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Abstract
Social status or prestige is an important motive for buying

art or collectibles and for participation in charity auctions. We
study a symmetric private value auction with prestige motives,
in which the auction outcome is used by an outside observer to
infer the bidders’ types. We elicit conditions under which an
essentially unique D1 equilibrium bidding function exists in four
auction formats: first-price, second-price, all-pay and the English
auction. We obtain a strict ranking in terms of expected revenues:
the first-price and all-pay auctions are dominating the English
auction but dominated by the second-price auction. Expected
revenue equivalence is restored asymptotically for the number of
bidders going to infinity.

1 Introduction

Humans seem to universally care about social status or prestige.1 This
concern about what others think of them can be either motivated by in-
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1See Frank (1985, 1999) for a broad introduction to social status in economics,
Miller (2000) for an introduction to the biological roots of status concerns, Mason
(1998) for a history of economics thought w.r.t. to status concerns and Truyts (2010)
for a recent survey of the literature.
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nate tastes, as humans intrinsically care about others’ esteem, or by
instrumental reasons, as a higher status often gives access to better
mates, partners or resources.2 Depending on the social and economic
context, people seek to establish or suggest their superiority in terms of
e.g. income, intelligence, morality, devotion to a common goal or a com-
bination of these. Prestige is also documented to matter in the context
of auctions, and in particular for auctions of art and collectibles and for
charity auctions.
Mandel (2009) distinguishes three main motives for buying art: in-

vestment, direct consumption and conspicuous consumption or signaling.
While art serves as a mean of investment much like bonds and stock,
owners also derive some private utility from owning art, by enjoying its
aesthetic qualities and by the prestige derived from showing it to friends
and acquaintances. Mandel (2009) suggests that these consumption and
prestige motives explain an old puzzle in the economics of art: why
art systematically seems to underperform as an investment compared to
bonds and equity, especially when taking the high variance of its yields
into account. Mei and Moses (2002) show that the underperformance
of art is particularly important for famous masterpieces. This further
supports the analysis by Mandel (2009): masterpieces have greater sig-
naling value, such that the willingness to pay for such art exceeds its
investment value more. This implies that bidders in an art auction are
not only care about the prospects of future profits and the aesthetic
qualities of the piece of art, but also about the inferences other people
will make about them in terms of wealth or a sophisticated taste for art.
These inferences about the individual qualities of a bidder depend on
the outcome and form of the auction, and in turn affect the equilibrium
bidding strategies and thus the outcome of the auction. The case for
prestige motives in the auction of collectibles, such as e.g. parafernalia
of Elvis Presley, is similar. While the auctioned object undoubtedly also
has an important investment and private consumption value, the own-
ership of such a collectible also reflects in people’s inferences about its
owner’s purchasing power and dedication as a fan.
Charities often raise funds by auctioning objects provided to them

by celebrities.3 In the recent years, an extensive literature has analyzed

2Cole, Mailath and Postlewaite (1992) derive preferences for status from a two-
sided one-to-one matching problem. If the equilibrium matching is assortative, one
must appear more attractive than one’s peers to secure the best attainable partner.

3E.g. an auction of Blackie, a guitar belonging to Eric Clapton, raised
$959,500 for his alcohol and drug treatment center Crossroads Centre in 2011
(http://articles.latimes.com/2004/jun/26/entertainment/et-quick26.3), while a
bra of Shakira was auctioned for $3000 to benefit the Bare Feet Foundation
(http://articles.chicagotribune.com/2008-02-13/news/0802120688_1_oral-fixation-
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charity auctions as auctions in which bidders’preferences are altruis-
tic.4 However, the predictions of these theoretical contributions were
invalidated in a field experiment (Carpenter et al. 2005). Moreover, the
broad theoretical and empirical literature on charity donations suggests
that prestige is an important motive for contributions to charity. Glazer
and Konrad (1996) and Harbaugh (1998a,b) show that signaling is an
important explanation for observed patterns in donations to universi-
ties. Kumru and Vesterlund (2010) find that donations are significantly
higher if the charity collects first from high status sponsors, because do-
nators like to be associated with higher status groups. Moreover, the
mechanism of auctioning goods belonging to celebrities seems to exploit
prestige motives for charitable fundraising. A unique auctioned object
such as Shakira’s bra has the same intrinsic qualities as an ordinary
bra, but can be shown to friends and acquaintances as a testimony of a
winning bid in a charity auction.

We study a symmetric independent private value auction with pres-
tige motives. A single and indivisible commodity is allocated by means
of an auction to the one out of n bidders who submits the highest bid.
Each bidder independently draws a private valuation for the auctioned
object according to the same distribution, and this valuation is her pri-
vate information. The bidders’payoffs consist of a standard and a pres-
tige component. As in the standard auction model, a winner’s ex post
payoff equals her private valuation for the object minus her payment
and a loser’s payoff is minus her payment.5 In addition, we assume that
each bidder also cares about the beliefs of an outside party, the receiver,
about her type. The receiver is assumed to observe and use the auction
outcome, in casu the identity and payment of the auction’s winner, to
form beliefs about the private valuation of all bidders. We study how
such a taste for prestige affects the bidding behavior and auction out-
come. How does the payment rule affect the inferences by the receiver,
and thereby the bidding strategies? Does expected revenue equivalence
still apply, or can we strictly rank different auction formats in terms of
expected revenues?
Note that, in general, a bidder’s private valuation can reflect her wealth,
sophisticated taste for art, dedication to an artist in the case of col-
lectibles, generosity in the case of a charity auction, or a combination of
all these qualities. We choose to disregard how these qualities map into
a private valuation, and how the receiver seeks to reverse this mapping

tour-shakira-hips-don-t-lie).
4See for example Engers and McManus (2007) and Goeree et al. (2005).
5Losers might also make a payment as in the all-pay auction.
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to form beliefs about these qualities from the auction outcome. Such
a mapping depends much about the particular application one has in
mind, and we prefer to keep this implicit to keep the model as simple
and generic as possible. Note also that Mandel’s (2009) first motivation
for buying art or collectibles, investment, reduces to a constant under
the assumption of common information for all bidders, and can thus be
safely disregarded for the present purposes.

Because of the combination of a costly signaling game and an auc-
tion into a single game, a general mechanism design approach to this
problem seems beyond the current state of the art. For this reason, we
rather analyze the implications of prestige motives in four well known
auction formats: the first-price auction, the second-price auction, the
all-pay auction and the English auction. Auctions with prestige motives
inherit the usual equilibrium multiplicity of signaling games, due to a
lack of restrictions on out-of-equilibrium beliefs. Therefore, we restrict
out-of-equilibrium beliefs by means of the D1 criterion, and show that
this implies a fully separating equilibrium if the density function charac-
terizing the ex ante distribution of bidders’types is non-increasing. We
elicit conditions for the existence of an essentially unique D1 equilibrium
bidding function in these four auctions formats, and we show that for a
finite number of bidders, the first-price and all-pay auctions outperform
the English auction in terms of expected revenues, but are in their turn
outperformed by the second-price auction. This strict revenue ranking is
due to the different amounts of information available to the receiver and
the bidders in the different auction formats. Expected revenue equiv-
alence is restored asymptotically, for the number of bidders tending to
infinity.

To our knowledge, this is the first paper to explore the theoretical im-
plications of prestige motives in an auction setting. However, others have
previously analyzed signaling in auctions. The closest to our analysis are
models of information transmission in auctions in function of an after-
market. Goeree (2003) studies oligopolists bidding for a single-license
patent on a cost reducing technology. Each oligopolist has private infor-
mation about the cost reduction which winning the patent would imply
for her firm, and other oligopolists try to infer the winner’s production
cost reduction from the auction outcome to determine their strategies
in the aftermarket Cournot competition game. However, Goeree’s set-
ting and results are in many respects different from ours. Unlike Goeree
(2003), for instance, we assume that all bidders care about the receiver’s
inference, irrespective of whether they win the auction or not. We also
derive conditions for the common D1 selection criterion to select a fully
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separating bidding equilibrium. Moreover, Goeree obtains expected rev-
enue equivalence of the first-price, second-price and English auctions
because of the particular structure which the aftermarket imposes on
the game. In a setting similar to Goeree (2003), Katzman and Rhodes-
Kropf (2008) show that the auctioneer’s announcement policy of bids
can change the auction’s revenue and effi ciency, while Das Varma (2003)
elicits conditions for equilibrium existence for a first-price auction with
an aftermarket with linear demand functions and Cournot or Bertrand
competition.
A second strain of literature studies signaling to other bidders in

dynamic auctions. Avery (1998) shows that bidders may use ‘jump bids’
in the English auction to signal a high valuation in order to scare away
competing bidders, thus decreasing the auction’s expected revenue and
breaking expected revenue equivalence. Hörner and Sahuguet (2007)
compare in a dynamic auction context jump bids and cautious bids as
strategic signals about private valuation towards other bidders.

The paper is organized as follows. Section 2 introduces the formal
setting and equilibrium concept. Sections 3, 4 and 5 respectively char-
acterize the D1 sequential equilibrium of the first-price and all-pay auc-
tions, the second-price auction and the English auction. The expected
revenue of these auctions is compared in Section 6. Section 7 concludes.
All proofs are collected in Appendix.

2 Formal Setting

Consider n bidders, indexed i, competing for a single object which is
allocated through an auction to the highest bidder. Bidder i’s valuation
for the object (her ‘type’), is denoted Vi, and is assumed i.i.d. and
drawn according to a C2 distribution function F with support on [v

¯
, v̄] ⊂

R+. Let f ≡ F ′ denote the density function. Bidder i’s realization of Vi,
denoted vi, is her private information, but the number of bidders and
the distribution F are common knowledge.
To participate in the auction, a bidder submits a non-negative bid.

As all bidders share the same beliefs about the other bidder’s valuations,
they are assumed to follow a symmetric bidding strategy β : [v

¯
, v̄] →

R+.
6 Let b = β (v) denote the vector of bids given a vector of valuations

v, with bi the effective bid of i−th bidder. An auction mechanism maps
a vector of bids b to a winner, denoted i∗, and vector of payments p. We

6We denote the bidding strategy in any auction format by β, and only add an ad-
ditional superscript to specify the auction format when comparing bidding functions
of different auction formats for an expected revenue comparison.
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assume a fair tie breaking in case of multiple highest bids.7

Besides the auction’s outcome, bidders also care about the beliefs of
an uninformed party, the receiver, about their type. This receiver can
represent e.g. the general public or press, business contacts or acquain-
tances of the bidder or experts related to the object sale. The receiver
is assumed to observe the auction’s winner and her payment (i∗, pi∗).
The receiver’s beliefs, denoted µ, are a probability distribution over the
type space, such that µi (v| (i∗, pi∗)) is a probability of bidder i being of
valuation type v given (i∗, pi∗). Let µ (v| (i∗, pi∗)) then be a probability
distribution over vectors of valuations v given (i∗, pi∗) . The receiver’s
beliefs are (Bayesian) consistent with a bidding strategy β if

µ (v| (i∗, p)) =
Pr (i∗, pi∗|β (v))

∏
i f (vi)∫

Pr (i∗, pi∗|β (v′))
∏

i f (v′i)dv
′ .
8 (1)

The utility of bidder i, given an auction outcome (i∗,p) , consists of two
parts. The first part is standard: the valuation for the object for the
winner of the auction, minus the payment (which can be nonzero for
all bidders in e.g. an all-pay auction). The second part is the expected
value of the receiver’s beliefs about bidder i’s type given (i∗, pi∗), denoted
E (Vi|µi (Vi|i∗, pi∗)):

ui(vi, pi|µi) =

{
vi − pi + E (Vi|µi (Vi|i∗, pi∗)) for winner i = i∗

−pi + E (Vi|µi (Vi|i∗, pi∗)) for loser i 6= i∗

This utility function either represents a situation in which bidders care
directly about the receiver’s beliefs, as humans typically care about the
good opinion of others, or is shorthand notation for a game in which the
receiver chooses an action giver her beliefs about a bidder’s type, while
the bidder cares about this choice of the receiver. In the latter case, an
explicit analysis of the receiver’s problem is easily integrated into the
model (within the constraints of the linear payoff structure), but does
not add much to our analysis. Although somewhat restrictive, this linear
payoff structure seems the most natural benchmark caseto study the role
of prestige motives in auctions, and ensures that the different auction
formats studies below are equivalent in terms of expected revenues in
the absence of prestige motives.9

7That is, for all i ∈ {j|bj = max b} we have Pr (i = i∗) = 1
|{j|bj=max b}| .

8Note that then µi (v| (i∗, pi∗)) =
∫
{v|vi=v} µ (v| (i

∗, pi∗)) dv
9One can also conceive a payoff function{

vi − pi + γE (Vi|µi (Vi|i∗, pi∗)) for winner i = i∗

−pi + γE (Vi|µi (Vi|i∗, pi∗)) for loser i 6= i∗,
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We study the symmetric sequential equilibria (S.E.) of this auction game
with prestige motives. An S.E. is then described by a pair bidding
strategy and beliefs (β, µ) such that:

1. The bidding function β maximizes expected utility for all v, given
that all other bidders play β and given the receiver’s beliefs µ

2. The receiver’s beliefs µ are Bayesian consistent with the bidding
function β, as in (1) .

As this equilibrium concept imposes no restrictions on out-of-equilibrium
beliefs, we face the usual equilibrium multiplicity of signaling games.
Therefore, we use the D1 criterion (Banks and Sobel (1987), Cho and
Sobel (1990)), which which refines the set of equilibria by restricting
out-of-equilibrium beliefs.10

3 First-price and all-pay auctions

In this Section, we derive the unique D1 sequential equilibrium bidding
strategies for the first-price auction and all-pay auction. In the first-price
auction, the winner pays her own bid. Because the receiver observes the
identity of the winner and her payment, she observes the winner’s bid.
Thus, if β′ (.) > 0, the winner’s type is fully revealed in equilibrium.
The receiver is not able to distinguish among the different losers. The
following simple example demonstrates that without imposing the D1
criterion, a multiplicity of equilibria can be supported by often implau-
sible out-of-equilibrium beliefs.

Example 1 (Zero revenue auction) Let n = 2 and F the uniform
distribution on [0, 1] . Then an S.E. exists in which all bidder types bid

in which parameter γ a strictly positive and finite real number measuring the relative
importance of prestige. However, this would not change our results qualitatively, and
would only complicate the analysis.
10As outlined in Appendix, the exact implementation of the D1 criterion depends

on the auction format. For types v′, v′′ and out-of-equilibrium message m, beliefs µ,
a utility function u (m,µ|v) and equilibrium utility levels u∗ (v) , define the following
two sets of beliefs which make a type v sending m resp. strictly better off than in
equilibrium and equally well off as in equilibrium:

M+ (m, v) = {µ|u (m,µ|v) > u∗ (v)}
M0 (m, v) = {µ|u (m,µ|v) = u∗ (v)} .

Then the D1-criterion requires

M+ (m, v′) ∪M0 (m, v′) ⊂M+ (m, v′′) =⇒ µ (v′|m) = 0.
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zero, β (.) = 0, and µ. (v| (., 0)) = 1 for all v and i, while for any pi∗ > 0
beliefs about the winner are degenerate at v = 0, i.e. µi∗ (v′| (i∗, pi∗)) = 0
for all v′ > 0. In this case, the expected utility of a v type in equilibrium is
v
2

+ 1
2
, i.e. both winner and loser are infered by the receiver as E (V ) =

1
2
, and both bidders win the auction with a probability of 1

2
. A bidder

deviating to a bid ε > 0 wins with certainty, pays ε and is inferred as a
zero valuation type, which implies expected utility v− ε, which is strictly
below v

2
+ 1

2
for all v ∈ [0, 1] . As no bidder makes a strictly positive bid,

the illustrated beliefs are consistent with the S.E. bidding strategies.

Therefore, we restrict out-of-equilibrium beliefs by means of the D1
criterion. Although the D1 criterion typically excludes (semi)pooling
S.E. in monotonic signaling games at the one hand, and although (semi)pooling
strategies are normally easily excluded in auctions with the present pref-
erence structure at the other hand, the excercise of excluding (semi)pooling
equilibria by means of the D1 criterion is less obvious when both games
are combined into an auction with prestige motives. The reason is that
bidders cannot be excluded to bid above their valuation for the ob-
ject (and typically do so in equilibrium). As usual, the D1 criterion
ensures that the receiver puts zero probability on all types lower than
the maximal type in a pool when observing a bid marginally above the
common bid in this pool. In monotonic signaling games this implies
that a marginal increase above the pool’s signal is rewarded by a dis-
crete jump in terms of inference by the receiver, which immediately
excludes (semi)pooling equilibria. In the present setting, however, such
a marginal increase in bid also increases a deviating bidder’s chances of
winning the auction, and thereby her expected payment, by a discrete
amount.
To ensure that the D1 criterion has enough bite in the present setting,

we restrict F to be concave, i.e. f ′ (.) ≤ 0. This condition is (amply)
suffi cient to exclude potentially complicated (semi)pooling in the D1
S.E., but will also prove close to a necessary condition for the existence
of a separating D1 S.E. in the second-price auction and English auction.
Note that this condition implies the common log-concavity of F or the
non-decreasing hazard rate condition, but is neither stronger nor weaker
than the log-concave density condition imposed by Goeree (2003). A
similar condition is found in Segev and Sela (2012). This condition
implies that only fully separating equilibria survive the D1 criterion.11

11Note that we use ‘fully separating’to indicate that no bid is chosen by different
types in equilibrium. In the present setting, this does not imply that the receiver’s
equilibrium beliefs are degenerate, which is sometimes used as an alternative defini-
tion of ‘fully separating’equilibrium.
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Lemma 1 If f ′ (.) ≤ 0, all D1 S.E. are fully separating, with β′ (.) > 0.

If the D1 S.E. of the first-price auction is fully separating, then the
winner’s type is fully revealed to receiver, as β−1 (β (vi∗)) = vi∗. If
the winner’s type is known, the expectation of a loser’s valuation is

1
F (vi∗ )

∫ vi∗
v
¯

xdF (x) . In case a ṽ type does not win and ignores the eventual
winner’s valuation (except that it is above ṽ), her expectation of the
receiver’s inference about a loser is∫ v̄

ṽ
1

F (y)

∫ y
v
¯
xdF (x) dF n−1 (y)

1− (F n−1 (ṽ))
.

Moreover, if β is strictly increasing and valuations are drawn inde-
pendently, the probability of winning for a bidder with a valuation v is
F n−1 (v). Given an equilibrium bidding function β and according be-
liefs, a type v bidder is assumed to choose a type ṽ whose equilibrium
bid β (ṽ) she prefers to mimick to obtain her expected inference by the
receiver, in order to maximize her expected utility. As such, the bidder’s
problem is

max
ṽ

(
F n−1 (ṽ)

)
(v − β (ṽ) + ṽ)+

(
1−

(
F n−1 (ṽ)

)) ∫ v̄ṽ 1
F (y)

∫ y
v
¯
xdF (x) dF n−1 (y)

(1− (F n−1 (ṽ)))
.

The first order condition is(
F n−1 (ṽ)

)′
(v − β (ṽ) + ṽ)+(1− β′ (ṽ))

(
F n−1 (ṽ)

)
− 1

F (ṽ)

∫ ṽ

v
¯

xdF (x)
(
F n−1 (ṽ)

)′
= 0.

(2)
Of course, in equilibrium β must be such that each bidder strictly

prefers her own type’s equilibrium bid, such that ṽ = v. LetE
(
V

(n−1)
1 |V ≤ v

)
denote the expected value of the highest order statistic out of n−1 draws,
for a distribution truncated at the right at v, and let E (V |V ≤ v) denote
the expected value of a single draw, for F truncated at the right at v.
The unique D1 S.E. bidding function for the first-price auction is then
characterized in the following Proposition.

Proposition 1 For n ≥ 3 and f ′ (.) ≤ 0, the essentially unique first-
price auction D1 S.E. bidding strategy is

β (v) = v +
n− 1

n− 2

(
E
(
V

(n−1)
1 |V ≤ v

)
− E (V |V ≤ v)

)
(3)

with lim
v→v
¯

+
β (v) = v

¯
, β (v̄) = v̄ + n−1

n−2

(
E
(
V

(n−1)
1

)
− E (V )

)
and finally

β′ (.) > 1.
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Remark that for arbitrary F there is no fully separating equilibrium
in the first-price auction with two bidders. The equilibrium bidding
strategy in (3) is only essentially unique because the equilibrium bid of
the v

¯
valuation type is undetermined: because she has zero probability

of winning the auction in equilibrium, any bid in the interval [0, v
¯
] is

payoff equivalent. In the limit, however, the lowest valuation types bid
v
¯
. In terms of inference by the receiver, the lowest valuation types have
little to gain from winning. Winning reveals them as lowest types, while
they are better off in terms of inference by losing against a higher type.
Yet, if an interval of lowest valuation types would bid weakly below v

¯(while respecting β′ (.) > 0), then the v
¯
type can profitably deviate to

a bid v
¯
to win with non-zero probability, pay v

¯
for an object valued v

¯and be inferred by the receiver to have a valuation strictly above v
¯
. As

suggested above, all bidders with a valuation strictly higher than v
¯
bid

above their valuation of the object. The difference between a bidder’s
valuation for the object and her equilibrium bid strictly increases with
the bidder’s valuation. For n → +∞, the highest valuation types bid
β (v̄) = 2v̄−E (V ) , which equals their valuation for the object plus the
difference in the receiver’s inference about them if winning (v̄) rather
than losing (E (V )) the auction.

Example 2 (Uniform on [0, 1]) In this case, the bidders’problem is

max
ṽ

(v − β (ṽ) + ṽ) ṽn−1 +
(
1− ṽn−1

) n− 1

2n

1− ṽn
1− ṽn−1

.

The D1 S.E. bidding function is

β (v) =
3n− 1

2n
v.

Contrary to the first-price auction, all the losers pay their own bid
in the all-pay auction. As before, the receiver observes only the identity
and payment of the winner. The all-pay auction suffers from the same
equilibrium multiplicity due to out-of equilibrium beliefs as the first-
price auction, and imposing the D1-criterion excludes all (semi)pooling
equilibria if f is non-increasing. The proof is technically identical to that
of the first-price auction (Lemma 1). As such, the winner’s type is fully
revealed to the receiver, and the latter’s expected inference is equivalent
in the first-price and the all-pay auction. In the absence of prestige
motives, the expected payoff in the all-pay auction equals the expected
payoff in the first-price auction minus (1− F n−1 (ṽ)) (β(ṽ)) (such that
bidders pay their bid with probability 1 instead of F n−1 (ṽ)).
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In the absence of prestige motives, both these auctions are revenue
equivalent. The addition of an identical term to the expected payoffs of
both auction formats, i.e. the expected inference of the receiver, affects
the equilibrium bidding functions and the expected payments is the same
way in both auctions. As a result, the equilibrium bidding function of
the all-pay auction can be obtained by an adaptation of the usual proof
of the revenue equivalence theorem (see e.g. Krishna (2009)).

Proposition 2 If f ′ (.) ≤ 0 and n ≥ 3, then the unique all-pay auction
D1 S.E. bidding function is

β (v) = F n−1(v)βI (v) ,

with βI(.) the the first-price auction D1 S.E. bidding function, lim
v→v
¯

+
β (v) =

0 and β (v̄) = βI(v̄).

As for the first-price auction, no D1 S.E. exists in general for two
bidders.

4 Second-price auction

In the second-price sealed-bid auction, the winner pays the second high-
est bid. Because the receiver only observes the identity and payment of
the winner, the latter only allows her to bound the set of possible bids
of the winner from below and the set of possible bids of the losers from
above. This difference in information available to the receiver consider-
ably alters the bidders’expected payoff and equilibrium bidding.
The second-price auction also suffers from a multiplicity of equilib-

ria due to insuffi cient restrictions on out-of-equilibrium beliefs, which is
equally remedied by imposing the D1 criterion. However, the role of
out-of-equilibrium beliefs slightly differs between the first- and second-
price auctions. A bidder deviating unilaterally to a bid above the high-
est equilibrium bid always wins the auction. But such a deviation will
not be revealed, because the winner only pays the second highest bid,
which has an equilibrium interpretation. Therefore, bids cannot be con-
trained from above by possibly implausible out-of-equilibrium beliefs in
the second-price auction, and a zero revenue auction as in Example 1
is impossible for the second-price auction. Out-of-equilibrium beliefs for
bids below the minimal equilibrium bid affect bidding in neither the
first- nor the second-price auction, because such deviations are never
observed, such that implausible out-of-equilibrium beliefs can never con-
strain equilibrium bidding from below. However, discontinuities in the
bidding function at intermediate valuations can be supported by par-
ticular out-of-equilibrium beliefs. Such deviations are revealed to the
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receiver if they constitute the second highest bid, in which case they fix
the inference about all losing bidders, including the deviator. Similar to
Lemma 1, the following Lemma demonstrates that any D1 S.E. bidding
function is strictly increasing for non-increasing density functions.

Lemma 2 If f ′ (.) ≤ 0 and n ≥ 3, then β′ (.) > 0 in any D1 S.E. of the
second-price auction.

As before, a strictly increasing bidding function implies that a type
v bidder choosing the ṽ type’s equilibrium bid wins with probability
F n−1 (ṽ) . In this case, her payoff is:

v +
1

F n−1 (ṽ)

∫ ṽ

v
¯

β (x) dF n−1 (x) +
1

F n−1 (ṽ)

∫ ṽ

v
¯

∫ v̄
x
ydF (y)

1− F (x)
dF n−1 (x) .

The second term is the expected payment if β (ṽ) is the winning bid
and the third term is the receiver’s expected inference about a winner
of valuation ṽ. If the second highest bidder is of type x, then the infer-

ence about the winner is
∫ v̄
x ydF (y)

1−F (x)
. But because the second highest bid

is unknown to the bidder, the third term takes the expectation over the
second highest bid.
Second, with probability (n− 1)F n−2 (ṽ) (1− F (ṽ)) bid β (ṽ) is the

second highest bid. In this case, the receiver’s inference about any losing
bidder is

ṽ

n− 1
+
n− 2

n− 1

∫ ṽ
v
¯
xdF (x)

F (ṽ)
,

as one of the n− 1 losers has valuation ṽ while the n− 2 others’valua-
tions are weakly lower than ṽ. Finally, with probability 1 − F n−1 (ṽ) −
(n− 1)F n−2 (ṽ) (1− F (ṽ)) , a type ṽ bidder is neither the highest nor
second highest bidder. For this case, a bidder forms an expectation over
the second highest bid to asses the receiver’s expected inference about
the losing bidders.
The expected utility of a valuation v bidder choosing type ṽ’s bidding

strategy is then:∫ ṽ

v
¯

(v − β (x)) dF n−1 (x) +

∫ ṽ

v
¯

∫ v̄
x
ydF (y)

1− F (x)
dF n−1 (x)

+ (n− 1)F n−2 (ṽ) (1− F (ṽ))

(
ṽ

n− 1
+
n− 2

n− 1

∫ ṽ
v
¯
xdF (x)

F (ṽ)

)

+

∫ v̄

ṽ

(
y

n− 1
+
n− 2

n− 1

∫ y
v
¯
xdF (x)

F (y)

)
d
(
(n− 1)F n−2 (y)− (n− 2)F n−1 (y)

)
.
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The first order condition is

β (ṽ)
(
F n−1 (ṽ)

)′
= v

(
F n−1 (ṽ)

)′
+

∫ v̄
ṽ
xdF (x)

1− F (ṽ)

(
F n−1 (ṽ)

)′
+ F n−2 (ṽ) (1− F (ṽ))

(
1 + (n− 2)

ṽf (ṽ)F (ṽ)− f (ṽ)
∫ ṽ
v
¯
xdF (x)

F 2 (ṽ)

)

+
(
(n− 2) f (ṽ)F n−3 (ṽ)− (n− 1) f (ṽ)F n−2 (ṽ)

)(
ṽ + (n− 2)

∫ ṽ
v
¯
xdF (x)

F (ṽ)

)

−
(
(n− 2) f (ṽ)F n−3 (ṽ)− (n− 2) f (ṽ)F n−2 (ṽ)

)(
ṽ + (n− 2)

∫ ṽ
v
¯
xdF (x)

F (ṽ)

)
.

After dividing both sides by (F n−1 (ṽ))
′
= (n− 1)F n−2 (ṽ) f (ṽ) , impos-

ing ṽ = v and simplifying, we obtain

β (v) = v +

∫ v̄
ṽ
xdF (x)

1− F (ṽ)
+

1− F (v)

f (v) (n− 1)

(
1 +

n− 2

F (v)

(
v −

∫ v
v
¯
xdF (x)

F (v)

))

− 1

n− 1

(
v + (n− 2)

∫ v
v
¯
xdF (x)

F (v)

)
. (4)

The essentially unique D1 S.E. bidding function for the second-price
auction is then characterized by the following Proposition.

Proposition 3 If either n ≥ 4 and f ′ (.) ≤ 0 or n = 3 and f ′ (.) < 0,
then the essentially unique second-price auction D1 S.E. bidding strategy
is

β (v) =
n− 2

n− 1

v − E (V |V ≤ v)

F (v)
+ E (V |V ≥ v) +

1− F (v)

(n− 1) f (v)
,

with limv→v
¯
β (v) = E (V )+ n

n−1
1

2f(v
¯

)
and limv→v̄ β (v) = v̄+n−2

n−1
(v̄ − E (V )) .

For the second-price auction, the qualification ‘essential’reflects that
the equilibrium bidding function is undetermined at both extremes of the
typespace. If β′ (.) > 0, then a v

¯
type has the highest or second-highest

bid with zero probability, such all bids in
[
0, E (V ) + n

n−1
1

2f(v
¯
)

]
are in

equilibrium payoff equivalent. At the other hand, for finite n a v̄ type
wins with probability 1 and does not pay her own bid, such that all bids
weakly above limv→v̄ β (v) are in equilibrium payoffequivalent. However,
the D1 equilibrium bidding function is uniquely determined on (v

¯
, v̄) .

The limit of the equilibrium bidding function at v
¯
lies strictly above the
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average valuation for the object, and thus well above the equilibrium
bid in the first-price auction. The reason is that if a very low valuation
type wins the auction, the winner is inferred as slightly higher than
a E (V ) type by the receiver, while all losers are inferred almost as v

¯types, because the second highest bidder’s type is below the winner’s
valuation. Therefore, the lowest types bid at least their valuation v

¯
plus

the difference in inference by the receiver E (V )−v
¯
in equilibrium. A

further comparison with the equilibrium bidding function of the English
auction, in the next Section, will provide more intuition for the second-
price D1 S.E. bidding function.

Remark that in the second-price auction, there is also no fully sep-
arating equilibrium with two bidders, and even not with three bidders
if the density f is constant over some interval of the support. In the
following example with a uniform distribution on [0, 1], we comment on
this non-existence of an equilibrium with two or three bidders.

Example 3 (Uniform on [0, 1]) For F uniform on [0, 1, ] , the expected
payoff of a v type bidder imitating a ṽ type is

ṽn−1

(
vi +

1 + n−1
n
ṽ

2

)
− (n− 1)

∫ ṽ

0

xn−2β (x) dx

+ (n− 1) ṽn−2 (1− ṽ)

(
n− 2

n− 1

ṽ

2
+

ṽ

n− 1

)
+
(
1− ṽn−1 − (n− 1) ṽn−2 (1− ṽ)

) ∫ 1

ṽ

(
x

n−1
+ n−2

n−1
x
2

)
d ((n− 1)xn−2 − (n− 2)xn−1)

(1− ṽn−1 − (n− 1) ṽn−2 (1− ṽ))
.

The D1 S.E. bidding function is

β (v) =
2n− 1 + (n− 3) v

2 (n− 1)
.

If n = 2, a losing bidder is always identified by her true valuation v,
while winners are identified only as the average between the valuation of
the loser (in expectation half of her own valuation) and the maximum
valuation 1, i.e. the expected inference for n = 2 is

ṽ

(
1

2
+
ṽ

4

)
+ (1− ṽ) ṽ =

3

4
ṽ (2− ṽ) .

For two bidders, the receiver’s inference increases more with ṽ if a bidder
loses, but the probability of losing decreases with ṽ, such that the marginal
effect of ṽ on the receiver’s expected inference, i.e. 3

2
(1− ṽ) , decreases

with ṽ at a constant rate 3
2
. This decrease more than offsets the higher
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valuation types’ incentives to bid strictly more than lower types, which
inhibits the existence of a D1 S.E. At n = 3, both these effects cancel out
exactly. Thus, for n ≤ 3, we have no D.1. equilibrium bidding function.

A similar logic applies if f is constant over an interval in the support
of a more general distribution function, such that Proposition 3 requires
either that n ≥ 4 and f ′ (.) ≤ 0 or that n = 3 and f ′ (.) < 0.

5 English auction

An important reason for the popularity of the second-price auction among
auction theorists is its common strategic equivalence with the English
auction, which is more frequently used in reality. However, this equiv-
alence ceases to exist in the presence of prestige motives. This result
can be surprising, because the introduction of other externalities, such
as financial externalities in charity auctions (e.g. Engers and McManus
(2007)), did not break up the strategic equivalence.
The English auction can be studied in various formalisations. We

consider a minimal information “button auction” (see e.g. Milgrom
(2004)), in which the auctioneer lets the price continuously increase on a
price clock. Each bidder chooses when to exit the auction by releasing a
button, and such exit is irrevocable. The last bidder holding her button
wins, and fixes the price by releasing her button. Bidders only observe
whether two or more bidders are still pushing their button or not, and
the latter implies that the auction has a winner. This minimal informa-
tion setting remains closest to the second-price auction, as bidders can
learn little about the other bidders’valuations during the auction. We
maintain the assumption that the receiver only observes the identity and
the payment of the winner.12

In this auction, each bidder has to decide on each moment (or price)
whether to stay in or to exit. Note then that in equilibrium, the exit price
is increasing with v, because the prospects in terms of inference by the
receiver at a certain price are identical for different types, while the lower
type values winning the auction strictly less. Again, we restrict out-of-
equilibrium beliefs by means of the D1 criterion to avoid the multiplicity
of equilibria, and establish that any D1 S.E. is fully separating.

12Obviously other information regimes, e.g. the receiver observing all bids, are
equally plausible in this setting. The plausibility of these different scenarios depends
on the specific context and the identity of the receiver (e.g. another bidder or the
general public reading media outlets). We prefer the present assumption, because
it keeps the kind of information the receiver disposes of constant throughout the
different auction formats.
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Lemma 3 In any D1 S.E., the exit rule β is a continuous and strictly
increasing function of v.

In the usual English auction, the winner drops out immediately af-
ter the second last bidder’s exit. An inspection of the payoff func-
tion shows that once a bidder has won the auction, our setting does
not provide her with means to credibly reveal a higher valuation to
the receiver (contrary e.g. to Goeree (2003)). In the present setting,
the winner’s problem would be to choose an exit price bi∗ to maximize
vi∗ − bi∗ +E (V |µi∗ (V |i∗, bi∗)) . The lack of single crossing property, due
to the additive structure of the payoff function, implies that if the re-
ceiver would interpret a higher bid in such way that the winner prefers
to bid strictly above the second highest bid, then all types of winners
would strictly prefer to do so. Therefore, if the penultimate quitter has
valuation v′, then the receiver must have an expectation E (V |V ≥ v′)
of the winner’s valuation for any payment above β (v′) , and the winner
must exit immediately at β (v′) .
If the bidding strategy (i.e. exit price) is strictly increasing with

type and if the winner exits at the second highest bid, then the second
highest bidder fixes the payoffof all bidders. Since bidders do not observe
previous exits by lower valuation bidder’s, the latter’s strategy does not
affect equilibrium bidding. Of course, a bidder does not know whether
she has the second highest valuation, but she optimizes her strategy as
if this were the case. A type v bidder then leaves the auction when the
price hits the bid of a ṽ type, such that

v − β (ṽ) +
1

1− F (ṽ)

∫ v̄

ṽ

xdF (x) =
ṽ

n− 1
+
n− 2

n− 1

∫ ṽ
v
¯
xdF (x)

F (ṽ)
. (5)

The left hand side of (5) is the payoff a type v bidder gets if she wins at
price β (ṽ) , while the right hand side is a loser’s payoff, if she releases the
button at price β (ṽ) with only two bidders left. This exit rule defines
a unique equilibrium bidding function of the second highest valuation
type, which determines the auction price. This is equivalent to having
at each price b type β−1 (b) leaving the auction, such that the optimal
exit price of type v satisfies

v− b+
1

1− F
(
β−1 (b)

) ∫ v̄

β−1(b)

xdF (x) =
β−1 (b)

n− 1
+
n− 2

n− 1

∫ β−1(b)

v
¯

xdF (x)

F
(
β−1 (b)

)
(6)

Note in (6) that the receiver’s inference about the winner and about
all losers increases with b (or ṽ). However, the following proposition
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establishes that in equilibrium the costs of mimicking a higher type in
terms of payment increase faster than the benefits in terms of inference,
such that this equality establishes the essentially unique D1 equilibrium
exit rule for the English auction.

Proposition 4 If n ≥ 3 and f ′ (.) ≤ 0, then the essentially unique D1
S.E. exit rule in the English auction is

β (v) =
n− 2

n− 1

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
+

∫ v̄
v
xdF (x)

1− F (v)
, (7)

with limv→v
¯

+ β (v) = E (V ) and limv→v̄ β (v) = v̄ + n−2
n−1

(v̄ − E (V )) .

Given the optimal exit strategy of a winner in the English auction,
the second-price and English auctions are equivalent in terms of informa-
tion for the receiver. A closer comparison of equilibrium bidding in both
auctions can therefore also further clarify the equilibrium in the second-
price auction. When comparing the equilibrium bidding functions of the
second-price and English auctions, we note both are identical up to the
two following additional terms in the former:

1− F (v)

F (v)

n− 2

n− 1

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
+

(1− F (v))

(n− 1) f (v)
> 0,

which vanish for v → v̄. A closer inspection of (4) shows that these
two additional terms, the third right hand side term in (4) , reflect the
effect on the receiver’s expected inference about all the losing bidders
of a marginal increased bid for a given probability of being the second
highest bidder.
The main difference between the second-price and English auctions is

that in the latter, the set of possible second highest bids is bounded from
below by the increasing price clock. If the English auction has no winner
at price b, then all active bidders can take it as a given that the second
highest bid is at least b, and that the receiver’s expeced inference about
the winner will be bounded from below by β−1 (b) . This lower bound
on the second highest bid also bounds the receiver’s expected inference
about the losers from below. Therefore, each bidder just compares her
payoff as a winner and as a loser with the second higher bid, and quits
if both are equal. If she turns out not being the second highest bidder,
then the payoff of losing certainly exceeds her payoff of winning. As
such, (7) means that an active bidder exits when the price equals her
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valuation plus the diffference between the receiver’s inference about the
winner and a loser if this exit price were the second highest bid.

In the second-price auction, no increasing price clock bounds the sec-
ond highest bid. First, in case of winning, a high valuation bidder must
consider the possibility of paying the bid of a very low valuation bidder
when winning, consequently being inferred as the expected value of any
type above the latter by the receiver. The benefits of the potentially
lower payment are compensated by the low inference by the receiver. In
the case of losing the auction, a bidder can bound the receiver’s infer-
ence about her type from below by means of her own bid. Compared
to the English auction, this provides an additional marginal benefit to
bidding in the second-price auction, which disappears as v approaches v̄
(for which the probability of losing goes to zero).

Example 4 (Uniform on [0, 1]) For F the uniform distribution, equal-
ity (5) becomes

v − β (ṽ) +
1 + ṽ

2
=

ṽ

n− 1
+
n− 2

n− 1

ṽ

2
,

which implies the D1 S.E. exit rule

β (v) =
1

2
+

2n− 3

2 (n− 1)
v.

6 Expected revenue comparison

We now compare the expected revenue of the four auction designs an-
alyzed so far. We denote the expected revenue by ERk, with k =
I, II, E,A indicating respectively first-price auction, the second-price
auction, the English auction and the all-pay auction. As pointed out in
Section 3, the all-pay and first-price auctions are equivalent in terms of
expected payments, such that ERI = ERA. The following proposition
shows that for finite n, we obtain a strict ranking in term of expected
revenue of the English, first-price and second-price auctions.

Proposition 5 (Expected revenue ranking) If f ′ (.) ≤ 0 and n ≥
4, and if n is finite, then in the D1 S.E.:

ERII > ERI > ERE.

The following example illustrates this strict expected revenue ranking
for F being the uniform distribution.
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Example 5 (Uniform on [0, 1]) For the uniform distribution on [0, 1] ,
Figure 6 represents the D1 S.E. bidding functions for the auction for-
mats studied so far. The expected revenue of the first-price, second-price
and English auctions is then:

ERI = ERA =
3n− 1

2n

∫ 1

0

vdvn =
3n− 1

2 (n+ 1)
,

ERII =
n (n− 1)

2 (n− 1)

∫ 1

0

(2n− 1 + (n− 3) v)
(
vn−2 − vn−1

)
dv

=
3 (n− 1)n+ 2

2 (n2 − 1)

and

ERE =
1

2
+
n (2n− 3)

2

(∫ 1

0

vn−1dv −
∫ 1

0

vndv

)
=

1

2
+

(2n− 3)

2 (n+ 1)

such that the first-price auction outperforms the English auction,

ERE − ERI =
1

2
+

(2n− 3)

2 (n+ 1)
− 3 (n− 1)n+ 2

2 (n2 − 1)
= − n

n2 − 1
< 0,

and but is outperformed by the second-price auction:

ERII − ERI =
3 (n− 1)n+ 2

2 (n2 − 1)
− 3n− 1

2 (n+ 1)
=

1

2 (n− 1)
> 0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

v

beta(v)

D1 S.E. bidding for U [0, 1] with n = 10, for the first-price (solid),
second-price (dashed) and English (grey) auctions, with (bold) and

without (thin) prestige motives.
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This strict ranking in terms of expected revenues reflects the different
amounts of information which are available to the receiver and the bid-
ders in the different auction formats. The absence of a price clock in
the sealed bid second-price auction implies an additional marginal ben-
efit of a higher bid in comparison with the English auction: one’s bid
constrains the receiver’s expected inference in case of losing the auction
from below. Because of this additional effect, the equilibrium bids are
strictly lower in the English auction than in the second—price auction for
all bidders with a valuation strictly below the upper bound v̄. Since the
winner pays the bid of the second highest bidder in both auctions, the
second-price auction dominates the English auction.
At the other hand, the uniform example shows that the equilibrium

bidding function of the first-price auction can be strictly above that of
the English auction near the upper bound v̄. The reason is that the gap
in terms of the receiver’s expected inference between winning and los-
ing is smaller in the English auction. At the one hand, when quitting
at limv→v̄ β (v) losing v̄ types are interpreted as v̄

n−1
+ n−2

n−1
E (V ) in the

English auction rather than as E (V ) in the first-price auction. At the
other hand, when staying at limv→v̄ β (v) in the English auction or bid-
ding limv→v̄ β (v) in the first-price auction, a winning v̄ type is in both
auctions inferred to be a v̄ type. Moreover, bidders pay their own bid in
the first-price auction, and that of the second highest bidder in the Eng-
lish auction. This is suffi cient for the first-price auction to outperform
the English auction in expectation, but insuffi cient for it to dominate
the second-price auction.

However, expected revenue equivalence is preserved asymptotically
for n going to infinity. To see this, note that in the limit the bid of the
v̄ type is identical in all auctions:

lim
n→+∞

lim
v→v̄

βk(v) = 2v̄ − E(V )

for k = I, II, E,A. If n → ∞, both the winner of the auction and
the second highest bidder have type v̄ with probability 1. As such,
the v̄ type winner pays her own bid in all auctions. In addition, the
v̄ type’s winning bid must make her indifferent between winning and
losing, because another bidder with a valuation of almost v̄ type would
otherwise benefit from outbidding her. Under such perfect competition,
the v̄ type’s winning bid equals the sum of her valuation for the object
v̄ and the difference in the receiver’s inference about the winner and a
loser, v̄ − E (V ) , in all auction formats.
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Proposition 6 (Asymptotic revenue equivalence) If f ′ (.) ≤ 0, then
in the D1 S.E.

lim
n→+∞

ERII = lim
n→+∞

ERE = lim
n→+∞

ERI = lim
n→+∞

ERA = 2v̄ − E(V ).

Hence, expected revenue equivalence is only asymptotically valid in
the presence of prestige motives.

7 Conclusions

Prestige or status is an important motivation for bidding in art or char-
ity auctions. We have formalized prestige motives by making all bidders
care about the expected value of the beliefs about their type of an outside
party, who observes the identity and payment of the auction’s winner.
We have studied the bidding equilibrium and expected revenues in 4
well known auction formats: the first-price, second-price, all-pay and
English auctions. We show that if the outside party’s beliefs satisfy the
common refinement criterion (D1) and if the type distribution function
is concave, then any equilibrium bidding function must be fully separat-
ing. Moreover, we obtain a strict ranking of the expected revenues of
these auction formats for a finite number of bidders. The first-price and
all-pay auctions, which are equivalent in terms of expected payments,
do strictly better than the English auction and strictly worse than the
second-price auction. Revenue equivalence is only restored asymptoti-
cally, if the number of bidders goes to infinity.
These differences in expected revenues stem from the differences in

information for the receiver and the bidders in the different auction for-
mats. First, in the second-price and English auctions, the winner does
not pay her own bid, such that the winner’s payment only imposes a
lower bound on the receiver’s expected beliefs about the winner’s type.
This incites the lowest valuation types to bid considerably above their
valuation. The reason is that if they win the auction, they pay the bid
of an even lower type, while the receiver’s expected inference about the
winner is just above the average valuation and the expected inference
about the losers is close to the lowest possible valuation. In the first-
price auction, in contrast, a winning low valuation bidder reveals her
true low type.
Second, the highest types can bid higher in the first-price auction

than in the English auction, because the gap in terms of expected infer-
ences by the receiver between winning and losing the auction is larger
in the former. Moreover, the winner has to pay her own bid in the first-
price auction. This explains the superiority of the first-price over the
English auction.
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Third, the increasing price clock in the English auction constrains the
set of potential second highest bidders at each moment. If the auction
has no winner at a certain price, then the second highest bidder in the
auction is at least willing to pay this price. In the sealed bid auctions,
such a constraint is absent, and a bidder can only depend on her own
bid to constrain the expected inference of receiver about her in the case
she would lose the auction. This additional return to bidding in sealed
bid auctions explains the superiority of the second-price auction over the
English auction. This additional effect, inciting the lowest types to bid
even more than in the English auction, also explains the superiority of
the second-price auction over the first-price auction.

In short, we show that the auction format affects the performance
of the auction in terms of expected revenue if bidders care about pres-
tige. Although we believe that our setting, with risk neutral bidders, a
receiver who observes the identity and payment of the winner to form be-
liefs about all bidders and the comparison 4 standard auction formats, is
a natural and interesting benchmark case, a broad variety of alternative
settings may be of interest as well. In terms of information, a receiver
might e.g. only infer the type of the winner, observe all payments or
the overall revenue of the auction (which would particularly change the
analysis of the all-pay auction), observe all bids, only intervals of bids
or rankings of bidders in terms of bids... Moreover, in the absence of
a general mechanism design approach, a long list of different auction
formats may deserve our attention. Entry fees can offer an additional
instrument for outside parties to distinguish between different bidder
types, and many different forms of dynamic auctions seem particularly
interesting in this setting, including all the specificities of art auctions
formats. Moreover, the receiver may process her information in differ-
ent ways and bidders may care in different ways about the inferences of
receiver (as in e.g. Goeree (2003)). The most interesting specification
in terms of auction format and information setting depends on the spe-
cific application, but the present analysis illustrates for a few standard
textbook auctions that the auction format matters in the presence of
prestige motives. If prestige is indeed as important for the market of art
and collectibles as a.o. Mandel (2009) suggests, then empirical studies of
art auctions as well as field experiments should also take media exposure
and the information setting into account.
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A Appendix

A.1 Proof of Lemma 1
We proceed in three steps: 1. for any D1 S.E. the bidding function β
is weakly increasing, 2. In any D1 S.E., there is no pooling with the v

¯type and 3. In any D1 S.E., there is no pooling above the v
¯
type.

Claim 1 (β weakly increasing) In any D1 S.E., if type v′ chooses b′,
then no v′′ < v′ bids b′′ > b′.

Proof. To save on notation, let p (b) denote the probability of winning
the auction with bid b and Ew (b) and El (b) the expected values of the
receiver’s inference about respectively a winning and losing bidder who
bids b. Assume that type v′ bids b′ in equilibrium and gets expected
inferences Ew (b′) and E ′l (b′) . Let (E ′′w, E

′′
l ) a pair of inferences such that

type v′ is indifferent between bidding b′′ and getting inference (E ′′w, E
′′
l )

and her equilibrium payoff, i.e.

p (b′) (v′ − b′) + El (b
′) + p (b′) [Ew (b′)− El (b′)]

= p (b′′) (v′ − b′′) + E ′′l + p (b′′) [E ′′w − E ′′l ]
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or

[p (b′′)− p (b′)] v′ = A ≡ p (b′′) b′′ − p (b′) b′ + El (b
′) +

p (b′) [Ew (b′)− El (b′)]− (E ′′l + p (b′) [E ′′w − E ′′l ])

and note that p (b′′) − p (b′) ≥ 0. Then if p (b′′) − p (b′) > 0, it must be
that

[p (b′′)− p (b′)] v′′ < A,

such that

p (b′) (v′′ − b′)+El (b′)+p (b′) [Ew (b′)− El (b′)] > p (b′′) (v′′ − b′′)+E ′′l +p (b′) [E ′′w − E ′′l ] .

Hence, the lower valuation type needs a higher compensation in terms
of inference for a higher bid.
Assume then that the equilibrium expected utility of type v′′ is low
enough to makeM+ (b′′, v′) ⊆M+ (b′′, v′′)∪M0 (b′′, v′′) . Then it must be
that the v′′ strictly prefers bundle (b′, Ew (b′) , El (b

′)) to her equilibrium
strategy, a contradiction. Therefore µ (v′′|b′′) = 0 in the D1 S.E., and no
v′′ type with v′′ < v′ chooses a b′′ bid with b′′ > b′ if type v′ bids b′ in
equilibrium.

Claim 2 (No pooling with v
¯
) No type v >v

¯
pools with type v

¯
in the

D1 S.E.

Assume an equilibrium in which a non-degenerate set of types O ={
v|β (v) = b̃

}
pool at b̃, such that v

¯
∈ O. By Claim 1, O is a convex set.

If b̃ >v
¯
, then a type v

¯
bidder can strictly improve herself by deviating

to v
¯
. Such deviation is never observed, such that the receiver’s inference

about the v
¯
bidder is not worse, but she avoids winning the auction to

pay b̃ in excess of her valuation v
¯
.

If b̃ ≤v
¯
, then note that the expected inference about a bidder in O is

Ew

(
b̃
)

= 1
|O|
∫
O
vdF (v) and El

(
b̃
)
. The probability of winning when

pooling at b̃ is F (sup(O))n−1

n
. Consider then type sup (O) . If she bids a

b̃ + ε, with ε > 0, she wins at least with probability F (sup (O))n−1,

in which case Ew
(
b̃+ ε

)
≥ sup (O) and El

(
b̃+ ε

)
> El

(
b̃
)
, while

sup (O) − b̃ − ε > 0 for ε suffi ciently small. But in equilibrium it must
be that

F (sup (O))n−1

n

(
sup (O)− b̃+ Ew

(
b̃
))

+

(
1− F (sup (O))n−1

n

)
El

(
b̃
)

≥ F (sup (O))n−1
(

2 sup (O)− b̃− ε
)

+
(
1− F (sup (O))n−1)El (b̃+ ε

)
,

which is only true for ε→ 0 if sup (O) =v
¯
and n = 1.
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Claim 3 (No pooling above v
¯
) In the D1 S.E., no bid b̃ is chosen by

two types v′ 6= v′′

Proof. Assume a D1 S.E. in which b̃ is the lowest bid chosen by a
nondegenerate set of types O =

{
v|β (v) = b̃

}
. Note that O is convex

by Claim 1 and inf (O) >v
¯
by Claim 2. By the continuity of f and of

the utility function w.r.t. all arguments, the inf (O) must in equilibrium
be indifferent between separating at limv→inf(O)− β (v) and pooling at b̃.
Note then that the indirect utility difference between sup (O) and inf (O)
in the pooling equilibrium is

p
(
b̃
)

(sup (O)− inf (O)) .

In the separating equilibrium this is by the enveloppe theorem∫ sup(O)

inf(O)

F n−1 (x) dx = sup (O)F n−1 (sup (O))−inf (O)F n−1 (inf (O))−
∫ sup(O)

inf(O)

xdF n−1 (x) .

We now show that∫ sup(O)

inf(O)

F n−1 (x) dx > p
(
b̄
)

(sup (O)− inf (O)) (8)

if f ′ (.) ≤ 0.
First write the probability of winning the auction while bidding b̃

p
(
b̃
)

=
n−1∑
i=0

(
n− 1
i

)
F n−1−i (inf (O)) (F (sup (O))− F (inf (O)))i

i+ 1
.

Note then that p
(
b̄
)

(sup (O)− inf (O)) =
∫ sup(O)

inf(O)
F n−1 (x) dx = 0 for

sup (O) = inf (O) . Differentiate both sides of (8) to sup (O), to obtain

∂p
(
b̄
)

∂ sup (O)
(sup (O)− inf (O)) + p

(
b̄
)
< F n−1 (sup (O)) ,

which can be written as

α
[
F n−1 (sup (O))− p

(
b̄
)
− F n−1−i (inf (O))

]
< F n−1 (sup (O))− p

(
b̄
)
,

(9)
with

α =
f (sup (O))

F (sup(O))−F (inf(O))
sup(O)−inf(O)
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because

∂p
(
b̄
)

∂ sup (O)
=

n−1∑
i=1

(
n− 1
i

)
F n−1−i (inf (O)) (F (sup (O))− F (inf (O)))i−1 i

i+ 1
f (sup (O))

=
[
F n−1 (sup (O))− p

(
b̄
)
− F n−1−i (inf (O))

] f (sup (O))

(F (sup (O))− F (inf (O)))
,

in which the last equality uses

1−p
(
b̄
)

=
(
1− F n−1 (sup (O))

)
+

n−1∑
i=0

(
n− 1
i

)
F n−1−i (inf (O)) (F (sup (O))− F (inf (O)))i

i

i+ 1
.

Note then that f ′ (.) ≤ 0 implies α ≤ 1, such that (9) and therefore (8)
are always satisfied for F (sup (O)) > F (inf (O)) and f ′ (.) ≤ 0. Then the
sup (O) type can achieve a strictly higher expected utility if she would
deviate to the bid she makes in the fully separating equilibrium, because
the expected inference after such a deviation is at least the expected
inference she gets in the fully separating equilibrium. This any different
types pooling in a D1 S.E.

A.2 Proof of Proposition 1
We proceed again in 3 steps: 1. establish shape of the bidding function;
2. show that β′ (.) > 0 implies that the second order condition is satisfied
and 3. show that β′ (.) > 0.

Claim 4 (Bidding function) β is as written in Proposition 1.

Proof. Substitute ṽ = v into (2) to obtain

∂

∂v

(
β (v)F n−1 (v)

)
= 2v

(
F n−1 (v)

)′
+F n−1 (v)−

∫ v

v
¯

xdF (x)
(
F n−1 (v)

)′
.

Integrate and divide both sides by F n−1 (v) to find

β (v) =
2

F n−1 (v)

∫ v

v
¯

xdF n−1 (x) +
1

F n−1 (v)

∫ v

v
¯

F n−1 (x) dx (10)

− 1

F n−1 (v)

∫ v

v
¯

1

F (y)

∫ y

v
¯

xdF (x) dF n−1 (y)

Apply partial integration on the second and last RHS term in (10) , to
obtain respectively

1

F n−1 (v)

∫ v

v
¯

F n−1 (x) dx = v − 1

F n−1 (v)

∫ v

v
¯

xdF n−1 (x)
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and

1

F n−1 (v)

∫ v

v
¯

1

F (y)

∫ y

v
¯

xdF (x) d
(
F n−1 (y)

)
=

n− 1

F n−1 (v)

∫ v

v
¯

∫ y

v
¯

xdF (x)
(
F n−3 (y)

)
dF (y)

=
n− 1

n− 2

∫ v
v
¯
xdF (x)

F (v)
− 1

n− 2

∫ v
v
¯
xdF n−1 (x)

F n−1 (x)
,

and substitute these in (10) to obtain

β (v) = v +
n− 1

n− 2

(∫ v
v
¯
xdF n−1 (x)

F n−1 (v)
−
∫ v
v
¯
xdF (x)

F (v)

)
.

To find the lower bound in the first-price auction, note that by the
intermediate value theorem two values v1 and v2 exist such that

β (v) = v − n− 1

n− 2

(
v1

∫ v
v
¯
dF (x)

F (v)
− v2

∫ v
v
¯
dF n−1 (x)

F n−1 (v)

)
Moreover,

lim
v→v

¯
+
v1 = lim

v→v
¯

+
v2 = v

¯
,

such that lim
v→v

¯
+
β (v) = v

¯
.

Claim 5 (Second order condition) The second order conditions are
satisfied iff β′ (.) > 0

Proof. We first show that a strictly increasing bidding function implies
local strict concavity of the bidder’s problem, and then that the equilib-
rium bid is a global expected utility maximizing choice for each bidder.
First, use the first order condition (2) to define

G (ṽ, v) ≡
(
F n−1 (ṽ)

)′
(v − β (ṽ) + ṽ)+(1− β′ (ṽ))

(
F n−1 (ṽ)

)
− 1

F (ṽ)

∫ ṽ

v
¯

xdF (x)
(
F n−1 (ṽ)

)′
= 0,

which defines β (v) for ṽ = v. By the implicit function theorem β′ (v) > 0
if and only if strictly higher v prefer to imitate a strictly higher ṽ, i.e. if

−G2 (ṽ, v)

G1 (ṽ, v)
= −(F n−1 (ṽ))

′

G1 (ṽ, v)
> 0,

which is only satisfied if G1 (ṽ, v) < 0 for all v at ṽ = v.
By construction, G (ṽ, v) = 0 is satisfied at ṽ = v, while G2 (ṽ, v) > 0
for all ṽ > v, such that type v’s utility reaches a unique maximum at
ṽ = v.
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Claim 6 (Strictly increasing β) β is strictly increasing.

Proof. Write

β′ (v) = 1 +
n− 1

n− 2

f (v)

F (v)

(
(n− 1)

(
v −

∫ v
v
¯
xdF n−1 (x)

F n−1 (v)

)
−
(
v −

∫ v
v
¯
xdF (x)

F (v)

))

= 1 +
n− 1

n− 2

f (v)

F (v)

(
(n− 1)

∫ v
v
¯
F n−1 (x) dx

F n−1 (v)
−
∫ v
v
¯
F (x) dx

F (v)

)
,

with the last equation by partial integration. To see that

(n− 1)

∫ v
v
¯
F n−1 (x) dx

F n−1 (v)
−
∫ v
v
¯
F (x) dx

F (v)
≥ 0,

note that this term is 0 for n = 2, and that

∂

∂n

(
(n− 1)

∫ v
v
¯
F n−1 (x) dx

F n−1 (v)

)

=

∫ v
v
¯
F n−1 (x) dx

F n−1 (v)
+

(n− 1)2

F (v)

(∫ v
v
¯
F n−2 (x) dx

F n−2 (v)
−
∫ v
v
¯
F n−1 (x) dx

F n−1 (v)

)
> 0,

such that β′ (v) > 1 for n ≥ 3.

A.3 Proof of Proposition 2
The proof that all D1 S.E. bidding functions of the all-pay auction satisfy
β′ (.) > 0 is almost identical to the proof of Lemma 1, and therefore
omitted. Let denote EP k(ṽ) denote the expected payment of a bidder
choosing type ṽ’s equilibrium bid, with k = I, A indicating resp. the
first-price and all-pay auction. Let

E(ṽ) = F n−1 (ṽ) ṽ +
(
1−

(
F n−1 (ṽ)

)) ∫ v̄ṽ 1
F (y)

∫ y
v
¯
xdF (x) dF n−1 (y)

(1− (F n−1 (ṽ)))

represent the receiver’s expected inference about a bidder choosing type
ṽ’s equilibrium bid. Then the expected payoff of a valuation v bidder
choosing a ṽ type’s equilibrium bid is

F (ṽ)n−1v − EP k(ṽ) + E(ṽ).

The first order condition for expected payoff maximization is

(F (ṽ)n−1)′v −
(
EP k(ṽ)

)′
+ (E(ṽ))′ = 0.

Substituting ṽ = v solving for EP k, we obtain

EP k(v) = EP k(v) +

∫ v

v

xdF (x)n−1 +

∫ v

v

(E(x))′ dx

AsEP I(v) = F (v)n−1βI(v), EPA(v) = βA(v) andEP I(v
¯
) = EPA(v

¯
) =

0, it follows that βA(v) = F (v)n−1βI(v).
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A.4 Proof of Lemma 2
This proof proceeds in the same 3 steps as the proof of Lemma 1, and
the first and third step are similar to those in the proof of Lemma 1.
Let Pr (1|b), Pr (2|b) and Pr (3|b) = 1 − Pr (1|b) − Pr (2|b) resp. denote
the probabilities of winning, having the second highest bid and having
a lower bid with bid b, and let E1 (b) , E2 (b) and El (b) be the expected
inferences of the receiver if a bidder with bid b resp. wins, has the second
highest bid and loses, and let Ep (b) be the expected payment of a winner
with bid b.

Claim 7 (Weakly increasing) If a v′ type bids b′ in equilibrium, then
no v′′ < v′ bids b′′ > b′ in equilibrium.

Proof. Assume the opposite. Because both b′ and b′′ are sent in equi-
librium, it must be that Pr (1|b′′) > Pr (1|b′) . Then if v′′ bids b′′ in
equilibrium, it must be that

Pr (1|b′′)
(
v′′ − Ep (b′′) + E1 (b′′)

)
+ Pr (2|b′′)E2 (b′′)

+ (1− Pr (1|b′′)− Pr (2|b′′))El (b′′)

≥ Pr (1|b′)
(
v′′ − Ep (b′) + E1 (b′)

)
+ Pr (2|b′)E2 (b′) + (1− Pr (1|b′)− Pr (2|b′))El (b′) .

But given that Pr (1|b′′) > Pr (1|b′) , this implies that the v′ type strictly
prefers a b′′ bid above b′, which contradicts the equilibrium. Assume
then that in equilibrium the v′′ type’s equilibrium expected utility is so
low that M+ (b′′, v′) ⊆ M+ (b′′, v′′) ∪M0 (b′′, v′′) , then it must be that
the v′′ strictly prefers the bundle

(
b′, E1 (b′) , E2 (b′) , El (b′) , Ep (b′)

)
to

her equilibrium strategy, a contradiction. Hence, if type v′ bids b′ in
equilibrium, then µ (v′′|b′′) = 0, and no v′′ type with v′′ < v′ chooses a
b′′ bid, with b′′ > b′ .

Claim 8 (No pooling with v
¯
) In the D1 S.E., no other type pools

with v
¯
.

Proof. Suppose a nondegenerate set of types O =
{
v|β (v) = b̃

}
, with

v
¯
∈ O, pool in equilibrium at bid b̃. If n ≥ 3, then if type v

¯
(or a type just

above her) deviates to a bid b̃− ε, for ε > 0, she has zero probability of
having the highest or second highest bid, while the expected inference if
she loses remains unchanged at El

(
b̃
)
. In equilibrium, such a deviation

cannot be profitable such that:

Pr
(

1|b̃
)(
v
¯
− b̃+ E1

(
b̃
))

+Pr
(

2|b̃
)
E2
(
b̃
)

+
(

1− Pr
(

1|b̃
)
− Pr

(
2|b̃
))

El
(
b̃
)
≥ El

(
b̃
)
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or that

Pr
(

1|b̃
)

Pr
(

1|b̃
)

+ Pr
(

2|b̃
) (v
¯
− b̃+ E1

(
b̃
))

+
Pr
(

2|b̃
)

Pr
(

1|b̃
)

+ Pr
(

2|b̃
)E2

(
b̃
)
≥ El

(
b̃
)
.

Note that because E2
(
b̃
)
≤ El

(
b̃
)
, it must be that

v
¯
− b̃+ E1

(
b̃
)
≥ E2

(
b̃
)
. (11)

If the sup (O) type would deviate to a bid b̃+ ε, for ε > 0 small enough
such that b̃ + ε is out-of-equilibrium and no equilibrium bids are in(
b̃, b̃+ ε

)
, she still pays b̃ and gets expected inference E1

(
b̃
)
if winning,

is inferred as E2
(
b̃+ ε

)
> E2

(
b̃
)
if having the second highest bid and

has expected inference El
(
b̃+ ε

)
if losing. For sup (O) to bid b̃ in

equilibrium, it must be that

Pr
(

1|b̃+ ε
)(

sup (O)− b̃+ E1
(
b̃
))

+ (12)

Pr
(

2|b̃+ ε
)
E2
(
b̃+ ε

)
+
(

1− Pr
(

1|b̃+ ε
)
− Pr

(
2|b̃+ ε

))
El
(
b̃+ ε

)
≤

Pr
(

1|b̃
)(

sup (O)− b̃+ E1
(
b̃
))

+ Pr
(

2|b̃
)
E2
(
b̃
)

+ Pr
(

3|b̃
)
El
(
b̃
)
.

Note then that

El
(
b̃
)

=
Pr
(

3|b̃+ ε
)

Pr
(

3|b̃
) El

(
b̃+ ε

)
+

Pr
(

3|b̃
)
− Pr

(
3|b̃+ ε

)
Pr
(

3|b̃
) E2

(
b̃
)
,

(13)
i.e. if the sup (O) type is neither winning nor second when pooling at
b̃, then the second highest bidder either has a higher valuation or she is
in O. In the former case, the receiver’s expected inference is El

(
b̃+ ε

)
.

In the latter case it must be E2
(
b̃
)
. Substituting (13) this in (12), we

obtain(
Pr
(

1|b̃+ ε
)
− Pr

(
1|b̃
))(

sup (O)− b̃+ E1
(
b̃
)
− E2

(
b̃
))

+

Pr
(

2|b̃+ ε
)(

E2
(
b̃+ ε

)
− E2

(
b̃
))
≤ 0,

which can only be satisfied is sup (O) =v
¯
.
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Claim 9 (No Pooling) In the D1 S.E. there is no pooling at bids strictly
above v

¯
.

Proof. Assume that b̃ is the lowest bid at which a nondegenerate set of
types O =

{
v|β (v) = b̃

}
pool. The same enveloppe theorem argument

as for the first-price auction also works for the second. Note then again
that the expected utility difference between sup (O) and inf (O) while
pooling at b̃ is p

(
1|b̄
)

(sup (O)− inf (O)) , while in separation this is by
the enveloppe theorem∫ sup(O)

inf(O)

FN−1 (x) dx = sup (O)FN−1 (sup (O))−inf (O)FN−1 (inf (O))−
∫ sup(O)

inf(O)

xdFN−1 (x) .

If inf (O) = sup (O) , these are both equal to zero, but by the same
differential argument as for Claim 3,

p
(
b̄
)

(sup (O)− inf (O)) <

∫ sup(O)

inf(O)

FN−1 (x) dx.

The condition f ′ (.) ≤ 0, imposed to guarantee the existence of a sepa-
rating equilibrium, always guarantees this inequality.

A.5 Proof of Proposition 3
The proof proceeds in three steps: deriving the bidding function, showing
that the second order condition is satisfied if the bidding functions is
strictly increasing and showing that the proposed bidding function is
strictly increasing. The second step is almost identical to Claim 5, and
is omitted.

Claim 10 (Bidding function) β is as written in Proposition 3

Proof. From (4), collect terms to obtain

β (v) =
n− 2

n− 1

1

F (v)

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
+

∫ v̄
v
xdF (x)

1− F (v)
+

1

(n− 1)

(1− F (v))

f (v)

(14)

=
n− 2

n− 1

∫ v
v
¯
F (x) dx

F 2 (v)
+

1

(n− 1)

∫ v̄
v
f (x) dx

f (v)
+

∫ v̄
v
xdF (x)

1− F (v)
, (15)

where (15) is obstained from (14) by partially integrating the first term.

Then by L’Hôpital’s rule, limv→v
¯

∫ v
v
¯
F (x)dx

F 2(v)
= F (v

¯
)

2F (v
¯
)f(v
¯
)
, while limv→v̄

∫ v̄
v xdF (x)

1−F (v)
=
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−v̄f(v̄)
−f(v̄)

= v̄, such that

lim
v→v

¯

β (v) = E (V ) +
n

2 (n− 1) f (v
¯
)

lim
v→v̄

β (v) = v̄ +
n− 2

n− 1
(v̄ − E (V )) .

Claim 11 (Second order condition) The second order condition is
satisfied iff β′(.) > 0.

Proof. The proof that β′ (.) > 0 implies that the second order condition
is satisfied is identical to that of Claim 5.

Claim 12 (Strictly increasing β) β is strictly increasing if n ≥ 4
and f ′ (.) ≤ 0 or if n = 3 and f ′ (.) < 0.

Proof. Write

β′ (v) =
n− 2

n− 1

1

F (v)

(
1− 2f (v)

∫ v
v
¯
F (x) dx

F 2 (v)

)
+

f (v)

1− F (v)

(∫ v̄
v
xdF (x)

1− F (v)
− v
)

− 1

(n− 1)

(
1 +

f ′ (v)
∫ v̄
v
f (x) dx

(f (v))2

)
, (16)

and apply partial integration on the second RHS term in (16) to find

β′ (v) =
n− 2

n− 1

1

F (v)

(
1− 2f (v)

∫ v
v
¯
F (x) dx

F 2 (v)

)
+
f (v)

∫ v̄
v

(1− F (x)) dx

(1− F (v))2

(17)

− 1

(n− 1)
− 1

(n− 1)

f ′ (v)
∫ v̄
v
f (x) dx

(f (v))2 .

Note then that all RHS terms in (17) are nonnegative if f ′ (.) ≤ 0, except

− 1
(n−1)

. If f ′ (.) < 0 and v >v
¯
, then 2f (v)

∫ v
v
¯
F (x)dx

F 2(v)
<

∫ v
v
¯
dF 2(x)

F 2(v)
= 1,

such that 1 − 2f (v)
∫ v
v
¯
F (x)dx

F 2(v)
> 0. At the other hand, the last term

− 1
(n−1)

f ′(v)
∫ v̄
v f(x)dx

(f(v))2 is strictly positive for v < v̄. Both terms are zero for
f ′ (.) = 0. The main step is now to prove that f ′ (.) ≤ 0 implies

f (v)
∫ v̄
v

(1− F (x)) dx

(1− F (v))2 ≥ 1

2
. (18)
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First note that F is the uniform distribution, inequality (18) is satisfied
with equality. Note that f ′ (.) ≤ 0 implies that 1 − F (.) is convex and
write the inequality as

2

∫ v̄
v

(1− F (x)) dx

1− F (v)
≥ 1− F (v)

f (v)
. (19)

In figure A.5, that the LHS of (19) , for v = v◦, is the grey area divided
by the distance 1−F (v◦) .Moreover, ∂(1−F (v◦))

∂v◦ = −f (v◦) , such that this
tangent line through (v◦, 1− F (v◦)) crosses the X-axis at v◦ + 1−F (v◦)

f(v◦) .

For f ′ (.) = 0, it must be that v◦ + 1−F (v◦)
f(v◦) = v̄, such that the inequality

in (19) is always satisfied with equality. If however f ′ (v) < 0 at some
v > v◦, this strictly increases the LHS but not the RHS of (19), such
that the inequality is strictly satisfied. Thus, f ′ (.) ≤ 0 implies that

f (v)
∫ v̄
v

(1− F (x)) dx

(1− F (v))2 ≥ 1

2
>

1

(n− 1)
.

Hence, β′ (.) > 0 for n > 3, while for n = 3, we need f ′ (.) < 0 to
guarantee β′ (.) > 0.

A.6 Proof of Lemma 3
Claim 13 (β weakly increasing) If in a D1 S.E. v′ exits at b′, then
no v′′ < v′ exits at b′′ > b′.

Proof. Assume that v′′ stays until b′′. If type v′ exits at b′, then what she
can win by staying is not better than what can be expected by exiting.
The expected payoff of exiting at b′ is identical for the v′ and v′′ types,
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while v′ benefits strictly more from winning than v′′, such that v′′ should
strictly prefer to exit at b′.
Assume then an S.E. with v′ exiting at b′, v′′ < v′ and b′′ > b′ an

out-of-equilibrium exit strategy. Then if type v′′ equilibrium strategy is
so low that M+ (b′′, v′) ⊆ M+ (b′′, v′′) ∪M0 (b′′, v′′) , then type v′′ would
strictly prefer to exit at b′ above her equilibrium strategy, a contradic-
tion. Hence, M+ (b′′, v′′) ∪M0 (b′′, v′′) ⊂ M+ (b′′, v′) , such that in any
D1 S.E. we have β′ (.) ≥ 0.

Claim 14 (No pooling) In any D1 S.E., no two types v′ 6= v′′ exit at
the same price b̃.

Let b̃ be the lowest price at which a nondegenerate set of types O ={
v|β (v) = b̃

}
exit. By Claim 13, O is convex. For a non-degenerate

set O, a suffi ciently small ε > 0 can be found for which the winning
equilibrium payoff at price b̃ + ε is strictly greater than at b̃. If b̃ + ε is
out-of-equilibrium, then for ε suffi ciently small and O nondegenerate

sup (O)− b̃− ε+

∫ v̄
sup(O)

xdF (x)

1− F (sup (O))
> sup (O)− b̃+

∫ v̄
inf(O)

xdF (x)

1− F (inf (O))
, (20)

while the expected payoff of a loser exiting at b̃ + ε is at least as large
as that of a loser exiting at b̃. If b̃ is chosen in S.E. by higher types, this
increases the RHS of inequality 20. Hence, β′ (.) > 0.

A.7 Proof of Proposition 4
Equation (7) is obtained by setting ṽ = v in (5) and solving for β. To
see that f ′ (.) ≤ 0 implies β′ (.) > 0, write

β′ (v) =
n− 2

n− 1

[
1− f (v)

F (v)

(
v −

∫ v
v
¯
xdF (x)

F (v)

)]
+

f (v)

1− F (v)

(∫ v̄
v
xdF (x)

1− F (v)
− v
)
.

The second RHS term is always strictly positive for v ∈ [v
¯
, v̄) . To see

that the first RHS term is always positive, note that the term between
square brackets is strictly positive if

F (v) >

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
F ′ (v) ,

which is always satisfied. Indeed for f ′ (.) ≤ 0, F is concave such that

F (v) ≥ F ′ (v) (v − v
¯
) ≥

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
F ′ (v) , with the last inequality

strict for v ∈ (v
¯
, v̄].
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For β as in (7) , the exit rule in (5) fixes for every v a unique ṽ, as

∂

∂ṽ

(
−β (ṽ) +

1

1− F (ṽ)

∫ v̄

ṽ

xdF (x)− ṽ

n− 1
− n− 2

n− 1

∫ ṽ
v
¯
xdF (x)

F (ṽ)

)
= −1.

Note also that no type v wishes to mimick a different type ṽ. By
construction β (ṽ) is such that (5) is satisfied with equality for v = ṽ and
such that for v > ṽ the benefits of winning (LHS) are strictly greater
than the RHS when mimicking ṽ’s strategy. The latter is the opposite
if v < ṽ.

A.8 Proof of Proposition 5
Let βk(.) denote the equilibrium biding function and ERk be the ex-
pected revenue for k = I, II, E respectively the first-price auction, the
second-price auction, the English auction. We first write the expected
revenue of the 3 auctions in a more convenient form.

ERI =

∫ v̄

v
¯

βI (x) dF n (x)

=

∫ v̄

v
¯

xdF n (y)− n− 1

n− 2

∫ v̄

v
¯

∫ y
v
¯
xdF (x)

F (y)
dF n (y)

+
n− 1

n− 2

∫ v̄

v
¯

∫ y
v
¯
xdF n−1 (x)

F n−1 (y)
dF n (y)

= E
(
V

(n)
1

)
+
n− 1

n− 2
E
(
V

(n)
2

)
− n− 1

n− 2

∫ v̄

v
¯

1

F (y)

∫ v̄

v
¯

1x≤vxdF (x) (F n (y))′ dy

= E
(
V

(n)
1

)
+
n− 1

n− 2
E
(
V

(n)
2

)
− (n− 1)n

n− 2

∫ v̄

v
¯

∫ v̄

v
¯

1x≤vf (y)
(
F n−2 (y)

)
dyxf (x) dx

=
n− 1

n− 2
E
(
V

(n)
1

)
+
n− 1

n− 2
E
(
V

(n)
2

)
− n

n− 2
E (V ) (21)
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The expected revenue of the second-price auction is

ERII =

∫ v̄

v
¯

βII (x) d
(
nF n−1 (x)− (n− 1)F n (x)

)
= n(n− 2)

∫ v̄

v

x(1− F (x))F n−3(x)f(x)dx

− n (n− 2)

∫ v̄

v
¯

∫ y
v
¯
F (x) dx

F 2 (y)
(1− F (y))F n−2 (y) f (y) dy

+ n (n− 1)

∫ v̄

v
¯

∫ v̄
y
xdF (x)

1− F (y)

(
(1− F (y))F n−2 (y) f (y)

)
dy

+ n

∫ v̄

v
¯

(
(1− F (y))2 F n−2 (y)

)
dy

=
n

n− 1
E
(
V

(n−1)
2

)
− n

n− 3
E (V ) +

n

n− 3
E
(
V

(n−2)
1

)
− n

n− 1
E
(
V

(n−1)
1

)
+ E

(
V

(n)
1

)
+ n

∫ v̄

v
¯

(
(1− F (y))2 F n−2 (y)

)
dy

The expected revenue of the English auction is:

ERE = (n− 1)n

∫ v̄

v
¯

(
n− 2

n− 1

(
v −

∫ v
v
¯
xdF (x)

F (v)

)
+

∫ v̄
v
xdF (x)

1− F (v)

)
F n−2 (v) (1− F (v)) f(v)dv

= n (n− 2)

∫ v̄

v
¯

vF n−2 (v) f (v) dv − n (n− 2)

∫ v̄

v
¯

vF n−1 (v) f (v) dv

− (n− 2)n

∫ v̄

v
¯

∫ v
v
¯
xdF (x)

F (v)
F n−2 (v) (1− F (v)) f(v)dv

+ (n− 1)n

∫ v̄

v
¯

∫ v̄
v
xdF (x)

1− F (v)
F n−2 (v) (1− F (v)) f(v)dv

= n
n− 2

n− 1
E
(
V

(n−1)
1

)
− (n− 2)E

(
V

(n)
1

)
− (n− 2)n

∫ v̄

v
¯

∫ v

v
¯

xdF (x)F n−3 (v) (1− F (v)) f(v)dv

+ (n− 1)n

∫ v̄

v
¯

∫ v̄

v

xdF (x)F n−2 (v) f(v)dv

37



= n
n− 2

n− 1
E
(
V

(n−1)
1

)
− (n− 2)E

(
V

(n)
1

)
− (n− 2)n

∫ v̄

v
¯

∫ v̄

v
¯

1x<vxdF (x)F n−3 (v) (1− F (v)) f(v)dv

+ (n− 1)n

∫ v̄

v
¯

∫ v̄

v
¯

1x>vxdF (x)F n−2 (v) f(v)dv

= n
n− 2

n− 1
E
(
V

(n−1)
1

)
− (n− 2)E

(
V

(n)
1

)
− (n− 2)n

∫ v̄

v
¯

∫ v̄

x

F n−3 (v) (1− F (v)) f(v)dvxdF (x)

+ n

∫ v̄

v
¯

∫ x

v
¯

dF n−1 (v)xdF (x) ,

such that

ERE = − n

n− 1
E (V ) + nE

(
V

(n−1)
1

)
− n2 − 3n+ 1

n− 1
E
(
V

(n)
1

)
.

Claim 15 (English and first-price auction revenue) In the D1 S.E.
ERI > ERE.

Proof. We use that

E
(
V

(n)
2

)
= nE

(
V

(n−1)
1

)
− (n− 1)E

(
V

(n)
1

)
(22)

to write

ERE = − n

n− 1
E (V ) + E

(
V

(n)
2

)
+

n

n− 1
E
(
V

(n)
1

)
such that

ERI − ERE = − n

(n− 1) (n− 2)
E (V ) +

1

(n− 1) (n− 2)
E
(
V

(n)
1

)
+

1

n− 2
E
(
V

(n)
2

)
=

1

(n− 1) (n− 2)

(
−nE (V ) + E

(
V

(n)
1

)
+ (n− 1)E

(
V

(n)
2

))
.

Note then that because

nE (V ) =

n∑
k=1

E
(
V

(n)
k

)
,

we have for n ≥ 3 (which is required for a D1 S.E.)

ERI−ERE =
1

(n− 1) (n− 2)

(
−

n∑
k=2

E
(
V

(n)
k

)
+ (n− 1)E

(
V

(n)
2

))
> 0.
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Claim 16 (First- and second-price auction revenue) In the D1 S.E.
ERII > ERI .

Proof. We use (22) to write

ERII = n
n− 2

n− 3
E
(
V

(n−2)
1

)
− nE

(
V

(n−1)
1

)
− n

n− 3
E (V )

+ E
(
V

(n)
1

)
+ n

∫ v̄

v
¯

(
(1− F (y))2 F n−2 (y)

)
dy

Then

ERII − ERI = n
n− 2

n− 3
E
(
V

(n−2)
1

)
− nE

(
V

(n−1)
1

)
− n

n− 3
E (V ) + E

(
V

(n)
1

)
+ n

∫ v̄

v
¯

(
(1− F (y))2 F n−2 (y)

)
dy

−
(
− (n− 1)E

(
V

(n)
1

)
+ n

n− 1

n− 2
E
(
V

(n−1)
1

)
− n

n− 2
E (Y )

)
= n

(
E
(
V

(n)
1

)
− (n−2)+(n−1)

n−2
E
(
V

(n−1)
1

)
+ n−2

n−3
E
(
V

(n−2)
1

)
− 1

(n−2)(n−3)
E (V ) +

∫ v̄
v
¯

(
(1− F (y))2 F n−2 (y)

)
dy

)
.

Note then that∫ v̄

v
¯

(
(1− F (y))2 F n−2 (y)

)
dy =

∫ v̄

v
¯

F n−2 (y) dy − 2

∫ v̄

v
¯

F n−1 (y) dy +

∫ v̄

v
¯

F n (y) dy

= 2E
(
V

(n−1)
1

)
− E

(
V

(n)
1

)
− E

(
V

(n−2)
1

)
,

because by partial integration

v̄ =

∫ v̄

v
¯

(
yF n−2 (y)

)′
dy =

∫ v̄

v
¯

F n−2 (y) dy +

∫ v̄

v
¯

ydF n−2 (y)

and the same for the other terms. Then

ERII−ERI = n

(
− 1

n− 2
E
(
V

(n−1)
1

)
+

1

n− 3
E
(
V

(n−2)
1

)
− 1

(n− 2) (n− 3)
E (Y )

)
Then write

ERII − ERI = n

∫
y

(
−n− 1

n− 2
F n−2 (y) +

n− 2

n− 3
F n−3 (y)− 1

(n− 2) (n− 3)

)
dF (y)

= n

∫
y

(
−n− 1

n− 2
un−2 +

n− 2

n− 3
un−3 − 1

(n− 2) (n− 3)

)
dF (y)
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with u ≡ F (y) and define

G (u) = −n− 1

n− 2
un−2 +

n− 2

n− 3
un−3 − 1

(n− 2) (n− 3)
.

Note then that∫ 1

0

G (u) du = − 1

n− 2
+

1

n− 3
− 1

(n− 2) (n− 3)
= 0

while G (0) = − 1
(n−2)(n−3)

and G (1) = 0. Moreover,

G′ (u) = (− (n− 1)u+ (n− 2))un−4 = 0

at u = n−2
n−1

, a maximum since G′′
(
n−2
n−1

)
= − (n− 2)

(
n−2
n−1

)n−4
< 0. Thus,

G (u) must be strictly positive on an interval [0, u∗) and strictly negative
on (u∗, 1) , while

∫
[0,u∗) G (u) du = −

∫
(u∗,1)

G (u) du.

Note then that y (u) = F−1 (u) is a strictly increasing function. Then
by the intermediate value theorem we can find two values 0 < y1 < y2

such that

ERI − ERII = y1

∫
[0,u∗)

G (u) du+ y2

∫
(u∗,1)

G (u) du

while by the above

ERI − ERII = (y2 − y1)

∫
(u∗,1)

G (u) du < 0.
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