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Abstract

This paper studies a model of competing auctions in which bidders attach different val-

uations to the items offered by sellers. We provide a novel characterization of the set of

(symmetric) participation rules used by bidders and show that contrary to models with

homogeneous goods, heterogeneity rules out randomization when bidders choose trading

partners. We also show that changes in some reserve price alter the participation decision of

every buyer regardless of her valuation of the item. This implies that such changes not only

affect the distribution of valuations of those buyers participating in a given auction but also

modify the probability with which every buyer visits the auctions. We illustrate this novel

trade–off between screening and traffic effect by showing that it is possible to construct an

equilibrium in which both sellers post reserve prices equal to production costs with just two

sellers and two bidders.
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1 Introduction

This paper is devoted to the analysis of competition among sellers who wish to sell their items

to a pool of bidders using auctions. In simple terms, competing auction models feature several

sellers who simultaneously post reserve prices before buyers select the auction where they want

to bid1. When the number of buyers and sellers is large, the literature (Peters and Severinov,

1997; Virag, 2010) has shown that in equilibrium, sellers post reserve prices close to production

costs. This result is in line with the idea that competition should boost equilibrium mechanisms

that look much simpler than the type of mechanisms predicted by the theory of monopolistic

mechanism design2. In this paper we show that a similar conclusion can be obtained with just

two sellers and two bidders provided that there is heterogeneity in buyers’ preferences.

There are at least two reasons why we may want to consider introducing heterogeneity in

models of competing auctions. The first is a practical one. There are many cases in which goods

are considered different objects ex ante, i.e., before bidders submit bids, even if these items turn

out to be physically identical ex post. For example, it is not uncommon that sellers in online

platforms (such as eBay) release information about their objects before the auction begins in

order to help buyers have a better assessment of how much the item is worth to them. Since

different sellers may provide different amounts of information, it is natural to think of bidders

as placing different valuations to the items. The second reason is more theoretical oriented. It is

perfectly clear that taking items to be perfect substitutes is a simplifying assumption. What it

is not clear is up to what point the current findings in the literature depend on this assumption.

Our paper is the first formal attempt to provide an answer to this question. In fact, we could

think of the methodology developed in this paper as a robustness test for models of competing

auctions studied up to date in the literature.

We consider a standard model of competing auctions with two risk–neutral sellers with unit

supply who post reserve prices, and n risk–neutral buyers (n ≥ 2) with unit demands who value

each item differently. Evidently, the fact that bidders have different valuations implies that

their types are collections of random variables, which introduce important technical challenges

when modeling bidders’ participation decisions. One of the contributions of this paper is to

provide a complete characterization of the participation rules used by bidders in any symmetric

equilibrium in terms of cutoff strategies, similar to those used in (monopolistic) auction models

with costly participation (Green and Laffont, 1984; Samuelson, 1985; Vagstad, 2007). Our first

result establishes that no matter what participation strategy bidders may use, there always is a

best response to this strategy that can be described in terms of a nondecreasing and continuous

1Competing auction games belong to the class of competing mechanism games in which the set of available

mechanisms is restricted to auctions. Although this restriction is with loss of generality (as identified by McAfee,

1993 and formally proved by Epstein and Peters, 1999), ? have suggested that this kind of restrictions may be

necessary if we want the theory to have some predictive power.
2For a complete account of how competition among mechanism designers promotes simple mechanisms, see

Peters (2010).
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function ρ with the property that a bidder with valuations (v1, v2) visits seller 1 if and only

if v2 ≤ ρ(v1), and visits seller 2 with probability one if and only if v2 > ρ(v1). This ensures

that whenever the game possesses a continuation equilibrium it must also posses an equilibrium

in which bidders use pure strategies. This is important because it highlights one of the main

differences with models with homogeneous: when items are heterogeneous the coordination

failure that arises in models with homogeneous goods disappears because buyers choose trading

partners deterministically. Thus, heterogeneity acts as a coordination device by eliminating

coordination failures as a source of friction in the market.

Another difference introduced by heterogeneity is the way in which a change in reserve

prices affects the demand faced by each seller. With homogeneous goods, a decrease in seller

j’s reserve price has two consequences on the visiting decisions of bidders: (i) those bidders with

valuations just below rj begin to visit seller j with probability one; and (ii) some bidders who

were mixing among sellers find profitable to bid for sure at seller j’s auction. The interesting

observation is the fact that this change in seller j’s reserve price not only affects the types that

visit each auction but also the probability with which each bidder visits each seller. In other

words, a change in seller j’s reserve price affects the distribution of types faced by the seller

as well as the probability with which each buyer visits the auctions. This is due to the fact

that with heterogeneous goods buyers’ participation rules are characterized by a collection of

continuous an increasing functions, and a change in some reserve price alters the whole function

affecting the participation decisions of bidders with low and high valuations who were indifferent

before the change in the reserve price took place. This introduces a novel trade–off between

traffic and screening effects not present in models with homogeneous goods.

To illustrate this last point, we show that the existence of a pure strategy equilibrium

in which sellers post reserve prices equal to production costs no longer requires the number

of bidders and sellers to be large. This is in complete contrast with previous results in the

literature where the existence of this kind of equilibrium requires the sellers-to-buyers ratio to

be large3 (Peters and Severinov, 1997; Virag, 2010). For the finite case, Virag (2010) has shown

the existence of a mixed strategy equilibrium for every finite version of the game and proved

that if the lowest possible valuation is above sellers’ production costs then the distribution of

equilibrium reserve prices will converge (in distribution) to the sellers’ production costs. The

first of these findings can be seen as an extension of the analysis of Burguet and Sakovics

(1999), who studied a model with two sellers and n ≥ 2 buyers and showed that the equilibrium

probability of posting a zero reserve price in equilibrium is nil independent of how many bidders

are in the market. In contrast, we show that in the 2–sellers 2–bidder case there is a pure strategy

equilibrium where both sellers post reserve prices equal to production costs. Intuitively, this

3The seminal paper of Peters and Severinov (1997) showed the existence of an equilibrium where reserve prices

are equal to production costs only when the number of buyers and sellers is large but they did not provide a

proof of equilibrium existence when the number of agents is assumed finite. This question was settled by a recent

paper by Virag (2010), who demonstrated that a pure strategy equilibrium exists for every finite version of the

game whenever the lowest possible valuation is above sellers’ production costs.
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equilibrium arises because heterogeneous goods makes the participation decisions of low and

high valuation types change in response to a unilateral increase in some reserve price, which

reduces traffic and due to the screening effect providing sellers with enough incentives to post

reserve prices equal to production costs.

The rest of the paper is organized as follows. We outline the model in the next section

and the provide a characterization of the equilibrium set of the continuation game in which

bidders select trading partners. We then analyze the simultaneous-move game induced by the

continuation equilibrium described in the preceding section and analyze in detail the 2–sellers–

2–bidders case. The paper ends with some conclusions and final remarks.

2 The Model

Consider an economy in which trade takes place using second-price sealed bid auctions. The

economy is populated by two risk-neutral sellers (seller 1 and seller 2) with unit supply, and

n risk neutral buyers with unit demands. Sellers are indexed by j ∈ {1, 2}, and buyers are

indexed by i = {1, · · · , n}, n ≥ 2. Bidders value each item differently. Buyer i’s true valuation

of item j is Vij . The vector Vi is assumed to be a collection of independently and identically

distributed random variables, each following a cumulative distribution function F with contin-

uously differentiable, bounded and positive density f > 0, and full support on [0, 1]. Sellers

have a production cost equal to c > 0, which is common knowledge among players4. A bidder i

with valuation Vij who trades with seller j at price pj gets a surplus Vij − pj , while seller j gets

a surplus pj − c. In case of no trade both the seller and the bidder get an exogenously given

payoff normalized to 0. In what follows, if Xl is a set and l ∈ {1, · · · , L} then X = ΠL
l=1Xl and

X−l = Πk 6=lXk; thus X = Xl ×X−l. Furthermore, x ∈ X then x = (xi, x−i) with x−i ∈ X−i,
x−i = (x1, · · · , xi−1, xi+1, · · · , xL).

The game we study is similar in almost all respects to the standard competing auction

model with homogeneous goods (e.g. Peters and Severinov (1997); Burguet and Sakovics (1999);

Virag (2010)) with the exception that bidders have heterogeneous preferences and hence, their

valuations may differ across items. The game begins when Nature draws a pair of independent

realizations (vi1, vi2) of the vector (Vi1, Vi2) using the common prior distribution F , and privately

communicates it to bidder i, i = 1, · · · , n. After Nature has moved, sellers simultaneously

announce reserve prices which become common knowledge right after announced. We assume

that these reserve prices belongs to the closed interval [c, 1], i.e., that no seller can announce a

reserve price below the production cost. After observing the reserve prices announced by the

sellers, bidders simultaneously choose trading partners. Bidders are assumed to participate in

one and only one auction, that is, to choose only one seller as her trading partner. After bidders

have selected their trading partners, the bidding process takes place. Thus, all participants in

4As we will later show, the existence of a positive production cost is used to ensure the existence of a

continuation equilibrium in the bidders subgame.
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auction j simultaneously submit their bids to this seller, who then awards the item to the

highest bidder (in case of a tie, the item is randomly assigned among the highest bidders) who

pays a price equal to the second-highest bid. Finally, the game ends and all payoffs are realized.

3 Analysis

A strategy for seller j is his choice of reserve price rj ∈ [c, 1]. A strategy for a bidder is a rule

that specifies a participation and a bidding decision as a function of the bidder’s information in

stage two of the game. As it is customary in the literature of competing auctions (e.g., Peters

and Severinov (1997); Virag (2010)), we will assume that conditional on participating every

bidder bids her estimate truthfully (vi1 or vi2 depending on which auction bidder i has chosen

to bid) since truthful bidding is a Bayesian equilibrium of the bidding stage game. The main

advantage of this assumption is the reduction of bidder’s strategies to rules that specify the

probabilities with which each bidder visits each seller. Thus, a strategy for bidder i is a mapping

πi : [0, 1]2 × [c, 1]2→[0, 1]2 with πi(vi, r) = {πi1(vi, r), πi2(vi, r)}, πij ≥ 0, vi = (vi1, vi2), and

πi1 + πi2 ≤ 1, such that πij(vi, r) delivers the probability with which bidder i bids in auction

j as a function of her vector of valuations vi and the vector of reserve prices r = (r1, r2).

Our equilibrium concept is Perfect Bayesian Equilibrium. We restrict attention to equilibria

in which every bidder uses symmetric participation rules. A participation rule is symmetric if

for a given vector of reserve prices, two bidders with the same vector of valuations visit seller j

with the same probability, πij(·) = πkj(·) ≡ πj(·), i 6= k. We adhere to the convention to treat

the decision not to bid in any auction as equivalent to the decision to submit a non serious

bid in auction 1 and thus, if π(v, r) stands for the probability that a bidder with valuations

v = (v1, v2) visits auction 1 then π2(v, r) = 1 − π(v, r) is the corresponding probability that

this bidder visits seller 2. Finally, we let S be the strategy space for bidder i, i.e., the set of all

(measurable) mappings π.

3.1 Bidder’s Participation Game

Consider the stage game in which bidders must choose trading partners. Suppose that bidder

1 choose seller 1 as trading partner. Take bidder 1 with valuations (v1, v2) and suppose that

this bidder selects seller 1 as trading partner. From McAfee (1993), the probability that this

type of bidder 1 wins the item in auction 1 must be equal to the probability of being the unique

bidder in the auction plus the probability that every other buyer who comes to auction 1 does

so with a valuation of item 1 below v1,

Q1(v1;π, r) = 1−
ˆ 1

v1

ˆ 1

0
π((t1, t2), r)dF (t1)dF (t2)

if v1 ≥ r1, and Q1(v1;π, r) = Q1(r1;π, r) for all v1 < r1. Then, the (reduced-form) payoff that

this bidder expects in auction 1, U1(v1;π, r), can be written as the difference of two terms: her
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probability of trading with seller 1 times his valuation of this item, minus the expected price

she pays,

U1(v1;π, r) = v1Q1(v1;π, r)− P1(v1;π, r)

and similarly for U2(v2;π, r2). It is fairly clear that Uj(vj ;π, r) = 0 whenever vj ≤ rj . For all

types whose valuation v1 (resp. v2) is above r1 (resp. r2), her payoff should be positive because

there always is a positive chance to trade with seller 1 (resp. seller 2) because the probability

of having everybody else’s valuations below v1 (resp. v2) is strictly positive even if v1 = r1
(since r1 ≥ c > 0). Notice that this event is independent of the participation decisions of other

bidders and hence, Q1(v1;π, r1) > 0 (resp. Q2(v2;π, r2) > 0) for every type such that v1 ≥ r1
(resp. v2 ≥ r2).

Lemma 3.1. Uj(·;π, r) is nondecreasing and continuous with respect to vj ∈ [0, 1]. Moreover,

Uj(vj ;π, r) = max

{
0;

ˆ vj

rj

Qj(ξ;π, r)dξ

}
(1)

j = 1, 2.

Proof. Pick any π ∈ S. If rj = 1, Uj(vj ;π, rj) = 0 for all vj ∈ [0, 1]. Similarly, if max{vj , v̂j} <
rj , where vj and v̂j are two valuations of item j, then Uj(vj ;π, r) = Uj(v̂j ;π, r) = 0. In both

cases we obtain a monotonic and continuous payoff function. Hence, suppose that rj < 1 and

let vj and v̂j satisfy vj ≤ rj < v̂j . Then Uj(vj ;π, r) = 0 < Uj(v̂j ;π, r) because Qj(v̂j ;π, r) > 0

since F (v̂j) ≥ F (c) > 0. Thus, v̂j > vj implies Uj(v̂j ;π, r) > Uj(vj ;π, r), and Uj is monotonic.

Next, let vj and v̂j satisfy min{vj , v̂j} > rj . Incentive compatibility conditions imply that:

Uj(vj ;π, r)− Uj(v̂j ;π, r) ≥ Qj(v̂j ;π, r)(vj − v̂j) (2)

The right-hand side of this expression is strictly positive so long as vj > v̂j because

Qj(v̂j ;π, r) > 0. Therefore, Uj is strictly increasing whenever vj > rj . Furthermore, incentive

compatibility also implies that dU1(v1;π,r)
dv1

= Q1(v1;π, r) (see Myerson (1981)). Since Qj(·;π, r)
is monotonic, it is Riemann integrable. Therefore, for vj > rj ,

Uj(vj ;π, r) = Uj(rj ;π, r) +

ˆ vj

rj

Qj(ξ;π, r)dξ

=

ˆ vj

rj

Qj(ξ;π, r)dξ

because Uj(rj ;π, r) = 0. Continuity of this function stems from the fact that its derivative is

Lebesgue integrable for all vj ∈ [rj , 1], rj ∈ [c, 1).

Lemma 3.1 is important because it helps us derive the following useful property of the set

of best responses of any bidder to any participation rule π used by the remaining ones.
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Proposition 3.1. Take any bidder and let π′ be any best response to the symmetric participation

rule π used by other bidders. Then, there exists a π′′ ∈ S and a nondecreasing and continuous

function ρ : [0, 1] → R with the property that π′′(v, r) = 1 if and only if v2 ≤ ρ(v1), and

π′′(v, r) = 0 if and only if v2 > ρ(v1), and such that π′′ is also a best response to π.

HERE...We outline the proof for the case in which both reserve prices are strictly below

one, relegating the other cases (together with the proofs of monotonicity and continuity of ρ)

to the appendix. Let max{r1; r2} < 1 and suppose that every bidder other than bidder 1 uses

the participation rule π to choose trading partners. A necessary and sufficient condition for the

participation rule ω′ to be bidder 1’s best response to π is that for every type (v1, v2) ∈ [0, 1]2,

and every (r1, r2) ∈ [v0, 1]2,

ω′(v, r) =


0 if U1(v1;π, r1) < U2(v2;π, r2)
1 if U1(v1;π, r1) > U2(v2;π, r2)
∈ [0, 1] if U1(v1;π, r1) = U2(v2;π, r2)

(3)

where U1(·;π, r1) is bidder 1’s payoff when she bids in auction 1, and U2(·;π, r2) is her payoff

when she bids in auction 2. Since U1 and U2 are both continuous functions (lemma 3.1) defined

on the closed interval [0, 1], we can use the intermediate value theorem to claim the existence

of a pair of numbers (v∗1, v
∗
2) ∈ [0, 1]2 such that u1 = U1(v∗1;π, r1) and u2 = U1(v∗2;π, r2) for

every number u1 between U1(0;π, r1) and U1(1;π, r1), and every number u2 between U2(0;π, r2)

and U2(1;π, r2) respectively. First, suppose that U1(1;π, r1) ≤ U2(1;π, r2) then we can assign

to every v1 ∈ [0, 1] a number ρ(v1) ∈ [0, 1] such that U1(v1;π, r1) = U2(ρ(v1);π, r2). This

mapping ρ has the property that ω′(v, r) = 1 if and only if v2 ≤ ρ(v1) because lemma 3.1

ensures that U2(v2;π, r2) = U2(ρ(v1);π, r1) = U1(v1;π, r1) = 0 whenever v1 ≤ r1 (and hence,

we can assign the same number ρ(v1) to every such v1), and U2(v2;π, r2) < U2(ρ(v1);π, r1) =

U1(v1;π, r1) whenever v1 > r1. Second, if U1(1;π, r1) > U2(1;π, r2) then there are values of v1
for which bidder 1 strictly prefers to visit seller 1. Let v̄1 be implicitly defined by U1(v̄1;π, r1) =

U2(1;π, r2). Clearly, v̄1 > r1 because U1 and U2 are increasing functions and hence, U1(1;π, r2) >

U2(r2;π, r2) = 0. Using a similar argument to the one employed in the previous case we can

assign to every v1 ∈ [0, v̄1] a number ρ(v1) ∈ [0, 1] such that U1(v1;π, r1) = U2(ρ(v1);π, r2).

For values of v1 outside [0, v̄1], we let ρ(v1) take the value of one such that U1(v1;π, r1) >
U2(ρ(v1);π, r2) holds for every v1 > v̄1. Then, ω′(v, r) = 1 if and only if v2 ≤ ρ(v1). Figure 3.1

provides a graphical interpretation of the ρ function and the best response ω′.

An interesting implication of proposition 3.1 is the fact that no matter what participation

rule bidders may use, every best response to it can be characterized by a pure strategy that

is defined in terms of the associated function ρ. This suggests that for every continuation

equilibria (if one exists at all) we can find another one in which bidders use pure strategies.

Corollary 3.2. Take any pair of reserve prices (r1, r2) ∈ [v0, 1]2 and consider the continua-

tion game in which bidders simultaneously select trading partners. If this continuation game
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Figure 1: ρ function

possesses an equilibrium then it must also posses an equilibrium in which bidders use pure

strategies.

A second interesting implication of proposition 3.1 is the existence of a function ρ that is

associated to the best response ω′. The existence of this function allows us to write the payoff

of a bidder with valuations (v1, v2) directly in terms of ρ:

U1(v1; ρ, r) =

max

{
0;

ˆ v1

r1

[
1−
ˆ 1

t1

F (ρ(t̂1))f(t̂1)dt̂1

]n−1
dt1

}
(4)

U2(v2; ρ, r) =

max

0;

ˆ v2

r2

[
F (t2)F (ρ−1(t2)) +

ˆ 1

ρ−1(t2)
F (ρ(t̂2))f(t̂2)dt̂2

]n−1
dt2

 (5)

where ρ−1(t2) is defined as follows:

ρ−1(t2) =

{
0 if t2 < ρ(0)

max{t1 ∈ [0, 1] : t2 ≥ ρ(t1)} if t2 ≥ ρ(0)
(6)

Notice that in the construction of the payoff functions we have implicitly used the insight of

McAfee (1993) regarding the probability with which any given bidder trades with each seller:

any bidder with valuations (v1, v2) who plans to bid in seller 1’s auction wins the item when (i)
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no other bidder visits this seller; or (ii) any other participant has a valuation lower than this

bidder’s valuation of the item.

Take any bidder (say bidder 1) and suppose that every other bidder is using a function ρ to

select trading partners5. Intuitively, for values of v1 not too high (and reserve prices below one),

bidder 1’s best response function should deliver a value ρ′(v1) such that the type (v1, ρ
′(v1))

is indifferent about which seller to visit. This value ρ(v1) can, in principle, be obtained by

equating the expected payoffs given in Eq. (4) and (5). Thus, given v1 the number ρ(v1) that

satisfies this equality will have the property that bidder 1 wants to visit seller 1 if and only if

v2 ≤ ρ′(v1) else she visits seller 2 with probability one. The only problem with this approach

is the possibility that there is no value of v2 such that payoffs are equal since Eq. (4) and (5)

depend on the particular ρ function being used by other bidders. In this case, there will be

types of bidder 1 who strictly prefer to visit seller 1 and hence, bidder 1’s best response should

deliver a value of one for any such type.

Formally, bidder 1’s best response is a mapping T taking elements from the set of non-

decreasing and continuous functions defined on [0, 1], and delivering another function ρ′ that

represents bidder 1’s best response to the function ρ used by other bidders. Let R be the set of

continuous and non decreasing functions mapping elements from [0, 1] into R. Bidder 1’s best

response mapping T on R can be defined by: (

(Tρ)(v1) = max{v2 ∈ [0, 1] : U2(v2; ρ, r2) ≤ U1(v1; ρ, r1)} (7)

where U1(v1; ρ, r1) and U2(v2; ρ, r2) are given by Eq. (4) and Eq. (5) respectively. Figure

3.1 gives a graphical representation of the procedure used to obtain bidder 1’s best response

function.

We should point out that any fixed point ρ∗ of T can be used to construct a pure strategy

ω∗ that constitutes a symmetric continuation equilibrium. To see how this works, let ρ∗ be a

fixed point of T and consider the following symmetric pure strategy: ω∗(v, r) = 1 if and only

if v2 ≤ ρ∗(v1) and ω∗(v, r) = 0 if and only if v2 > ρ∗(v1). Suppose that every bidder but

bidder 1 conforms to this strategy. We can compute bidder 1’s payoffs as done in Eq. (4) and

Eq. (5) above. Since ρ∗ is a fixed point of T it satisfies Tρ∗ = ρ∗ and U2(ρ∗(v1); ρ∗, r2) ≤
U1(v1; ρ∗, r1) for all v1 ∈ [0, 1]. Take any type (v1, v2) of bidder 1. First, suppose that

U2(ρ∗(v1); ρ∗, r2) < U1(v1; ρ∗, r1). Then ρ∗(v1) must equal one as otherwise there would be

some ṽ2 such that ρ∗(v1) < ṽ2 < 1 and U2(ρ∗(v1); ρ∗, r2) < U2(ṽ2; ρ∗, r2) ≤ U1(v1; ρ∗, r1), con-

tradicting the fact that ρ∗(v1) = Tρ∗(v1) is the highest such number. It follows that v2 ≤ ρ∗(v1)
and U2(v2; ρ∗, r2) ≤ U2(ρ∗(v1); ρ∗, r2) (because U2 is increasing in v2 from lemma 2) and bidder 1

should visit seller 1 for sure. Second, suppose that U2(ρ∗(v1); ρ∗, r2) = U1(v1; ρ∗, r1). If v1 ≤ r1
then ρ∗(v1) = r2 and it is (weakly) better for bidder 1 to visit seller 1 whenever v2 ≤ ρ∗(v1)

and seller 2 for sure whenever v2 > ρ∗(v1). If v1 > r1 then ρ∗(v1) > r2 and bidder 1 should visit

5Strictly speaking, the function ρ is not a strategy but the function used to describe one. However, once we

know the function ρ we can define the strategy ω′ associated to it as done in proposition 3.1.
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Tρ(v1)

v̂1
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Figure 2: Bidder 1’s Best Response Mapping

seller 1 if and only if v2 ≤ ρ∗(v1) and seller 2 for sure otherwise. Overall, this means that the

pure strategy ω∗ must be bidder 1’s best response to ω∗ and thus, ω∗ is a symmetric (Bayesian)

equilibrium of the bidders’ participation game.

The converse of the previous statement is also true. That is, the function associated to
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any equilibrium strategy must necessarily be a fixed point of T . To see why, suppose that a

symmetric continuation equilibrium exists and let π∗ be the strategy used by bidders in this

equilibrium. From proposition 7, the set of best responses to π∗ must contain a strategy ω∗ that

is characterized by a nondecreasing and continuous function ρ∗ such that ω∗(v, r) = 1 if and only

if v2 ≤ ρ∗(v1) and ω∗(v, r) = 0 if and only if v2 > ρ∗(v1). Since π∗ is a symmetric equilibrium,

the strategy ω∗ must be a best response to itself. If this were not the case, we could construct a

strategy ω′ different from ω∗ that yields a strictly higher payoff than strategy ω∗ for some type

of bidder 1. However, ω∗ is a best response to π∗ and hence, these two strategies must give the

same payoff to every type of bidder 1. This means that the strategy ω′ must yield a strictly

higher payoff to this type of bidder 1 than the payoff associated to strategy π∗, contradicting

the fact that π∗ is a symmetric continuation equilibrium strategy. Since ω∗(v, r) = 1 if and

only if v2 ≤ ρ∗(v1) and ω∗ is a best response to itself, the function ρ∗ must necessarily satisfy

Tρ∗(v1) = ρ∗(v1) for all v1 ∈ [0, 1], which implies that ρ∗ is a fixed point of T .

The previous discussion allows us to redirect questions about existence and uniqueness of

a continuation equilibrium to questions about existence and uniqueness of a fixed point of the

best response operator T . The next theorem establishes existence and uniqueness of such fixed

point.

Theorem 3.3. Consider the bidders’ participation stage game following any history in which

reserve prices (r1, r2) belong to the close interval [c, 1], c > 0. Then, there exists a unique

continuous and nondecreasing function ρ∗ such that Tρ∗ = ρ∗. The function ρ∗ is defined by:

ρ∗(v1) =

{
min{1, r2} if max{r1, r2} = 1

ϕ∗(v1) if max{r1, r2} < 1

where,

ϕ∗(v1) =

{
r2 if v1 < r1

min{z(v1); 1} if v1 ≥ r1
and the function z solves the following equation:

d

dt
z(t) =

(
1−
´ 1
t F (z(τ))f(τ)dτ

F (z(t))F (t) +
´ 1
t F (z(τ))f(τ)dτ

)n−1
t ∈ [r1, 1]

with initial condition z(r1) = r2.

Proof. In the appendix.

The proof of the theorem makes extensive use of some properties of the best response

operator that must hold true no matter what function other bidders use to select trading

partners. For these properties to hold, it is not necessary that v0 is strictly positive (they
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also hold if v0 = 0) but we need a strictly positive v0 in the course of proving existence and

uniqueness of the function z for any arbitrary pair of reserve prices6.

As an example of the properties of T that we exploit, take the case in which r1 = 1. From

Eq. (7), bidder 1’s best response to any function ρ used by other bidders must be constant and

equal to min{1; r2}. To see why, observe that the payoff that bidder 1 expects if she attends to

auction 1 is nonpositive no matter what ρ or v1 is. If r2 = 1 then her expected payoff at auction

2 is also nonpositive and hence, bidder 1 should visit seller 1 with probability one (where she

submits a non-serious bid). If r2 < 1 then bidder 1 will select seller 2 with probability one

whenever her valuation of item 2 is above r2 regardless of the function ρ used by bidders other

than bidder 1. Thus, Tρ(v1) ≡ r2 = min{1; r2}.
Perhaps, the most interesting property arises in cases where both reserve prices are strictly

below one. As our previous discussion suggests, we can –at least in principle, find bidder 1’s

best response to ρ by equating the expected payoffs that bidder 1 would obtain when the other

bidders use the function ρ to select trading partners. This idea works fine so long as the value of

v1 given ρ is not too high as to make impossible to find a value of v2 such that payoffs are equal.

Nonetheless, one would suspect that payoff should be equal at least within some subinterval of

[0, 1]. Part (ii) of the next lemma shows that this is indeed the case and it also summarizes

some other useful properties of the best response operator T .

Lemma 3.4. Suppose that v0 ∈ [0, 1) and let r1 ∈ [v0, 1] and r2 ∈ [v0, 1] be any two reserve

prices announced by sellers 1 and 2 respectively. Then, for any ρ ∈ R:

1. If max{r1, r2} = 1, then Tρ(v1) = min{1; r2} for all v1 ∈ [0, 1];

2. If max{r1, r2} < 1, then:

(i) Tρ(v1) = r2 for all v1 ≤ r1;

(ii) there exists some v̄1 (that may depend on ρ) satisfying r1 < v̄1 ≤ 1 such that

U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r2) for all v1 ∈ [r1, v̄1].

(iii) If v̄1 < 1 then Tρ(v1) = 1 for all v1 ≥ v̄1.

Proof. In the appendix.

As already mentioned, part (ii) of lemma 3.4 is perhaps the most useful property of the

best response operator that we use to show existence and uniqueness of a fixed point for T . To

understand why this is so, recall our discussion about the proof of Proposition 3.1 for the case

in which both reserve prices are strictly below one. The idea was to assign to every v1 ∈ [0, 1]

a number v∗2 ∈ [0, 1] such that U1(v1;π, r1) = U2(v∗2;π, r2). Using the payoff functions given

by Eq. (4) and (5), we can use a similar argument to show existence of a number Tρ(v1)

6Proposition 3.5 below shows how to extend Theorem 3.3 to continuation games in which r1 = r2 and v0 = 0.
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such that U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r2) regardless of whether U1(1; ρ, r1) ≤ U2(1; ρ, r2) or

U1(1; ρ, r1) > U2(1; ρ, r2). In the former case, we can assign a number between r2 and one to

every v1 ∈ [r1, 1] because the highest payoff that any bidder expects if bidding in auction 1

is never greater than the highest payoff that she expects in auction 2. In the latter case, we

can repeat the above process but this time within some non–empty interval of the form [r1, v̄1],

r1 < v̄1 ≤ 1. The value v̄1 may depend on the particular function ρ used by other bidders but

it is not difficult to show that it must always lie strictly above r1.

The above discussion suggests to use part (ii) of lemma 3.4 to construct a necessary condition

for the best response operator in the form of a integro-differential equation that must hold

everywhere with respect to v1 ∈ [r1, v̄1],

dTρ(v1)

dv1
=

(
1−
´ 1
v1
F (ρ(t))f(t)dt

F (Tρ(v1))F (ρ−1(Tρ(v1)) +
´ 1
ρ−1(Tρ(v1))

F (ρ(t))f(t)dt

)n−1
(8)

plus an initial condition Tρ(r1) = r2 that follows from part (i) of the lemma. The numerator

and denominator of the right–hand–side of this last expression are the probabilities of trading

with seller 1 and seller 2 respectively, for a type of bidder whose valuations are (v1, Tρ(v1)),

when every of the remaining (n−1) bidders use the function ρ to select trading partners. Since

any fixed point of T must satisfy Tρ∗ = ρ∗ for all v1 ∈ [0, 1], the above equation gives a condition

that we can exploit to find a fixed point of T . There are two technical difficulties with this

approach. First, the interval within which the above equation holds true is endogenous. Second,

Eq. (8) is an integro–differential equation and hence, it is not possible to directly apply any of

the standard tools from the theory of differential equations to this problem. To overcome these

difficulties we construct an auxiliary problem where we establish existence and uniqueness of a

pair of functions that solve a system of two differential equations related to Eq. (8) that holds

for all v1 ∈ [r1, 1]. In order for this auxiliary problem to possess a unique solution it is sufficient

that v0 be strictly positive. We then use the solution to this auxiliary problem to construct a

unique function ρ∗ and show that this function must be the unique fixed point of T .

A class of continuation games that will arise in chapters 3 and 4 of this dissertation and

that is not covered by theorem 3.3 is the class of continuation games following histories in which

r1 = r2 = 0. As the proof of theorem 3.3 shows in more detail, a v0 > 0 is sufficient to make

the denominator of the left-hand side of Eq. (8) well defined under any possible combination

of reserve prices that sellers may choose. However, a positive value of v0 is stronger than

needed in cases where both reserve prices are equal. Intuitively, if r1 = r2 then sellers can

be considered ex-ante identical so long as valuations are equal. Thus, we may guess that a

bidder with valuations (v1, v2) should prefer to bid in auction 1 (resp. auction 2) whenever

her valuation of item 1 (resp. item 2) is above her valuation of item 2 (resp. item 1) if this

bidder expects everybody else to use this same participation strategy. This gives us ρ∗(v) = v,

v ∈ [0, 1], as a candidate for a fixed point of T even if r1 = r2 = 0. The next result formalizes

this intuition.
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Proposition 3.5. Consider any continuation game following a history in which r1 = r2, with

r1 ∈ [0, 1] and r2 ∈ [0, 1]. Then, the participation strategy:

π(s, r) =

{
1 if v1 ≥ ρ∗(v1)
0 if v1 < ρ∗(v1)

constitutes the unique symmetric equilibrium of this continuation game. The function ρ∗ :

[0, 1]→ [0, 1] is defined by:

ρ∗(v1) =

{
min{1; r2} if max{r1; r2} = 1

ϕ∗(v1) if max{r1; r2} < 1

where:

ϕ∗(v1) =

{
r2 if v1 < r1

v1 if v1 ≥ r1

We outline the proof of the function ρ∗(v1) = v1 being a fixed point of T relegating the proof

of uniqueness to the appendix. From lemma 3.4, the best response operator Tρ∗ must satisfies

Tρ∗(0) = 0 and U2(Tρ∗(v1); ρ∗, r) = U1(v1; ρ∗, r) for v1 ∈ [0, v̄] where v̄ is implicitly defined by

U1(v̄; ρ∗, r) = U2(1; ρ∗, r). As previously mentioned, these two properties of the best response

operator hold true even if v0 is equal to zero. Using Eq. (4) and (5) we obtain the following

payoff functions when bidders other than bidder 1 use this function ρ∗ to select trading partners:

U1(v1; ρ∗, r) =

ˆ v1

0

(
1

2
+
F 2(t)

2

)n−1
dt

and,

U1(v2; ρ∗, r) =

ˆ v2

0

(
1

2
+
F 2(t)

2

)n−1
dt

Hence, v̄ = 1 and U1(v1; ρ∗, r) = U2(v2; ρ∗, r) if and only if v1 = v2. It follows that:

Tρ∗(v1) = max{v2 : U2(v2; ρ∗, r) ≤ U1(v1; ρ∗, r)}
= v1

= ρ∗(v1)

for every v1 ∈ [0, 1], which shows that ρ∗(v1) = v1, v1 ∈ [0, 1], is a fixed point of T when r1 = r2
and v0 ≥ 0.

3.2 Heterogeneity as a Coordination Device

We end this section with some discussion about the role played by heterogeneity in the selection

of trading partners, and how this selection rule is affected by changes in reserve prices. Observe
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that apart from providing a complete and novel characterization of the set of (symmetric) par-

ticipation rules, Theorem 3.3 also rules out randomization in the selection of trading partners.

Indeed, theorem 3.3 shows that the set of types who wish to randomize between sellers (those

lying on the cutoff function) must have zero measure. Perhaps more importantly, this lack of

randomization is a property that must hold true in every symmetric continuation equilibrium

of the game. This differentiates our model from current models in the literature where bidders

always randomize in their choices of trading partners7, which in turn introduces frictions in

the market due to a coordination failure. Contrary to this, the introduction of heterogeneity

eliminates this market friction by coordinating the visiting decisions of bidders. In this sense,

heterogeneity acts as a device that rules out market frictions due to coordination problems in

the selection of trading partners.

A second issue closely related to the previous one is the way in which changes in some

reserve price affect bidders’ visiting decisions. The literature on competing auctions (Peters

and Severinov, 1997; Burguet and Sakovics, 1999; Virag, 2010) has shown that in the case of

homogeneous goods, a change in some seller’s reserve price changes the set of types that visits

an auction but it does not change the probability with which each bidder participates. Thus,

a higher reserve price has the effect of shutting down the participation of those bidders whose

valuations are close to the reserve price, making less likely that bidders with high valuations

face an opponent. As Peters (2010) points out, this means that sellers who compete in auctions

do not compete directly for the high valuation bidders since only low valuation types alter

their behavior in response to changes in reserve prices. This is no longer true when items are

assumed to be heterogeneous. As shown by theorems 3.2 and 3.3, bidders use functions to select

trading partners and hence, changes in some reserve price will have an effect on the participation

decisions of the whole set of types. In particular, some bidders with high valuations will also

respond by shifting from the high-reserve to the low–reserve price auction. This additional shift

in the number of bidders who now find profitable to attend to the low–reserve price auction will

reduce expected traffic, adding a new channel through which reserve prices affect sellers profits.

Proposition 3.6. Take any two distinct pair of reserve prices (r1, r2) and (r̂1, r2), with r1 < r̂1.

Let ρ(·; (r1, r2)) and ρ(·; (r̂1, r2)) be the equilibrium functions used by bidders to select trad-

ing partners when reserve prices are (r1, r2) and (r̂1, r2) respectively. Then, ρ(v1; (r1, r2)) ≥
ρ(v1; (r̂1, r2)) for every v1 ∈ [0, 1]. Furthermore, if r2 < 1 then there exists a nonempty interval

Ω ⊆ [0, 1] such that ρ(v1; (r1, r2)) > ρ(v1; (r̂1, r2)) for all v1 ∈ Ω.

Proof. In the appendix.

7These models also admit continuation equilibria in which bidders choose trading partners using pure strate-

gies. However, such continuation equilibria require some sort of sunspot that allows bidders to coordinate on

their visiting decisions.
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3.3 Sellers’ Game

The existence of a function ρ∗ that can be associated to a (pure) strategy equilibrium in the

bidders’ continuation game makes it possible to describe sellers’ reduced form payoffs using the

function ρ∗. Suppose that sellers announce some pair of reserve prices r1 ∈ [c, 1] and r2 ∈
[c, 1] respectively, and that bidders’ choice of trading partners is described by the continuation

equilibrium strategy ω∗ characterized by the function ρ∗ . Take seller 1. It is not difficult to

check that if r1 = 1 then seller 1’s expected profit must be equal to zero8. In all other cases,

seller 1’s (resp. seller 2’s) expected revenue must be equal to the sum of the revenue that the

seller expects when a single bidder visits his auction plus the revenue that he expects when two

or more bidders visits him. Therefore, all that we need to know to compute seller’s payoff is the

probability with which any given bidder visits his auction, and the expected value of the second

highest type of those bidders who chooses to visit the auction, whenever two or more bidders

visit. From proposition 3.1 any bidder with valuations (v1, v2) visits seller 1 with probability

one if and only if v2 < ρ∗(v1); otherwise she visits seller 2 with probability one. Therefore, the

probability that a bidder visits seller 1, q∗ := q(ρ∗), is:

q∗ =

ˆ 1

0

{ˆ ρ∗(v1)

0
dF (v2)

}
dF (v1)

=

ˆ 1

0
F (ρ∗(v1))dF (v1)

which yields an expected revenue for seller 1 in case he receives a single visitor equal to:

n(r1 − c)q∗ [1− q∗]n−1

Let G∗1(v1) := G1(v1; ρ
∗) be the probability that a bidder with valuation v1 trades with

seller 1 when there are two or more bidders bidding in auction 1. From proposition 3.1, this

probability is given by:

G∗1(v1) =

[
1− q∗ +

ˆ v1

0
F (ρ∗(ξ))dF (ξ)

]
=

[
1−
ˆ 1

v1

F (ρ∗(ξ))dF (ξ)

]
which gives us the expected revenue when two or more bidders bids in auction 1:

n(n− 1)

ˆ 1

r1

(t1 − c) [1−G∗1(t1)] [G∗1(t1)]
n−2 dG∗1(t1)

Let V +(r1, r2; ρ
∗) be defined by:

8If r1 = r2 = 1 then every bidder visits seller 1 for sure. However, as v1 ≤ r1 for all v1 ∈ [0, 1], bidders

submit non-serious bid equal to c. If r2 < 1 then ρ∗(v1) ≡ r2 and again, any bidder who visits seller 1 submits a

non–serious bid equal to c. Hence, seller 1’s profit is equal to zero whenever r1 = 1, r2 ∈ [c, 1].
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V +
1 (r1, r2; ρ

∗) =

n(r1 − c)q∗ [1− q∗]n−1 + n(n− 1)

ˆ 1

r1

(t1 − c) [1−G∗1(t1)] [G∗1(t1)]
n−2 dG∗1(t1)− c(1− q∗)n

Therefore, seller 1’s payoff when r1 ∈ [c, 1) (seller 2’s payoff can be derived likewise) is:

V1(r1, r2; ρ
∗) =

{
0 if r1 = 1

V +
1 (r1, r2; ρ

∗) if c ≤ r1 < 1

Although the payoff functions may have discontinuities, such discontinuities will occur at

r1 = 1 (resp. r2 = 1). As we show in the appendix, this kind of discontinuities do not preclude

the existence of an equilibrium (in mixed strategies) for our game.

Proposition 3.7. The competing auction game with heterogeneous goods admits a Perfect

Bayesian equilibrium in which bidders follow symmetric strategies.

Proof. In the appendix.

The previous proposition settles the question of equilibrium existence. However, the the-

orem does not ensure that there exists an equilibrium in which sellers use pure strategies. In

general, showing existence of pure-strategy equilibria in competing auction games is a complex

task because it usually requires some form of concavity of payoff functions, which is an endoge-

nous component in this class of games. Furthermore, the lack of a close–form solution for the

continuation equilibrium function ρ∗ adds another layer of complexity to the analysis of pure

strategy equilibria.

3.4 The 2× 2 case

Apart from Virag (2010), the only other paper that addresses the question of existence of pure–

strategy equilibria is Burguet and Sakovics (1999). In their model, two sellers with unit supply

compete by positing reserve prices. These authors have shown that the equilibrium probability

of posting a reserve price equal to zero is nil, and that this probability remains nil even if the

number of bidders grows very large. Intuitively, when the number of sellers is restricted to two,

a unilateral increase of a reserve price only affects the pool of types that visits each seller but it

does not affect the probability with which each seller visits. This means that a higher reserve

price increases the probability of selling to bidders with higher valuations, which is achieved

by eliminating bidders with relatively low valuations. Peters and Severinov (1997), Burguet

and Sakovics (1999), and Virag (2010) have all shown that rising a reserve price has an effect

only on the participation decision of bidders whose valuations are close to the reserve prices

leaving unchanged this probability for high valuation bidders. Thus, when reserve prices are
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close to production costs, unilaterally increasing a reserve price has almost no cost to the seller

because only bidders with very low valuations are banned from participating in the auction.

This effect remains positive so long as sellers have the ability to affect the utility levels of bidders

(by changing the composition of the pool of visitors), which does not depend on the number of

buyers present in the market. With heterogeneous goods, bidders use functions to select trading

partners and changes in some reserve price have the potential to affect the participation of the

whole set of types. In particular, changes in reserve prices affect the participation decisions of

bidders with high valuations who were just indifferent before the change in the reserve price

took place, lowering the expected traffic. This traffic effect tends to offset the positive effect

(on profits) of the screening effect and whether this last effect is strong enough to countervail

the first depends on the number of potential customers.

Proposition 3.8. Take any two distinct pair of reserve prices (r1, r2) and (r̂1, r2), with r1 < r̂1.

Let ρ∗ and ρ̂ be the functions used by bidders to select trading partners when reserve prices are

(r1, r2) and (r̂1, r2) respectively. Then, ρ∗(v1) ≥ ρ̂(v1) for every v1 ∈ [0, 1] with strict inequality

for some nonempty subset Ω ⊆ [0, 1].

Proof. In the appendix.

We are now ready to state the main result of this subsection. Suppose that seller 1 unilateral

increases reserve price r1. Then, Proposition 3.8 ensures that such increase will induce bidders

with low and high valuations to stop visiting seller 1. This negative traffic effect becomes

stronger the larger the number of bidders in the market. Thus, for a number of bidders high

enough, we should expect sellers’ profits to be decreasing in their own reserve prices leading to

the existence of a pure strategy equilibrium in which both sellers post reserve prices equal to

production costs.

Proposition 3.9. Suppose that there are two sellers and two bidders participating in the market.

Then there is an equilibrium in which both sellers post reserve prices equal to production costs.

Proof. In the appendix.

4 Concluding Remarks

The purpose of this paper is to show the consequences of the introduction of heterogeneity

in bidders’ tastes in models where seller compete for the attention of bidders through reserve

price offers. In our model, two sellers running second-price auctions post nonnegative reserve

prices which direct the attention of several bidders who attach different valuations to the items

offered. We provide a complete and novel characterization of the set of continuation equilibria

in which bidders use symmetric participation rules. This characterization allows us to show

that heterogeneity acts as a coordinating device by reducing the probability that any two given
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bidders meet at the same auction. Indeed, we show that the set of types willing to choose trading

partners at random has measure zero. Intuitively, this is true because once a bidder has decided

to attend to auction j, her payoff in this auction depends on his valuation of this particular

item alone. This creates a difference with respect to models in which items are assumed to be

homogeneous. In these models, the only asymmetry among sellers is given by the reserve price

set by each seller. Thus, after adjusting bidders’ payoffs to incorporate these asymmetries,

items become essentially the same thing to the eyes of bidders and it results natural that

bidders select sellers at random. However, when items are heterogeneous differences among

sellers remain even after we have accounted for the asymmetries produced by reserve prices.

As bidders attach different values to different items, the decision about attending to auction j

or some other auction reduces to the comparison of expected rents. Since the expected rent at

seller j’s depends on vj alone (for any given vector of reserve prices) and this rent is increasing

in the valuation of item j, the event of having a bidder indifferent among all auctions should

be a zero-measure event.

A consequence of the way bidders select trading partners is the effect caused by changes in

reserve prices. When items are assumed homogeneous, a unilateral decrease in seller j’s reserve

price affects the participation decisions of two types of bidders: (i) those who were not visiting

but now find profitable to do so; (ii) some bidders who were mixing among some subset of

sellers. However, bidders with high valuations do not change the probability with which they

visits each seller. This is no longer true when goods are heterogeneous: unilateral changes

in reserve prices affect not only the composition of the pool of types who visit but also the

probability with which every bidder visits the auctions, including those with high valuations.

This introduces a novel trade–off between traffic and screening effects is not present in models

with homogeneous goods.

Finally, we show that in the 2–seller 2–bidders case there exists a pure-strategy equilibrium

in which sellers post reserve prices equal to production costs. As unilaterally increases in some

reserve price eliminates not only low-valuation but also eliminates high-valuation bidders who

were just indifferent before the change in the reserve price, when there are just two bidders

the fierce competition to capture these bidders forces sellers to post reserve prices equal to

production costs.
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Appendix

Proof of Theorem 3.3

The following lemma will prove useful in the main proof of the theorem.

Lemma 4.1. Let r1 ∈ [c, 1] and r2 ∈ [c, 1] be any two reserve prices announced by sellers 1 and

2 respectively. Then, for any ρ ∈ R:

1. If max{r1, r2} = 1, then Tρ(v1) = min{r1; r2} for all v1 ∈ [0, 1];

2. If max{r1, r2} < 1, then:

(i) Tρ(v1) = r2 for all v1 ≤ r1;

(ii) there exists some v̄1 (that may depend on ρ) satisfying r1 < v̄1 ≤ 1 such that

U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r2) for all v1 ∈ [r1, v̄1].

(iii) If v̄1 < 1 then Tρ(v1) = 1 for all v1 ≥ v̄1.

Proof. To prove part (1), consider the case in which r1 = 1 and r2 < 1 (the other cases are

handled likewise). Then, U1(·; ρ, r1) = 0 no matter what v1 or ρ is, and U2(v2; ρ, r2) > 0 for

v2 ∈ [r2, 1]. Therefore, bidder 1’s optimal response to any ρ must be to visit seller 1 (resp. seller

2) with probability zero (resp. probability one) whenever her valuation of item 2 is above r2.

This means that Tρ(v1) = r2 = min{r1, r2} for all v1 ∈ [0, 1] and all ρ ∈ R.

Next, we prove (i) of part (2). Take any type (v1, v2) such that v1 ≤ r1. Then, U(v1; ρ, r1) =

0 for all ρ ∈ R and hence,

Tρ(v1) = max {v2 ∈ [0, 1] : U2(v2; ρ, r2) ≤ U1(v1; ρ, r1)}
= r2

for all v1 ≤ r1 and all ρ ∈ R. To prove (ii) and (iii), let I1 = [0, ū1] and I2 = [0, ū2] be

the (compact) image of U1(·; ρ, r1) and U2(·; ρ, r2) on [r1, 1] and [0, 1] respectively. It is almost

immediate that I1 ∩ I2 6= ∅ because U1(r1; ρ, r1) = 0 = U2(r2; ρ, r2), regardless of ρ. Consider

the following two cases.

(i) I1 ⊆ I2. Then, U1(·; ρ, r1) ∈ I2 for every v1 ∈ [r1, 1]. From the intermediate value theorem

we can assign to every v1 ∈ [r1, 1] a number v∗2 ∈ [0, 1] such that U1(v1; ρ, r1) = U2(v∗2; ρ, r2).

Moreover, the fact that U2 is increasing in v2 > r2 and U2(v2; ρ, r2) = 0 for all v2 ∈ [0, r2],

ρ ∈ R, implies that this number must be unique. Since Tρ(v1) delivers the maximum number

such that U2(v2; ρ) ≤ U1(v1; ρ) holds, Tρ(v1) = v∗2, and U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r1) for all

v1 ∈ [r1, 1].

(ii) I2 ⊂ I1. Then, there are values of v1 such that U1(·; ρ, r1) falls outside the range of

U2(·; ρ, r2). From Eq. (5), U2(1; ρ, r2) ≥ [F (c)]n−1(1 − r2) > 0 because r2 < 1 and c > 0.
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Moreover, lemma 2 ensures that U1 is a continuous function of v1 for any ρ ∈ R. Therefore,

there must be a number v̄ ≤ 1 such that v̄ = max{v1 ∈ [0, 1] : U1(v1; ρ, r1) ≤ U2(1, ρ, r2)}.
Furthermore, the number v̄ must be strictly greater than r1 because v̄ = r1 would imply the

existence of some other number ṽ > v̄ such that U1(ṽ; ρ, r1) = U2(1, ρ, r2), contradicting the

fact that v̄ is the maximum such number. Using a similar argument to the one employed in

case (i) above allows to assign to every v1 ∈ [0, v̄1] a number v∗2 ∈ [0, 1] such that U1(v1; ρ, r1) =

U2(v∗2; ρ, r2), and since Tρ(v1) delivers the maximum number such that U2(v2; ρ) ≤ U1(v1; ρ),

U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r1) for all v1 ∈ [r1, v̄]. For values of v1 greater than v̄, U1(v1; ρ, r1) >
U2(1; ρ, r2) and hence, Tρ(v1) = 1 for all v1 ≥ v̄. This completes the proof of (ii) and (iii) of

the lemma.

The proof of the theorem is organized in two cases. The first case covers continuation games

following histories in which at least one reserve price is equal to one whereas the second one

covers continuation games in which both reserve prices are strictly below one.

Case 1. Suppose that max{r1, r2} = 1. Then, part (1) in lemma 4.1 ensures that Tρ(v1) =

min{r1, r2} holds for all v1 ∈ [0, 1] and all ρ ∈ R. In particular, this must hold for ρ∗(v1) ≡
min{r1, r2} and therefore, Tρ∗(v1) = min{1, r2} ≡ ρ∗(v1), which implies that ρ∗ is the unique

fixed point of T .

Case 2. Suppose that max{r1, r2} < 1. Then, part (2) of lemma 4.1 ensures the existence of

some nonempty interval [r1, v̄1] such that U1(v1; ρ, r1) = U2(Tρ(v1); ρ, r2), v1 ∈ [r1, v̄1]. Since

this equation holds for every v1 ∈ [r1, v̄1], U1 is strictly increasing in v1, Tρ(r1) = r2 from part

(i) of lemma 4.1, and U2 is increasing in v2 > r2, the function Tρ must be strictly increasing

with respect to v1 within the interval [r1, v̄1] and hence, differentiable everywhere with respect

to v1 in (r1, v̄1):

dTρ(v1)

dv1
=

(
1−
´ 1
v1
F (ρ(t))f(t)dt

F (Tρ(v1))F (ρ−1(Tρ(v1)) +
´ 1
ρ−1(Tρ(v1))

F (ρ(t))f(t)dt

)n−1
where the numerator (resp. denominator) is the slope of U1 (resp. U2), i.e., the probability

of trading with seller 1 (resp. seller 2) when bidder 1’s valuations are (v1, Tρ(v1)) and the

remaining (n − 1) bidders use the function ρ. Moreover, if ρ∗ is a fixed point of T , then

Tρ∗ = ρ∗ and the above equation becomes:

dρ∗(v1)

dv1
=

(
1−
´ 1
v1
F (ρ∗(t))f(t)dt

F (ρ∗(v1))F (ρ∗−1(ρ∗(v1)) +
´ 1
ρ∗−1(ρ∗(v1))

F (ρ∗(t))f(t)dt

)n−1

where ρ∗−1(ρ−1(v1)) may differ from v1 if v̄1 < 1 (if v̄1 = 1 then ρ∗ is increasing in [r1, 1] and

hence, ρ∗−1(ρ∗(v1)) = v1). Although this last equation holds for v1 less or equal to v̄1 (and

v̄1 depends on the particular function ρ), we can use it to construct a fixed point under the

assumption that it holds for all [r1, 1], as the next lemma shows.
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Lemma 4.2. Suppose that there exists a continuous and increasing function z : [r1, 1] → R
that satisfies:

dz(v1)

dt
=

(
1−
´ 1
v1
F (z(t1))f(t1)dt1

F (z(v1))F (v1) +
´ 1
v1
F (z(τ))f(τ)dτ

)n−1
z(r1) = r2

where F is an absolutely continuous distribution function with strictly positive and bounded

density f , and support [0, 1] (and hence, F (x) = 0 for x < 0 and F (x) = 1 for x > 1), and

r1 ∈ (c, 1), r2 ∈ (c, 1), c > 0. Define ρ∗ as follows:

ρ∗(v1) =

{
r2 if v1 < r1

min{z(v1), 1} if v1 ≥ r1

Then, ρ∗ is a fixed point of T .

Proof. From part (i) in lemma 4.1, Tρ∗(v1) = r2 = ρ∗(v1) whenever v1 < r1. Hence, let

v1 ≥ r1. Suppose that bidders other than bidder 1 uses the function ρ∗ defined in the lemma.

From McAfee (1993), the probability that bidder 1 trades with seller j when her valuation is

vj is equal to the probability that no other bidder visits seller j plus the probability that any

other participant has a valuation lower than vj . Then,

H1(t1; ρ
∗, r1) =

(
1−
ˆ 1

t1

F (min{z(t̂1), 1})f(t̂1)dt̂1

)n−1
for all t1 ≥ r1. Since F (x) = 1 for all x ≥ 1, F (min{z(v1), 1}) = F (z(v1)) for all v1 ∈ [r1, 1]

and hence,

H1(t1; ρ
∗, r1) =

(
1−
ˆ 1

t1

F (min{z(t̂1), 1})f(t̂1)dt̂1

)n−1
=

(
1−
ˆ 1

t1

F (z(t̂1))f(t̂1)dt̂1

)n−1
= H1(t1; z, r1)

for all t1 ∈ [r1, 1]. Therefore,

U1(v1; ρ∗, r1) =

ˆ v1

r1

(
1−
ˆ 1

t1

F (z(t̂1))f(t̂1)dt̂1

)n−1
dt1

= U1(v1; z, r1)
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Let u(t1) =
´ z(t1)
r2

H2(t2, z, r2)dt2 where,

H2(t2; z, r2) =

(
F (t2)F (z−1(t2)) +

ˆ 1

z−1(t2)
F (z(t̂1))f(t̂1)dt̂1

)n−1
Then, du = H2(z(t), z, r2)ż(t)dt and,

ˆ v1

r1

du = u(v1)− u(r1)

=

ˆ z(v1)

r2

H2(t2; z, r2)dt2

=

ˆ v1

r1

H1(t1; z, r1)dt1

where:

H1(v1; z, r1) =

(
1−
ˆ 1

t1

F (z(t̂1))f(t̂1)dt̂1

)n−1
because z solves problem P. From part (ii) of lemma 4.1, bidder 1’s best response Tρ∗(v1) must

satisfy

ˆ v1

r1

(
1−
ˆ 1

t1

F (ρ∗(t̂1))f(t̂1)dt̂1

)n−1
dt1 =

ˆ Tρ∗(v1)

r2

(
F (t2)F (ρ∗−1(t2)) +

ˆ 1

ρ∗−1(t2)
F (ρ∗(t1))f(t1)dt1

)
dt2

for some nonempty interval [r1, v̄1]. Since U1(v1; ρ∗, r1) = U1(v1; z, r1) for all v1 ∈ [r1, 1],

U2(Tρ∗(v1); ρ∗, r1) = U2(z(v1); z, r1)

=

ˆ z(v1)

r2

(
F (t2)F (z−1(t2)) +

ˆ 1

z−1(t2)
F (z(t1))f(t1)dt1

)
dt2

for all v1 ∈ [r1, v̄1] because U1(v1; z, r1) = U2(z(v1); z, r2) since z solves problem P. Since v1 ≥ r1,
and H2(v2; ρ

∗, r2) > 0, U2 is strictly increasing in v2 ∈ [r2, 1]. Therefore, the value v∗2 ∈ [0, 1]

satisfying U1(v1; ρ∗, r1) = U2(v∗2; ρ∗, r2) must be unique and thus, Tρ∗(v1) = z(v1) ≤ 1 for all

v1 ∈ [r1, v̄1]. If v̄1 = 1 then, Tρ∗(v1) = z(v1) for all v1 ∈ [r1, 1] and Tρ∗(v1) = min{z(v1), 1} =

ρ∗(v1). If v̄1 < 1, then Tρ∗(v̄1) = z(v̄1) = 1 because Tρ∗(v1) = 1 for all v1 ∈ [v̄1, 1] from part

(ii) in lemma 4.1. Since z solves problem P, it is a strictly function of v1 ∈ [r1, 1]. Therefore,

z(v1) > z(v̄1) = 1 for all v1 ∈ [v̄1, 1] and thus, min{z(v1); 1} = 1 whenever v1 ∈ [v̄1, 1] and

Tρ∗(v1) = 1 = min{z(v1); 1} = ρ∗(v1) if v̄1 < 1. Therefore, Tρ∗(v1) = ρ∗(v1) for all v1 ∈ [0, 1]

and ρ∗ as defined in the lemma must be a fixed point of T .

The rest of the proof is intended to show existence of a function z.
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Proposition 4.3. Let F be an absolutely continuous distribution function with support [0, 1]

(hence, it satisfies F (s) = 0 for all s < 0, F (s) = 1 for all s > 1), and strictly positive and

bounded density f , and let r1 and r2 be scalars satisfying r1 ∈ (c, 1), r2 ∈ (c, 1), with c ∈ (0, 1).

Then, there exists a unique continuous and increasing function z∗ : [r1, 1] → R that solves the

following (Problem P):

dz∗(v1)

dv1
=

(
1−
´ 1
v1
F (z∗(t))f(t)dt

F (z∗(v1))F (v1) +
´ 1
v1
F (z∗(t))f(t)dt

)n−1
(9)

z∗(r1) = r2 (10)

Proof. A solution to the above Problem P is a continuous and increasing function defined on

the closed and compact interval [r1, 1] that satisfies the integro–differential equation (9), and

the initial condition (10). Our plan to demonstrate that this problem admits a unique solution

is the following. First, we will use standard tools from the theory of differential equations to

show existence and uniqueness of a pair of continuous functions that solves the following initial

value problem:

dφ(t)

dt
=

(
1− φ2(t)

F (φ1(t))F (t) + φ2(t)

)n−1
dφ2(t)

dt
= −F (φ1(t))f(t)

φ1(r1) = r2

φ2(r1) = θ

where θ ∈ (0, 1). Second, we will use this solution –call it (φθ1;φ
θ
2), to show existence of a unique

root θ∗ to the equation:

φθ2(1) = 0 (11)

that will allow us to uniquely express φθ
∗

2 in terms of φθ
∗

1 :

φθ
∗

2 (t) = φθ
∗

2 (1) +

ˆ 1

t
F (φθ

∗
1 (t))f(t)dt

=

ˆ 1

t
F (φθ

∗
1 (t))f(t)dt

Third, we will use φθ
∗

2 into the above initial value problem to obtain a unique continuous

and increasing function φθ
∗

1 that satisfies:

dφθ
∗

1 (t)

dt
=

(
1−
´ 1
t F (φθ

∗
1 (t))f(t)dt

F (φθ
∗

1 (t))F (t) +
´ 1
t F (φθ

∗
1 (t))f(t)dt

)n−1
φθ
∗

1 (r1) = r2

showing that Problem P has indeed a unique solution with the desired properties.
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Lemma 4.4. There exists a unique pair of continuous functions defined for all t ∈ [r1, 1] that

solves the following initial value problem:

dφ(t)

dt
=

(
1− φ2(t)

F (φ1(t))F (t) + φ2(t)

)n−1
dφ2(t)

dt
= −F (φ1(t))f(t)

φ1(r1) = r2

φ2(r1) = θ

with θ ∈ (0, 1).

Proof. Consider the domain:

D =
{

(t, y1, y2) ∈ R3 : c ≤ t ≤ 1; c ≤ y1 <∞; 0 ≤ y2 <∞
}

and the mapping h : D → R2:

h(t,y) = [h1(t,y);h2(t,y)]

h1(t,y(t)) =

(
1− y2

F (y1)F (t) + y2

)n−1
h2(t,y(t)) = −F (y1)f(t)

where y = (y1, y2) ∈ R2. Notice that the denominator of h1 is positive on D because y1 and t

both bounded away from zero and F increasing ensure that F (y1)F (t) + y2 ≥ F 2(c) > 0 for all

(t,y) ∈ D.

Claim 4.5. The mapping h(t,y) is uniformly continuous with respect to t, bounded, and Lips-

chitz continuous in y on D.

Proof. As F is a continuous function, F (s) > 0 for s > 0, y1 ≥ c > 0, and t ≥ r1 > 0, h1(t,y)

and h2(t,y) are continuous functions with respect to t. Moreover, t belongs to the compact

interval [r1, 1] and by the Heine–Cantor theorem, both h1(t,y) and h2(t,y) must be uniformly

continuous functions of t.

In what follows, if x ∈ R then |x| denotes Euclidean norm in R whereas if x ∈ Rn |x| denotes

the 1-norm, i.e., |x| := |x|1 =
∑2

i=1 |x1|. We now show that there exists a constant B > 0 such

that |h(t,y)| ≤ B for all (t,y) ∈ D. First, as f̄ is a bound for f and F (s) = 1 for all s ≥ 1,

|−F (y1)f(t)| ≤ f̄ for all (t,y) ∈ D. Second, for every (t,y) ∈ D:

1− y2
F (y1)F (t) + y2

≤ 1− y2
F 2(c)

≤ 1

F 2(c)
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because F (y1)F (t) + y2 ≥ F 2(c) and y2 ≥ 0. Hence, (1/F 2(c))n−1 is an upper bound for h1.

Similarly,

1− y2
F (y1)F (t) + y2

≥ 1− y2
1 + y2

since F (s) ≤ 1 for all s ∈ R. Let y2 tend to ∞. It is not difficult to check that the right–hand

side of this expression tends to −1. Therefore,

1− y2
F (y1)F (t) + y2

≥ 1− y2
1 + y2

> −1

and h1(t,y) ≤ (−1)n−1 for all (t,y) ∈ D. Since F (c) < 1, −
(

1
F 2(c)

)n−1
< (−1)n−1 for any

n ≥ 2 finite. It follows that |h1(t,y)| ≤
(

1
F 2(c)

)n−1
and B = max

{(
1

F 2(c)

)n−1
; f̄

}
is a bound

for h(t,y), (t,y) ∈ D.

Finally, we show that h(t,y) is (globally) Lipschitz continuous with respect to y. To demon-

strate this, we need to produce a positive constant M > 0, independent of (t,y) ∈ D, satisfying:

|H(t; y1)−H(t; y2)| ≤M |y1 − y2|

for every (t,y1) ∈ D and (t,y2) ∈ D. Simple computations yield:

∂h1(t,y)

∂y1
= −(n− 1)

(
1− y2

F (y1)F (t) + y2

)n−1( (1− y2)f(y1)F (t)

(F (y1)F (t) + y2)
2

)
(12)

∂h1(t,y)

∂y2
= −(n− 1)

(
1− y2

F (y1)F (t) + y2

)n−1( F (y1)F (t) + 1

(F (y1)F (t) + y2)
2

)
(13)

∂h2(t,y)

∂y1
= −f(y1)f(t) (14)

It is almost immediate that |−f(y1)f(t)| ≤ f̄2 and hence, ∂h2(t,y)
∂y1

is bounded by f̄2. Next,∣∣∣∣ 1− y2
F (y1)F (t) + y2

∣∣∣∣ ≤ 1

F 2(c)

and, ∣∣∣∣ (1− y2)f(y1)F (t)

(F (y1)F (t) + y2)
2

∣∣∣∣ =

∣∣∣∣ (1− y2)
F (y1)F (t) + y2

∣∣∣∣ ∣∣∣∣ f(y1)F (t)

F (y1)F (t) + y2

∣∣∣∣
≤

(
1

F 2(c)

)(
f̄

F 2(c)

)
and, ∣∣∣∣ F (y1)F (t) + 1

(F (y1)F (t) + y2)
2

∣∣∣∣ ≤ 2

F 2(c)
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for every (t,y) ∈ D. Therefore,

∣∣∣∣∂h1(t,y)

∂y1

∣∣∣∣ ≤ (n− 1)

(
1

F 2(c)

)n−1( f̄

F 2(c)

)
= m1∣∣∣∣∂h1(t,y)

∂y2

∣∣∣∣ ≤ (n− 1)

(
1

F 2(c)

)n−1( 2

F 2(c)

)
= m2∣∣∣∣∂h2(t,y)

∂y1

∣∣∣∣ ≤ f̄2

= m3

and all these three derivatives are continuous and bounded functions in D, with bounds in-

dependent of (t,y) ∈ D. Set M = max{m1,m2,m3} > 0. Then, standard arguments imply

that:

|H(t,y1)−H(t,y2)| ≤M |y1(t)− y2(t)|
holds true for every (t,y1) ∈ D and (t,y2) ∈ D.

Consider the space C of continuous vector–valued functions φ = (φ1, φ2), φi : [r1, 1]→ R, i =

1, 2, equipped with the sup norm, ‖φ‖ = sup {|φ(t)| ; t ∈ [r1, 1]}. LetD = {φ ∈ C : ‖φ− φ0‖ ≤ B;φ0 = (r2, θ)} ⊂
C, where B = max

{(
1

F 2(c)

)n−1
; f̄

}
be the subset of continuous and increasing functions whose

graph belong to D . Then, D is a complete metric space because D is a closed subset of a com-

plete metric space. Define the operator K by:

Kφ(t) = φ0 +

ˆ t

r1

h(τ, φ(τ))dτ

φ0 = (r2, θ)

Claim 4.6. K maps D into itself.

Proof. First, from claim 2 the mapping h(t, φ(t)) is continuous in t on D. Since the integral

sign preserves continuity, Kφ(t) must also be continuous in t ∈ [r1, 1] when φ ∈ D. Second,

|Kφ(t)− φ0(t)| ≤
ˆ t

r1

|h(τ, φ(τ))| dτ

≤ (t− r1)B
< B

and B is an upper bound of |Kφ(t)− φ0(t)|, t ∈ [r1, 1]. Hence,

‖Kφ− φ0‖ = sup {|Kφ(t)− φ0(t)| ; t ∈ [r1, 1]}
≤ B
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and KY ∈ D. Therefore, for any given φ ∈ D the operator K delivers a continuous function

that satisfies ‖Kφ− φ0‖ ≤ B and hence, Kφ ∈ D.

Claim 4.7. Let L(t) = M
´ t
r1
dτ . For every t ∈ [r1, 1] the operator K satisfies:

|Kmφ(t)−Kmρ(t)| ≤ L(t)m

m!
sup

t∈[r1,1]
|φ(t)− ρ(t)| (15)

where m ∈ N0, K
mφ(t) = K[Km−1φ](t), K0φ(t) = φ, and φ ∈ D, ρ ∈ D.

Proof. Set m = 1. Then,

|Kφ(t)−Kρ(t)| ≤
ˆ t

r1

|h(τ, φ(τ))− h(τ, φ(τ))| dτ

≤
ˆ t

r1

M |φ(τ)− ρ(τ)| dτ

≤ L(t) sup
t∈[r1,1]

|φ(t)− ρ(t)|

where the second inequality follows from claim 2. Next, suppose that inequality (15) holds for

some m > 1. Then,∣∣Km+1φ(t)−Km+1ρ(t)
∣∣ = |K[Kmφ](t)−K[Kmρ](t)|

≤
ˆ t

r1

|h(τ,Kmφ(τ))− h(τ,Kmρ)| dτ

≤
ˆ t

r1

M |Kmφ(τ)−Kmρ(τ)| dτ

≤
ˆ t

r1

M
L(τ)m

m!
sup

s∈[r1,τ ]
|φ(s)− ρ(s)| dτ

=

ˆ t

r1

L′(τ)
L(τ)m

m!
sup

s∈[r1,τ ]
|φ(s)− ρ(s)| dτ

=
L(t)m+1

(m+ 1)!
sup

t∈[r1,1]
|φ(t)− ρ(t)|

where the third line follows from claim 2, the fourth line follows from the induction hypothesis,

and the sixth line follows from integration by substitution. This shows that (15) also holds for

m+ 1 and hence, it must hold for any m ∈ N0.

Let θm = L(1)m
m! . Observe that

∑∞
m=1 θm <∞ and hence, this sum converges. Moreover,

|Kmφ(t)−Kmρ(t)| ≤ L(t)m

m!
sup

t∈[r1,1]
|φ(t)− ρ(t)|

≤ θm sup
t∈[r1,1]

|φ(t)− ρ(t)|
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and θm supt∈[r1,1] |φ(t)− ρ(t)| is a bound for |Kmφ(t)−Kmρ(t)|. Therefore,

‖Kmφ(t)−Kmρ(t)‖ ≤ θm ‖φ(t)− ρ(t)‖

and since θm → 0 as m → ∞, there is some m∗ such that Km∗φ is a contraction. Therefore,

Theorem 9-9 in (Kreider, Kuller, and Ostberg, 1968) ensures the existence of a unique fixed

φθ of K. Since φθ is a fixed point of K its graph must belong to D, which implies that φθ is

defined for all t ∈ [r1, 1].

From lemma 2 there exists a unique vector–valued function φθ = (φθ1, φ
θ
2) that satisfies:

dφθ1(t)

dt
=

(
1− φθ2(t)

F (φθ1(t))F (t) + φθ2(t)

)n−1
(16)

dφθ2(t)

dt
= −F (φθ1(t))f(t) (17)

φθ1(r1) = r2 (18)

φθ2(r1) = θ (19)

Consider the relation:

φθ2(1) = 0

We want to show that there exists a unique θ∗ ∈ (0, 1) that makes the above relation hold

true. We begin by showing existence of such root. Integrate Eq. (17) between r1 and t to

obtain:

φθ2(t) = θ −
ˆ t

r1

F (φθ1(τ))f(τ)dτ

Since φθ2(r1) = θ < 1, and φθ(t) < θθ2(r1) because of Eq. (17), φθ(t) < 1 for all t ∈ [r1, 1].

Hence, 1− φθ2(t) > 0 and φθ1 is increasing with respect to t ∈ [r1, 1]. Moreover, F is increasing

and φθ1(t) ≥ c; then F (φθ1(t)) > F (c), t ∈ (r1, 1]. Let θ̃ be any value of θ living in the open

interval (0, F (c)(1− F (r1)). Then,

φθ̃2(1) = θ̃ −
ˆ 1

r1

F (φθ̃1(τ))f(τ)dτ

< θ̃ −
ˆ 1

r1

F (c)f(τ)dτ

= θ̃ − F (c)(1− F (r1))

< F (c)(1− F (r1)− 1 + F (r1))

= 0

and φθ2(1) must be negative for values of θ close to zero. Likewise, let θ̂ live in the open interval

(1− F (r1), 1). Then,
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φθ̂2(1) = θ̂ −
ˆ 1

r1

F (φθ̂1(τ))f(τ)dτ

> θ̂ −
ˆ 1

r1

f(τ)dτ

= θ̂ − (1− F (r1))

> (1− F (r1))− (1− F (r1))

= 0

since F (s) = 1 for all s ≥ 1 and hence, F (φθ1(t)) ≤ 1 for all t ∈ [0, 1] and θ ∈ (0, 1). Therefore,

φθ2(1) must be negative for values of θ close to zero and positive for values of θ close to one,

implying the existence of some θ∗ ∈ (0, 1) such that φθ
∗

2 (1) = 0. Uniqueness follows from the

next claim.

Claim 4.8. φθ1 is decreasing and φθ2 is increasing in θ ∈ (0, 1) for every t ∈ [r1, 1].

Proof. The proof of the claim is by contradiction. Standard considerations in the theory of

differential equations (e.g. Theorem 9-12 in (Kreider, Kuller, and Ostberg, 1968)) ensures that

φθ = (φθ1, φ
θ
2) is continuously differentiable with respect to θ ∈ (0, 1). Furthermore, δθ = (δθ1, δ

θ
2),

δθi =
dφθi (t)
dθ , must solve the following initial value problem:

dδθ1(t)

dt
= −(n− 1)

(
1− φθ2(t)

F (φθ1(t))F (t) + φθ2(t)

)n−2
× (20)(

δθ1(t)(1− φθ2(t))f(φθ1(t))F (t) + δθ2(t)(F (φθ1(t))F (t) + 1)

(F (φθ1(t))F (t) + φθ2(t))
2

)
dδθ2(t)

dt
= −f(φθ1(t))f(t)δθ1(t) (21)

δθ1(r1) = 0 (22)

δθ2(r1) = 1 (23)

Suppose that there exists some t ∈ [r1, 1] such that δθ1(t) > 0. Since δθ1(r1) = 0 and
dδθ1(r1)
dt < 0, there is some ε > 0 such that δθ1(r1) = 0 and δθ1(t) < 0 for all t ∈ [r1, ε]. Thus,

if δθ1(t) > 0 at some t∗, there must be the case that t∗ > r1, δ
θ
1(t) < 0 for t ∈ (r1, t

∗), and

δθ1(t∗) = 0. This requires the slope of δθ1 at t∗ to be positive because δθ1(r1) = 0 and δθ1 must

cross the x-axis at t∗ from below. Evaluating
dδθ1(t)
dt at t = t∗ yields:

dδθ1(t∗)

dt
=

− (n− 1)

(
1− yθ2(t∗)

F (yθ1(t∗))F (t∗) + yθ2(t∗)

)n−2(
δθ2(t∗)(F (yθ1(t∗))F (t∗) + 1)

(F (yθ1(t∗))F (t∗) + yθ2(t∗))2

)
(24)
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I claim that this expression is strictly negative. Integration of Eq. 17 between r1 and t

yields:

φθ2(t) = θ −
ˆ t

r1

F (φθ1(τ))f(τ)dτ

and hence,

(
1− φθ2(t∗)

F (φθ1(t
∗))F (t∗) + φθ2(t

∗)

)n−2
=

(
1− θ +

´ t∗
r1
F (φθ1(τ))f(τ)dτ

F (φθ1(t
∗))F (t∗) + θ +

´ t∗
r1
F (φθ1(τ))f(τ)dτ

)n−2
> 0

because F and φθ1(t) increasing in t ∈ [r1, 1], and φθ1(t) ≥ c, imply
´ 1
r1
F (φθ1(τ))f(τ)dτ >

F (c)(1− F (r1)) > 0. Second, integration of Eq. (21) between r1 and t gives:

δθ2(t) = 1−
ˆ t

r1

f(φθ1(τ))δθ1(τ)f(τ)dτ

since δθ2(r1) = 1. Since δθ1(t) < 0 for all t ∈ (r1, t
∗) and f > 0, δθ2(t∗) > 0. Therefore, both terms

within brackets in Eq. (24) are positive, from where it follows that
dδθ1(t

∗)
dt < 0. This creates the

contradiction needed to complete the proof of the claim.

Hence, there must exist a unique θ∗ such that φθ
∗
(1) = 0. Let φθ

∗
= (φθ

∗
1 , φ

θ∗
2 ) be the unique

solution to our initial value problem when θ takes the value θ∗. Integrating Eq. (17) between t

and one yields:

φθ
∗

2 (t) = φθ
∗

2 (1) +

ˆ 1

t
F (φθ

∗
1 (τ)f(τ)dτ

=

ˆ 1

t
F (φθ

∗
1 (τ)f(τ)dτ

because φθ
∗
(1) = 0. Therefore, if we let φθ

∗
(t) := z∗(t), the function z∗ must be the unique

increasing and continuous function that satisfies:

dz∗(t)

dt
=

(
1−
´ 1
t F (z∗(t))f(t)dt

F (z∗(t))F (t) +
´ 1
t F (z∗(t))f(t)dt

)n−1
z∗(r1) = r2

and z∗ is the unique solution to Problem P.
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Proof of Proposition 3.8

Since ρ∗ and ρ̂ are fixed points of the operator T , they belong to R and therefore, they are

continuous and nondecreasing functions of v1 ∈ [0, 1]. Moreover, r1 < r̂1, and [0, r1] is a proper

subset of [0, r̂1]. Thus, from part (i) of lemma 4.1, ρ∗(v1) = ρ̂(v1) = r2 for v1 ∈ [0, r1], and

ρ∗(v1) ≥ ρ̂(v1) = r2 for v1 ∈ [r1, r̂1] because ρ∗ is a nondecreasing function of v1. Suppose that

there exists some ṽ1 ∈ (r1, r̂1) such that ρ∗(ṽ1) = ρ̂(ṽ1). As ṽ1 < r̂1, ρ̂(ṽ1) = r2 implying that

ρ∗(ṽ1) = r2 and U2(ρ∗(ṽ1), ρ∗) = U1(ṽ1; ρ∗) = 0 from part (ii) of lemma 4.1. However, ṽ1 > r1
and U1 is increasing in v1 for v1 > r1 and hence, U1(ṽ1; ρ∗) > U1(r1; ρ∗) = 0, a contradiction.

This implies that ρ∗(v1) > ρ̂(v1) for all v1 ∈ (r1, r̂1]. Next, from part (ii) of lemma 4.1, ρ∗

must satisfy U2(ρ∗(v1); ρ∗, r2) = U1(v1; ρ∗, r1) at every v1 ∈ (r1, v̄1). Obviously, if v̄1 ≤ r̂1 then

ρ∗(v1) ≥ ρ̂(v1) for all v1 ∈ [0, 1], ρ∗(v1) > ρ̂(v1) for v1 ∈ (r1, r̂1), and the proof of the proposition

is finished. Hence, suppose that v̄1 > r̂1.To prove the proposition is sufficient to show that ρ∗

and ρ̂ do not intersect in the interval (r̂1, v̄1). Suppose that this is not true, i.e., suppose that

there exists some ṽ1 ∈ (r̂1, v̄1) such that ρ∗(ṽ1) = ρ̂(ṽ1). Let I = {v1 ∈ (r̂1, v̄1) : ρ∗(v1) = ρ̂(v1)}.
If I is empty, then ρ∗(v1) = ρ̂(v1) happens only at points in [0, r1] or points where ρ∗ and ρ̂ are

both equal to one. Hence, suppose that I is not empty. Let v1 = inf{v1 ∈ I}, i.e., the lowest

value of v1 at which ρ∗ and ρ̂ intersect. There are two cases of interest.

Case 1. ρ∗(v1) < ρ̂(v1) for all v1 ∈ (v1, v̄1). In this case, we must have:[
1−
ˆ 1

v1

F (ρ∗(ξ))dF (ξ)

]
>

[
1−
ˆ 1

v1

F (ρ̂(ξ))dF (ξ)

]
(25)

and,

[
F (ρ∗(v1))F (v1) +

ˆ 1

v1

F (ρ∗(ξ))dF (ξ)

]
<

[
F (ρ̂(v1))F (v1) +

ˆ 1

v1

F (ρ̂(ξ))dF (ξ)

]
(26)

because ρ∗(v1) < ρ̂(v1) holds for for all v1 ∈ (v1, v̄1). Since ρ∗(v1) > ρ̂(v1) for all v1 ∈ [r1, v1),

ρ∗(v1) = ρ̂(v1), and ρ∗(v1) < ρ̂(v1) for all v1 ∈ (v1, v̄1), it must be the case that ρ̂ cuts ρ∗ from

below at v1 because both fixed points are continuous functions of v1. This requires the slope of

ρ∗ to be lower than the slope of ρ̂ at v1. By part (ii) of lemma 4.1, the slope of ρ∗ at v1 can

be estimated as the ratio of the probabilities of trading with seller 1 and seller 2 respectively

when the bidder’s type is equal to (v1, ρ
∗(v1)). However, inequalities 25 and 26 imply that the

slope of ρ∗ is strictly greater than the slope of ρ̂ at v1, a contradiction.

Case 2. ρ∗(v1) > ρ̂∗(v1) for all v1 ∈ (ṽ1, v̄1). Similar to the case above, ρ∗(ṽ1) = ρ̂∗(ṽ1) and

ρ∗(v1) > ρ̂∗(v1) for all v1 ∈ (ṽ1, v̄1) requires the slope of ρ∗ to be greater than the slope of ρ̂∗at

ṽ1. However, with ρ∗(v1) > ρ̂∗(v1) for all v1 ∈ (ṽ1, v̄1), inequalities 25 and 26 are reversed and

hence, ρ′∗(ṽ1) < ρ̂′∗(ṽ1), a contradiction.
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Proof of Proposition 3.9

Let Z1(t1; ρ
∗) = [G∗1(t1)]

n + n [G∗1(t1)]
n−1 [1−G∗1(t1)]. Then,

dZ1 = n(n− 1) [G∗1(t1)]
n−2 [1−G∗1(t1)]

and,

V +
1 (r1, r2; ρ

∗) = nr1q
∗ [1− q∗]n−1 +

ˆ 1

r1

t1dZ1(t1; ρ
∗)− c

Use integration by parts:ˆ 1

r1

t1dZ1 = t1Z1(t1)|1r1 −
ˆ 1

r1

Z1(t1)dt1

= 1− r1Z1(r1)−
ˆ 1

r1

Z1(t1)dt1

Corollary 4.9. Consider the class of continuation games in which c ≤ r1 = r2 < 1. Then,

ρ∗(v) =

{
r1 if v1 < r1

v if v1 ≥ r1
is the unique fixed point of T .

Proof. If v1 < r1 then U1(v1; ρ∗, r1) = 0 and hence Tρ∗(v1) = r2 = r1 = ρ∗(v1). Hence, consider

the case in which v1 > r1. Let ϕ(v) = v for all v ∈ [0, 1]. Then,(
F (ϕ(t))F (t) +

ˆ 1

t
F (ϕ(t̂))f(t̂)dt̂

)n−1

=

(
F 2(t) +

ˆ 1

t
F (t̂)f(t̂)dt̂

)n−1
=

(
F 2(t)− F 2(t)

2
+

1

2

)n−1
=

(
1

2
+
F 2(t)

2

)n−1
=

(
1−
ˆ 1

t
F (ϕ(t))f(t)dt

)n−1
whenever t ≥ r1 = r2. Therefore, the function ϕ satisfies:(

F (ϕ(t))F (t) +

ˆ 1

t
F (ϕ(t̂))f(t̂)dt̂

)n−1
ϕ̇(t) =

(
1−
ˆ 1

t
F (ϕ(t̂))f(t̂)dt̂

)n−1
ϕ(r1) = r2

and ϕ is a solution to problem P in lemma 4.3. Therefore, ρ∗ must be the unique fixed point of

T and thus, the unique symmetric equilibrium strategy for this class of continuation games.
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From the previous corollary, if reserve prices are both equal to production cost, then ρ∗(v) =

v is the unique continuation equilibrium function. Then, payoff becomes:

V +
1 (c, c; ρ∗) = ncqc [1− qc]n−1 +

ˆ 1

c
t1dZ

c
1(t1)− c

Consider any possible admissible reserve price within [0, 1]. Let this price be r1 > c. Then,

V +
1 (r̂1, c; ρ̂) = nr1q [1− q]n−1 +

ˆ 1

r1

t1dZ1(t1)− c

where it is assumed that bidders select trading partners using the function ρ̂ that is a fixed

point of T when reserve prices are (r1, c). From proposition 3.8, ρ(v1) ≤ v2 with strict inequality

actually. Hence, Z1 > Ẑ1 for all v1 ∈ [0, 1]. Moreover,

V +
1 (c, c; ρ∗) = ncqc(1− qc)n−1 +

ˆ r1

c
t1dZ

c
1(t1) +

ˆ 1

r1

t1dZ
c
1(t1)− c

expected value in the first integral should be greater than the same with just Z. Since

Z(r1) = (1 − q)n + nq[1 − q]n−1 and Zc(c) = (1 − qc)n + nqc[1 − qc]n−1, then nq[1 − q]n−1 =

Z(r1) − (1 − q)n and nqc[1 − qc]n−1 = Zc(c) − (1 − qc)n. Integration by parts of
´ r1
c t1dZ

c
1(t1)

yields: ˆ r1

c
t1dZ

c
1(t1) = r1Z

c(r1)− cZc(c)−
ˆ r1

c
Zc1(t1)dt1

Therefore,

ncqc(1− qc)n−1 − nr1q [1− q]n−1 +

ˆ r1

c
t1dZ

c
1(t1) =

= cZc(c)− c(1− qc)n − r1Z(r1) + r1(1− q)n +

[
r1Z

c(r1)− cZc(c)−
ˆ r1

c
Zc1(t1)dt1

]
= −c(1− qc)n − r1 [Z(r1)− Zc(r1)] + r1(1− q)n −

ˆ r1

c
Zc1(t1)dt1

> c [(1− q)n − (1− qc)n]− r1 [Z(r1)− Zc(r1)]−
ˆ r1

c
Zc1(t1)dt1 because r1 > c

Let n = 2. Then,

V +
1 (c, c; ρ∗)− V +

1 (r1, c; ρ̂) =
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2cqc(1− qc) +

ˆ r1

c
t1dZ

c
1(t1) +

ˆ 1

r1

t1dZ
c
1(t1)− 2r1q [1− q]−

ˆ 1

r1

t1dZ1(t1)

= 2cqc(1− qc)− 2r1q [1− q] +

ˆ r1

c
t1dZ

c
1(t1) +

ˆ 1

r1

{Z − Zc}dt1 + r1{Z(r1)− Zc(r1)}

after intregration by parts;

> 2cqc(1− qc)− 2r1q
c [1− qc] +

ˆ r1

c
t1dZ

c
1(t1) + r1{Z(r1)− Zc(r1)}

because

ˆ 1

r1

{Z − Zc}dt1 > 0and

n = 2implies that qc(1− qc) > q(1− q)

= 2(c− r1)qc(1− qc) + r1Z
c(r1)− cZc(c)−

ˆ r1

c
Zc1(t1)dt1 + r1{Z(r1)− Zc(r1)}

after integration by parts;

> 2(c− r1)qc(1− qc) + (r1 − c)Zc(c)−
ˆ r1

c
Zc1(t1)dt1 + r1{Z(r1)− Zc(r1)}

because Zc(r1) > Zc(c)

≥ (1− qc)2 −
ˆ r1

c
Zc1(t1)dt1 + r1{Z(r1)− Zc(r1)}

because Zc(c) ≥ Zc(0) = G2(0) + 2G(0)(1−G(0)) = (1− qc)2 + 2qc(1− qc)

> (1− qc)2 −
ˆ r1

c
Zc1(t1)dt1 + cZc(c)− r1Zc(r1)

because r1Z(r1) > r1Z
c(r1) > cZc(c)

= (1− qc)2 + t1Z
c(t1)|r1c −

ˆ r1

c
Zc1(t1)dt1

= (1− qc)2 +

ˆ r1

c
t1dZ

c(t1)

after integrating by parts;

> 0

Therefore, V c(c, c) ≥ V1(r1, c) for all r1 ∈ [c, 1] when n = 2. A similar argument should

apply to seller 2. Hence, there is no profitable deviation and (c, c) is the unique equilibrium of

the game.
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