never optimal for the seller to offer a price in [P (b), P (b+ 0)), if b is

point of discontinuity of P (b).40 Indeed, alternatively the seller could offer price P (b+ 0)

and still sell the good to all buyer types above b, but at a higher price. Let P̂ (b) be

a right-continuous function that is equal to P (b) in all continuity points of P (b). Then

the strategy of the seller could be equivalently represented as follows. Given the highest

remaining buyer type β, seller type s > 0 chooses a cut-off buyer type tβ(s) and allocates

to all remaining buyer types above tβ(s). To reach this goal, the seller should make offer

P̂ (tβ(s)).41

The strategy of seller type 0 differs from the rest of seller types, due to the fact that

a positive mass of buyer types in [0, η] puts probability one on seller type 0. Seller type

0 (and only this seller type) accepts buyer price offer c(0)+e−r∆v(0)
1+e−r∆

, whenever the highest

buyer type remaining in the game is below some β̄ ∈ (0, η]. Given the highest remaining

buyer type β ∈ (β̄, η], seller type 0 allocates to buyer types above tβ(0).

Before moving on to the description of strategies off-path, I give optimality conditions

that on-path strategies of the punishing equilibrium should satisfy. The problem of seller

type s could be formulated recursively. Let bounded function Rβ(s) for β ∈ [bαs , 1] be the

40For any strictly increasing and left-continuous function f(x) we use notation f(x + 0) =
limx′→x+0 f(x′) for right limit of f(x) at point x (which exists by monotonicity of f(x)).

41It might be tempting to define P (b) as a right-continuous function and this way avoid the necessity
to introduce auxiliary function P̂ (b). This, however, is not possible. To see this, suppose that every seller
type does not screen and allocates to buyer type bαs in the first round. Then

P (b) =

{
(1− e−r∆)v(b) + e−r∆ c(0)+e−r∆v(0)

1+e−r∆ , for b ∈ [0, η],

(1− e−2r∆)v(b) + e−2r∆P (max{b− 2η, 0}), for b ∈ (η, 1].

It is easy to see that such function is not right-continuous. In particular,

(1− e−r∆)v(η) + e−r∆
c(0) + e−r∆v(0)

1 + e−r∆
= P (η) < P (η + 0) = (1− e−3r∆)v(η) + e−3r∆ c(0) + e−r∆v(0)

1 + e−r∆
.
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value function of seller type s satisfying Bellman equation42

Rβ(s) = sup
b∈Bs∩[0,β]

{
(β − b)(P̂ (b)− c(s)) + e−2r∆Rb(s)

}
. (16)

Let Rβ(0) = er∆β
(
δv(0)+c(0)

1+δ
− c(0)

)
for β ∈ [0, β̄] and Rβ(0) be given by (16) for β ∈

(β, η]. This reflects the fact that seller type 0 accepts price offer c(0)+e−r∆v(0)
1+e−r∆

whenever

β ≤ β̄. Denote by Tβ(s) the set of maximizers of the right-hand side of (16). A seller

strategy tβ(s) is a best-reply to buyer strategy P (b), if tβ(s) = inf Tβ(s) for all s and

β ≥ bαs . A special role in the analysis is played by the first cut-off buyer type chosen by

seller type s, which I denote by t(s) ≡ tbωs (s).

For a screening strategy tβ(s) of the seller, the willingness to pay P (b) for b ∈ (η, 1] is

given by

P (b) = (1− e−2r∆)v(b) + e−2r∆P̂ (t(sαb )) (17)

The interpretation of (17) is the following. The expectation of buyer type b about future

screening offers of the seller is determined by the screening policy of seller type sαb . Buyer

type b in the interval (η, 1] believes that he is the highest buyer type in the support of

beliefs of seller type sαb . If the seller makes price offer P (b), then in the next screening

round, buyer type b will be the highest buyer type remaining in the game. Hence, buyer

type b will expect to buy the good in the next round at price P̂ (t(sαb )). Equation (17)

states that buyer type b is just indifferent between accepting price offer P (b) and getting

utility b − P (b), and rejecting P (b) and accepting price offer P (t(sαb )) in the following

round of screening.

As with seller type 0, willingness to pay of buyer types in the interval [0, η] differs

from the rest of the buyer types. Both on and off the equilibrium path of the punishing

equilibrium, it is determine by some strictly increasing and left-continuous function P 0(b).

Strategies off-path. If the buyer makes a price offer different from c(0)+e−r∆v(0)
1+e−r∆

or

β < bαs , seller type s switches to optimistic beliefs and assigns probability one to the

highest buyer type in the support of her prior belief, i.e.

µns (bωs ) = 1 (18)

42The value function is defined only on the set {(β, s) ∈ BS : bαs ≤ β}. Outside of this set, seller
s detects that state β is achieved as a result of buyer deviation and switches to the optimistic belief
(18) as specified below. In this case the seller’s behavior is described by Lemma 5. Also observe that
Rβ(s) = Rbωs (s) for all β ≥ bωs .
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for all histories hn with both seller and buyer detectable deviations. Observe that if seller

type s has optimistic beliefs after some history, then any higher seller type has optimistic

beliefs as well. The following lemma describes equilibrium strategies when both players

have optimistic beliefs. This result is based on the analysis of the bargaining game with

complete information (Rubinstein (1982)).

Lemma 5. Suppose that for some b ∈ [0, 1] beliefs of buyer types above b and seller types

above sαb are described by (15) and (18). Then the following strategies are the equilibrium

strategies for such buyer and seller types. After any history, buyer type b in the interval

(b, 1] accepts price offer less than or equal to P̌B(b). Otherwise, such type makes counter-

offer ǍB(b). After any history seller type s in the interval (sαb , 0] accepts price offer greater

than or equal to P̌ S(s). Otherwise, such type makes counter-offer ǍS(s). Functions P̌B(b)

and ǍB(b) are given by

P̌B(b) =

(1− e−r∆)v(b) + e−r∆P̌ S(0)

v(b)+e−r∆c(b−η)
1+e−r∆

ǍB(b) =

P̌ S(0), for b ∈ [0, η),

c(b−η)+e−r∆v(b)
1+e−r∆

, for b ∈ [η, 1].

and functions P̌ S(s) and ǍS(s) are given by

P̌ S(s) =


c(s)+e−r∆v(s+η)

1+e−r∆

(1− e−r∆)c(s) + e−r∆P̌B(1)
ǍS(s) =


v(s+η)+e−r∆c(s)

1+e−r∆
, for s ∈ [0, 1− η],

P̌B(1), for s ∈ (1− η, 1].

Seller deviations from the equilibrium strategies in the punishing equilibrium are ig-

nored. If buyer type b rejects a seller price offer lower than P (b), then the seller detects

such deviation only if b > β + 2η. In this case, the continuation play is as in Lemma 5.

If β < b ≤ β + 2η, then such deviation is not detected and buyer type b makes price offer
c(0)+e−r∆v(0)

1+e−r∆
, and accepts any price offer less than Pβ(b) ≡ (1−e−2r∆)v(b)+e−2r∆P (tβ(sαb )),

which now depends also on the highest remaining buyer type β. This completes the de-

scription of the strategies in the punishing equilibrium.

Existence

In this subsection, I show the existence of the punishing equilibrium. The proof of the

existence is constructive, and later in this section, I implement the algorithm to describe

equilibrium constraints for a given frequency of offers. The key in the construction is to
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show that willingness to pay P (b) and screening policy tβ(s) satisfying (16) and (17) exist.

The next theorem presents the result.

Theorem 6. For all sufficiently small ∆, the seller punishing equilibrium exists.

I sketch main steps of the construction of the punishing equilibrium. The construction

is carried out starting from the bottom of the type distribution. I first analyze strategies

of seller type 0 and buyer types in [0, η] that put probability one on this seller type.

This is the model with one-sided incomplete information and alternating offers, and the

following result is standard in the literature (see Grossman and Perry (1986), Gul and

Sonnenschein (1988)).

Lemma 6. For all sufficiently small ∆, there exists a PBE in a game between seller type

0 and buyer types in [0, η], in which on the equilibrium path

1. the buyer makes price offer c(0)+e−r∆v(0)
1+e−r∆

and accepts seller price offers according to

left-continuous and strictly increasing willingness to pay function P 0(b) ;

2. there exists β̄ ∈ [0, η] such that if the highest remaining buyer type is below β̄, then

seller type 0 accepts the buyer price offer c(0)+e−r∆v(0)
1+e−r∆

;

3. given the highest remaining buyer types β ∈ (β̄, η], seller type 0 allocates to buyer

types above tβ(0) in the current round.

Moreover, for any ε > 0 the first price offer of seller type 0 does not exceed v(0)+c(0)
2

+ ε

for ∆ sufficiently small.

One detail worth mentioning is that despite the fact that seller type 0 follows a pure

strategy on the equilibrium path, out-of-the-equilibrium path the mixing might be neces-

sary (see footnote 19). To comply with the restriction of the analysis to pure strategies,

the following assumption is made.43

Assumption P. Seller screening strategy in Lemma 6 is pure off the equilibrium path.

Strategies for the rest of the types are constructed via the tâtonnement algorithm

that runs as follows. Buyer types in [0, η] put probability one on seller type 0 and have

willingness to pay P 0(b). By Lemma 17 in the Appendix, all seller types allocate to at

least a mass c(η,∆) of buyer types in the first round of screening. Hence, it is sufficient to

43In numerical simulations in the end of the section, I give an example of the model in which assumption
P is satisfied.
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know the willingness to pay of buyer types in [0, η] to constuct the screening policy τ 1
β(s)

of seller types in [0, c(η,∆)]. Moreover, buyer types in [η, η+ c(η,∆)] put probability one

on sellers in the interval [0, c(η,∆)]. On Step 1 of the algorithm, screening policy tβ(s)

for seller types in [0, c(η,∆)] and willingness to pay P (b) for buyer types [η, η+ c(η,∆)] is

constructed. The algorithm continues “climbing up” the types with an increment c(η,∆).

Tâtonnement Algorithm

Input: Constant c(η,∆) is specified in Lemma 17. Define

π0(b) =

P 0(b), for b ∈ [0, η],

v(b), for b ∈ (η, 1].

Execute Step i, i=1, . . . , I+1 where I is the smallest integer such that

Ic(η,∆) ≥ 1− η.
Step i. Construct a best-reply τ iβ(s) to πi−1(b). Construct πi(b) by

πi(b) =


πi−1(b), for b ∈ [0, η + (i− 1)c(η,∆)],

(1− e−2r∆)v(b) + e−2r∆π̂i−1(τ i(sαb )), for b ∈ (η + (i− 1)c(η,∆), η + ic(η,∆)],

v(b), for b ∈ (η + ic(η,∆), 1];

where π̂i−1(b) denotes the right-continuous function that coincides with πi−1(b) at

all continuity points of πi−1(b).

Output: P (b) = πI+1(b) and tβ(s) = τ I+1
β (s).

By construction, tβ(s) is a best-reply to P (b), and it is left to verify that P (b) is the

optimal acceptance strategy for the buyer and it is optimal for buyer types to pool on
c(0)+e−r∆v(0)

1+e−r∆
. The former is proven in Lemma 19 in the Appendix, and the argument uses

the monotonicity in s of seller screening strategy tβ(s) and the monotonicity of P (b). The

proof of the latter is based on the invariance property proven in the next subsection.

Invariance property

This subsection proves the uncertainty invariance of the punishing equilibria limits. The

frequent-offer limit of the punishing equilibria gives all seller types their reservation utility
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level independent of η. At the same time, all optimistic buyer types expect to get the

good in the first round of the seller’s screening at the price that converges to the lowest

(type specific) price. The former property allows us to support a wide range of equilibrium

behavior in CSEs analyzed in Section 3. The latter property gives the final step in the

proof of Theorem 6, as it deters deviations of the buyer from pooling on the price offer
c(0)+e−r∆v(0)

1+e−r∆
in the punishing equilibrium. Therefore, the seller punishing equilibrium is a

natural candidate for deterring deviations from the equilibrium path: it simultaneously

punishes all the types of the seller as harshly as possible, and rewards all the types of

buyer by the greatest amount possible.

I will now formally state the result. Consider a sequence ∆ → 0 such that the pun-

ishing equilibrium exists for each ∆ in the sequence. For each ∆, let (P∆(b), t∆β (s)) be

equilibrium path strategies of the punishing equilibrium for the length of rounds ∆. Then

the limit of P∆(b) is given by the following theorem.

Theorem 7. The sequence P∆(b) converges uniformly (over subsequence) to P ∗(b) =

min
{
v(0)+c(0)

2
, c(sαb )

}
as ∆→ 0.

I refer to the result in Theorem 7 as the uncertainty invariance property, as the limit

of P∆(b) does not depend on η. For η = 1, Theorem 7 states the Coasian property of the

punishing equilibrium. As ∆ → 0, seller type 0 looses all monopoly power and allocates

to all buyer types at the lowest price. Surprisingly, even for small η, in the punishing

equilibrium the seller gets her reservation utility in the frequent-offer limit.44 Even though

the buyer types become only marginally optimistic, the coordination of all buyer types

on the optimistic beliefs creates the connection between the screening policies of different

seller types. Low screening offers of seller type 0 force seller types slightly above 0 to

make low price offers, as a big fraction of the buyer types that they face belongs to [0, η]

and expects almost immediate allocation at the price close to v(0)+c(0)
2

from seller type 0.

This leads buyer types slightly above η to expect a low price offer and, in turn, forces a

larger set of seller types to make price offer close to v(0)+c(0)
2

. This way even the seller

types that are significantly far from seller type 0 are forced to make low price offers.

The intuitive contagion mechanism described above is more delicate than it might

seem at first sight. As players become more patient, the seller screens more thoroughly,

in the sense cut-offs of the seller screening strategy become closer together. Hence, seller

types slightly above seller type 0 spend an increasing number of rounds selling to buyer

44Observe that unlike on the CSE equilibrium path, in the punishing equilibrium all types on the
punishing side benefit from coordinating on optimistic beliefs. Every type of the punishing player (sub-
jectively) gets the highest possible utility in the frequent-offer limit.
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types above η. If such time is positive in the limit, then it is possible that the limiting

willingness to pay of the buyer types would be higher than v(0)+c(0)
2

. In fact, this happens

for the buyer types that put probability one on the seller types with costs above v(0)+c(0)
2

.

However, as Theorem 7 shows even though the limiting willingness to pay increases for

such buyer types, it does not go above c(sαb ). Given that the buyer’s willingness to pay is

lowest possible in the limit of frequent offers, the seller’s utility approaches the reservation

utility as ∆→ 0. The following corollary of Theorem 7 formally states this result.

Corollary 1. For any ε > 0, the continuation utility of any seller type s in the seller

punishing equilibrium is at most max
{
v(0)+c(0)

2
− c(s), 0

}
+ ε for sufficiently small ∆.

Proof Sketch of Theorem 7

In this subsection, I outline main steps of the proof of Theorem 7. The proof of Theorem

7 is broken down into three steps. On each step the limit willingness to pay function

P ∗(b) for a separate category of buyer types is analyzed. Let s+ be the seller type for

whom c(s+) = v(0)+c(0)
2

holds. On the first step, it is shown that for buyer types in [0, η]

and seller type 0 equilibrium behavior exhibits Coasian dynamics. Namely, as ∆ → 0,

the first offer of seller type 0 is close to the buyer’s demand c(0)+v(0)
2

. On the second step

buyer types in (η, bωs+ ] and seller types in (0, s+] are analyzed and the last step covers

the remaining types. The difference between these two cases is that seller types below s+

have positive expected profit from the lowest buyer type in the support of their beliefs

when they face limit willingness to pay function P ∗(b), while for seller types above s+

such profit is zero.45

Step 1. The last statement in Lemma 6 states that the Coasian property holds in the

game between seller type 0 and buyer types in the interval [0, η]. Hence, P ∗(b) = v(0)+c(0)
2

45On the technical level, there is a parallel between the uncertainty invariance property of the punishing
equilibrium and the Coasian property in models with one-sided incomplete information. The analysis of
the flat part of function P ∗(b) is similar to the analysis of the gap case in the Coasian literature. In the
seller punishing equilibrium, any particular seller type facing the flat part of P ∗(b) is guaranteed to get
positive profit as in the gap case. The analysis of the increasing part of P ∗(b) is similar to the no-gap
case, as the seller type who faces such buyer types is getting a profit close to zero. The techniques used
in this paper build on and further develop the techniques in the Coasian literature (Gul, Sonnenschein
and Wilson (1986), Gul and Sonnenschein (1988), Ausubel and Deneckere (1989), Ausubel and Deneckere
(1992)). The difference in the analysis is most clear for seller types above s+. Ausubel and Deneckere
(1989) impose a mild technical assumption on the buyer valuation function to obtain the Uniform Coase
conjecture. In this paper, the willingness to pay of buyer types in the support of beliefs of seller types
above s+ is determined endogenously from the screening policy of seller types below s+. Therefore,
assumption on the valuation function does not give much leverage and additional work is necessary to
prove Theorem 7.
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for b ∈ [0, η].

Step 2. The next lemma shows that if the limit function P ∗(b) is increasing at some

point b, then it is equal to the reservation price of the seller type sαb .46

Lemma 7. Suppose that for some buyer type b̂ ∈ (0, 1), P ∗(b̂) > c(sα
b̂
). Then P ∗(b) is

constant in some open interval around b̂, that is, there exists φ > 0 such that P ∗(b) is

constant for all b ∈ (b̂− φ, b̂+ φ).

Lemma 7 means that function P ∗(b) could be increasing at point b only if buyer type

b expects the seller to make the first offer close to c(sαb ). In other words, function P ∗(b)

could have jumps only at points where P ∗(b) = c(sαb ). In particular, the following is the

immediate corollary of Lemma 7.

Corollary 2. For any b < bωs+, P ∗(b) = v(0)+c(0)
2

.

Step 3. It is more intricate to find the limit of screening policy for seller types above

s+ for the following reason. For seller type s < s+, it could be shown that a positive

mass of buyer types in Bs has willingness to pay close to v(0)+c(0)
2

and so, the profit from

allocating to all remaining buyer types at price close to v(0)+c(0)
2

is positive. Suppose

seller type s delays trade at price v(0)+c(0)
2

to sell at price exceeding v(0)+c(0)
2

. Such delay

should be sufficiently large to guarantee that buyer type bωs buys in the first round of

screening. Then for any ε > 0, it is possible to construct an alternative screening policy

that accelerates the trade at prices above v(0)+c(0)
2

and looses at most ε on such trades.

The advantage of such policy is that it allows the seller to allocate to all buyer types with

the willingness to pay v(0)+c(0)
2

sooner. Since the profit from such buyer types is strictly

positive, for sufficiently small ε such alternative screening policy is preferred by the seller

giving a contradiction.

The reasoning above is not valid for seller types above s+. These seller types eventually

decrease their screening offers to the level close to their costs. Hence, they could have

incentives to spend a significant amount of time screening buyer types that bring them

positive profit. The next lemma is key in establishing that the time seller types above s+

screen buyer types is enough to keep P ∗(b) just above c(sαb ).

Lemma 8. Function P ∗(b) is continuous.

The next corollary of Lemmas 7 and 8 completes the proof of Theorem 7

46An increasing function f(x) is increasing at point x if for all φ > 0, f(x+ φ) > f(x− φ).
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Corollary 3. For any b ≥ bωs+, P ∗(b) = c(sαb ).

It is interesting to notice that even though buyer types b > bωs+ expect to get almost

all the surplus from trade, they end up not trading at all with probability approaching

one as ∆→ 0. The reason for this is that the realized seller types is with probability one

higher than sαb and so, such seller type will never make an offer close to c(sαb ). However,

buyer type b has optimistic beliefs in the punishing equilibrium, and he rejects all seller

offers that are even slightly higher than c(sαb ).

Numerical Simulations

By Theorem 2, in the limit of frequent offers, the amount of individual uncertainty η affects

only the equilibrium path of CSEs, but does not restrict the severity of the punishment.

In this subsection, I demonstrate by numerical simulations that for a given frequency of

offers, the individual uncertainty matters both on and off the equilibrium path of CSEs

supported by punishing equilibria. In such equilibria, the continuation utility of players

is greater than the reservation utility, and this additional constraint should be taken into

account in the construction of equilibria for a given frequency of offers.

To clearly see the effect of η on the equilibrium behavior, I assume that v(b) = b and

c(s) = s−1. In this specification, immediate trade could occur only at price 0, which gives

payoff 0 to buyer type 0 and seller type 1. Therefore, if all types can guarantee strictly

positive continuation utility in the punishing equilibrium, then all CSEs supported by

punishing equilibria will be inefficient.

To implement the tâtonnement algorithm, I discretize the type space and make cor-

responding adjustments to the algorithm.47 To illustrate the results of the simulations,

I depict the willingness to pay function P (b) in the seller punishing equilibrium. Recall,

that P (b) gives a static demand function that the seller is facing and so, the utility of each

seller type s in the punishing equilibrium lies in the interval [P (bαs ), P (bωs )]. The higher is

47By Lemma 17 in the Appendix, the step of the the tâtonnement algorithm c(η,∆) is of order ∆3.
Hence, the grid of the discretization should be increasingly fine as ∆ → 0, which requires significant
computational resources. Instead, I run the tâtonnement algorithm with the step equal to the size of the
grid, and this way, I construct the candidate willingness to pay and screening policy functions. After that,
I verify that the candidate screening policy of the seller is, indeed, optimal given the candidate willingness
to pay function. In all simulations, this turns out to be sufficient. The tâtonnement algorithm is further
simplified by the functional form assumption on v(b) and c(s). As shown in Lemma 24 in Appendix, for
any η ∈ (0, 1), there is an equilibrium in the game between seller type 0 and buyer types in B0, in which
all buyer types in B0 pool on the offer − 1

1+e−r∆ , and seller type 0 accepts this offer in the first round of
the punishing equilibrium.
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the willingness to pay function, the greater is the seller’s expected utility in the punishing

equilibrium.
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Figure 2: Willingness to pay function P (b).

Figure 3 illustrates the results of the simulation for the grid size 0.001 for three

combinations of η and ∆: 1) η = 0.1, e−r∆ = 0.99, 2) η = 0.02, e−r∆ = 0.99, 3)

η = 0.1, e−r∆ = 0.96. To compare the willingness to pay for different values of pa-

rameters, I take as a benchmark the case η = 0.1 and e−r∆ = 0.99. The willingness to pay

function P (b) for this combination of parameters is a blue line (middle line) on Figures

3a, 3b. Red lines (upper lines) on Figures 3a and 3b depict the willingness to pay function

for cases η = 0.02, e−r∆ = 0.99, and η = 0.1, e−r∆ = 0.96, respectively. I also depict by a

solid black line (lower line) function max
{
− e−r∆

1+e−r∆
, c(sαb )

}
for the benchmark case. This

function gives a minimal price that buyer type b could pay in the punishing equilibrium.

Since max
{
− e−r∆

1+e−r∆
, c(sαb )

}
depends on η, I also depict by a dashed line on Figure 3a the

corresponding function for the case η = 0.02, e−r∆ = 0.99.

Simulations show that in the benchmark case, even though the discount factor is close

to one, P (b) > max
{
− e−r∆

1+e−r∆
, c(sαb )

}
(see blue line on Figures 3a, 3b). Hence, the utility

to highest seller types, and by symmetry, lowest buyer types exceeds their reservation

utility. This implies that the delay is necessary in any CSE supported by punishing

equilibria. To see that the delay could be substantial consider the following simple lower

bound on the equilibrium delay. Let r = 0.05 and consider a CSE, in which bargaining

ends at some time T ≤ ∞ and bargaining stops at some price below 0. The latter is

without loss of generality due to the symmetry of values. When η = 0.1 and e−r∆ = 0.99

the willingness to pay of buyer type 1 equals 0.1189, and in any active CSE he prefers to
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accept price offer pS1 rather than wait until price falls below zero at some date t. Therefore,

e−rt ≤ 1−pS1 and so, T ≥ t ≥ −1
r

ln(1−pS1 ) ≥ −1
r

ln 0.8811 ≈ 2.53 giving the lower bound

on the equilibrium delay.

In the case when the individual uncertainty is relatively small, η = 0.02, e−r∆ = 0.99,

the punishing equilibrium gives even higher utility to the punished side (red line on Figure

3a). On the one hand, this happens for an apparent reason that the lowest seller type sαb
in the support of beliefs of buyer type b is higher for smaller η (compare dashed and solid

black lines on Figure 3a). That is, even in the limit ∆→0, the limit willingness to pay

P ∗(b) = max
{
−1

2
, c(sαb )

}
is higher for lower η. On the other hand, this effect is amplified

when ∆ > 0. To see this, I consider the following pseudo-dynamics. Recall that for b > η,

P (b) satisfies

P (b) = (1− e−2r∆)v(b) + e−2r∆P̂ (t(sαb )). (19)

Suppose that η decreases. From equation (19), even if the seller does not screen and

t(sαb ) = max{0, sαb − η}, this leads to higher P̂ (t(sαb )), and in turn, increases P (b) to

some new P1(b) for all buyer types. This increase in P (b) leads to higher P̂1(t(sαb )),

which in turn, increases P1(b) to some new P2(b). This process continues until the higher

willingness to pay is reached for lower η. This increase is further amplified by the fact

that the seller screens and t(sαb ) ≥ max{0, sαb − η}. Steeper demand curve given by P (b)

gives the seller incentives to screen more finely and increases t(sαb ). On Figure 3a, this is

reflected in more frequent jumps in function P (b) for η = 0.02 compared to the benchmark

case η = 0.1. For the case of relatively small discount factor, η = 0.1, e−r∆ = 0.96,

the punishing equilibrium gives higher expected utility to the punishing side because of

the increased weight on the buyer valuation in (19). To understand the quantitative

difference, I construct the lower bound on the equilibrium delay for these two cases as in

the benchmark case. Corresponding lower bounds on the delay for cases η = 0.02, e−r∆ =

0.99 and η = 0.1, e−r∆ = 0.96 are 8.16 and 7.67, respectively, compared to 2.53 in the

benchmark case. Therefore, both lower discount factor and smaller individual uncertainty

lead to an increased utility of the deviator in the punishing equilibrium.

Numerical simulations demonstrate that for a given frequency of offers, the expected

utility of the deviator in the punishing equilibrium is significantly greater than the reser-

vation utility of the punished side. In particular, decreasing η leads to an increase in

the utility of the punished side. From this perspective, smaller individual uncertainty

refines the CSE outcomes supported by punishing equilibria for fixed length of bargaining

rounds. As shown in Section 3, such refinement disappears as the length of bargaining
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rounds vanishes.48

7 Related Literature

Models with independent private values are generally known to be prone to a multiplicity

of equilibria. The literature has taken the route to refine the predictions in such models by

restricting the bargaining protocol to one-sided offers and putting restrictions on out-of-

the-equilibrium-path beliefs. In the equilibrium analyzed in Cramton (1984), seller types

initially pool on the same path of offers, but separate over time starting from the bottom

of the type distribution. Cho (1990) constructs a class of separating equilibria in which all

seller types separate by price offers in every round of bargaining. To eliminate optimistic

conjectures, both papers require conjectures to satisfy a monotonicity condition. If a price

offer higher than the equilibrium price is made, then it is believed to come from a higher

type of the seller.49 Without imposing restrictions on beliefs out-of-the-equilibrium path,

Ausubel and Deneckere (1992) show that with no gap between the lowest seller and buyer

types’ values, optimistic conjectures can support monopoly equilibria. In the monopoly

equilibria, all seller types except a small subset at the bottom of the distribution reveal

themselves by offering a monopoly sales price. Such types trade in the first round and

never trade after, since lowering the price would lead to the buyer switching to optimistic

conjecture and imply no trade for such seller types.

Unfortunately, many interesting equilibria in the model with one-sided offers are not

guaranteed to have counterparts in the model with two-sided offers. In particular, sep-

arating equilibria constructed in Cho (1990) and monopoly equilibria in Ausubel and

Deneckere (1990) do not survive if both sides are allowed to make offers. In this paper, I

construct a variety of equilibria, in which types separate both by the acceptance time of

the opponent’s offer (CSEs) and by price offers made (segmentation equilibria). I do not

put restriction on beliefs off the equilibrium path except for condition G, and optimistic

conjectures play an important role in the analysis. The monotonicity condition used in

the previous literature seems less compelling in the environment discussed in this paper.

48It is an open question whether there exist different equilibria that provide a more severe punish-
ment than the punishing equilibrium. However, optimistic conjectures received special attention in the
bargaining literature, and the class of equilibria supported by punishing equilibria is interesting on its
own.

49The intuition behind this restriction is that lower seller types are more willing to trade and, hence,
they should be more likely to decrease the price. This gives higher types an opportunity to separate by
making a higher price offer.
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On the one hand, with heterogeneous beliefs the description of conjectures satisfying the

monotonicity condition is a daunting task as one needs to carefully specify beliefs for every

type of the punishing player.50 From this point, the appeal of the optimistic conjectures

lies in their simplicity. On the other hand, one might hope that by introducing correlation

in the types it is possible to get a strong prediction about the bargaining outcome even

without refining the equilibrium concept as in the global games literature. This paper

shows that even when correlation is nearly perfect, a great variety of outcomes can be

supported, which contrasts drastically with the predictions of the complete information

bargaining models. Optimistic conjectures efficiently deter deviations irrespective of the

amount of individual uncertainty.51

Another strand of literature explores models with asymmetric information and inter-

dependent values in which a fundamental determines values, but only one side is informed

about the fundamental. A comprehensive analysis of this model is given in Deneckere and

Liang (2006), Fuchs and Skrzypacz (2013), and Gerardi, Hörner and Maestri (2013). The

model in the current paper is complementary to both the literature on bargaining with

two-sided independent private values and on bargaining with asymmetric interdependent

information. It covers the applications in which both parties of the negotiation are sym-

metric both from the informational perspective and from the commitment perspective.52

The global games information structure analyzed in this paper has parallels with the

information structure studied in Feinberg and Skzypacz (2006). In their model, the buyer’s

valuation and seller’s beliefs are private information of players. The seller makes all the

offers, and she could be of one two types. The seller could either be informed that the

buyer’s valuation is high or be uncertain about it. Under an intuitive criterion and a

revelation condition, they show that the delay is unavoidable. However, if instead seller’s

types differ in the probability they assign to low and high valuation of the buyer, then the

Coase conjecture obtains and all equilibria are efficient. Thus, the support of seller beliefs

matters for the delay. The results of this paper come to the opposite conclusion. If under

large uncertainty (η = 1) immediate agreement is possible (v(0) > c(1)), then no matter

how small the support of players’ beliefs is (η → 0), there is an efficient equilibrium for

sufficiently frequent offers. The key difference seems to lie in the refinement that Feinberg

50The task is much simpler with independent values as all types of the player have the same beliefs
about the opponent’s type.

51Of course, this reasonining is valid only for frequent offer limits but not true for a particular discount
factor as shown in Section 6.

52On either the inter-dealer car market or the market for corporate bonds, there is no a priori reason to
assume that one side is better informed or has more commitment power in the negotiation, so symmetry
is a desirable property.
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and Skrzypacz (2006) use in their model.53 The implication of such refinement for the

model in this paper is an interesting direction for future research.

The segmentation equilibria described in this paper are related to Abreu and Gul

(2000) which is another two-sided offers and two-sided incomplete information bargaining

model. Abreu and Gul (2000) build a reputational bargaining model, in which commit-

ment types require a particular share of surplus and rational types form reputation for

being commitment types. As in Abreu and Gul (2000), in segmentation equilibria types

near boundaries of segments delay the trade to convince the opponent that they belong

to a segment with more favorable terms of trade. Abreu and Gul (2000) show that in the

unique frequent offer limit of equilibria in their model, and rational players concede with

probability one by some finite time. Unlike in their model, bargaining between rational

types takes infinite time. The difference stems from the fact that without commitment

types, it is not possible for bargaining to end in finite time, since the utility of a rational

player is discontinuous at this time and a sufficiently patient player prefers to wait past

this time. This paper provides one explanation of how bargaining postures can naturally

arise endogenously in the a model with uncertainty about the values, and shows that the

dynamics of concession could differ from that in the reputational bargaining model.

8 Conclusion

This paper analyzes implications of a global games information structure in a standard

bargaining model with alternating offers and an infinite horizon. I study two classes of

equilibria with very distinct equilibrium dynamics and efficiency properties. In CSEs,

both sides gradually screen the opponent’s type. In such equilibria, even in the limit as

the individual uncertainty vanishes, a significant delay in trade is possible for a wide range

of types. At the other extreme are segmentation equilibria in which types self-select into

endogenous segments by their initial price offers. For small individual uncertainty, most

of the types in such equilibria trade immediately after the first offers, and only a small

mass of types at boundaries of segments continues bargaining. The characterization of

CSE limits is given in terms of competitive equilibria in smooth monotone strategies of

the concession game (for smooth limits) and truthful equilibria of CSMs (double limits).

Both of them are intuitive and analytically tractable. To support the equilibrium path,

I introduce and analyze punishing equlibria with optimistic beliefs of the punishing side.

53This refinement allows the informed seller to convince the buyer that she possesses the information
about the valuation of the buyer.
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Invariance property of the punishing equilibria implies that the punished side gets the

lowest utility irrespective of the level of individual uncertainty. I believe that techniques

developed in this paper will be useful in the analysis of other dynamic models with

correlated types. In particular, the analysis of punishing equilibria could be extended to

the model with interdependent values.

Following, I describe potential avenues for future research. Results of the paper hold

for general valuation and cost functions, but the distribution of types has a particular

form. Weakening the assumption on the types distribution is an important question left

for future research.

Another direction is to extend the model to interdependent values environment.54 This

environment is better suited for the analysis of trading on some financial markets, like

over-the-counter markets for collateralized debt obligations and mortgage-backed securi-

ties. On such markets, trade is decentralized and traders’ valuations of the asset depend

crucially on the characteristics of the asset. Studying the role of common uncertainty in

the asset liquidity is an exciting topic for future research.

This paper provides a useful benchmark for future research suggesting that to get

sharper predictions additional restrictions are required. A natural development of the

model is to explore the predictions of the model under the presence of outside options, as

in Fuchs and Skrzypacz (2007), or to endogenize the length between bargaining rounds and

use an intuitive criterion style refinement, as in Admati and Perry (1987) and Cramton

(1992).

54By interdependent values environment I mean that the values of players are determined by an unob-
served fundamental and player’s get signals about the fundamental.
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Appendix

In the Appendix, the proofs are presented in the order in which the results appear in

the paper. We use the following additional notations. Let Σ ≡ max
(s,b)∈SB

{v(b) − c(s)} be

maximal gains from trade possible in the game. In a CSE, denote by UB
n (b) and US

n (s)

expected continuation utilities in round n of type b buyer and type s seller, respectively,

and by UB
t (b) and US

t (s) their extensions to a continuous domain. For CSE strategies bn

and sn, denote by nb ≡ inf{n : bn ≤ b} and ns ≡ inf{n : sn ≥ s} rounds of acceptance of

type b buyer and type s seller, respectively. We use δ ≡ e−r∆ for players’ discount factor

and the frequent-offer limit (∆→ 0) corresponds to the limit δ → 1. For any reals a and

b, denote a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}.
To unify the notation, whenever we talk about the sequence of equilibria, we reserve

index j to indicate magnitudes arising in the j’s equilibrium in the sequence. In particular,

we use superscript j to denote functions in the j’s equilibrium, and subscript j to denote

variables that we introduce in the analysis of the j’s equilibrium.55

Proofs for Section 3

Concession Game

Proof of Lemma 1. Suppose that the acceptance strategy of the seller t∗S(s) (or alterna-

tively s∗t ) is monotone. Consider buyer types b < b′, times t < t′ ≤ t∗S(sωb ) ≤ t∗S(sωb′), and

suppose type b buyer prefers to accept at time t rather than time t′. If s∗t′ < sαb , then

the probability that the buyer’s offer is accepted before time t′ is zero for both b and b′

and so, buyer type b′ strictly prefers to accept at time t by the single-crossing property of

e−rt(v(b)− qSt ). Suppose that s∗t′ ≥ sαb . Let ϕ(b) =
sωb −s

∗
t′∧s

ω
b

sωb −s
∗
t∨sαb

be the probability that type

b buyer assigns to the event that the seller does not accept the buyer’s offer before time

t′ conditional on the fact that she has not accepted by time t. Notice that ϕ(b) < ϕ(b′).

The following two claims prove the strict single-crossing property of uB(t, b).

55For example, in the analysis of punishing equilibria, we consider a sequence of seller punishing equi-
libira as δj → 0. In such sequence, (P j(b), tjβ(s)) denote on-path equilibrium strategies in j’s punishing
equilibrium, and in the proof of the invariance property, we introduce types bj ,βj ,sj ,σj and quantities,
Kj , Lj , xKj , xLj .
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Claim 1. Suppose

v(b)−qSt ≥ (1−ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ϕ(b)e−r(t

′−t)(v(b)−qSt′).

(20)

Then

v(b)−qSt > (1−ϕ(b′))

s∗
t′∧s

ω
b′ˆ

s∗t∨sαb′

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ϕ(b′)e−r(t

′−t)(v(b)−qSt′).

(21)

Proof. Choose s̃ so that
s̃−s∗t∨sαb
sωb −s

∗
t∨sαb

=
s∗
t′∨s

α
b′−s

∗
t∨sαb′

sω
b′−s

∗
t∨sαb′

. Then we have the following sequence

of inequalities,

(1− ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ ϕ(b)e−r(t

′−t) (v(b)− qSt′
)
≥

(1− ϕ(b′))

s̃ˆ

s∗t∨sαb

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ ϕ(b′)e−r(t

′−t) (v(b)− qSt′
)
≥

(1− ϕ(b′))

s∗
t′∧s

ω
bˆ

s∗t∨sαb′

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ ϕ(b′)e−r(t

′−t) (v(b)− qSt′
)
.

The first inequality follows from the ϕ(b′) > ϕ(b) and qBt∗S(s) ≤ qBt′ ≤ qSt′ for all t∗S(s) ≤ t′.

To get the second inequality, observe that by monotonicity of qBt (condition M) and the

monotonicity of t∗S(s), for all s ≤ s′, t∗S(s) ≤ t∗S(s′) and qBt∗S(s) ≤ qBt∗S(s′) and so, function

e−rt
∗
S(s)
(
v(b)− qBt∗S(s)

)
is decreasing in s. Moreover, since s∗t ∨ sαb < s∗t ∨ sαb′ and s̃ <

s∗t′ ∨ sαb′ , the uniform distribution on [s∗t ∨ sαb′ , s∗t′ ∨ sαb′ ] first-order stochastically dominates

the uniform distribution on [s∗t ∨ sαb , s̃], and the inequality follows from the definition of

the first-order stochastic dominance. Q.E.D.
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Since ϕ(b′) > 0 and v(b) is strictly increasing, by substituting b′ instead of b in (21),

we get the strict inequality and so, type b′ strictly prefers to accept at time t. By an

analogous argument, we can show the following claim, which completes the proof of the

strict single-crossing property of uB(t, b).

Claim 2. Suppose

v(b′)−qSt ≤ (1−ϕ(b′))

s∗
t′∧s

ω
b′ˆ

s∗t∨sαb′

e−r(t
∗
S(s)−t)

(
v(b′)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ϕ(b′)e−r(t

′−t)(v(b′)−qSt′).

(22)

Claim 3. Then

v(b)−qSt < (1−ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t
∗
S(s)−t)

(
v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ϕ(b)e−r(t

′−t)(v(b)−qSt′).

(23)

Proof of Lemma 2. The proof proceeds by the series of claims.

Claim 4. Function uB(t, b) is a.e. continuously differentiable in t for fixed b.

Proof. This follows from the definition of uB(t, b) and the fact that s∗t is a smooth

monotone strategy, and qBt and qSt are continuously differentiable. Q.E.D

Claim 5. For any b, t∗B(b) is a local maximum of uB(t, b).

Proof. Suppose to contradiction, there exists b̂ such that t∗B(b̂) is a local minimum

of uB(t, b). By Claim 4, for some ε > 0, uB(t, b̂) is increasing on (t∗B(b̂), t∗B(b̂) + ε). By

the strict single-crossing property, for all b < b̂, uB(t, b) is increasing on (t∗B(b̂), t∗B(b̂) + ε).

Since b∗t is a smooth monotone strategy of the buyer satisfying (3), for some b̆ < b̂,

t∗B(b̆) ∈ (t∗B(b̂), t∗B(b̂) + ε), which is a contradiction to strict monotonicity of uB(t, b̆) on

(t∗B(b̂), t∗B(b̂) + ε). Q.E.D.

Claim 6. For any b, t∗B(b) is a global maximum of uB(t, b).

Proof. Consider a best-reply t̂(b) which is a (weakly) decreasing function by Theorem

4′ in Milgrom and Shannon (1994). Suppose to contradiction that t̂(b) is different from

t∗B(b), i.e. there exists type b̂ such that t̂(b̂) 6= t∗B(b̂). First, suppose that t̂(b̂) > t∗B(b̂). By

Claim 4 and 5, there exists time t̂ ∈
(
t∗B(b̂), t̂(b̂)

)
such that t̂ is a local minimum of uB(t, b̂)
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on
[
t∗B(b̂), t̂(b̂)

]
. By the strict single-crossing property, for all b < b̂, accepting at time t̂

is strictly worse than accepting at any time t ∈ (t̂, t̂(b̂)]. However, since b∗t is a smooth

monotone strategy and by Claim 5, t̂ is a local maximum for some buyer b < b̂, which

gives the contradiction. The case t̂(b̂) < t∗B(b̂) is considered analogously. Q.E.D.

Proof of Theorem 1. The discussion after Theorem 1 shows that conditions (3) and (4)

are necessary conditions of competitive equilibria in smooth monotone strategies. Observe

that by (1), eventually all gains from trade are realized and so, condition (2) is necessary.

Conversely, suppose b∗t and s∗t are given by (3) and (4) for the boundary condition

(2). Then b∗t and s∗t specify acceptance strategies for all types and by Lemma 2, they

are mutual best-replies and so, constitute the competitive equilibrium of the concession

game.

Preliminary Results about CSEs

The following lemma is the counterpart of Lemma 1 for the bargaining game, and its

proof replicates the proof of Lemma 1.

Lemma 9. Suppose pBn and pSn are price paths as in the definition of the CSE. If sn satisfies

the skimming property, then UB
n (b) on NB =

{
(n, b) : b ∈ [0, 1], n = 1, nsωb

}
satisfies the

strict single crossing property. Analogously, if bn is a monotone buyer strategy, then US
n (s)

on NS =
{

(n, s) : s ∈ [0, 1], n = 1, nbαs
}

satisfies the strict single crossing property.

We next state the necessary condition for the optimality of strategies bn and sn in

the active CSE that reflects the indifference of threshold types between accepting in the

current round and delaying the acceptance until the next active round.

Lemma 10. Suppose (bn, sn, p
B
n , p

S
n) describe an active CSE. Then for all even n ≤ N̄ ,

v(bn)− pSn = δαSn
(
v(bn)− pBn+1

)
+ δ2

(
1− αSn

) (
v(bn)− pSn+2

)
(24)

where

αSn =


sn+1−max{sn−1,sαbn}
sωbn−max{sn−1,sαbn}

, if sαbn ≤ sn+1,

0, otherwise,
(25)

and for all odd n ≤ N̄ ,

pBn − c(sn) = δαBn
(
pSn+1 − c(sn)

)
+ δ2

(
1− αSn+2

) (
pBn+2 − c(sn)

)
(26)
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where

αBn =


min{bn−1,bωsn}−bn+1

min{bn−1,bωsn}−bαsn
, if bωsn ≥ bn+1,

0, otherwise.
(27)

Proof. The left-hand side of equation (24) gives the utility of buyer type bn from accepting

the seller’s offer pSn. The right-hand side of equation (24) gives the utility of buyer type

bn from delaying the acceptance till the next active round. Then in round n+1, the seller

accepts the buyer price offer pBn+1 with probability αSn (according to the beliefs of buyer

type bn) and with complementary probability in round n + 2 buyer type bn accepts offer

pSn+2. Notice that the probability αSn is the probability of acceptance of the offer in the

next round for the threshold type of the buyer. Condition (26) is derived by the analogous

argument.

The following lemma is the counterpart of Lemma 11 for the bargaining game. We say

that a tuple (bn, sn, p
B
n , p

S
n) is a common screening strategy profile if it satisfies conditions

of CSE on-path strategies.

Lemma 11. Suppose a tuple (bn, sn, p
B
n , p

S
n) is a common screening strategy profile such

that bn and sn are constant after some N̄ ≤ ∞. If (24) holds for all rounds n ≤ N̄ , then

bn is a best-reply to sn. Symmetrically, if (26) holds for all rounds n ≤ N̄ , then sn is a

best-reply to bn.

Proof. Consider a buyer type b that accepts in round nb ≤ N̄ . Consider any n ≤ N̄. By

(24), buyer type bn is indifferent between accepting pSn and delaying the acceptance till

n+ 2. By Lemma 9, all buyer types above bn strictly prefer to accept in round n, rather

than delay the acceptance until round n+ 2, and all buyer types below bn strictly prefer

to delay the acceptance until round n + 2 to accepting in round n. For n < nb, bn > b

and so, buyer type b prefers to accept in round n+ 2 rather than in round n. For n > nb,

bn < b and so, buyer type b prefers to accept in round n rather than in round n + 2.

Therefore, nb is an optimal acceptance time for buyer type b.

Proof of Lemma 3. Let p̄ be the supremum of equilibrium price offers accepted by the

buyer and p̄B be the supremum of equilibrium price offers made by the buyer. We show

that p̄ ≤ v(1)+δc(1)
1+δ

and p̄B ≤ δp̄+ (1− δ)c(1) ≤ δv(1)+c(1)
1+δ

, which proves the first statement

of the lemma. The second statement of the lemma is a symmetric statement for the seller

and is proven analogously.

Claim 7. p̄B ≤ δp̄+ (1− δ)c(1).

49



Proof. Suppose to contradiction that this is not the case. Then for any γ > 0 there

is a history such that some buyer type makes offer higher than p̄B − γ/2. Consider a

deviation of this buyer type to p̄B − γ. Such price offer is accepted by the seller with

probability one only if p̄B − γ − c(s) > max{δ(p̄ − c(s)), δ2(p̄B − c(s))} for all s ∈ [0, 1].

This is indeed the case whenever γ < min{1− δ2, p̄B − δp̄− (1− δ)c(1)} which is possible

since the right-hand side of the inequality is positive. Given that price offer p̄B − γ is

accepted buyer prefers to deviate to price offer p̄B−γ rather than make price offer p̄B−γ/2
which is a contradiction. Therefore, in equilibrium the buyer never makes offer higher

than δp̄+ (1− δ)c(1). Q.E.D.

Claim 8. p̄ ≤ v(1)+δc(1)
1+δ

Proof. Suppose to contradiction that p̄ > v(1)+δc(1)
1+δ

is accepted by the buyer. Then for

any γ > 0 there is a history such that some seller type s makes price offer p̃ ∈ (p̄ − γ, p̄]
that is accepted by some buyer type b. Consider a deviation by the buyer to counter-offer

pd. For such deviation not to be profitable it is necessary that pd − c(s) ≤ max{δ(p̄ −
c(s)), δ2(p̄B − c(s))} and δ(v(b) − pd) ≤ v(b) − p̃ for some s and b. If this were not the

case then all sellers would prefer to accept price offer pd (by the first inequality) and all

buyer types would prefer such counter-offer to accepting p̃ (by the second inequality).

Then 1
δ
(p̃− (1− δ)v(b))) ≤ c(s) + max{δ(p̄− c(s)), δ2(p̄B − c(s))} for some s and b, from

which it follows that 1
δ
(p̃ − (1 − δ)v(1))) ≤ max{δp̄ + (1 − δ)c(1), δ2p̄B + (1 − δ2)c(1))}.

The maximum in the right-hand side is equal to δp̄ + (1 − δ)c(1). Indeed, if it were not

the case then p̄ < δp̄B + (1− δ)c(1) ≤ δ(δp̄+ (1− δ)c(1)) + (1− δ)c(1) or p̄ < c(1) which

contradicts p̄ > v(1)+δc(1)
1+δ

. Hence, p̃− (1−δ)v(1)) ≤ δ2p̄+δ(1−δ)c(1) or p̃−δ2p̄
1−δ2 ≤ v(1)+δc(1)

1+δ
.

The left-hand side is greater than p̄− γ
1−δ2 >

v(1)+δc(1)
1+δ

− γ
1−δ2 . Since γ was chosen arbitrary

we get a contradiction. Q.E.D.

Proof of Theorem 2. Necessity

Consider a sequence of active CSEs indexed by j → ∞ with a smooth limit and such

that ∆j → 0 as j →∞. We show that the smooth limit satisfies condition M, conditions

(2), (3) and (7) (and hence, constitutes a competitive equilibrium in the concession game

by Theorem 1) and conditions (6) and (7). The latter follow immediately from Lemma 3

and condition M is satisfied since pBn and pSn are monotone by the Definition 3 and so are

their limits qBt and qSt .

Claim 9. Condition (2) holds.
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Proof. Suppose to contradiction that b∗T > bαs∗T . By condition 3 in the Definition 4,

for any ε ∈
(

0,
b∗T−b

α
s∗
T

3

)
and ∆j > 0 sufficiently small, bjT > b∗T − ε and bα

sjT
< bαs∗T + ε

. Consider seller type sjT and any time t. The continuation utility of seller sjT at time t

from following equilibrium strategy is bounded above by

min
{
bjt , b

ω
sjT

}
− bjT

min
{
bjt , b

ω
sjT

}
− bα

sjT

(
v(bjt)− c(s

j
T )
)
.

Since min{bjt , bωsjT
}− bα

sjT
≥ min{bjT − bαsjT

, η} > min{b∗T − bαs∗T − 2ε, η} > min{ε, η} > 0, the

upper bound converges to zero as t → ∞. Analogous upper bound (converging to zero

as t→∞) could be derived for buyer type bjT . This is is in contradiction with condition

4 in the Definition 3, requiring that over time price offers converge enough so that gains

from trade could be realized through the acceptance of one of the parties.

Now suppose T < ∞, but qST > qBT . By condition 2 of the Definition 4, for any

ε > 0, Tj < T + ε. By the continuity of qBt and qSt , for ε small enough, qSt − qBt >
qST−q

B
T

2

for all t ∈ [T − ε, T + ε] and so, for ∆j sufficiently small, pSjt > pBjt +
qST−q

B
T

4
for all

t ∈ [T − ε, T + ε]. Suppose buyer type bjT−ε deviates by rejecting pSjT−ε and waiting

for 2ε until the seller accepts some price offer of the buyer. Type bjT−ε gets utility at

least mint∈[T−ε,T+ε] e
−2rε

(
v(bjT−ε)− p

Bj
t

)
. On the other hand, from following equilibrium

strategy type bjT−ε gets v(bjT−ε) − p
Sj
T−ε. For ε small enough, such deviation is profitable

which is a contradiction. This proves the condition (2). Q.E.D.

Claim 10. Conditions (3) and (7) hold.

Proof. For any t < T , let τt ≡ 2∆j

⌊
t

2∆j

⌋
. By Lemma 10 condition (24) holds for all

even n ≤ N̄ , which could be rewritten for any τt as follows

v
(
bjτt
)
− pSjτt = e−r∆jαSjτt

(
v
(
bjτt
)
− pBjτt+∆j

)
+ e−2r∆j

(
1− αSjτt

) (
v
(
bjτt
)
− pSjτt+2∆j

)
.

Subtracting e−2r∆j
(
v
(
bjτt
)
− pSjτt

)
from both sides and dividing by 2∆j, we get

1− e−2r∆j

2∆j

(
v
(
bjτt
)
− pSjτt

)
= e−r∆j

αSjτt
2∆j

(
v
(
bjτt
)
− pBjτt+∆j

)
−e−r∆j

(
v
(
bjτt
)
− pSjτt

)
+e−2r∆j

pSjτt − p
Sj
τt+2∆j

2∆j

.

Taking ∆j → 0, we get condition (3) where convergence is guaranteed by the definition

of the smooth limit and continuity of function v(b). The derivation of equation (4) for

buyer price offers is symmetric. Q.E.D.
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Proof of Lemma 4

We reduce the problem of finding a CSE with price offers constant over time to a mathe-

matical problem of finding a positive trajectory satisfying a particular recursive system.

The following lemma is a key mathematical fact in the proof of Lemma 4.

Lemma 12. Consider b∞ ∈ (0, 1− η), s∞ = b∞ + η, PB, P S that satisfy

max

{
c (s∞) ,

v(0) + c(0)

2

}
< PB < P S < min

{
v (b∞) ,

v(1) + c(1)

2

}
, (28)

There exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1) there are positive trajectories xk and yk

that satisfy recursive system
xk+1 = (1− αB(yk+1))xk − αB(yk+1)yk+1,

yk+1 = (1− αS(xk))yk − αS(xk)xk,

b∞ + xk ≤ s∞ − yk + η;

(29)

where αB(y) ≡ (1−δ2)(PB−c(s∞−y))
δ(PS−c(s∞−y))−δ2(PB−c(s∞−y))

and αS(x) ≡ (1−δ2)(v(b∞+x)−PS)
δ(v(b∞+x)−PB)−δ2(v(b∞+x)−PS)

.

Moreover, for all k ∈ N,

max{xk−1 − xk, yk−1 − yk} < (1− δ)C (30)

where C is a constant that does not depend on δ.

Proof of Lemma 12. Observe that if xk and yk are given for k ≥ k0, then by (29), we can

construct xk and yk for k < k0. The following claim show that it is sufficient to construct

xk and yk that are positive starting from some k0.

Claim 11. If there are trajectories xk and yk satisfying (29) that are positive starting from

some k0, then xk and yk are positive for all k ∈ N.

Proof. By rearranging terms in the first equation of (29), xk = xk+1+αB(yk+1)yk+1

1−αB(yk+1)
.

Observe that αB(y) ∈ (0, 1) for y > 0 and so, xk is positive, whenever xk+1 and yk+1

are positive. Analogously, it could be shown from the second equation of (29) that yk is

positive, whenever xk+1 and yk+1 are positive. Q.E.D.

Claim 12. For given xk0 and yk0, there is K(xk0 , yk0) such that k0 ≤ K(xk0 , yk0).
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Proof. First, observe that xk and yk are decreasing whenever they are positive. Indeed,

for all k ∈ N, we have xk−1 − xk = αB(yk)(xk−1 + yk) > 0 and similarly, yk−1 − yk > 0.

Next, from (29), for all k ≤ k0,

xk−1 − xk = αB(yk)(xk−1 + yk) ≥ αB(yk0)(xk0 + yk0) > c1 (31)

for some c1 > 0 where we used the fact that αB(y) is increasing and xk and yk are

decreasing sequences. Suppose for any K ∈ N, we could construct sequences xk(K) and

yk(K) such that xK(K) = xk0 and yK(K) = yk0 . From (31), for K sufficiently large

b∞ + x0(K) > s∞ − y0(K) + η which contradicts (29). Q.E.D.

Let V B ≡ v(b∞) − P S, V S ≡ PB − c(s∞) and ∆P ≡ P S − PB. The following claim

gives the Taylor expansion of αB(y) and αS(x).

Claim 13. There exists δ1 ∈ (0, 1) and ε1 > 0 such that for all δ ∈ (δ1, 1) and all x ∈
(0, ε1),y ∈ (0, ε1),

αB(y) ≡ αB − φB
∞∑
l=1

γBl y
l, (32)

αS(x) ≡ αS − φS
∞∑
l=1

γSl x
l, (33)

where

αB ≡
(1− δ2)V B

δ(∆P + (1− δ)V B)
, γB ≡ −

1− δ
∆P + (1− δ)V B

< 0, φB ≡
(1 + δ)∆P

δ(∆P + (1− δ)V B)
> 0,

αS ≡
(1− δ2)V S

δ(∆P + (1− δ)V S)
, γS ≡ −

1− δ
∆P + (1− δ)V S

< 0, φS ≡
(1 + δ)∆P

δ(∆P + (1− δ)V S)
> 0,

γBl ≡
l∑

j=1

γjB

 ∑
l1+···+lj=l

dl1c(s∞)/dsl1

l1!
. . .

dljc(s∞)/dslj

lj!

 ,

γSl ≡
l∑

z=1

γzS

( ∑
l1+···+lz=l

dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

)
,
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and γSl ≤ |γSD|(1 + |γSD|)l−1, γBl ≤ |γBD|(1 + |γBD|)l−1.

Proof. As δ → 1, γS and γB converge to zero and so, for δ sufficiently close to one,

|γS(v(1)− v(0))| < 1 and |γB(c(1)− c(0))| < 1. Expanding αS(x) into the Taylor series,

we get

αS(x) = αS − φS
∞∑
z=1

γzS(v(b∞ + x)− v(b∞))z,

Since v(b) is a smooth function, expanding it into the Taylor series around b∞, we get

v(b∞ + x)− v(b∞) =
∞∑
l=1

dlv(b∞)
dbl

xl

l!
. By the regularity of v(b), all derivatives dlv(b)/dbl

l!
, l ∈ N

are bounded by D for some D > 1. Therefore, the Taylor expansion of v(b) around b∞ is

an absolute convergent series, and by the Merten’s theorem the z’s power of it equals

(v(b∞ + x)− v(b∞))z =
∞∑
l=z

xl

( ∑
l1+···+lz=l

dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

)

and so,

αS(x) = αS − φS
∞∑
z=1

γzS

∞∑
l=z

xl

( ∑
l1+···+lz=l

dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

)
. (34)

Observe that

∞∑
z=1

∣∣∣∣∣γzS
∞∑
l=z

xl
∑

l1+···+lz=l

dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

∣∣∣∣∣ ≤
∞∑
z=1

|γS|z
∞∑
l=z

xl
∑

l1+···+lz=l

∣∣∣∣dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

∣∣∣∣ ≤
∞∑
z=1

|γS|z
∞∑
l=z

xl
∑

l1+···+lz=l

Dz =
∞∑
z=1

|γS|zDz

∞∑
l=z

xl

(
l − 1

z − 1

)
=
∞∑
z=1

(|γS|Dx)z

(1− x)z
<∞

where the first inequality follows from the triangle inequality, the second inequality follows

from the regularity of v(b) and the fact that (l1 + . . . + lz)! ≥ l1! · . . . · lz!, the first

equality follows from the fact that a number of compositions of l into exactly z parts is

equal to

(
l − 1

z − 1

)
, the second equality is by summing over l, and the resulting series is

converging for x sufficiently small (so that x < (1 + |γS|D)−1). Therefore, the series in
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(34) is absolutely convergent, and by the Fubini’s theorem, we could exchange the order

of summation in (34) to get expression (32). We have the following upper bound on the

absolute values of coefficients γSl

|γSl | ≤
l∑

z=1

|γS|z
( ∑
l1+···+lz=l

∣∣∣∣dl1v(b∞)/dbl1

l1!
. . .

dlzv(b∞)/dblz

lz!

∣∣∣∣
)
≤

l∑
z=1

|γSD|z
(
l − 1

z − 1

)
= |γSD|(1+|γSD|)l−1

(35)

where the first inequality is by the triangle inequality, the second inequality follows from

the regularity of v(b), and the equality is obtained by algebraic manipulations.The deriva-

tion of the corresponding expression for αS(y) is analogous. Q.E.D.

System (29) has steady states (z,−z), z ∈ R. By the specification of the problem we

are interested only in steady state (0, 0). Around this steady state the linearized system

could be written in matrix form(
xk+1

yk+1

)
=

(
1− αB + αSαB −αB(1− αS)

−αS 1− αS

)(
xk

yk

)
.

The matrix has eigenvalues 1 and λ ≡ (1−αB)(1−αS). Since one of eigenvalues is equal

to 1, the steady state is not stable, and we cannot conclude that in the neighborhood of

the steady state the non-linear system converges to the steady state. Therefore, we find

a particular trajectory that satisfies desired properties.

We conjecture that there exist µxi and µyi such that(
xk

yk

)
=
∞∑
i=1

λik

(
λi/2µxi

µyi

)
(36)

is the required solution and for all i ∈ N,

|µxi | ≤ uδM
i and |µyi | ≤ uδM

i (37)

for some positive M and uδ such that

M < 1 <
1

λ(1 + uδ(1 + max{|γS|, |γB|}D))
. (38)

Given this conjecture, we next derive expressions for coefficients µxi and µyi , and then

verify that for δ sufficiently close to one, upper bounds on absolute values of coefficients

hold. Series (36) defining (xk, yk) are absolutely convergent, as they are dominated by
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the absolutely convergent series uδ
∞∑
i=1

λikM i.

Plugging the solution (36) into system (29), we get
∞∑
i=1

λik(µxi − µxi λi − αB(µxi + µyi λ
i/2)) = −φB

(
∞∑
l=1

γBl

(
∞∑
i=1

µyi λ
i(k+1)

)l)( ∞∑
i=1

λik(µxi + µyi λ
i/2)

)
,

∞∑
i=1

λik(µyi − µ
y
i λ

i − αS(µxi λ
i/2 + µyi )) = −φS

(
∞∑
l=1

γSl

(
∞∑
i=1

µxi λ
ik

)l)( ∞∑
i=1

λi(k+1/2)(µxi λ
i/2 + µyi )

)
.

(39)

Consider the first equation in system (39). By the Merten’s theorem,

(
∞∑
i=1

µyi λ
i(k+1)

)l
=

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1) and

∞∑
l=1

γBl

(
∞∑
i=1

µyi λ
ik

)l

=
∞∑
l=1

γBl

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1). (40)

The series in (40) is absolutely convergent by

∞∑
l=1

∞∑
i=l

∣∣∣∣∣λi(k+1)γBl
∑

i1+···+il=i

µyi1 · . . . · µ
y
il

∣∣∣∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i

∣∣µyi1 · . . . · µyil∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i

ulδM
i =

∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |ulδM i

(
i− 1

l − 1

)
≤

|γBD|
∞∑
l=1

∞∑
i=l

λi(k+1)(1+|γBD|)l−1ulδM
i

(
i− 1

l − 1

)
=
|γBD|

1 + |γBD|

∞∑
l=1

(1+|γBD|)lulδ
(

λk+1M

1− λk+1M

)l
≤

|γBD|
1 + |γBD|

∞∑
l=1

(1 + |γBD|)lulδ
(

λM

1− λM

)l
,

where the first inequality is by the triangle inequality, the second inequality follows by

(37), the first equality is by the fact that the number of compositions of i into exactly l

parts is

(
i− 1

l − 1

)
, the third inequality is by (35), the forth inequality is by λk+1 < λ and
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the resulting series is convergent, whenever uδ(1 + |γBD|) λM
1−λM < 1 which holds by (38).

Therefore, by the Fubini’s theorem, exchanging the order of summation in (40), we get

∞∑
l=1

γBl

(
∞∑
i=1

µyi λ
ik

)l

=
∞∑
i=1

λi(k+1)

i∑
l=1

∑
i1+···+il=i

γBl µ
y
i1
· . . . · µyil .

By the absolute convergence of both series in the right-hand side of (39), the product in

the right-hand side is equal to the Cauchy product, and so we could rewrite system (39)

as follows
∑∞

i=1 λ
ik

(
µxi − µxi λi − αB(µxi + µyi λ

i/2) + φB
i−1∑
j=1

(µxi−jλ
j/2 + µyi−jλ

i/2)
j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
= 0,

∑∞
i=1 λ

ik

(
µyi − µ

y
i λ

i − αS(µxi λ
i/2 + µyi ) + φS

i−1∑
j=1

(µxi−jλ
i/2 + µyi−jλ

j/2)
j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
= 0.

Setting all coefficient at λik equal to zero, we get the system
µxi − µxi λi − αB(µxi λ

j/2 + µyi λ
i/2) = −φB

i−1∑
j=1

(
(µxi−jλ

j/2 + µyi−jλ
i/2)

j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
,

µyi − µ
y
i λ

i − αS(µxi λ
i/2 + µyi ) = −φS

i−1∑
j=1

(
(µxi−jλ

i/2 + µyi−jλ
j/2)

j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
.

Using notation Ai ≡

(
1− λi − αB −αBλi/2

−αSλi/2 1− λi − αS

)
, µi ≡

(
µxi

µyi

)
, and

ϕi =

(
ϕxi

ϕyi

)
≡


−φB

i−1∑
j=1

(
(µxi−jλ

j/2 + µyi−jλ
i/2)

j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)

−φS
i−1∑
j=1

(
(µxi−jλ

i/2 + µyi−jλ
j/2)

j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
 (41)

and we could write the system in matrix form as Aiµi = ϕi. Since det(Ai) = (1− λi)(λ−
λi) > 0, for i ≥ 2, matrix Ai is invertible, and we could solve for all µi (with the exception

of i = 1)

µi = A−1
i ϕi. (42)

For i = 1, the equations are linearly dependent and the relation between µx1 and µy1 is
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given by

µx1 = µy1
αB
αS

(1− αS). (43)

Equations (42) and (43) give the desired expressions for µi through the parameters of

the model. The next claim verifies that bounds (37) and (38) indeed hold and so, our

derivation was justified.

Claim 14. For M < 1, there exists δ̂ ∈ (0, 1) such that for any δ ∈ (δ̂, 1) there exist

positive uδ and µy1 such that (38) holds, and for µi defined by (42) and (43), bounds (37)

hold.

Proof. The proof is by induction on i. Without loss of generality, we assume that

V S ≤ V B (44)

and so, αS ≤ αB, |γS| ≥ |γB|, φS ≥ φB. Let uδ ≡ u
2

min{|γS|, |γB|} where u = 1
2

min{V S, V B}.
Let us first show that for our choice of uδ, 1 < 1

λ(1+uδ(1+max{|γS |,|γB |}D))
for δ sufficiently

close to one. To see this, observe that for δ sufficiently close to one, max{|γB|, |γS|}D <

1 and so, 1
λ(1+2uδ)

< 1
λ(1+uδ(1+max{|γS |,|γB |}D))

. Therefore, it is sufficient to show that

λ1/2(1 + 2uδ) < 1. Then

λ1/2(1 + 2uδ) = ((1− αS)(1− αB))1/2 (1 + umin{|γS|, |γB|}) ≤ (1− αS)(1 + u|γS|).

Observe

(1− αS)(1 + u|γS|) =

(
1− (1− δ2)V S

δ(∆P + (1− δ)V S)

)(
1 +

(1− δ)u
∆P + (1− δ)V S

)
,

and λ1/2(1 + 2uδ) < 1 is equivalent to

∆P + (1− δ)V S + u(1− δ) < δ(∆P + (1− δ)V S)(∆P + (1− δ)V S)

∆Pδ − (1− δ)V S
,

or

u < (1 + δ)V S ∆P + (1− δ)V S

∆Pδ − (1− δ)V S
. (45)

As δ → 1, the right-hand side of (45) converges to 2V S. Since u < V S, inequality (45)

holds and so, (1− αS)(1 + u|γS|) < 1 for sufficiently large δ. Hence, we have proven that

(38) holds.

To prove bounds (37), Let µx1 and µy1 be defined as follows. If αB
αS

(1−αS) ≤ 1, then let
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µy1 = uδM and µx1 = µy1
αB(1−αs)

αS
≤ µy1, and otherwise let µx1 = uδM and µy1 = µx1

αS
αB(1−αS)

≤
µx1 . By the definition, |µx1 | and |µyi | are less that uδM which proves the base of induction.

Suppose that the statement is true for all j < i. I show that |µxi | < uδM
i and

|µyi | < uδM
i. We could find closed form solution of system (42),

|µxi | =
|(1− λi − αS)ϕxi + αBλ

i/2ϕyi |
(1− λi)(λ− λi)

≤ 4 max{1− λi, αS, αB} ·max{|ϕxi |, |ϕ
y
i |}

(1− λi)(λ− λi)

and the same upper bound holds for |µyi |. It is sufficient to show that
4 max{(1−λi),αS ,αB}·max{|ϕxi |,|ϕ

y
i |}

(1−λi)(λ−λi)uδM i <

1.

Notice that αS
1−λi <

αS
1−λ for i ≥ 2, and by L’Hospital rule lim

δ→1

αS
1−λ = lim

δ→1

αS
αS+αB−αSαB

=

V S

V S+V B
≤ 1. Hence, for sufficiently large δ and all i ≥ 2, we have αS

1−λi < 1, and by the

analogous argument, αB
1−λi < 1. Therefore, 4 max{1−λi,αS ,αB}

1−λi < 5 for sufficiently large δ and

it remains to show that
max{|ϕxi |,|ϕ

y
i |}

(λ−λi)uδM i < 1
5

for sufficiently large δ.

We next show that
|ϕxi |

(λ−λi)uδM
< 1

5
(by the symmetric argument

|ϕyi |
(λ−λi)uδM

< 1
5
). From

(41)

|ϕxi |
φB
≤

i−1∑
j=1

λj/2
j∑
l=1

|γBl |
∑

j1+···+jl=j

|µxi−jµ
y
j1
·. . .·µyjl |+λ

i/2

i−1∑
j=1

j∑
l=1

|γBl |
∑

j1+···+jl=j

|µyi−jµ
y
j1
·. . .·µyjl| ≤

i−1∑
j=1

λj/2
j∑
l=1

|γBl |
∑

j1+···+jl=j

ul+1
δ M i + λi/2

i−1∑
j=1

j∑
l=1

|γBl |
∑

j1+···+jl=j

ul+1
δ M i ≤

2uδM
i

i−1∑
j=1

λj/2
j∑
l=1

|γBl |ulδ

(
j − 1

l − 1

)
≤

2uδM
i|γBD|

i−1∑
j=1

λj/2
j∑
l=1

ulδ(1 + |γBD|)l−1

(
j − 1

l − 1

)
≤

2uδM
i|γBD|

i−1∑
j=1

λj/2uδ (1 + uδ(1 + |γBD|))j−1 ≤

2uδM
i|γBD|

i−1∑
j=1

λj/2uδ(1 + 2uδ)
j−1 =

2uδM
i|γBD|

uδλ
1/2(1− λ(i−1)/2(1 + 2uδ)

i−1)

1− λ1/2(1 + 2uδ))
,
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where the first inequality is by the triangle inequality, the second inequality is by the

inductive hypothesis, the third inequality uses the fact that the number of compositions

of j into exactly l parts is

(
j − 1

l − 1

)
and that λj > λi for j < i, the forth inequality is

using a bound on |γBl |, the fifth inequality is by summing over l, the sixth inequality is

by |γBD| < 1 for sufficiently large δ, the equality is the summation over j. It remains to

show that

2φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)
i−1)

(λ− λi)(1− λ1/2(1 + 2uδ))
<

1

5
. (46)

Since the denominator in (46) is positive, (46) is equivalent to

λ− λi − 10φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)
i−1)

1− λ1/2(1 + 2uδ)
> 0. (47)

The derivative of (47) with respect to i is equal to

λi/2
(
− ln(λ)λi/2 + 10 ln(λ1/2(1 + 2uδ))φB|γBD|

uδ(1 + 2uδ)
i−1

1− λ1/2(1 + 2uδ)

)
.

Multiplication by λi/2 does not affect the sign of the derivative and so, we focus on the

term in brackets. The positive (first) term in brackets is decreasing in absolute value,

while the negative (second) term is increasing in absolute value. Therefore, minimum of

expression (47) is either attained at i = 2 or i→∞. For i = 2, (47) is equal to

λ− λ2 − 10φB|γBD|uδλ1/2 > 0, (48)

whenever uδ <
λ1/2(1−λ)
10φB |γBD|

. By (44), λ1/2(1−λ)
10φB |γBD|

= λ1/2(1−(1−αB)(1−αS))
10φB |γBD|

≤ λ1/2(1−(1−αB)2)
10φB |γBD|

≤
αB

φB |γB |
→ V B. Since uδ converges to zero as δ → 0, for δ close to one, inequality (48) holds

For i =∞, (47) is equal to

λ

(
1− 10D

φB|γB|
λ1/2

uδ
1− λ1/2(1 + 2uδ)

)
. (49)

Observe that lim
δ→1

uδ
1−λ1/2(1+2uδ)

= u
V S+V B−2u

. Since |γB| → 0, λ → 1, φB → 2 as δ → 1, we

have that (49) is positive for sufficiently large δ. Q.E.D.

So far we have constructed a candidate trajectories (xk, yk) given by (36). First,

notice that by making k sufficiently large the solution approaches zero and so, the

Taylor expansion in Claim 13 is justified. Second, observe that xk =
∞∑
i=1

λikλi/2µxi =
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λk+1/2

(
µx1 +

∞∑
i=2

λ(i−1)kλi/2µxi

)
, and for sufficiently large k , the sign of xk is determined

by µx1 which we could choose positive. Analogously, since µy1 has the same sign as µx1 (by

the definition), yk is positive for sufficiently large k. By Claim 11, constructed trajectory

(xk, yk) is positive.

To show that we could bound the change in xk and yk by a term of order 1−δ, observe

that

xk−1 − xk = αB(yk)(xk−1 + yk) ≤ 2

(
αB − φB

∞∑
z=1

γzB(c(s∞)− c(s∞ − yk))z
)
≤

2

(
αB −

φB|γB|Σ
1− |γB|Σ

)
∼ 1− δ

and so, there exists C such that xk−1−xk < (1− δ)C for all k ∈ N. The analogous bound

holds for yk−1 − yk.

Lemma 13. Consider b0 ∈ (0, 1− η], s0 ∈ [b0 − η, b0 + η) ∩ [η, 1),PB,P S that satisfy (8).

There exist δ̄ ∈ (0, 1), b∞ ∈ (bαs0 , b0), s∞ = b∞ + η such that for all δ ∈ (δ̄, 1) there are

positive trajectories xk and yk that satisfy recursive system (29). Moreover, for all k ∈ N,

(30) holds for some constant C that does not depend on δ.

Proof. Fix any b∞ ∈ (bαs0 , b0) and s∞ = b∞ + η. By Lemma 12, we can construct positive

trajectories xk and yk that satisfy (29) and(30). We next construct sequences b̂n and ŝn

by defining b̂2k−1 = b̂2k−2 = b∞ + xk−1 and ŝ2k = ŝ2k−1 = s∞ − yk for k ∈ N and letting

ŝ0 = b̂0−η. There exist minimal kB and kS such that b̂2kB < b0 and ŝ2kS−1 > s0. We define

bn and sn as subsequences of b̂n and ŝn starting from n0 = 2 max{kB, kS}. Observe that

by the construction of xk and yk in (36),(42) and (43), any xk and yk are continuous in b∞

and s∞. Moreover, for b∞ = b0, we have that n0 = 2kB, b0 − b1 = 0, s1 − s0 = 2η, and at

the other extreme, for b∞ = s0− η, n0 = 2kS,b0− b1 = 2η, s1− s0 = 0. By the continuity,

there exists b∞ (and correspondingly, s∞ = b∞ + η) such that for corresponding bn and

sn constructed as described above, we havemax{|b0 − b1|, |s1 − s0|} < (1 − δ)C. For all

n ≥ 1, max{|bn−1− bn|, |sn− sn−1|} < (1− δ)C follows from the corresponding inequality

for xk and yk.

Proof of Lemma 4. By Lemma 13, we could construct sequences of threshold types bn and

sn so that corresponding sequences xk and yk defined by xk = b2k−b∞ and yk = s∞−s2k−1

for k ∈ N satisfies (29). Since (xk, yk) is a positive trajectory and αB(y) > 0 whenever

y > 0, from (29) it follows that xk+1 − xk = −αB(yk+1)(xk + yk+1) < 0 for all n ∈ N,
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and analogously, yk+1 − yk < 0. Hence, bn and sn are monotone sequences. Since (xk, yk)

converges to (0, 0), the limits of bn and sn are b∞ and s∞, respectively.

The form of functions αB(x) and αS(y) guarantees that equations (24) and (26) hold.

Hence, threshold types are indifferent between accepting the opponent’s offer in the cur-

rent round and rejecting it (and accepting in the following round). By Lemma 11, this

is sufficient for the optimality of acceptance strategies given by thresholds bn and sn.

Moreover, recursive system (29) guarantees that the probability that threshold types as-

sign to their offer being accepted in the next round is derived from the acceptance policy

of the opponent. This completes the construction of the equilibrium strategies on the

equilibrium path.

All deviations from acceptance strategies bn and sn are ignored. To deter deviations

from offers PB and P S specify that after deviations from price offers PB and P S, players

switch to the punishing equilibrium of the deviator. By Theorem 7, in such equilibrium

the expected utility of the deviator is uniformly (over all types of the deviator) close to

the reservation utility as δ converges to one. On the other hand, by following equilibrium

strategy any seller type s ≤ sωb0 gets at least PB − c(s), and any buyer type b ≥ bαs0 gets

at least v(b)− P S. These utilities are bounded away from the reservation utility by (8).

This proves that the constructed thresholds constitute a required continuation CSE

whenever recursion (29) has a positive solution.

Proof of Theorem 2. Sufficiency

Consider a tuple (b∗t , s
∗
t , q

B
t , q

S
t , T ) as in the sufficiency part of Theorem 2. For any ε̃ > 0,

choose t̃ ∈ R+ such that b∗
t̃
< b∗T + ε̃ and s∗

t̃
> s∗T − ε̃. Since b∗∞ ∈ (0, 1) and s∗∞ ∈ (0, 1),

b∗T = s∗T − η by (2). Therefore, we can choose t̃ sufficiently large so that

0 < b∗t̃ < 1− η, η < s∗t̃ < 1, and s∗t̃ ∈ [b∗t̃ − η, b
∗
t̃ + η). (50)

By the strict versions of (6) and (7), we have qS0 <
v(1)+c(1)

2
and qB0 > v(0)+c(0)

2
and so, by

Condition M′,

v(0) + c(0)

2
< qBt ≤ qSt <

v(1) + c(1)

2
, (51)

for all t ∈ [0, T ]. For any time t, let N j
t ≡

⌊
t

∆j

⌋
. There are three cases to consider: 1)

T =∞ and qST > qBT , 2) T <∞ and qST = qBT , 3) T =∞ and qST = qBT .
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Case 1) T =∞ and qS
T > qB

T. CSEs that we construct to approximate (b∗t , s
∗
t , q

B
t , q

S
t )

are in grim-trigger strategies. Players start the game by following the main path, and

continue following it so long as there were no detectable deviations in the past. If one of

the sides detects deviation from the main path, then the play switches to the punishing

path of the deviatior.

Construction of the main path (bjn, s
j
n, p

Bj
n , pSjn ). Strategies on the main path are

constructed separately for times before and after t̃. Since c(s∗T ) < qBT < qST < v(b∗T ), we

can choose ε̃ small enough and t̃ large enough so that v(b∗T − ε̃) > v(b∗T ) − ε̃` > qS
t̃

and

c(s∗T + ε̃) < c(s∗T ) + ε̃` < qB
t̃

where we use the Lipschitz continuity of v(b) and c(s) in the

inequalities. Combining this with (51) we get

min

{
c(s∗T + ε̃),

v(0) + c(0)

2

}
< qBt̃ < qSt̃ < min

{
v(b∗T − ε̃),

v(1) + c(1)

2

}
. (52)

Let bNj

t̃

≡ b∗
t̃
, sNj

t̃

≡ s∗
t̃
. By (50) and (52), conditions of Lemma 4 are satisfied and

so, for ∆j sufficiently small, there exists a continuation CSE for n > N j

t̃
such that price

paths are constant, pSjn = qS
t̃

and pBjn = qB
t̃

, and max{bj
Nj

t̃

− bj
Nj

t̃
+2
, sj
Nj

t̃
+2
− sj

Nj

t̃

} < C∆j

for some C > 0 independent of ∆j.

For n ≤ N j

t̃
− 1, construct sequences bjn, s

j
n, p

Sj
n , p

Bj
n as follows. For any integer n ≤

N j

t̃
− 1, we define bjn = b∗n∆j

for even n and bjn = bjn−1 for odd n. Analogously, for any

integer n ≤ N j

t̃
− 1, we define sjn = s∗n∆j

for odd n and sjn = sjn−1 for even n. For any

integer n ≤ N j

t̃
− 1, we define αSjn and αBjn by (25) and (27). Given bjn, s

j
n, α

Bj
n , αSjn , we

construct price paths pBjn and pSjn starting from round N j

t̃
− 1 and proceeding backwards

in time so that equations (24) and (26) are satisfied.

Convergence. Since b∗t is continuously differentiable , function b∗t is Lipschitz con-

tinuous with some modulus `1 on [0, t̃], and without loss of generality, let C < `1. Hence,

the extension bjt of bjn to continuous domain is Lipschitz continuous with the same modu-

lus `1 on [0, t̃]. Therefore, bjt converges to b∗t uniformly on [0, t̃] as ∆j → 0. Analogously,

extension sjt of sjn to continuous domain converges uniformly to s∗t on [0, t̃].

Writing equation (24) with n = N j
t , subtracting from both sides e−2r∆j(v(bj

Nj
t

)− pSj
Nj
t

)
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and dividing by 2∆j, we get

1− e−2r∆j

2∆j

(
v(bj

Nj
t

)− pSj
Nj
t

)
= e−r∆j

αSj
Nj
t

2∆j

(
(1− e−r∆j)v(bj

Nj
t

)− pBj
Nj
t +1

+ e−r∆jpSj
Nj
t +2

)
+e−2r∆j

pSj
Nj
t

− pSj
Nj
t +2

2∆j

.

(53)

Observe that for n ≤ N j

t̃
− 1,

αSjn = max

{
sjn+1 −max{sjn−1, s

α
bjn
}

sω
bjn
−max{s∆

n−1, s
α
bjn
}
, 0

}
≤ 2∆j`1

ε̃
, (54)

and the same upper bound holds for αBjn . Therefore, by (53) for all ∆j function pSjt

is Lipschitz continuous with a common (for all ∆j) modulus of continuity, and hence,

over a subsequence pSjn converges uniformly on [0, t̃] to a Lipschitz continuous function

q̃St with the same modulus of continuity. Taking the limit of (53) we get that q̃St satisfies

equation (4). By the Picard-Lindelöf theorem the limit q̃St coincides with qSt . Therefore,

pSjt converges uniformly to qSt on [0, t̃], and by an analogous argument, pBjt converges

uniformly on [0, t̃] to qBt .

Claim 15. For T̂ = ∞, there exists ∆ > 0 such that for all ∆j < ∆, pBjn and pSjn are

monotone for n ≤ N j

t̃
.

Proof. Observe that, unless t̃ > T̂ in which case price paths are constant, qSt is strictly

decreasing on [0, t̃]. By the continuous differentiability of qSt there exists γ̃ > 0 such that

q̇St < −γ̃ on [0, t̃]. By the uniform convergence of bjt , s
j
t ,p

Bj
t ,pSjt , (53) implies that

pSj
N
j
t

−pSj
N
j
t +2

2∆j

converges uniformly to q̇St and so, pSn is decreasing for sufficiently small ∆j. Analogously,

pBn is increasing for sufficiently small ∆j. Q.E.D.

Notice that Tj = T =∞ for any CSE constructed. By the definition of t̃, b∗
t̃
→ b∗T and

s∗
t̃
→ s∗T as t̃ → T . Therefore, as we take ε̃ to zero, and correspondingly t̃ to T , we get

the desired sequence of approximating CSEs with the smooth limit (b∗t , s
∗
t , q

B
t , q

S
t ).

Construction of the punishing path. After deviations from the price paths of

the main path, players switch to the deviator’s punishing equilibrium described in Section

6. If the seller deviates from the acceptance strategy, then this deviation might remain

undetected by the buyer at least for some time. Observe, however, that when this de-

viation occurs, buyer types below bαst detect such deviation at time t. Analogously, the

buyer deviation from the acceptance strategy is detected by seller types above sωbt at time

t. Specify that immediately after the detection, the buyer switches to the seller punishing
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equilibrium described in Section 6. That is, beliefs of the buyer are given by (15) and all

buyer types below bαst pool on c(0)+e−r∆j v(0)

1+e−r∆j
. Beliefs of seller types below st are uniform on

Bs∩[0, bαst ] and the seller follows equilibrium strategies in the seller punishing continuation

equilibrium. Strategies and beliefs after the buyer deviation from the acceptance strategy

are specified symmetrically. We next show that such punishing paths deter deviations

from the main path for sufficiently small ∆j.

Claim 16. For ∆j sufficiently small, there are no profitable deviations from the main path.

There is a difference in the analysis of the incentives to deviate from the main path of

buyer types below and above b∗T−ε̃. On the one hand, buyer types below b∗T−ε̃ expect that

with probability one, one of buyer’s offers is accepted by time t̃. Therefore, the strategies

specified after time t̃ do not affect their incentives to deviate. On the other hand, buyer

types above b∗T− ε̃ could remain in the game after time t̃ and so, their incentives to deviate

could be affected by the way we specified the main path for t > t̃. The following two

claims ensure that both groups of types do not have incentives to deviate.

Claim 17. There exists ˆ̀ such that for any ∆j, U
Bj
t (b) and UBt (b) are Lipschitz continuous

in both arguments with modulus ˆ̀. Moreover, for any ε > 0,

max
t∈[0,t̃],b∈[0,b∗T−ε̃]

|UBj
t (b)− UBt (b)| < ε

for sufficiently small ∆j.

Proof. Let njb be the round, in which buyer type b accepts the seller offer if he follows

the strategy b∆
n . Consider two buyer types b and b′. Observe that

UBj
t (b) = E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb ∩ Sb′ , s ≥ sjt , n

j
b]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b]
|(Sb\Sb′) ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

≥

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb ∩ Sb′ , s ≥ sjt , n
j
b′ ]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b′ ]
|(Sb\Sb′) ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

=
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UBj
t (b′) + E[e−r(∆jN−t)(v(b)− v(b′))|s ∈ Sb ∩ Sb′ , s ≥ sjt , n

j
b′ ]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb′ ∩ [sjt , 1]|

−

E[e−r(∆jN−t)(v(b′)− p)|s ∈ Sb′\Sb, s ≥ sjt , n
j
b′ ]
|Sb′\Sb ∩ [sjt , 1]|
|Sb′ ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b′ ]
|Sb\Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

≥

UBj
t (b′)− `|b− b′| − Σ|b− b′|,

where the equalities are by the application of the law of total expectation to UBj
t (b) and

UBj
t (b′), the first inequality is by the fact that buyer type b prefers to accept in round njb

rather than in round njb′ , and the second inequality is by the Lipschitz continuity of v(b)

and the upper bound on the size of the surplus. Therefore, UBj
t (b) is Lipschitz continuous

in b with modulus `+ Σ.

Now for fixed b consider even integers n < n′ < njb. We have

UBj
n (b) =

n′/2−1∑
m=n/2+1

e−r∆j(2m+1−n) sj2m+1 − s
j
2m−1

sωb −max{sαb , s
j
n}

(
v(b)− pBj2m

)
+e−r∆j(n

′−n) s
ω
b −max{sαb , s

j
n′}

sωb −max{sαb , s
j
n}
UBj
n′ (b).

(55)

Notice that

0 < 1−e−r∆j(n
′−n) s

ω
b −max{sαb , s

j
n′}

sωb −max{sαb , s
j
n}
≤ 1−(1−r∆j(n

′−n))

(
1− max{sαb , s

j
n′} −max{sαb , sjn}

sωb −max{sαb , s
j
n}

)
=

r∆j(n
′ − n) + (1− r∆j(n

′ − n))
sjn′ − sjn

sωb −max{sαb , s
j
n}
≤ r∆j(n

′ − n) +
2∆j(n

′ − n)`1

ε̃
. (56)

By (54) and (56), (55) implies

|UBj
n (b)− UBj

n′ (b)| ≤ Σ

(
4∆j(n

′ − n)`1

ε̃
+ r∆j(n

′ − n)

)
≡ ∆j(n

′ − n)`2. (57)

Since function UBj
t (b) is piecewise linear and by inequality (57), its slope does not exceed

`2, UBj
t (b) is Lipschitz continuous in t with modulus `2. Hence, UBj

t (b) is Lipschitz

continuous in both arguments with modulus ˆ̀ ≡ ` + Σ + `2. The proof of Lipschitz

continuity of UBt (b) is analogous.

The sequence of functions UBj
t (b) are Lipschitz continuous for all j with common
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modulus ˆ̀. Hence, they converge uniformly to some limit which is Lipschitz continuous

with the same modulus ˆ̀. Moreover, UBj
Nt

(b) converges pointwise to UBt (b) for b ∈ [0, b∗T −
ε̃] by construction by the dominated convergence theorem. Hence, UBj

t (b) converges

uniformly to UBt (b) on t ∈ [0, t̃] and b ∈ [0, b∗T − ε̃]. Q.E.D.

Claim 18. There exists ∆ > 0 and u > 0 such that for all ∆j < ∆,

min
t∈[0,t̃],b∈(b∗T−ε̃,1]

UBj
t (b)−max

{
v(b)− v(1) + c(1)

2
, 0

}
> u.

Proof. The buyer could accept pSjn in any even round n. Moreover, the buyer could

accept seller offer qS
t̃

in round N j

t̃
. Therefore,

UBj
n (b) ≥ max{v(b)− pSjn , e−rt̃(v(b)− qSt̃ )}.

Denote u1 ≡ e−rt̃(v(b∗T− ε̃)−qSt̃ ), and u1 > 0 by (52). For any b > b∗T− ε̃, e−rt̃(v(b)−qS
t̃

) ≥
u1 > 0.

We next show that for u2 ≡ 1
4
(v(1)+c(1)

2
−qS0 ) > 0 (by (51)), we have pSjn < v(1)+c(1)

2
−u2

for ∆j sufficiently small. By the convergence of pBjt to qBt on [0, t̃], there exists ∆ > 0

such that for all ∆j < ∆, pSj0 < qS0 + u2 and so, pSjn ≤ pSj0 < v(1)+c(1)
2

− u2. We complete

the proof by taking u ≡ min{u1, u2} > 0. Q.E.D.

Proof of Claim 16. By Claim 17, continuation utilities of buyer types in [0, b∗T− ε̃] from

following the main path converge uniformly (in type and time) to UBt (b). By the strict

version of inequality (6), there exists ε > 0 such that UBt (b) > max
{
v(b)− v(1)+c(1)

2
, 0
}

+ε

for all b and t ∈ [0, t̃]. By Claim 18, continuation utilities of buyer types in (b∗T − ε̃, 1]

from following the main path are greater than max
{
v(b)− v(1)+c(1)

2
, 0
}

by at least u > 0,

for sufficiently small ∆.

By Corollary 1, for any ε > 0, the continuation utility of any type of the punished

player is at most ε away from the reservation utility max
{
v(b)− v(1)+c(1)

2
, 0
}

, for suffi-

ciently small ∆j. Therefore, deviations from the price paths constructed are not profitable

for buyer types. By Claim 15, the constructed price paths are monotone and so, devi-

ations from the acceptance strategies are not optimal by Lemma 11. The proof for the

seller is symmetric.

Q.E.D.

Case 2) T <∞ and qS
T = qB

T. Let t̃ = T, ε̃ = 0, and the construction of the main path

for case 1 is repeated with the difference that after time T trade stops and there are no
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types remaining. By the analogous argument as in case 1, it could be verified that the

constructed main path could be supported by the punishing path and that the strategies

describing the main path converge a.e. to the corresponding limits on [0, T ]. Moreover,

for all ∆j, Tj = T , and bT = b∗T , sT = s∗T which completes the analysis of case 2.

Case 3) T =∞ and qS
T = qB

T. We first construct the following approximation of

(b∗t , s
∗
t , q

B
t , q

S
t ). For any t̃ ∈ R+, let b̂t = b∗t − t

t̃

(
b∗
t̃
− b∗∞

)
and ŝt = s∗t + t

t̃

(
s∗∞ − s∗t̃

)
and construct price offers q̂St and q̂Bt satisfying (3), (4) and q̂Bt = q̂St = qBT = qST . We

could proceed as in case 2 to construct an approximating sequence of CSEs of the limit

(b̂t, ŝt, q̂
B
t , q̂

S
t , t̃). By construction, as t̃ → ∞, b̂t and ŝt converge uniformly to b∗t and s∗t ,

respectively, as well as their derivatives converge uniformly to the corresponding deriva-

tives of b∗t and s∗t . By Theorem 1.1 in Freidlin and Wentzell (1984) price offers q̂St and

q̂Bt converge to qSt and qBt , respectively. Moreover, Tj = t̃ converges to T = ∞, and

b̂∞ = b̂t̃ = b∗∞ and ŝ∞ = ŝt̃ = s∗∞.

Proofs for Section 4

Proof of Theorem 3. Let ŪB(ω) ≡ P̄ (ω)v(ω)−X̄(ω), ŪS(ω) ≡ X̄(ω)−P̄ (ω)c(ω), UB(b) ≡
PB(b)v(b)−XB(b), US(s) ≡ XS(s)−P S(s)c(s). We start with a preliminary observation,

which follows from the argument in Lemma 2 in Myerson (1981).

Claim 19. Condition (9) is equivalent to

P̄ (ω) ≥ P̄ (ω′) > 0 (58)

and

ŪB(ω) = ŪB(ω′) +

ωˆ

ω′

P̄ (w)dv(w), (59)

for any ω ≥ ω′ > ω∗.

Direction CSM→CSE sequence. Consider a CSM and the outcomeO = (P̄B(b), P̄ S(s), ŪB(b), ŪS(s))

of the truthful equilibrium in this CSM. To prove the first statement of Theorem 3, we con-

struct a sequence of CSEs indexed by j ∈ N with outcomesOj = (PBj(b), P Sj(s), UBj(b), USj(s))

such that Oj converges a.e. to O, and (∆j, ηj)→ (0, 0).

Consider a monotone sequence ηj → 0. Suppose that in the CSM, ω∗ ∈ (0, 1), and
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without loss of generality, suppose that

ηj < min

{
ω∗

2
,
1− ω∗

2

}
for all j ∈ N. When ω∗ equals 0 or 1, the argument below is first carried for ω̃∗ equal to

ε̃ or 1− ε̃, respectively, for some ε̃ > 0 and then we take ε̃→ 0.

Define t∗b ≡ −1
r

ln P̄ (b) for b > ω∗ and t∗s ≡ −1
r

ln P̄ (s) for s < ω∗. By (58) in

Claim 19, function P̄ (b) is increasing in type b for b > ω∗ and so, t∗b is decreasing in b.

Analogously, t∗s is increasing in s. Consider inverse functions b∗t ≡ inf{b ∈ [0, 1] : t∗b ≤ t}
and s∗t ≡ sup{s ∈ [0, 1] : t∗s ≤ t}. Since P̄ (ω∗+0) = P̄ (ω∗−0) and P̄ (ω) > 0 for all ω 6= ω∗

(by condition (13)), we can choose τj <∞ to be the minimal τj such that b∗τj − s
∗
τj
≤ ηj

and, in particular,

0 < b∗τj < ω∗ + ηj ≤ 1− ηj and 1 > s∗τj > ω∗ − ηj ≥ ηj. (60)

Let T ≡ t∗ω∗ and observe that τj → T as j →∞.

Construction of CSE strategies. We construct a CSE by the same scheme as in

the proof of Theorem 2. Since v(b) and c(s) are continuous and v(ω∗) − c(ω∗) ≥ ξ > 0,

v(ω∗ − ηj) > c(ω∗ + ηj) for sufficiently small ηj. If X̄(b∗τj) = X̄(s∗τj), specify that at time

τj all remaining types trade at price X̄(b∗τj)/P̄ (b∗τj) and the construction is carried as in

case 2 in the proof of Theorem 2. If X̄(b∗τj) > X̄(s∗τj), then we proceed as in case 1 in

the proof of Theorem 2. We define P Sj ≡ X̄(b∗τj)/P̄ (b∗τj)− εj, P
Bj ≡ X̄(s∗τj)/P̄ (s∗τj) + εj

where εj ∈ [0, 2−j] is small enough so that condition (8) in Lemma 4 is satisfied. By (60),

for times after time τj, the continuation equilibrium can be constructed by Lemma 4. For

the rounds before time τj, the acceptance functions bjt and sjt , and price offers pBjt and

pSjt are constructed as in the proof of the sufficiency part of Theorem 2. We choose ∆j

sufficiently small so that for given ηj, the constructed main path can be supported by the

punishing path in the construction in the proof of Theorem 2.

Convergence. By the construction, for b ∈ (b∗τj , 1] the difference between the type

b’s acceptance time and t∗b is at most 2∆j and so, as j →∞, PBj(b) converges uniformly

to P̄ (b) for such types. By the argument analogous to Claim 19, for weak types b ∈
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(b∗τj−2∆j
, 1],

UBj(b) = UBj(b∗τj−2∆j
) +

bˆ

b∗τj−2∆j

PBj(b)dv(b).

As j → ∞, UBj(b∗τj−2∆j
) = e−rτj(v(b∗τj−2∆j

) − PBj) converges to ŪB(b∗τ ) and so, by

the dominated convergence theorem, UBj(b) converges to ŪB(b) for b ∈ (b∗τj , 1]. By the

integral formula, UBj(b) and ŪB(b) are Lipschitz continuous with modulus one and so,

UBj(b) converges uniformly to ŪB(b) on (b∗τj , 1].

Now for seller types s ∈ [ω∗ + 2ηj, 1],

P Sj(s) =
1

|Bs|

ˆ

Bs

PBj(b)db

and

USj(s) =
1

|Bs|

ˆ

Bs

(PBj(b)(v(b)− c(s))− UBj(b))db.

By the monotonicity of PBj(b), for s ∈ [ω∗+ 2ηj, 1], PBj(bαs ) ≤ P Sj(s) ≤ PBj(bωs ) and so,

by the uniform convergence of PBj(b) on (b∗τ , 1], P̄B(s−ηj)−ηj ≤ P Sj(s) ≤ P̄B(s+ηj)+ηj

for ∆j sufficiently small. As ηj → 0, P Sj(s) converges to P̄ S(s) for a.e seller type above

ω∗.56 Further,

PBj(bαs )(v(bαs )−c(s))− 1

|Bs|

ˆ

Bs

UBj(b)db ≤ USj(s) ≤ PBj(bωs )(v(bωs )−c(s))− 1

|Bs|

ˆ

Bs

UBj(b)db,

and by the uniform convergence of PBj(b) and UBj(b) on (b∗τ , 1], for ∆j sufficiently small,

P̄B(s− ηj)(v(s− ηj)− c(s))−
1

|Bs|

ˆ

Bs

ŪB(b)db− ηj ≤ USj(s),

P̄B(s+ ηj)(v(s+ ηj)− c(s))−
1

|Bs|

ˆ

Bs

ŪB(b)db+ ηj ≥ USj(s),

for all sin[ω∗ + 2ηj, 1]. As ηj → 0, 1
|Bs|

´
Bs

ŪB(b)db → ŪB(s) for a.e. seller type in

[ω∗ + 2ηj, 1] and so, US(s) converges to ŪS(s) for such types. The argument for types

below ω∗ is symmetric. Therefore, we constructed the required sequence of CSEs.

56The convergence is not guaranteed only at discontinuity points of P̄S(s). By Claim 19, P̄S(s) is
monotone on (ω∗, 1] and the set of its discontinuity points is at most countable.
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Direction CSE sequence→CSM. To prove the second statement, for any j ∈ N, let

bj be the lowest weak buyer type, and sj be the highest weak seller type in the CSE of the

game with the length of bargaining round ∆j and the individual uncertainty parameter

ηj. Denote wj ≡ 1
2
(bj + sj) ∈ [0, 1]. Then there exists ω∗ ∈ [0, 1] such that wj converges

to ω∗ over subsequence. Therefore, for any ε2 > 0, far enough in the sequence all buyer

types above min{1, ω∗ + ε2} and all seller types below max{0, ω∗ − ε2} are weak types.

We consider only outcomes for these types, and we cover all the types but type ω∗ by

choosing ε2 sufficiently small.

Any weak type knows at what time and at what price trade will happen, since

the probability of the opponent’s concession for weak types is zero. In a CSE corre-

sponding to (∆j, ηj), for buyer b > min{1, ω∗ + ε2}, let tjb and pjb be the time and the

price at which such type trades and define analogous quantities tjs and pjs for sellers

s < max{0, ω∗ − ε2}. By the single crossing property of the payoffs, tjb is decreasing and

tjs is increasing and so, pjb is decreasing and pjs is increasing. Therefore, a sequence of

four monotone functions has a pointwise converging subsequence by Helly’s theorem and

the limits (t∗b , t
∗
s, p
∗
b , p
∗
s) exist. For any weak buyer types b and b′, buyer type b prefers

accepting at time tjb to accepting at tjb′ , e
−rtjb

(
v(b)− pjb

)
≥ e−rt

j

b′
(
v(b)− pjb′

)
. Hence, in

the limit e−rt
∗
b (v(b)− p∗b) ≥ e−rt

∗
b′ (v(b)− p∗b′), which is condition (9) for buyer and by

the same logic condition (11) obtains. Conditions (10) and (12) follow from Lemma 3.

Condition 3 follows from the monotonicity of price paths in the definition of the CSE.

Proofs for Section 5

Proof of Theorem 4. We carry the construction from the top of type distribution. Let

qBZ = qSZ . By Lemma 4, for sufficiently small ∆, there exists a CSE with constant offers

on the equilibrium path qBZ−1 and qSZ , and acceptance strategies bZ−1
n and sZ−1

n such that

bZ−1
∞ = bZ−1 and sZ−1

∞ = sZ−1. For all z = 1, . . . , Z − 2, let ŝz ≡ bz − η and qSz be such

that

qSz − c(ŝz) = δ(qBz − c(ŝz)). (61)

By Lemma 4, we construct a CSE with constant offers on the equilibrium path qBz−1

and qSz , and acceptance strategies szn and bzn such that bz∞ = bz and sz∞ = sz. Denote

b̂0 = ŝ1 = 0, b̂Z−1 = ŝZ−1 = 1, and b̂z = bz2 for z = 1, . . . , Z − 1.

In the first round, for z = 2, . . . , Z − 1 seller types in [ŝz−1, ŝz] make offer qSz . In the

second round, buyer types in [b̂0, b̂1] reject offer qS2 , types in [b̂z−1, b̂z], z = 2, . . . , Z − 1

accept qSz and make counter-offer qBz to qSz+1, buyer types in [b̂Z−1, b̂Z ] accept qSZ . After
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the first two rounds, the remaining types play a corresponding continuation CSE with all

subsequent price offers of players equal to their initial price offers. After any detectable

deviation players switch to the punishing equilibrium of the deviator.

Observe that if a seller type ŝz, z = 2, . . . , Z − 1 makes a lower offer qSz , then it is

accepted with probability one. Indeed, since bz − bz−1 > 4η, ŝz = bz − η and b̂z−1 <

bz−1 + 2η, we have b̂z−1 < ŝz − η and so, all buyer types in Bŝz accept offer qSz . By (61),

seller type ŝz is indifferent between offering qSz that is accepted for sure and offering qSz+1

that is rejected for sure and accepting the buyer’s offer qBz . By the single-crossing property

of the payoffs, seller types above ŝz strictly prefer the acceptance of offer qSz by the buyer

in two rounds, and seller type below ŝz strictly prefer the acceptance of qSz in the next

round. By the choice of qSz and qBz , no player prefers to deviate from the equilibrium price

offers for ∆ sufficiently small.

After the first two rounds the game continues only if offers qSz and qBz−1 were made

for some z = 2, . . . , Z. Then only buyer types are below b̂z and seller types above ŝz−1

remain in the game. Such types are playing a continuation CSE constructed by Lemma

4 with offers qSz and qBz−1. Therefore, the probability that the game continues for longer

than three rounds is at most 4η2(Z−1)
η(2−η)

. At the same time, continuation CSEs constructed

by Lemma 4 have no almost sure upper bound on the equilibrium delay and so, there

is no almost sure upper bound on the equilibrium delay in the constructed segmentation

equilibria.

Proof of Theorem 5 . We apply Theorem 4 with price offers and segments defined as

follows. Fix ε > 0 and choose b1 =
√
η, bz+1 = bz +

√
η and qBz = v(bz−1)+c(sz)

2
. Then

Z = 1 +
⌊

1−η√
η

⌋
. We consider only outcomes for types that trade in the first three rounds.

As shown in the proof of Theorem 4, the probability of such types is at least 1− 4η2(Z−1)
η(2−η)

which converges to one as η → 0, since Z ∼ 1√
η
. Moreover, for such types, |N∆| ≤ 2

and
∣∣∣p− v(b)+c(s)

2

∣∣∣ ≤ 1
2
|v(bz−1)− v(b)|+ 1

2
|c(sz)− c(s)| ≤ `

√
η

2
→ 0 as η → 0. This proves,

the desired convergence in probability of segmentation equilibria outcomes to the Nash

outcome.

Proofs for Section 6

Proof of Lemma 5. Consider buyer types in the interval [b, 1]∩ [η, 1]. Buyer type b in such

interval puts probability one on seller type sαb by (15), while seller type sαb puts probability

one on type b by (18). By Rubinstein (1982) strategies of these two types given in Lemma
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5 constitute the subgame perfect equilibrium of the complete information game with

valuation v(b) and cost c(sαb ).

Now consider seller types s ∈ [sαb , 1]∩ (1− η, 1] that put probability one on buyer type

1. Buyer type 1, in turn, puts probability one on seller 1 − η is willing to pay P̌B(1).

Since P̌B(1) > c(1), seller types s ∈ (1− η, 1] make price offer P̌B(1). Moreover, they are

willing to pay up to P̌ S(s) given by P̌ S(s) − c(s) = δ
(
P̌B(1)− c(s)

)
. The argument for

buyer types b ∈ [b, 1] ∩ [0, η) is symmetric.

Existence of the Punishing Equilibrium

Proof of Lemma 6. The analysis of this subgame is standard, and we only sketch the

argument. We start by constructing a PBE in a game between seller type 0 and buyer

types in [0, η], in which the buyer is restricted to either accept the last seller price offer or

make counter-offer δv(0)+c(0)
1+δ

. We use the analysis of Fudenberg, Levine, and Tirole (1985)

to construct a PBE in such game described by two functions P 0(b) and tβ,p and β̄ ∈ [0, η]

such that

1. buyer type b accepts any price offer below P 0(b) and makes counter-offer δv(0)+c(0)
1+δ

otherwise;

2. given the highest buyer type β > β̄ and previous price offer p, seller type 0 ran-

domized between the lowest types of the buyer to whom she allocates in the current

round according to tβ,p ∈ ∆(R);

3. for β ≤ β̄, seller type 0 accepts offer δv(0)+c(0)
1+δ

;

4. P 0(b) is strictly increasing and left-continuous.

The argument in Fudenberg, Levine, and Tirole (1985) should be slightly modified to

incorporate the possibility that all buyer types pool on a particular price offer that could

be accepted by seller type 0. We start by showing that for β smaller than some β̄

the seller prefers to accept δv(0)+c(0)
1+δ

rather than continue screening. This implies that

there is a finite date after which bargaining ends with probability one by the argument

analogous to Lemma 3 in Fudenberg, Levine, and Tirole (1985). We follow the steps in

their proof of Proposition 1 to construct equilibrium strategies by backward induction

on beliefs starting from beliefs supported by [0, β], β < β̄ with the only difference that

instead of asking price v(0), the seller accepts price offer δv(0)+c(0)
1+δ

for such beliefs. This

gives the desired equilibrium in the game with restricted buyer price offers. Note that
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by the argument from the Theorem 3 in Gul, Sonnenschein and Wilson (1986) the Coase

Conjecture holds for such game, and for any ε > 0, after any history the first price offer

of the seller does not exceed v(0)+c(0)
2

+ ε for δ sufficiently close to one.

To support the constructed equilibrium as an equilibrium in the game with unrestricted

buyer price offers specify the following punishment for detectable deviations of the buyer.

If the buyer deviates and makes an offer different from δv(0)+c(0)
1+δ

, then the seller puts

probability one on the buyer type η and the game proceeds as in the unique subgame

perfect equilibrium of the game with complete information with the seller cost equal c(0)

and the buyer valuation equal v(η). Then trade happens immediately at a price that is

close to v(η)+c(0)
2

for δ close to one. By the Coase Conjecture the first seller price offer is

close to v(0)+c(0)
2

for δ close to one, making the deviation of the buyer non-profitable.

Lemma 14. Suppose tβ(s) is a best-reply to willingness to pay P (b). Then Rβ(s) is non-

decreasing in β , satisfying: for 0 ≤ β′′ < β′ ≤ 1 we have 0 < Rβ′(s)−Rβ′′(s) ≤ Σ(β′−β′′)
whenever Rβ′(s) > 0, and Rβ′(s) = Rβ′′(s) = 0 whenever Rβ′(s) = 0. Moreover, Rβ(s) is

Lipschitz-continuous in both β and s of modulus `R ≡ `+ Σ.

Proof. The first part of Lemma 14 follows from Lemma A.2 in Ausubel, Deneckere (1989).

To show that Rβ(s) is Lipschitz continuous consider two seller types s and s′. Let Rβ(s, s′)

be the value function of seller type s from following tβ(s′). Since seller type s prefers policy

tβ(s) to tβ(s′), Rβ(s) ≥ Rβ(s, s′). Let ps
′
s and qs

′
s , respectively, be discounted transfer and

probability of allocation, respectively, when seller type s follows optimal policy of seller

type s′ (and we write ps for pss and qs for qss). Then

Rβ(s, s′) = ps
′

s − qs
′

s c(s) ≥ ps
′

s − qs
′

s c(s
′)− |c(s)− c(s′)| ≥

ps′ − qs′c(s′)− (`+ Σ)|s− s′| = Rβ(s′)− (`+ Σ)|s− s′|.

The first inequality is by qs
′
s ∈ [0, 1]. To see the second inequality consider two cases.

When s > s′, by using ts′(β) seller type s gets the same profit from buyer types in [bαs , b
ω
s′ ]

as seller type s′, but looses at most Σ from buyer types in [bαs′ , b
α
s ]. When s < s′, by using

ts′(β) seller type s gets the same profit from buyer types in [bαs , b
ω
s ] as seller type s′, but

looses at most Σ from buyer types in [bωs , b
ω
s′ ]. Hence, |Rβ(s)−Rβ(s′)| ≤ (`+Σ)|s−s′|.

Lemma 15. Suppose that tβ(s) is a best-reply to willingness to pay Pb. Then tβ(s) is non-

decreasing in s and β. Moreover, for any β, Tβ(s) has a closed graph, and in particular,

t(s) is left-continuous in s.
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Proof. Denote current profit function of seller type s by πβ(s, b) = (β−b)(P (b)−c(s)) and

constraint is b ∈ Bs ∩ [0, β]. Since ∂
∂β
πβ(s, b) = P (b) is increasing in b, function πβ(s, b) is

supermodular in (β, b). Since ∂
∂s
πβ(s, b) = −c′(s)(β−b) is increasing in b, function πβ(s, b)

has increasing differences in b and s. Further, consider b ≥ b′, β ≥ β′, s ≥ s′ and suppose

b′ ∈ Bs ∩ [0, β] and b ∈ Bs′ ∩ [0, β′]. Then b ≤ β′ ≤ β, b ≤ s′ + η ≤ s + η, b ≥ b′ ≥ s− η
and, therefore, b ∈ Bs ∩ [0, β]. Analogously, we could show that b′ ∈ Bs′ ∩ [0, β′]. Hence,

the constraint sets are ascending in the terminology of Hopenhayn and Prescott (1992).57

By Proposition 2 in Hopenhayn and Prescott (1992) value function Rβ(s) has increasing

differences in β and s and solution tβ(s) is non-decreasing in s and β. By the generalization

of Theorem of the Maximum in Ausubel and Deneckere (1988), for any β, Tβ(s) has a

closed graph and so, t(s) is left-continuous in s.

Lemma 16. For all b we have πi(b) ≥ c(sαb ) + (1 − δ2)ξ and for all s ∈ [−1,−η],

Πi(s) > C(η, δ) > 0 with C(η, δ) ∼ (1 − δ)2 where Πi(s) is the expected profit of seller s

that faces demand πi(b).

Proof. For all buyers b, πi(b) = (1 − δ2)v(b) + δ2π̂i−1(τ i(sαb )) ≥ (1 − δ2)v(b) + δ2c(sαb ) ≥
c(sαb ) + (1 − δ2)ξ. The first inequality follows from the fact that seller types in [0, si+1)

get positive profit when best-replying to static demand given by πi−1(b) and the second

inequality follows from v(b)− c(sαb ) ≥ ξ.

To derive the lower bound on the profit, suppose seller type s ∈ [0, 1− η] makes price

offer c(s)+(1−δ2) ξ
2
. By the lower bound on willingness to pay P (b) derived above, buyer

types with πi(b) > c(s) + (1− δ2) ξ
2`

accept such price offer. The mass of buyer types who

accept such price offer and are in the support of beliefs Bs is at least min{2η, (1− δ2) ξ
2`
}

and seller type s is guaranteed to get profit min{2η, (1− δ2) ξ
2`
}(1− δ2) ξ

2`
≡ C(η, δ). This

minimal profit is equal to (1− δ2)2 ξ2

4`
for δ close to one and, hence, C(η, δ) ∼ (1− δ)2.

Lemma 17. For all s ∈ (−1,−η], bωs − t(s) > c(η, δ). Moreover, c(η, δ) ∼ (1 − δ)3 as δ

goes to one.

Proof. We make change of variable x = bωs − b in the seller’s problem (16). Then Πi(s) =

x(πi(bωs − x) − c(s)) + δ2Πi
bωs−x(s) ≤ x(πi(bωs − x) − c(s)) + δ2(Πi(s) + `Rx) where the

inequality follows from the Lipschitz continuity of Πi(s) (by Lemma 14). Therefore, we

get x ≥ Πi(s)(1−δ2)
πi(bωs )−c(s)+δ2`R

≥ C(η,δ)(1−δ2)
Σ+`R

where we used the lower bound on R(s) from Lemma

16.

57The case when b′ ≥ b is checked trivially.
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Lemma 18. On each step of the tâtonnement algorithm, function πi(b) is left-continuous

and strictly increasing.

Proof. The proof is by induction on the step of the algorithm. For i = 0, the strict

monotonicity of π0(b) follows from the strict monotonicity of P 0(b) and v(b), and the fact

that P 0(η) ≤ v(η). The left-continuity of π0(b) follows from the left-continuity of P 0(b)

and the continuity of v(b).

Suppose by the inductive hypothesis that πi−1(b) is left-continuous and strictly in-

creasing. For b ∈ (η + ic(η,∆), 1], πi(b) = v(b) is strictly increasing and left-continuous.

For b ∈ [0, η + ic(η,∆)], πi(b) is a convex combination of strictly increasing v(b) and

π̂i−1(τ i(sαb )). Function π̂i−1(τ i(sαb )) is increasing, as π̂i−1 is increasing by the inductive

hypothesis and τ i(sαb ) is increasing by Lemma 15. Therefore, πi(b) is strictly increasing

on [0, η + ic(η,∆)]. Moreover, πi(η + ic(η,∆)) ≤ v(η + ic(η,∆)), which completes the

proof of the strict monotonicity of πi(b).

We next show that π̂i−1(τ i(sαb )) is left-continuous. This would imply that πi(b) is

left-continuous on [0, η + ic(η,∆)] as a convex combination of left-continuous functions.

Suppose to contradiction that there exist b̂ and an increasing sequence bj → b̂ such that

lim
j→∞

π̂i−1(τ i(sαbj)) < π̂i−1(τ i(sα
b̂
)). Denote sj = sαbj for all j ∈ N and ŝ = sα

b̂
. By Lemma

15,

lim
j→∞

τ i(sj) = τ i(sj). (62)

If π̂i−1(b) is continuous at τ i(ŝ), then lim
j→∞

π̂i−1(τ i(sj)) = π̂i−1(τ i(ŝ)), which is a contra-

diction. If π̂i−1(b) is discontinuous at τ i(ŝ), then the first price offer of all seller type sj is

below π̂i−1(τ i(ŝ))− ε for some ε > 0, while the first price offer of seller type ŝ is equal to

π̂i−1(τ i(ŝ)). Therefore,

Πi(ŝ) = (π̂i−1(τ i(ŝ))− c(ŝ))(b̂− τ i(ŝ)) + δ2Πi
τ i(ŝ)(ŝ) >

(ε+ π̂i−1(τ i(sj))− c(ŝ))(b̂− τ i(ŝ)) + δ2Πi
τ i(ŝ)(ŝ) = ε(b̂− τ i(ŝ)) + lim

j→1
Πi(sj),

where the equality follows from the continuity of c(s) and Πi
β(s) (by Lemma 14) and

(62). This contradicts the continuity of Πi(s) (again by Lemma 14) and so, π̂i−1(τ i(sαb ))

is left-continuous. For b ∈ [0, η + ic(η,∆)], πi(b) is a convex combination of continuous

v(b) and left-continuous π̂i−1(τ i(sαb )) and so, is left-continuous itself completing the proof
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of the inductive step.

Lemma 19. Suppose P (b) and tβ(s) satisfy equations (16) and (17). Then for δ suffi-

ciently close to one, in the (seller) punishing equilibrium on-path strategies given by P (b)

and tβ(s) are optimal for the seller and the buyer.

Proof. From the design of the algorithm the screening strategy tβ(s) is optimal for the

seller who faces the static demand given by P (b). We next show that the buyer does not

have incentives to deviate either from the acceptance strategy P (b) or from pooling on

the price offer δv(0)+c(0)
1+δ

.

If the highest remaining buyer type exceeds b, then buyer type b interprets the previous

seller’s offers as seller’s deviations. In this case, buyer type b expects the seller to restart

screening. From equation (17) it follows that any price offer above P (b) would be rejected

by buyer b. To complete the verification of optimality of the threshold strategy, we next

show that prices below P (b) are accepted by buyer b.

Suppose to contradiction that the seller makes price offer p which is accepted by buyer

b′ and rejected by buyer type b and b > b′. First, observe that if b ≤ β̄, then both types b

and b′ put probability one on seller type 0, and the result follows from the single crossing

property of the payoffs

Next, suppose that b′ > β̄. Define buyer b′′ = inf{b : P (b) ≥ p}. If the buyer rejects

price offer p, then the highest buyer type remaining in the game is b′′. Each seller type s

uses screening policy tb′′(s) after rejection. Then for all k ∈ N,

v(b′)− p ≥ δ2k
(
v(b′)− P̂ (t

(k)
sα
b′

(b′′))
)

(63)

and

v(b)− p < δ2K
(
v(b)− P̂ (t

(K)
sαb

(b′′))
)

(64)

for some K.58 That is, buyer type b′ accepts price offer p, and buyer type b rejects such

price offer and expects to accept price offer P (tKsαb (b′′)) from seller type sαb . Subtracting

inequality (63) (with k = K) from (64), we get

v(b)− v(b′) < δ2K
(
v(b)− v(b′)− P̂ (t

(K)
sαb

(b′′)) + P̂ (t
(K)
sα
b′

(b′′))
)

or (
1− δ2K

)
(v(b)− v(b′)) < −δ2K

(
P̂ (t

(K)
sαb

(b′′))− P̂ (t
(K)
sα
b′

(b′′))
)
. (65)

58Notation f (k)(x) stands for k-superposition of function f , i.e. let f (0)(x) ≡ f(x) and for k ≥ 1
f (k)(x) ≡ f(f (k−1)(x)).
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The left-hand side of (65) is greater than zero, as b > b′. By Lemma 15, t
(K)
b′′ (sαb ) ≥

t
(K)
b′′ (sαb′), and moreover, P (b) is increasing. Hence, the right-hand side of (65) is less than

zero, which gives a contradiction.

Finally, if b′ ≤ β̄ < b, then the only difference with the previous case is that now buyer

b′ could prefer price p not only to all the future price offers of the seller, but also to the

seller’s acceptance of offer δv(0)+c(0)
1+δ

. That is, it is possible that

v(b′)− p ≥ δ

(
v(b′)− δv(0) + c(0)

1 + δ

)
or more weakly

v(b′)− p ≥ δ2K

(
v(b′)− δv(0) + c(0)

1 + δ

)
.

Combining this inequality with the same argument as before we get contradiction again.

The fact that buyers are better off pooling on δv(0)+c(0)
1+δ

is the following claim and

follows from the invariance property proven in the next section.

Claim 20. For sufficiently large δ, in the seller punishing equilibrium no buyer type prefers

to deviate from pooling on offer δv(0)+c(0)
1+δ

.

Proof. By Theorem 7 any buyer type b above η expect to get the good in the next

round buyer is active at price uniformly close to P ∗(b). By Lemma 5 if such buyer type

deviates he trades with the seller at price close to
v(b)+c(sαb )

2
> P ∗(b), hence, the deviation is

not profitable for such buyer types for sufficiently large δ. Now buyer types below η expect

the first price offer of the seller to be close to v(0)+c(0)
2

which is preferred to immediate

trade at v(η)+c(0)
2

, making the deviation unprofitable for such types. Q.E.D.

Proof of Theorem 6. The tâtonnement algorithm converges in a finite number of steps by

Lemma 17 and the resulting strategies are optimal by Lemma 19.

Proof of the Uncertainty Invariance Property

Let Qβ(s) ≡ min{β, bωs }−min{β, bαs } be the mass of remaining buyer types in the support

of beliefs of seller type s when β is the highest remaining buyer type. Consider a sequence

of discount factors δj → 1. In the punishing equilibrium of the game with discount factor

δj, we denote by Aj(s) the first price offer of seller s.

Lemma 20. There exist a limit point of sequences P j(b), tj(s), Aj(s), Rj
β(s).
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Proof. By Lemma 14, function Rj
β(s) is Lipschitz continuous in s and β with Lipschitz

constants not exceeding 3. Hence, for (s, β) and (s′, β′) such that |s− s′| + |β − β′| < ε,

|Rj
β(s) − Rβ′(s

′)| ≤ |Rj
β(s) − Rj

β(s′)| + |Rj
β(s′) − Rj

β′(s
′)| ≤ `R(|s − s′| + |β − β′|) < `Rε.

Hence, family of continuous functions Rj
β(s) is equicontinuous and so, by the Arzela-

Ascoli theorem, Rj
β(s) converges (over subsequence) to some continuous function R∗β(s).

Moreover, Rβ(s) converges uniformly to R∗β(s) as a sequence of continuous functions on

a compact set that converges to a continuous function. Consider now sequences of non-

decreasing functions P j(b), tj(s), Aj(s). By Helly’s theorem there is a subsequence along

which the sequence converges to a non-decreasing limit P ∗(b), t∗(s), A∗(s) pointwise.

Proof of Lemma 7. Suppose to contradiction that there exists b̂ ∈ (0, 1) with P ∗(b̂) >

c(sα
b̂
), and for any φ > 0, P ∗(b̂ − φ) ≤ P ∗(b̂) < P ∗(b̂ + φ). Let ε ≡ P ∗(b̂)−c(sα

b̂
)

2
. Consider

some seller type ŝ > sα
b̂

+ ε
4`

. By the left-continuity of P ∗(b), we choose φ small enough so

that P ∗(b̂− φ) > P ∗(b̂)− ε
4

and (b̂− φ, b̂+ φ) ⊂ Bŝ. By the pointwise convergence of the

sequence P j(b), for δj sufficiently large, we have P j(b̂−φ) > P ∗(b̂−φ)− ε
4
> P ∗(b̂)− ε

2
>

c(sα
b̂
) + ε

2
> c(ŝ) + ε

4
. There are two cases to consider: A∗(ŝ) > P ∗(b̂) and A∗(ŝ) ≤ P ∗(b̂).

Case 1) A∗(̂s) > P∗(b̂) . In the proof of case 1, we restrict that δj is sufficiently large

so that Aj(ŝ) > 1
3
P ∗(b̂) + 2

3
A∗(ŝ) and P j(b̂) < 2

3
P ∗(b̂) + 1

3
A∗(ŝ) (by pointwise convergence

of Aj(s) and P j(b)) and so,

Aj(ŝ) > P j(b̂) +
1

3
(A∗(ŝ)− P ∗(b̂)). (66)

We show that seller type ŝ prefers to deviate from the equilibrium strategy by speeding

up screening of buyer types above b̂ which gives a contradiction. Observe that for all δj

sufficiently large, Rj

b̂
(ŝ) ≥ 2φ(P j(b̂− φ)− c(ŝ)) ≥ φε

2
> 0.

Let Kj ≤ ∞ be the round of screening when price offer of the seller type ŝ drops below

P j(b̂). Buyer type bωŝ prefers to purchase immediately rather than wait until price drops

below P j(b̂) and so, v(bωŝ )− Aj(ŝ) ≥ δ
2Kj
j (v(bωŝ )− P j(b̂)) or by (66)

δ
2Kj
j ≤ v(bωŝ )− Aj(ŝ)

v(bωŝ )− P j(b̂)
<
v(bωŝ )− P j(ŝ)− 1

3
(A∗(ŝ)− P ∗(b̂))

v(bωŝ )− P j(b̂)
= 1− 1

3

A∗(ŝ)− P ∗(b̂)
v(bωŝ )− P j(b̂)

. (67)

The right-hand side of (67) converges to a limit that is strictly less than 1 and so,

lim
j→∞

δ
2Kj
j < 1.
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Observe that the profit of seller type ŝ in the equilibrium satisfies Rj(ŝ) ≤
bωś̂

b̂

(P j(b)−

c(ŝ))db + δ
2Kj
j Rj

b̂
(ŝ). Consider an alternative screening policy in which for integer Mj

seller type ŝ posts price sequence {Am}
Mj

m=1 such that Am = v(bωŝ ) + m
Mj

(c(ŝ) − v(bωŝ ))

and sell with probability one in Mj rounds. Moreover, the loss in profit from each

sale is at most Σ
Mj

. By the optimality of the seller’s equilibrium strategy, Rj(ŝ) ≥

δ
2Mj

j

(
bωś̂

b

(P j(b)− c(ŝ))db− Σ
Mj

)
where b = inf{b ∈ B : P j(b) > c(ŝ)}. Therefore,

δ
2Mj

j

(ˆ bωŝ

b

(P j(b)− c(ŝ))db− Σ

Mj

)
≤
ˆ bωŝ

b̂

(P j(b)− c(ŝ))db+ δ
2Kj
j Rj

b̂
(ŝ)

or after rearranging terms

δ
2Mj

j

(ˆ b̂

b

(P j(b)− c(ŝ))db− Σ

Mj

)
≤
(

1− δ2Mj

j

)ˆ bωŝ

b̂

(P j(b)− c(ŝ))db+ δ
2Kj
j Rj

b̂
(ŝ).

Since Rj

b̂
(ŝ) ≤

b́̂

b

(P j(b)− c(ŝ))db,

δ
2Mj

j

(
Rj

b̂
(ŝ)− Σ

Mj

)
≤
(

1− δ2Mj

j

)ˆ bωŝ

b̂

(P j(b)−c(ŝ))db+δ2Kj
j Rj

b̂
(ŝ) ≤ Σ(bωŝ−b̂)

(
1− δ2Mj

j

)
+δ

2Kj
j Rj

b̂
(ŝ),

where the last inequality follows from the fact that values are bounded. Since Rj

b̂
(ŝ) ≥

φε
2
> 0,

δ
2Kj
j ≥ δ

2Mj

j − 1

Rj

b̂
(ŝ)

(
δ

2Mj

j

Mj

+ Σ(bωŝ − b̂)
(

1− δ2Mj

j

))
≥ δ

2Mj

j − 2

φε

(
δ

2Mj

j

Mj

+ Σ(bωŝ − b̂)
(

1− δ2Mj

j

))

For each δj, we could choose Mj such that δ
2Mj

j converges to one, as δj → 1. Hence, from

the last inequality it follows that δ
2Kj
j is arbitrarily close to one which contradicts (67).

Case 2) A∗(̂s) ≤ P∗(b̂) . Consider an alternative screening policy, in which seller

type ŝ posts price P j(b̂ + φ) in the first round, then makes offer Aj(ŝ) and proceeds

with the screening policy as in the equilibrium. From the optimality of the equilibrium

strategy, it follows

(bωŝ − tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ2
jR

j
tj(ŝ)

(ŝ) ≥
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(bωŝ − b̂− φ)(P j(b̂+ φ)− c(ŝ)) + δ2
j (b̂+ φ− tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ4

jRt(ŝ)(ŝ)

or

(1−δ2
j )
(

(bωŝ − tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ2
jR

j
tj(ŝ)

(ŝ)
)
≥ (bωŝ−b̂−φ)

(
P j(b̂+ φ)− δ2

jA
j(ŝ)− (1− δ2

j )c(ŝ)
)

(68)

The left-hand side of (68) goes to zero as δj → 1 and the right hand side of (68) converges

to (bωŝ − b̂− φ)(P ∗(b̂+ φ)− A∗(ŝ)) > 0 which is a contradiction.

Proof of Corollary 2. For any buyer type b ∈ [0, bωs+), P j(b) ≥ v(0)+δc(0)
1+δ

> v(0)+c(0)
2

> c(sαb )

and so, P ∗(b) > c(sαb ) for b ∈ [η, bωs+). Therefore, by Lemma 7, function P ∗(b) is constant

on this interval. Since P ∗(b) = v(0)+c(0)
2

for b ∈ [0, η], we have P ∗(b) = v(0)+c(0)
2

on

[0, bωs+).

Definition 8.1. A monotone function f(x) on [0, 1] is ε-continuous if for any open interval

I ⊂ [f(0), f(1)] of length at least ε we have f([0, 1]) ∩ I 6= ∅.59

Lemma 21. For any ε > 0 there exists δ̄ ∈ (0, 1) such that for all δj > δ̄, function P j(b)

is ε-continuous, and for any seller type s ∈ [0, 1] and buyer type β ∈ Bs,

P̂ j(β)− P̂ j(tjβ(s)) ≤ ε. (69)

Proof. Suppose to contradiction that there exist ε > 0, P , and P > P + ε such that for

any b ∈ [0, 1] and infinitely many js, either P j(b) ≥ P or P j(b) ≤ P . Without loss of

generality, take P and P such that P − P is maximal. For any j, consider bj ≡ sup{b :

P j(b) < P}. By equation (17), for any b ∈ [0, 1],

P j(b)− P̂ j(t(sαb )) = (1− δ2
j )(v(b)− P̂ j(tj(sαb )) ≤ (1− δ2

j )Σ <
ε

2
(70)

for δj sufficiently close to one. Consider buyer type b̂j ≡ bj +
c(η,δj)

2
and b̌j ≡ bj +

c(η,δj)

2
.

Then

P j(b̂j)− P̂ j(t(sα
b̂j

)) > P j(b̂j)− P̂ j(b̌j) > ε,

which gives a contradiction to (70).

59Observe that a monotone function f(x) is continuous if and only if it is ε-continuous for all ε > 0.
The notion ε-continuity captures the fact that jumps of an ε-continuous function cannot exceed ε.
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To prove (69), observe that by Lemma 15, for any j ∈ N,

P j(β)− P̂ j(tjβ(s)) ≤ P j(β)− P̂ j(tjβ(sαβ)), (71)

for all b ∈ [0, 1]. For any ε > 0, choose δj sufficiently large so that P j(b) is ε
2
-continuous.

This implies that the right-hand side of (71) is less than ε
2
, and moreover, there exists

βj > β such that P j(βj)− P j(β) < ε
2
. Together with (71), this gives

P̂ j(β)− P̂ j(tjβ(s)) ≤ P j(βj)− P j(β) + P j(β)− P̂ j(tjβ(s)) < ε,

which proves (69).

Lemma 22. For any δj, let two converging sequences of buyer types {bj}∞j=1 and {b′j}∞j=1

be such that P j(bj) − P̂ j(b′j) and v(bj) − P̂ j(b′j) are uniformly bounded away from zero.

Then there exist a function γ(δj) ∼ (1 − δj)2 and an integer J such that bj − b′j ≥ γ(δj)

for all j ≥ J .

Proof. Define sequence tjl , l = 0, . . . , Lj + 1 as follows. Let tj0 = bj and tjl = tj(sα
tjl−1

) for

l = 1, . . . , Lj + 1 where Lj is the largest integer such that tjLj ≥ b′j. By (17),we have

P j(bj) = (1− δ2
j )

Lj∑
l=0

δ2lv(tjl ) + δ
2(Lj+1)
j P̂ j(tjLj+1).

Since P̂ j(b) is increasing in b and b′j ∈ [tjLj+1, t
j
Lj

],

P j(bj)−P̂ j(b′j) ≤ (1−δ2
j )

Lj∑
l=0

δ2lv(tjl )−(1−δ2(Lj+1)
j )P̂ j(b′j) ≤ (1−δ2(Lj+1)

j )(v(bj)−P̂ j(b′j)).

Since P j(bj)−P̂ j(b′j) and v(bj)−P̂ j(b′j) are uniformly bounded away from zero, 1−δ2(Lj+1)
j

is uniformly bounded away from zero. Hence, the exists C1 > 0 and an integer J1 such

that Lj ≥ −C1/ ln δj for all j ≥ J1.

By Lemma 17, there exists C2 > 0 and an integer J2 such that tjl−1 − t
j
l > C2(1− δj)3

for all l ∈ 1, . . . , Lj and all j ≥ J2. Hence, bj − b′j =
Lj∑
l=1

(tjl−1 − t
j
l ) + tjLj − b

′
j ≥ C2(1 −

δj)
3Lj ≥ −C1C2(1 − δj)

3/ ln δj ∼ (1 − δj)
2 for j ≥ J ≡ max{J1, J2}. The function

γ(δj) = −C1C2(1− δj)3/ ln δj satisfies the desired properties.
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xKjxLj

P ∗

1
3
P ∗ + 2

3
P ∗(b̂)

2
3
P ∗ + 1

3
P ∗(b̂)

P ∗(b), P (b)

P ∗(b̂) + ε

P ∗ − ε

c(sαb )

P ∗(b̂)

b̂ bj b

P ∗(b)

P j(b)

2
3
P ∗ + 1

3
P ∗(b̂)− ε

2

1
3
P ∗ + 2

3
P ∗(b̂)− ε

2

βj

Figure 3: Illustration of the proof of Lemma 8

Proof of Lemma 8. Suppose to contradiction that there exists b̂ such that P ∗ ≡ P ∗(b̂ +

0) > P ∗(b̂) (see Figure 4 for the illustration of the proof). By Corollary 2, b̂ ≥ s+ + η,

and by Lemma 7, P ∗(b̂) = c(sα
b̂
). Fix ε > 0 small enough so that P ∗ − P ∗(b̂) > 9

2
ε,

which ensures that P ∗ − ε > 2
3
P ∗ + 1

3
P ∗(b̂) > 2

3
P ∗ + 1

3
P ∗(b̂) − ε

2
> 1

3
P ∗ + 2

3
P ∗(b̂) >

1
3
P ∗ + 2

3
P ∗(b̂) − ε

2
> P ∗(b̂) + ε. Let bj ≡ inf{b : P j(b) ∈ (P ∗ − ε, P ∗)} and sj ≡ sαbj . Let

Kj ≤ ∞ be the first round of screening, in which seller type sj makes a price offer below
2
3
P ∗ + 1

3
P ∗(b̂) and allocates to all buyer types above some βj. In the proof, we restrict

that δj is sufficiently close to one so that the conclusions of the following claim obtain.

Claim 21. We have

lim
j→∞

P j(bj) = P ∗ − ε, (72)

and for δj sufficiently large,

2

3
P ∗ +

1

3
P ∗(b̂) > P̂ j(βj) >

2

3
P ∗ +

1

3
P ∗(b̂)− ε

2
, (73)

bj < b̂+
ε

2`
and c(sj) ≤ P ∗(b̂) +

ε

2
. (74)
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Proof. By Lemma 21 for any ε there exists J(ε) such that P j(b) is ε-continuous for

j ≥ J(ε) and so, (72) obtains. Inequality (73) follows from the definition of βj and (69)

in Lemma 21. By the pointwise convergence of P j(b), lim
j→∞

bj = b̂ and so, bj < b̂ + ε
2`

for

δj sufficiently large . This, in turn, implies c(sj) < c(sα
b̂

+ ε
2`

) < c(sα
b̂
) + ε

2
= P ∗(b̂) + ε

2

where the second inequality is by Lipschitz continuity of c(s). Q.E.D.

Optimality of strategy of type sj. In the first Kj rounds of screening, seller type

sj allocates to the mass of buyer types xKj ≡ bj − βj. Since buyer type bj prefers to buy

at price P j(bj) rather than wait until price drops to P̂ j(β),

v(bj)− P j(bj)

v(bj)− P̂ j(βj)
≥ δ

2Kj
j . (75)

By (72) and (73), the upper bound on δ
2Kj
j in (75) converges to at most v(b̂)−P ∗+ε

v(b̂)− 2
3
P ∗− 1

3
P ∗(b̂)

< 1.

Therefore, δ
2Kj
j converges to some limit λK < 1 as δj → 1 and so, lim

j→∞
(1 − δ2

j )Kj =

− lnλK > 0.

For any integer MKj, consider an alternative screening strategy, in which seller type sj

speeds up screening in the first bKj/MKjc rounds. Let Ak be the price offer that seller type

sj makes in round k. Define qk = P j(bj) +
kMKj

Kj

(
AKj−1 − P j(bj)

)
, k = 1, 2, .., bKj/MKjc.

In the alternative strategy, seller type sj makes price offer pk ≡ min{qk, Ak} in rounds

k ≤ bKj/MKjc, makes offer AKj in round bKj/MKjc + 1 and continues following equi-

librium strategy from then on. The total loss from using the alternative strategy is

at most MKjxKj

(
1
3
P ∗ − 1

3
P ∗(b̂)

)
/Kj. Indeed, in each round the loss of seller type sj

compared to the maximum surplus that could be extracted is at most
P j(bj)−P̂ j(βj)

Kj/MKj
≤

MKj

(
1
3
P ∗ − 1

3
P ∗(b̂)

)
/Kj where the inequality follows from (72) and (73). Moreover,

there is no loss due to discounting, as the allocation to all buyer types happens sooner

under the alternative strategy than under the equilibrium strategy.

At the same time, by speeding up the screening seller type sj gains at least
(
δ

2Kj/MKj

j − δ2Kj
j

)
VKj,

where VKj is the continuation utility of seller type sj after she makes price offer AKj and

follows the equilibrium strategy further. By the optimality of strategy of seller type sj,

MKj

Kj

xKj

(
1

3
P ∗ − 1

3
P ∗(b̂)

)
≥
(
δ

2Kj/MK

j − δ2Kj
j

)
VKj (76)
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Optimality of strategy of type σj. Consider seller type σj ≡ sαβj and let Lj be the

first round of screening, in which seller type σj makes a price offer below 1
3
P ∗+ 2

3
P ∗(b̂). By

the analogous argument as with Kj and seller type sj, we have δ
2Lj
j converges to the limit

λL < 1 (correspondingly, (1− δ2
j )Lj → − lnλL > 0), and for the optimality of strategy of

seller type σj it is necessary that

MLj

Lj
xLj

(
1

3
P ∗ − 1

3
P ∗(b̂)

)
≥
(
δ

2Lj/MLj

j − δ2Lj
j

)
VLj, (77)

for any integer MLj. In inequality (77), xLj denotes the mass of buyer types to whom

seller type σj allocates in the first Lj rounds, and VLj denotes the continuation utility of

seller type σj after price offer in round Lj and follows the equilibrium strategy further.

Lower bound on VKj . Observe that seller type sj could post price 1
3
P ∗+ 2

3
P ∗(b̂)− ε

2

after price offer AKj . The mass of buyer types that accept such price is xLj, and the profit

from each such buyer is 1
3
P ∗ + 2

3
P ∗(b̂)− ε

2
− c(sj) ≥ 1

3
P ∗ − 1

3
P ∗(b̂)− ε by (74). Hence,

VKj ≥ xLj

(
1

3
P ∗ − 1

3
P ∗(b̂)− ε

)
. (78)

Lower bound on VLj . Suppose that the seller allocated in previous rounds to all

buyer types with P j(b) > 1
3
P ∗ + 2

3
P ∗(b̂)− ε

2
. If the seller posts price P ∗(b̂) + ε after such

history, then by Lemma 22, the mass of buyer types who accept such price is at least

γ(δj) > 0. The profit of seller type σj from such buyer types is P ∗(b̂) + ε − c(σj) ≥
P ∗(b̂) + ε− (P ∗(b̂) + ε

2
) = ε

2
(by (74) and σj < sj). Hence,

VLj ≥ γ(δj)
ε

2
(79)

Lower bound on xKj. Combining inequalities (76), (77), (78), (79) we get

CxKj ≥
Kj(1− δj)
MKj

Lj(1− δj)
MLj

(
δ

2Kj/MKj

j − δ2Kj
j

)(
δ

2Lj/MLj

j − δ2Lj
j

) γ(δj)

(1− δ)2
j

ε

2
. (80)

where we collect all the constants into a positive constant C. Since
Kj(1−δj)
MKj

∼ Kj ln(δj)

MKj
,

Lj(1−δj)
MLj

∼ Lj ln(δj)

MLj
and γ(δj) ∼ (1−δj)2, we could find MKj and MLj (in general dependent

on δj) such that right-hand side of inequality (80) converges to a positive number. On

the other hand, xKj ≤ bj − b̂ ≤ ε
2`

by (74) . This contradicts the fact that ε was chosen

arbitrary.
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Proof of Corollary 3. Suppose to contradiction that there exists some b̃ ≥ bωs+ such that

P ∗(b̃) > c(sα
b̃
). For b < bωs+ , c(sαb ) > P ∗(b) and combined with Lemma 7, this implies that

there is b̂ ≥ bωs+ such that P ∗(b) is discontinuous at b̂ which contradicts Lemma 8.

Lemma 23. Sequence P j(b) converges uniformly to P ∗(b) on [0, 1].

Proof. We show that the function f j(b) = P̂ j(b) − P ∗(b) converges uniformly to zero on

[0, 1], which would imply the desired uniform convergence of P (b) by the following claim.

Claim 22. For any b ∈ [0, 1], 0 < P j(b)− P ∗(b) ≤ f j(b).

Proof. First, for all b ∈ [0, 1], P j(b) ≤ P̂ j(b) by the definition and so, P j(b)−P ∗(b) ≤
f j(b). Second, by Lemma 3, P j(b) ≥ v(0)+δc(0)

1+δ
> v(0)+c(0)

2
for all b ∈ [0, 1]. Moreover, by

Lemma 16, P j(b) > c(sαb ) for all b ∈ [0, 1]. Therefore, 0 < P j(b)− P ∗(b) for all b ∈ [0, 1].

Q.E.D.

Claim 23. Function f j(b) is upper-semicontinuous, and for any ε > 0, f j(b+ ε
`
) ≥ f j (b)−ε.

Proof. To show that f j(b) is upper-semicontinuous, consider a sequence {bi}∞i=1 con-

verging to some b ∈ [0, 1]. Then by continuity of P ∗(b) and right-continuity of P̂ j(b),

lim sup
i→∞

(P̂ (bi)− P ∗(bi)) = lim sup
i→∞

P̂ (bi)− P ∗(b) ≤ P̂ (b)− P ∗(b).

Next, choose any ε > 0. Since P̂ j(b) is increasing, P̂ j
(
b+ ε

`

)
≥ P̂ j(b). Moreover,

P ∗(b) = max
{
v(0)+c(0)

2
, c(sαb )

}
and the derivative of c(s) is bounded above by ` and so,

−P ∗
(
b+ ε

`

)
≥ −P ∗(b)− ε. Therefore, f j(b+ ε

`
) ≥ f j (b)− ε. Q.E.D.

Claim 24. Function f j(b) converges uniformly to 0 on [0, 1].

Proof. Function f j(b) converges poinwise to 0 on [0, 1]. Since f j(b) is upper-semicontinuous

function on a compact set by Claim 23, f j(b) achieves its maximum at some bj ∈ [0, 1].

We next show that f j(bj) converges to 0 as j → ∞. Suppose to contradiction that

for all j ∈ N there exists ε > 0 so that f j(bj) > ε. By Claim 23, f j(b) > ε
2

for all b ∈[
bj, bj + ε

2`

]
. By compactness of [0, 1], sequence bj converges (over subsequence) to some

b∗ ∈ [0, 1] as j → ∞ and so, there exists J such that for all j ≥ J , bj ∈
[
b∗ − ε

8
, b∗ + ε

8

]
.

Hence, for b ∈
[
b∗ + ε

8
, b∗ + 3ε

8

]
, f j(bj) >

ε
2

for all j ≥ J . This contradicts the pointwise

convergence of f j(b) to 0. Q.E.D.

Proof of Corollary 1. Observe that continuation utility of seller type s in the seller pun-

ishing equilibrium is bounded above by P j(bωs )−c(s). By Lemma 23, sup
s∈[0,1]

|P j(bωs )−c(s)−

max{v(0)+c(0)
2
−c(s), 0}| converges to zero as δj → 0 which gives the desired conclusion.
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Numerical Simulations

Lemma 24. Suppose v(b) = b and c(s) = s− 1. For all η ∈ (0, 1
2
) there exists a (seller)

punishing equilibrium, in which buyer types in [0, η] pool on offer − 1
1+δ

and seller type 0

accepts buyer’s price offer − 1
1+δ

. Moreover, all seller types s > 0 reject − 1
1+δ

and make a

counter-offer.

Proof. Suppose that strategies of seller type 0 and buyer types in [0, η] are as described

in the statement of the theorem. To show that they constitute equilibrium, we prove

optimality of such strategies. For b ∈ [0, η], P (b) = (1 − δ)b − δ
1+δ

, i.e. buyer type b is

indifferent between accepting P (b) in the current round, and having seller accept 1
1+δ

in the

next round. The profit of seller type 0 is at most M(b) = (η−b)(P (b)+1)+δ
b́

0

(P (t)+1)dt.

Then M ′(b) = −(1 − δ)(P (b) + 1) + (η − b)P ′(b) = (1 − δ)(η − (2 − δ)b − 1
1+δ

) < 0, as

η < 1
2
< 1

1+δ
and b ≥ 0. Therefore, it is optimal for seller type 0 to make price offer − δ

1+δ
.

Moreover, seller type 0 is indifferent between accepting − 1
1+δ

in the current round and

making offer − δ
1+δ

in the next round.

Equilibrium after buyer deviation is described in Lemma 5. In particular, seller type 0

puts probability one on buyer η and, hence, would accept only price offers above or equal

to η−δ
1+δ

. For deviation from the punishing equilibrium to be not profitable it is sufficient

that for all b ∈ [0, η], δ
(
b+ 1

1+δ

)
≥ δ

(
b− η−δ

1+δ

)
, which holds for η > 0.

We show that any seller type s > 0 prefers to reject price offer − 1
1+δ

and make counter-

offer − δ
1+δ

. For this to be the case it is sufficient δ
(
− δ

1+δ
− s+ 1

)
> − 1

1+δ
− s + 1 ⇐⇒

s > 0.
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