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Abstract
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tion as in tests for severe, incurable diseases. Our model blends risk-

attitudes with anticipatory utility. We characterize the optimal test

design and provide conditions under which the optimal test gives ei-
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We also consider optimal test design under partial information and
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1 Introduction

It is one of the most elementary principles of decision theory that agents pre-

fer to have as much information as possible before making a decision. Getting

more information allows one to fine-tune decisions in a better way. For exam-

ple, planning the future becomes much easier once one has a concrete picture

of what challenges will become relevant later on.

Imagine somebody would offer you a test that would tell you whether you

would survive the next t years or not. Set t to a relevant value, e.g., about half

the time you expect to survive from now on. Assume that for some reason you

are entirely confident about the accuracy of the test. Would you want to get

this information? Contrary to the reasoning in the first paragraph, this is a

question many people find difficult to answer. Luckily, for most people, such

a test seems quite hypothetical. For some people, it is however very real.

Huntington’s disease is a severe hereditary genetic disorder. It starts slowly,

with some coordination problems here and there. As more and more cells

get damaged by the disease, mental and physical health deteriorate. After

some years, patients end up in dementia and disability, needing full-time care.

Patients die 20 years younger than other people on average. There is no cure

for Huntington’s disease. Children of patients have a 50% chance of having

inherited the disease (provided that exactly one parent has it) and this is the

only way the disease is transmitted. Since the 1980s a genetic test is available

which allows one to perfectly determine whether a person will eventually get

the disease or not.

Those who are affected often find it difficult to decide whether to take the test

or not. There are books solely dedicated to this decision1 and many “wait”

for years before eventually taking the test. While the problem of testing for

Huntington’s disease may seem like a – disturbingly severe – minority problem,

it is easy to see it as an early manifestation of a problem which will become

much more wide-spread as research into human genetics progresses.

In this paper, we present a simple but fairly robust model which captures why

such testing decisions are non-trivial. The model combines risk preferences,

1See, e.g., Baréma (2005).
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for example risk aversion, with anticipatory utility. In this model, we study

the structure of welfare-optimal tests which turn out to be partially but not

fully revelatory in general. We then present a number of results which aim at

giving guidelines for determining near-optimal tests in practice.

We propose to make use of randomization as a design tool in medical testing.

This is in contrast to the usual goal in medicine to have accurate but afford-

able tests. The motivation comes from the substantial welfare improvements

which randomized tests can yield. Thus we recommend integrating patients

into the decision about how precise their test should be, a practice that would

be novel to the medical field. The only flexibility medical tests offer so far is

the decision whether to take them or not: The medical literature has discussed

the careful use of fully revealing tests extensively2 but has not looked into the

possibility of constructing partially revealing, randomized tests. While new

in medical testing, randomized mechanisms are well-established in a variety

of settings, ranging from complex random procedures for determining start

configurations in sports contests such as the soccer world cup to randomized

pricing in the airline industry. Put differently, we emphasize in this paper that

the remarkable technical progress in the possibilities for revealing informa-

tion allows us to choose better amounts of information – without necessarily

revealing everything.

The key idea behind our model is that the utility an agent enjoys at a given

point in time is influenced not only by his current situation but also by expected

future prospects. This is the anticipatory utility approach put forward by

Loewenstein (1987), see below for more references. For a very simple example

of anticipatory utility, people look forward to holidays in Hawaii and this may

lift up their spirits even months before the journey begins. Notably, what

influences their utility now is not how those holidays will actually turn out to

be, but how they expect them to be. This idea is subtly different from the

classical assumption that an agent takes into account the (discounted) utility

he enjoys at a later point in time when making a decision.

Agreeing to receive a piece of information is, so to say, equivalent to entering

2For example, basic fertility tests, though cheap, are recommended only to couples who
have unsuccessfully tried for one year to become pregnant, see the current guidelines of the
CDC or the British NHS. Recently, the PSA test (an indicator for prostate cancer) was
criticized heavily for being overused on patients, see, e.g., Walter et al. (2006).
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a gamble over anticipated payoffs which – by Bayesian rationality – leaves the

status quo unchanged in expectation. Thus, leaving other factors aside, an

agent who is risk-averse with respect to anticipated payoffs will never want to

receive any information about the future – while an agent who is risk-loving,

i.e. anxious to learn about the future, would like to know everything. The

risk aversion in our model is hence analogous to the standard concept of risk

aversion with the only difference that it applies to anticipated outcomes instead

of realized physical outcomes.

In addition to anticipatory utility our model incorporates costs: Agents with

better information make better decisions. Under risk aversion regarding an-

ticipated payoffs, this leads to a trade-off. Getting more information allows

one to make better plans for the future, but it also increases the risk of ob-

taining bad information that will lower anticipated outcomes significantly. In

this framework, which is introduced in detail in Section 2, we characterize the

optimal test and show that it may be partially revealing.

In Section 3 we solve the decision problem of a doctor designing an optimal

test for a patient. Our model and analysis can easily be augmented to include

other behavioral factors such as curiosity or fear: To some extent, anticipatory

utility merely has the role of illustrating that there are highly plausible factors

against revelation of information. It is not at all necessary that it is the

only such factor. Likewise, costs of making the wrong decision need not be

the only factor in favor of revelation of information. We show how to design

the optimal test when both types of forces stand in conflict. While similar

models of anticipatory utility have previously been used to illustrate patients’

ambivalent feelings about taking medical tests, our model is considerably more

general than previous ones. This is necessary since the questions of test design

we address are normative rather than descriptive and thus require a more

robust model.

In Section 4 we develop three results which aim at giving some more concrete

guidelines for practical test design. In Section 4.1 we combine decreasing

risk aversion with an assumption capturing that costs of making suboptimal

decisions depend on the precision of the available information rather than on

its exact content. In this setting the optimal test is designed such that it

sometimes delivers perfect relief but never provides extremely bad news. This
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type of test is easily illustrated in terms of our thought experiment from the

beginning. Imagine that with a probability of 50% you will survive the next

t years. Consider a test that provides only two outcomes: If you will live for

more than these t years, the test reveals this with a probability of, say, 30%.

In all other cases you receive a “pooling signal” which implies that you have

to adjust your life expectancy slightly downwards. Thus, taking the test offers

the possibility of getting perfect relief while you never receive information that

you will die within the next t years for sure. It seems intuitive that the decision

to take this test is much easier than the decision to take a perfectly revelatory

test. The same reasoning can be applied to tests for Huntington’s disease.

In Section 4.2, we show how to design the best test that can be constructed

based on pointwise observations of a patient’s utility and cost functions. The

main motivation for this analysis is that pointwise observations are the typical

results of empirical methods such as questionnaires which might be used to

infer what a patient wants. Section 4.3 shows how the doctor can guide the

patient through a number of simple decisions until he arrives at an optimal be-

lief. We present an algorithm which constructs this type of dynamic unraveling

of information without any prior knowledge of the patient’s preferences.

Section 5 provides extensions and discussions of our model: Section 5.1 pro-

vides an extension to the case where the patient’s condition can take more

than the two values healthy and ill. Section 5.2 addresses the time dimension

of the problem. We demonstrate in a simple model that a patient’s demand

for information will tend to increase over time and that the optimal dynamic

test will induce a gradual flow of information from the doctor to the patient.

Section 6 concludes. All proofs are in the appendix.

1.1 Related Literature

Contributions such as Loewenstein (1987), Caplin and Leahy (2001), Brunner-

meier and Parker (2005), Epstein (2008) and Golman and Loewenstein (2012)

have developed concepts of anticipatory utility in the behavioral economics

literature. Building on this research, Caplin and Leahy (2004), Caplin and

Eliaz (2003), Kőszegi (2003, 2006) and Oster, Dorsey and Shoulson (2012)

study problems of information transmission in doctor-patient relations. The
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main distinction between our work and the majority of these contributions is

that we focus on the design of optimal tests and not on explaining features of

empirically observed doctor-patient behavior.

Caplin and Leahy (2004) study testing decisions under anticipatory utility

yet in the absence of instrumental information. Kőszegi (2003, 2006) blend

anticipatory utility with costs of suboptimal decisions like in our framework.

Kőszegi (2003) focuses on patients’ preferences with regard to perfectly revela-

tory tests. Kőszegi (2006) studies the exchange of information between doctor

and patient as a cheap-talk game where the doctor is severely limited in his

power to commit on truthfulness. The patient has to choose between taking

a therapy or not. For the doctor, this creates an incentive to downplay the

severeness of the patent’s illness: As long as the patient takes the therapy,

it does not matter what the doctor tells him. As the patient understands

this, the doctor can only release rough signals about the health status that

are credible to the patient.3 We abstract from such commitment problems,

arguing that they can be avoided in the type of “designed communication” we

are interested in, see the discussion at the end of Section 2. In an empirical

study, Oster, Dorsey and Shoulson (2012) show that anticipatory utility can

well explain observed decisions for and against taking the perfectly revelatory

test for Huntington’s disease.

To our knowledge, Caplin and Eliaz (2003) is the only other paper which

considers the optimal design of medical tests. They focus on tests for HIV,

in particular, on using partially revelatory certificates as a way to motivate

agents with anticipatory utility to get tested at all. In their framework, the

outcome of a matching game between certified healthy and certified possi-

bly non-healthy people takes the role of our costs of suboptimal decisions.

The authors identify a testing procedure that everybody accepts to yield an

infection-free equilibrium. This design goal is different to ours as we aim at

identifying the welfare-optimal test for an individual patient. Note also that

establishing HIV certificates in a society is a highly complex issue from a so-

cial, ethical and technical point of view. We feel that the step from theory to

practice should be much easier for the more individual-based testing problems

3Kőszegi (2006) also briefly considers the case where the doctor can commit on truthful
revelation. Yet under his assumptions on preferences and costs, this always leads to full
revelation.
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we have in mind.

Our paper thus appears to be the first to design the welfare-optimal test in

a framework where forces for and against receiving information interact in a

non-trivial way. Moreover, due to the fact that we make very weak restrictions

on the functional forms of preferences, we are in a position to meaningfully

address issues of robustness and complexity of testing schemes: In Section 4, we

discuss tests which yield good results for wide classes of preferences and show

how to reach optimality without making strong assumptions on the doctor’s

knowledge or the patient’s computation skills.

From a technical point of view, our paper is related to works on strategic

conflict in information transmission: Rosar and Schulte (2012) also consider

test design. The analysis of Kamenica and Gentzkow (2011) relies like ours on

techniques first developed by Aumann and Maschler (1995) in the cooperative

game theory literature. In fact, some of our results, notably those of Section

4, immediately yield new results in the setting of Kamenica and Gentzkow.

What sets our contribution apart from these papers is that in place of problems

caused by strategic interaction between economic agents we consider problems

caused by the need to control one’s own expectations. Put differently, the

intricacies in information transmission do not come from strategic conflicts in

our model but from inner conflicts in the information receiver.

2 The Model

Consider the following game between a receiver of information (“the patient”)

and a revealer of information (“the doctor”) who tries to reveal what he finds

out in a way that maximizes the receiver’s utility. There is an initially unknown

state of the world X which takes the values 1 and 0 with commonly known

probabilities p and 1−p. Throughout, X = 1 will denote the outcome preferred

by the patient (“he is healthy”) and X = 0 the other outcome (“he is ill”).

The timing of the game is as follows: At the very beginning, the doctor tells

the patient the distribution of a random signal S which he will generate after

observing X and which is correlated with X. For instance, S might be perfectly

revealing, or it might be completely uninformative. Then the doctor observes

the realization of X, generates S and reveals S to the patient. The patient
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then forms a posterior belief B about the realization of X,

B = P [X = 1|S].

Next, the patient makes an important lifetime decision, choosing a value y ∈
[0, 1]. The patient’s realized utility is given by the sum of three terms: a

“classical” term Uc(X) for some increasing function Uc,
4 an anticipatory utility

term U(E[X|B]) where U is an increasing and concave function, and a cost

term −C(X, y) where the cost function C : {0, 1}× [0, 1]→ R has the property

that for fixed x ∈ {0, 1}, C(x, y) is continuous in y and takes its unique

minimum in C(x, x) = 0:

Uc(X) + θU(E[X|B])− (1− θ)C(X, y).

θ ∈ [0, 1] is a parameter which we will later vary to investigate the inter-

play of the latter two terms, utility from anticipation and utility from making

more informed decisions. Both, the doctor and the patient have the goal of

maximizing this realized utility given the information they have.

All three terms are thought of as aggregates over all future time periods, i.e.,

discounted sums of future realized utilities, future anticipations and future

costs of having chosen a value of y which is – ex post – suboptimal. Likewise,

the choice of y should be understood as an aggregate over many decisions such

as life insurance plans, medical insurance or occupational choice the patient

must take. The key point is that the better the agent knows X when he chooses

y, the smaller is the cost term. Some more discussion of the aspect of time

aggregation is found in Section 5.2 below. If we think of X as something like

an indicator of whether a disease will eventually break out, then the patient

inevitably observes X at some point in the far future. Accordingly, y only

captures decisions made before that point in time.

While a state variable X which takes only two values is perfectly sufficient for

modeling many interesting examples such as testing for Huntington’s disease,

we will demonstrate in Section 5.1 that our key arguments run through more

or less unchanged when X can take more than two values.

4The term Uc will turn out to be spurious in the analysis below. It is included here
mainly to illustrate the meaning of the two other terms.
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We have formulated our model based on the story that the doctor observes

the state X and then uses randomization to generate the signal S which is

revealed to the patient. While this story has the huge advantage of being

simple, it should be thought of as a placeholder for the following equivalent

story which is more realistic but also more complex: The doctor himself does

not observe X. Instead, there is a medical laboratory that observes X and that

has received the instructions for generating S from the doctor. S is generated

by the laboratory which mails it to the doctor and the patient.

Taking an institution such as this medical laboratory into account is important

for addressing two issues which deserve discussion: the doctor’s commitment

power and the effect the test result may have on the patient’s preferences for

information.

Concerning the commitment problem, it will obviously be hard for a doc-

tor who knows that his patient is perfectly healthy not to tell him. How-

ever, the communication between the laboratory and the doctor can easily be

anonymized in a way that eliminates problems of this kind. Kőszegi’s (2006)

analysis of cheap-talk in “every-day” doctor-patient relationships nicely illus-

trates that commitment power desirable. This affects our analysis only in so

far that we assume a priori that communication is designed in a way that

precludes these commitment problems.

Some authors have emphasized that preferences for information are influenced

by how accessible they are and by the extent to which the decision-maker is

aware of the issue at hand, see Golman and Loewenstein (2012) for a model

taking these aspects into account. Indeed, a patient will likely be influenced

by knowing that a sheet of paper with his diagnosis is hidden in a stack of

documents right in front of him. However, it is easy to construct the testing

procedure in a way that no such sheet of paper exists. The laboratory could

delete all information after releasing the signal so that any further information

is hidden deeply in the genetic code – just as before. Moreover, we do not think

that anyone affected by Huntington’s disease will ever become unaware of the

issue. It is in this respect that our model primarily aims at “life-changing”

information.

Throughout, we use the words “signal” and “test” interchangeably. The former

is more in line with the language of theoretical economics and the latter is more
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in line with the language of the doctor-patient relationship. Thus it is useful

to have both available.

3 Optimization

In this section we derive the optimal behavior of the doctor and the patient

in our model, i.e., the SPNE of the doctor-patient game. Proposition 1 and 2

characterize, respectively, the beliefs induced by an optimal test and the opti-

mal test itself. Proposition 3 characterizes how the optimal test becomes more

revelatory if the importance of the costs of making wrong decisions increases

relative to the importance of anticipatory utility.

We begin with the second decision, the patient’s choice of y given that B has

taken the realization B = b. Ignoring terms that are independent of y, the

patient’s problem of cost minimization is given by

min
y
c(b, y) where c(b, y) = bC(1, y) + (1− b)C(0, y).

Since c(b, y) is continuous in y ∈ [0, 1] an optimal choice of y exists for all b

and we denote it by y∗(b). The costs given that the patient behaves optimally

are thus given by

c∗(b) = c(b, y∗(b)).

Our first result, which is proved in the appendix, shows that c∗ is concave in b.

This reflects the fact that more diffuse beliefs make it more difficult to reduce

costs.

Lemma 1. The function c∗(b) is continuous and concave in b ∈ [0, 1].

We now turn to the doctor’s problem of designing the optimal test. We take

a somewhat indirect approach here by determining first the optimal belief B∗

induced in the patient and then constructing a test that induces this belief. To

this end, denote by B the set of random variables valued in [0, 1] which have

mean p. By Bayesian consistency, it is clear that the doctor cannot induce any

belief B which is not an element of B, i.e., which is inconsistent with the prior

p.5

5It can be shown that the doctor can induce any B ∈ B, see Shmaya and Yariv (2009),
but since we will first determine the optimum B∗ ∈ B and then implement it directly, this
type of result is not needed here.
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We can state the doctor’s problem of maximizing the patient’s expected utility

conditional on the patient taking the optimal decision y∗ after the test as

max
B∈B

E[V (B)] where V (b) = θU(b)− (1− θ)c∗(b). (1)

Here, we have ignored the term E[Uc(X)] since it is independent of the deci-

sion and we have used that E[X|B] = B and thus U(E[X|B]) = U(B). By

assumption, U is concave. Moreover, we have just seen that −c∗ is convex.

Thus, for θ ∈ (0, 1) the function V is generally continuous but neither convex

nor concave. This “conflict” between the anticipatory utility term E[U(B)]

and the more standard “preference for early resolution of uncertainty” term

E[−c∗(B)] lies at the heart of our model.

Note that concavity of U , i.e. risk aversion with respect to anticipated out-

comes, is not necessary for this conflict to arise at least for some priors: It is

sufficient that U is not convex. Related to this is a big advantage of the fact

that the analysis which follows now makes hardly any restrictions on V : All

the results are still valid if we add further psychological factors such as anxiety,

curiosity, fear etc. to the patient’s objective function. The sole property of V

that is used in the following is that it is a continuous function.6 For the sake of

concreteness, we could add a term γF (b) modeling curiosity to function V . In

order to capture that a more informative signal satisfies the patient’s curiosity

better, we could assume that F is strictly convex. This would not require any

changes to our analysis (and we could conclude that for sufficiently large γ the

incentives for receiving as much information as possible become dominant).

A similar class of optimization problems was recently studied by Kamenica

and Gentzkow (2011) in the context of strategic conflicts in information trans-

mission. Therefore, we prefer a short and non-technical exposition of how to

solve (1) which is given in the proof of Proposition 1. We refer the reader to

Kamenica and Gentzkow (2011) for a more detailed presentation of this result.

These techniques also have a history in cooperative game theory, see Aumann

and Maschler (1995).

6This continuity is a highly convenient assumption since it implies that V attains inter-
mediate values, maxima and minima. It can however be relaxed at the expense of somewhat
more complicated statements of the results. Notably, our behaviorally intricate results do
not rely on any “irregularities” in V such as kinks.
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The key observation is that the patient’s utility from the optimal test is given

by V (p) where V is the smallest concave function weakly greater than V .

Moreover, the optimal test can be read off from the graph of V as is depicted

in Figure 1: Consider a test inducing a belief B that takes only the two values

dl < p < dh. The patient’s utility from this test can be found graphically by

connecting the points (dl, V (dl)) and (dh, V (dh)) in the figure and evaluating

the value of the resulting line segment at p. Since V can be characterized as the

supremum over all line segments which connect two points in the graph of V , it

is fairly intuitive that V (p) is exactly what the optimal test can achieve. The

proof of Proposition 1 makes this point in more detail and shows in particular

that beliefs B which take more than two values cannot achieve more than

V (p).

Proposition 1. Denote by V the smallest concave function with V (b) ≥ V (b)

for all b ∈ [0, 1]. Then a solution B∗ ∈ B to (1) is given as follows:

(i) If V (p) = V (p) then B∗ = p with probability 1.

(ii) If V (p) > V (p) denote by I = (bl, bh) ⊂ [0, 1] the largest open interval

with p ∈ I and V (b) > V (b) for all b ∈ I. Then B∗ takes values bh and

bl with probabilities

ph =
p− bl
bh − bl

and pl = 1− ph.

In both cases, E[V (B∗)] = V (p).

Existence of V is ensured since the convex hull of the graph of V exists and V

is the upper contour of that convex hull. It is easy to check that B∗ is unique

if there are no subintervals of [0, 1] on which V is linear.

To get some more intuition for the objects in the proposition, consider the case

of θ = 0, i.e., the case of a patient who only cares about early resolution of

uncertainty. Then V is convex and accordingly, V is given by the straight line

connecting (0, V (0)) and (1, V (1)). In that case, V (b) > V (b) for all b ∈ (0, 1)

and the proposition implies that B∗ takes values 0 and 1 with probabilities
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Figure 1: Construction of V

1− p and p. Thus, in this case

B∗ = P [X = 1|S∗] ∈ {0, 1}

reflects the beliefs of a perfectly informed patient who always knows whether

X = 0 orX = 1 conditional on his (optimal) signal S∗. In the case where θ = 1,

i.e., for a patient whose interests are dominated by anticipatory utility, V is

concave and thus V ≡ V . Accordingly, we are in Case (i) of the proposition

and the optimal belief B∗ coincides with the prior p so that the optimal signal

must be uninformative. Note also that in the case where V and V coincide

only on some interval, it depends on the value of p whether B∗ is informative

or not.

The proposition gives a fairly general characterization of the optimal belief

system. An important consequence of the proposition is that there is always

a solution B∗ to (1) which lies in the set B2 ⊂ B of random variables on [0, 1]

which have mean p and which take only two values bl and bh where bl ≤ bh.

Thus, to complete our analysis of the doctor’s problem it suffices to show that

for any B ∈ B2 there exists a signal which induces it. This is the result of the

following proposition:

Proposition 2. Fix 0 ≤ bl < p < bh ≤ 1 and consider the random variable S

with values in {“Good”, “Bad”} that is generated upon observing X as follows:
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If X = 1 then

S =

{
“Good” with probability α

“Bad” with probability 1− α
.

If X = 0 then

S =

{
“Good” with probability β

“Bad” with probability 1− β
,

where α, β ∈ [0, 1] are given by

α =
bh
p

p− bl
bh − bl

and β =
1− bh
1− p

p− bl
bh − bl

.

Then B = P [X = 1|S] only takes values in {bl, bh} and E[B] = p where the

expectation is taken over S.

Here, S = “Good” is better news than S = “Bad” since it induces the higher

posterior probability bh of X = 1. It is straightforward to rewrite the test of

Proposition 2 in a way that X only needs to be observed with some probability.

Notably, this probability becomes small if α ≈ β so that the test has little

predictive power. Such a formulation becomes attractive if we take into account

the costs of observingX since it induces a correlation between the costs of a test

and its predictive power. We assume these costs to be negligible in comparison

and thus stay with the analytically convenient formulation of Proposition 2 in

the following.

We close this section with some qualitative results on optimal tests. The first

result confirms the intuition that smaller values of θ – representing a higher

significance of the cost term – lead to more precise tests:

Proposition 3. Fix p ∈ (0, 1) and θ > θ′. Denote by {bl, bh} and {b′l, b′h} the

values taken by the optimal belief under, respectively, θ and θ′. Then bl ≥ b′l
and bh ≤ b′h. Thus the optimal test under θ′ leads to beliefs which are closer to

knowledge of X than the optimal test under θ.

Finally, we give a result which will become important later in Section 4.3

but which also has some intrinsic interest since it shows that the patient’s

preferences over tests have more structure than one might expect given that V
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is an arbitrary continuous function: Consider only tests which take two values

and fix the lower of the induced beliefs dl to a value which is less informative

than optimal, dl ∈ (bl, p). What is the optimal induced upper belief d∗h? We

show that d∗h ∈ (p, bh], implying that if a test is less informative than optimal

in one direction it is best to leave it less informative than optimal in the other

direction, too.

Proposition 4. Define the prior p and the values of an optimal belief {bl, bh}
as above. Assume that bl < p < bh and fix some dl ∈ (bl, p). For dh ∈ (p, 1),

denote by D(dh) the random variable with mean p which takes only values dl

and dh. Assume there exists dh such that E[V (D(dh))] > E[V (p)] so that some

beliefs D(dh) are better than no information. Then, if d∗h is a solution to

max
dh

E[V (D(dh))],

it must hold that d∗h ≤ bh.

We have considered the case where dl is fixed and dh is variable only for

notational convenience. The argument for the opposite case is analogous.

4 Designing Good Tests

In practice it may be difficult to observe the function V in its entirety – even

for the patients. Moreover, given that V is known, constructing the optimal

test is a fairly complex two-dimensional optimization problem that will be

quite a challenge to most patients. This section contains three rather different

approaches to solving this problem. In Section 4.1, we show that the structure

of optimal tests becomes even simpler when we make some more restrictions

on the functions U(·) and C(·, ·), reducing the design of optimal tests to deter-

mining a single parameter. This investigation aims at developing two or three

tests which have the potential of being convincing alternatives to a perfectly

informative or perfectly uninformative test.7 In Section 4.2, we derive the best

test that can be constructed using only some point-wise observations of the

function V . This result gives a partial answer to the question of how to ap-

proximate the smallest concave function greater than V in practice. In Section

7In practice, the uninformative test, of course, takes the form of the patient deciding
against taking any test.
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4.3 we show how to gradually guide the patient to his optimal belief through

an unraveling procedure that can be constructed without any knowledge of the

patient’s preferences.

4.1 Accuracy On Good News

The aim of this section is to show that under natural assumptions, the optimal

test takes a particularly simple form: The test sometimes perfectly reveals

X = 1 but it never perfectly reveals X = 0. In the language of Proposition 2

the optimal test is characterized by α ∈ (0, 1) and β = 0. In the language of

the disease, if the patient receives a “Good” from the test then he knows for

certain that he is healthy. If he receives a “Bad” he must correct his probability

of being healthy downwards but – unlike with a perfectly revealing test – not

to zero.8

Assumption 1. U is twice continuously differentiable with U ′′ being a strictly

increasing function. The functions C(x, y) are of the form

C(x, y) = (x− y)2

for x ∈ {0, 1}.

The basic idea behind the assumption is that U is governed by some notion

of decreasing risk aversion9 while the costs of making the wrong decision tend

to be more symmetric around what would have been right. Thus we rather

expect to find negative values of V ′′ at small values of b than at larger ones.

In order to construct these optimal tests we have to determine the function V .

We begin with an observation about the form of V :

8A similar class of tests was found optimal in Rosar and Schulte (2012) in a model of
strategic conflicts in information transmission. Caplin and Eliaz (2003) choose this type of
test for implementing an “infection-free” equilibrium in their model of testing for AIDS.

9Recall that U is concave and thus U ′′ being increasing means that U ′′(b) is closer to zero
for larger b. The assumption of an increasing second derivative of U was coined “prudence”
by Kimball (1990). It is a necessary condition for weakly decreasing absolute risk aversion
and thus satisfied by many of the standard utility functions. We share this assumption with
the literature on intertemporal transfer of utility initiated by Leland (1968).
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Lemma 2. Under Assumption 1, there exist thresholds θl ≤ θh in [0, 1] such

that V is strictly concave for θ ≥ θh and strictly convex for θ ≤ θl. For

θ ∈ (θl, θh), there exists a point bc(θ) ∈ (0, 1) such that V (b) is strictly concave

on [0, bc(θ)] and strictly convex on [bc(θ), 1]. Moreover, bc(θ) is increasing in θ.

Intuitively, the lemma states that for intermediate values of θ the anticipatory

utility term is dominant for small b and the cost term is dominant for larger b.

The reason for this lies in our assumption that risk aversion is more pronounced

at pessimistic beliefs.

Let us briefly touch upon the robustness of the argument behind the lemma:

Clearly, the conclusion of the lemma is still valid at least for most values of

θ if c∗′′ does not vary too strongly. Moreover, this robustness is greater if the

monotonicity of U ′′ is more pronounced, i.e. if risk aversion decreases more

strongly.

In the following, we will ignore the cases where either of the two terms dom-

inates (implying convexity or concavity of V ) since this leads to perfectly

revealing or non-revealing optimal tests as discussed in the previous section.

Consequently, for the remainder of Section 4.1 we replace Assumption 1 by the

following assumption which excludes these trivial cases and is less restrictive

otherwise:

Assumption 2. Let V be continuously differentiable and assume there exists a

point bc ∈ (0, 1) such that V (b) is strictly concave on [0, bc] and strictly convex

on [bc, 1].

We construct the function V in two steps: We first show how to construct a

candidate function V̂ which equals V up to some point and then continues

linearly. Then we show that this function V̂ equals V .

The construction of V̂ is depicted in Figure 2. Define for z ∈ R the linear

function gz : [0, 1] → R as the straight line connecting (0, z) and (1, V (1)).

Pick a value z∗ such that gz∗ is tangential to V at some point (bt, V (bt)). Set

V̂ equal to V on [0, bt] and equal to gz∗ on [bt, 1]. In the picture, it is evident

that this construction yields a concave function which weakly dominates V .

The next proposition shows that this construction always works.
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Figure 2: Construction of V under Assumption 2

Proposition 5. A concave function V̂ which weakly dominates V can be con-

structed as follows:

(i) If gV (0)(b) ≥ V (b) for all b ∈ [0, 1], set V̂ = gV (0).

(ii) Otherwise, there exist unique z∗ ∈ R and bt ∈ (0, bc] such that gz∗(b) ≥
V (b) for all b and gz∗ is a tangent to V in bt. Set

V̂ (b) =

{
V (b) if b ≤ bt

gz∗(b) if b > bt.

The next step shows that this function V̂ is indeed the smallest concave func-

tion which dominates V .

Proposition 6. We have V ≡ V̂ , i.e., V̂ is the smallest concave function with

V̂ (b) ≥ V (b) for all b ∈ [0, 1].

Combining the preceding analysis with the result of Proposition 2, we see how

to design optimal tests under Assumption 2:

Corollary 1. In the notation of Proposition 2, the optimal signal is given as

follows:

(i) If p ≤ bt, then the optimal signal is perfectly non-revealing, e.g., α =

β = 0.
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(ii) If p > bt, then the optimal belief B∗ takes only values bl = bt and bh = 1.

Thus, the optimal signal sometimes reveals X = 1 but never X = 0.

Precisely,

α =
1

p

p− bt
1− bt

and β = 0.

Recall that in proceeding from Assumption 1 to Assumption 2 we excluded

some trivial cases where the optimal test is perfectly revealing – yet in most

models of interest those tests will also arise as the optimum for some parameter

constellations.

We end this section with the following policy implication: We have seen that

in a somewhat restrictive but natural class of models the optimal signals are

characterized by α ∈ [0, 1] and β = 0. Thus, if a doctor wishes to include some

promising tests in his portfolio of options offered to the patient – augmenting

the revelatory and non-revelatory tests represented by α ∈ {0, 1} and β = 0

– it is a good starting point to include the following three tests: α ∈ {1
4
, 1
2
, 3
4
}

and β = 0. This even partition of [0, 1] can be adapted if a particular one of

the five values of α turns out to be most popular.10

4.2 Test Design With Partial Observations

The analysis of this section takes a different approach to the problem of the

doctor not knowing the function V precisely. We assume that the doctor has

observed V on a finite subset G of [0, 1]. Our main result gives the optimal test

under this limited information. There are three motivations for considering this

problem: For one thing, point-wise observations are the most typical results

of empirical investigation methods such as questionnaires. For another, we

saw in Section 3 that even the optimal test is based on only two values of V

directly. Thus we have reason to hope that tests that are based on point-wise

observations of V may perform rather well. Indeed, we will see in a moment

that observing V at only four points is sufficient for constructing a test which is

provably better than both, perfect revelation and no revelation at all. Finally,

10One can also argue that higher values of α are more reasonable than lower ones: If we
set p = 1

2 as in Huntington’s disease and set bt to the middle of [0, p], i.e. bt = 1
4 then we

obtain α = 2
3 . Thus α ∈ { 12 ,

2
3 ,

3
4} might be the more promising starting point.
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we rely on this section when constructing the dynamic testing procedure of

Section 4.3.

Before we state our central result, determining the restricted optimal test, let

us define our optimality criterion: By “the optimal signal which can be con-

structed from knowing V only on the set G” we mean that the test maximizes

the patient’s expected utility among all signals for which the patient’s expected

payoff can be calculated using only evaluations of V on G.

Proposition 7. Let G ⊂ [0, 1] be a finite set such that minG < p < maxG.

Let VG be the smallest concave function over [minG,maxG] such that for all

b ∈ G we have V (b) ≤ VG(b). Then a signal attaining VG(p) can be con-

structed as follows: Let (bl, bh) ⊂ [minG,maxG] be the largest interval con-

taining p over which VG is linear and implement the signal from Proposition

2 with these values of bl, bh and p. This is the optimal signal which can be

constructed from knowing V only on the set G. If in addition {0, p, 1} ⊂ G

then VG(p) ≥ max(E[V (X)], V (p)). Thus, in this case the signal is weakly

better than both perfect revelation and no revelation.

Figure 3: Construction of VG forG = {0, s, p, 1}. The optimum is characterized
by bl = s and bh = 1 in this case.

The construction of VG is depicted in Figure 3. Note that VG is the upper

contour of the convex hull of the points (b, V (b))b∈G. Since computing convex

hulls of finite sets is an extremely well-studied problem in applied mathematics,

Proposition 7 can be seen as first step towards the resolution of a problem
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pointed out by Kamenica and Gentzkow: Especially if X takes more than

two values (see Section 5.1), computing the function V is non-trivial even

if V is known. Proposition 7 shows that for discrete approximations of V ,

this problem is reduced to a well-studied problem. Imposing some regularity

on V , we conjecture that one can get a handle on the approximation error

|VG(p)− V (p)| as the number of points in G gets large, but we will not follow

this direction further here.

4.3 Dynamic Unraveling Of Information

The previous two sections studied how much a doctor who has only limited

information can achieve in test design. One main motivation for these consid-

erations was the observation that designing the optimal test himself may be

prohibitively difficult for a patient. In this section we address the same prob-

lem from another perspective: Can we guide the patient through a number of

simple choices until he arrives at an (approximately) optimal test?

The sequence of tests we propose has the following properties: The patient is

sequentially offered one test at a time and decides whether he wants to take

this test before the next offer or not. Information about which tests the patient

has previously accepted and taken is used in the design of the next test. This

helps to keep the testing procedure short. All the doctor needs to know to

design the sequence of tests is the prior belief p.

The idea that such a testing procedure is desirable is driven by a notion of

complexity of mechanisms which we keep informal but which we think is con-

vincing: It is good to offer only few alternatives simultaneously, it is good to

keep the overall testing procedure short, and it is better to offer real choices

than hypothetical ones. As will become clearer below, we face a trade-off

between an approximation error and complexity: A smaller error leads to a

longer testing procedure and more narrow – and thus difficult – decisions.

The key difficulty in designing such a dynamic testing procedure is that we

must be careful that the patient does not learn too much at any point in time,

i.e., that the patient’s posterior belief never leaves the interval [bl, bh] of the

optimal static test. If the doctor gives an additional piece of information to a

patient who already knows too much there is some chance that it will confuse

him but there is always the chance that he learns even more.
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How can a doctor make sure that he never tells the patient too much without

knowing the values of bl and bh? The key idea is to increase the amount

of information gradually – yet this is not trivial since bl and bh need not lie

symmetrically around p. Thus a test which is too informative in one direction

can be less informative than optimal in the other. The observation that makes

designing our dynamic test possible is the following:

Corollary 2. Fix some dl ∈ (bl, p). Using the notation of Proposition 4, we

then have

E[V (D(dh))] ≤ E[V (D(bh))]

for all dh ≥ bh.

The corollary states that a test which induces beliefs in {dl, bh} where dl is less

informative than optimal and bh is optimal, is preferred by the patient to any

test which induces the same dl and a value dh ≥ bh that is more informative

than optimal. As we will see in the following, this result implies, both, that we

can avoid going through all the available tests, and that the patient will not

accept a test which is too informative if tests are offered to him in the right

order.

The framework of this section is similar to the one of Section 4.2 but formu-

lated in a way that the results of Section 3 can be applied directly. Fix some

integer n > 2, let ε = 1
n

and let G = {0, ε, 2ε, . . . , 1} be a discretization of

[0, 1]. Assume that the function V is continuous, piece-wise linear, and linear

between any two adjacent values in G. V should be thought of as a discrete

approximation of some “true” Ṽ which is interpolated linearly between the

points in G. Reformulating the model in terms of this discretized V allows

us to do the following: We can determine the approximate optimum in the

sense of Section 4.2 simply by applying the “perfect” optimization of Section

3 to this modified V . In short, we offer a test which is optimal if the patient’s

preferences are linear between the values of G. Thus we typically make a small

discretization error. Yet since we will only offer tests which induce beliefs with

values in G, this possible discrepancy between our V and the true Ṽ will not

influence the patient’s decisions in the testing procedure.

Under our assumption on V , it follows like in Section 4.2 that the two values bl

and bh of an optimal test must lie in G. For convenience, we also assume that
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the prior p lies in G.11 We are now ready to formulate our dynamic testing

procedure. We use two sets of values {dl, dh} and {sl, sh} in the test: The

former values contain the beliefs induced by the test currently offered to the

patient. The latter values are used for saving an interval (sl, sh) which can be

excluded from the further search for the optimal test.

Proposition 8 (Algorithm). Conduct the following steps until the patient

holds a belief in {0, 1} or until the patient has been offered the perfectly re-

vealing test and refused it:

(i) Set sl = dl = p− ε and sh = dh = p+ ε.

(ii) Offer the patient a test which induces beliefs only in {dl, dh}. Conduct

the test if the patient accepts the offer.

(iii) If the patient refused the last offered test, increase dh by ε. If this implies

dh > 1, set dh = sh and decrease dl by ε. Go back to Step (ii).

(iv.1) If the patient accepted the last offered test and his posterior belief is dh,

set p = dh, increase dh by ε, set sh = dh and sl = dl and go to Step (ii).

(iv.2) If the patient accepted the last offered test and his posterior belief is dl,

set p = dl, decrease dl by ε, set sl = dl and sh = dh and go to Step (ii).

At the end of this testing procedure, the patient either holds belief bl or bh.

Thus, the procedure is equivalent to offering the patient the optimal test.

Note that the testing procedure is constructed in a way that if the patient

accepted a test with parameters {dl, dh}, the interval (dl, dh) is eliminated

from the further search for an optimal test. This substantially decreases the

number of tests which have to be offered to the patient. Of course, the testing

procedure may still take rather long for small ε. Thus it is important to

note that the procedure can be stopped without harm at any point – and

possibly be continued later on. For actually implementing this type of testing

procedure it seems most promising to set up a computer program that contains

the realization of X and makes the subsequent offers to the patient.

11If p does not lie in G, we can simply add p to G and set the two values of the initial
test to the elements in G adjacent to p in the testing procedure of Proposition 8.
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One could try to avoid the discretization error by constructing a continuous-

time testing procedure: Once we offer the patient a discrete sequence of choices

we can never hope to exactly determine a continuous piece of information such

as the structure of the optimal test. Yet we feel that there is little reason to

believe that choosing ε smaller than 0.01 and thus varying probabilities in steps

of less than one percent leads to any improvements which are still perceived

by patients. Finally, the procedure can immediately be generalized to sets G

where points are not at an equal distance. For instance we could choose finer

discretizations near 0 and 1.

5 Extensions

5.1 Many States Of The World

In this section we demonstrate that most of our results easily generalize to more

general random variables X.12 To begin with, let us however emphasize once

more that the case of X ∈ {0, 1} is perfectly sufficient for many applications.

Assume now that X takes values in a finite set X = {x1, . . . , xn} ⊂ [0, 1]d

with probabilities p = (p1, . . . , pn) ∈ ∆n where ∆n denotes the probability

distributions on X .

There is only one major adjustment we have to make to generalize our analysis

to this model: In the case where X = {0, 1} ⊂ [0, 1] we had a one to one

correspondence between beliefs and conditional expectations of X through

E[X|B] = B. In the general case, many posterior beliefs lead to the same

conditional expectation of X and thus we have to work with the posterior

beliefs more directly. To this end, define B as the set of random variables on

∆n with mean p and let B ∈ B be the belief induced in the agent by the signal

B = (B1, . . . , Bn) ∈ B where Bi = P [X = xi|S].

In this framework, we can solve the maximization problem

max
B∈B

E[V (B)] (2)

12Exceptions are discussed at the end of this section.

24



for any V : ∆n → R going through exactly the same steps as in Proposition 1.

The only difference is that now V is the smallest concave function dominating

V on ∆n and not on [0, 1], see Kamenica and Gentzkow (2011) for details.

Again, V is linear wherever it strictly dominates V and thus an optimal test

can in principle be calculated as in Proposition 2. As Kamenica and Gentzkow

(2011) point out, getting a handle on V is generally non-trivial if X takes more

than two values. We thus propose to choose G as a suitable discretization of

∆n and calculate a discrete approximation to the optimal test as outlined in

Proposition 7. This approach has the added advantage that the structure of

VG is comparatively simpler than that of V since the former is derived from

the convex hull of a finite set of points. This considerably simplifies deriving

the restricted optimal test from VG.

We still have to justify that (2) is the right generalization of the doctor’s

optimization problem. If we define c∗(b) : ∆n → R analogously to the case of

X ∈ {0, 1} we still obtain a concave function by an argument entirely parallel

to Lemma 1. To see that a concave function U : ∆n → R is in line with our

previous assumptions, we observe the following:

Lemma 3. Let u : [0, 1]d → R be a concave function. Then U : ∆n → R
defined by

U(b) = u(E[X|B = b])

is concave as well.

Thus we see that concavity in conditional expectations implies concavity in

posterior beliefs. Accordingly, the conflict between concavity of anticipatory

utility and concavity of costs is present in this more general model as well.

How to generalize Section 4.1 is less obvious and we will not dig deeper here

– but, of course, the basic principle that the optimal signal is less revealing

in regimes where risk aversion is more pronounced should be universal. Thus

under decreasing risk aversion, tests which are more revelatory with respect

to good news than with respect to bad news are still promising candidates for

good tests. A similar remark applies to Section 4.3.
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5.2 Time

In this section, we address the time dimension of the problem more explicitly.

We first argue that a patient’s demand for information should be increasing

over time in a simple framework. Then we turn to an elementary model where

we allow for multiple tests at different time points. We close with some more

general remarks on dynamic welfare maximization under anticipatory utility.

Our argument for an increasing demand for information is based on the fol-

lowing observations: In the problems we are interested in, there is typically a

time of anticipation followed by a period of bearing the costs of having made

wrong decisions. The terms U and c∗ in our model thus belong to different time

intervals where the time of U gets shorter over time while the time of c∗ comes

nearer. Accordingly, we should expect the weight of the cost term to increase

over time since the costs are discounted less heavily, and we should expect the

weight of the anticipation term to decrease since the number of time periods

where anticipation happens decreases. To formalize this in a simple model

inspired by Loewenstein (1987), consider discrete time periods s = 0, 1, . . ., let

0 < δ < 1 be a discount factor and denote by T the time when the disease

breaks out.13 Then we define the utility function Vs for time s = 0, . . . , T as

Vs(b) =
T−s∑
k=0

δkU(b)−
∞∑

k=T−s+1

δkc∗(b).

Normalizing Vs in terms of weights θs and 1 − θs, it is easy to see that θs is

decreasing in s. Accordingly, the cost term will become more important over

time, and taking a more informative test becomes more attractive as time goes

by, see Proposition 3. Of course, this is a very simple model – yet it contains

two natural arguments for an increasing demand for information. Thus, we

expect this monotonicity behavior to be fairly robust also in more general

models.

Now consider a model where a patient and a doctor meet every period s =

0, . . . T − 1 for a test. The doctor’s objective function for designing the at

time s is given by Vs(b) = θsU(b)− (1− θs)c∗(b) for a sequence of coefficients

θs and concave functions U and c∗. Thus for all s, the doctor optimizes the

13Allowing T to be random would not change the argument.
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patient’s utility as perceived now and neither the doctor nor the patient take

into account the effect of future tests on the patient’s beliefs. Denote by p(s)

the patient’s belief before the test at time s. The numbers p(s) are common

knowledge, e.g., the patient reports them to the doctor. p(0) = p0 is a constant.

Denote by bl(s) and bh(s) the values of an optimal belief for a patient with

prior p(s), calculated from the smallest concave function V s dominating Vs as

described in Section 3.

Note first the following stability property of the optimal tests from Section 3:

If the sequence θs is constant, then a patient who received the optimal test at

some time s does not desire any further tests at later times. The reason for this

is that for both values of an optimal belief for a patient with prior p, bl and bh,

we must have Vs(bl) = V s(bl) and Vs(bh) = V s(bh) by the construction of bl and

bh. Thus the optimal test for a patient whose prior beliefs are concentrated on

these two values is perfectly non-revealing. This is the case for a patient who

once took the optimal test.

Now assume that the sequence θs is decreasing as in the previous model. Then

we observe that the patient’s sequence of a beliefs has a particularly simple

structure: The patient’s belief at a fixed time s can only have one of two values

regardless of the sequence of test outcomes up to that point:

Proposition 9. The values of bl(s) and bh(s) are independent of previous test

results and correspond to the boundaries of the largest open interval around p0

on which Vs(b) < V s(b). The prior p(s) has the value bl(s − 1) if the test at

time s− 1 provided bad news and the value bh(s− 1) if that test provided good

news.

Consequently, there are only two different optimal tests at time s depending on

whether the patient has the pessimistic prior p(s) = bl(s− 1) or the optimistic

p(s) = bh(s − 1). By Proposition 3, these priors gradually move closer to 0

and 1 as time passes, reflecting a gradual transmission of information. As

the end time T comes near we will typically have bl(s) ≈ bl(s − 1) ≈ 0 and

bh(s) ≈ bh(s − 1) ≈ 1 so that the optimal test is nearly revealing. However,

since the patients prior is also close to perfect knowledge of X, the amount of

information exchanged through the optimal test is tiny with high probability

– only with a very small probability a pessimistic patient becomes optimistic
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and vice-versa.14

All these considerations are not meant to obscure the fact that a fully-fledged

dynamic analysis of a model including the effect of future tests, a dynamic

choice of y and higher order anticipatory utility15 is a challenging topic for

future research.

Besides the usual technical problems of handling dynamic models, a central

difficulty in our setting is that anticipatory utility and related concepts tend

to induce time-inconsistencies in agents, see, e.g., Kőszegi (2010). We are

convinced that such time-inconsistencies should not be viewed as weaknesses

of the model but rather as stylized facts of human nature which have been

observed in a multitude of ways. Nevertheless, it is a delicate question –

far beyond the scope of the present paper – how a benevolent doctor should

maximize the utility of a time-inconsistent patient. To this end, let us remark

three things:

(i) From a descriptive point of view, a doctor who wishes to maximize a

patient’s utility as it is perceived by the patient right now seems like

a fairly convincing description of the objectives of real-life doctors –

anything else seems too complicated to be of practical importance. This

is especially true for specialized doctors who do not have regular contact

with a patient before a particular disease actually breaks out. The latter

case captures many of the examples we have in mind, including testing

for Huntington’s disease.

(ii) From a normative point of view, the time-aggregate utility function V

we considered above could be viewed as both – taking into account fu-

ture changes in the patient’s utility or not.16 In addition, a patient’s

future preferences will be fiendishly hard to observe. Thus postulating

that welfare maximization should take into account future changes in

14These last claims are easily confirmed by inspecting Proposition 2.
15By higher order anticipatory utility we mean utility from “looking forward to looking

forward to looking forward to ...” which is ignored in our analysis just like first order utility
from “looking forward to ...” is ignored in conventional models. At this point however, we
do not expect strong qualitative changes in the predictions when moving to higher orders.

16In the former case, however, the patient’s and doctor’s interest will no longer be per-
fectly aligned and a strategic component would enter optimal test design. As Kamenica
and Gentzkow (2011) have shown, the model framework we have here can handle strategic
interaction as well, see also Caplin and Leahy (2004).
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preferences would mean the end to many attempts at dynamic welfare

maximization.

(iii) As we have argued above, the patient’s demand for information will tend

to increase over time. Thus giving the patient as much information as he

desires at each point in time is a promising proxy for an optimal dynamic

revelation strategy regardless of the precise optimality criterion.

6 Conclusion

One might argue that there are moral obligations which force doctors to give

patients as much information as possible. Yet one could argue likewise that

a doctor or an institution that has the power to design a welfare-optimal test

is under a moral obligation to do so. Even if the exact specification of the

optimal test is difficult, patients can only gain from choosing their test out

of a menu. Put differently, offering nothing but the perfectly revealing test is

only justified if it is clear that people want to know the good and the bad for

sure. Yet this is refuted by the difficulties patients face when deciding to take

the test for Huntington’s disease.

We have provided a simple model combining anticipatory utility and risk pref-

erences as a basis to work on test design for life-changing information. Antic-

ipatory utility is known to play a significant role when it comes to important

events, both, on shorter and longer time horizons. As risk preference, we as-

sume risk aversion, since we feel this is the right assumption when physical

decay and death are possible outcomes. Yet our model provides the flexibility

to combine anticipation with any other kind of utility from future events. We

could for instance add a component of risk-loving behavior, hence curiosity

about the future. Our model shows that incentives for acquiring and not ac-

quiring information do not simply cancel out, and accordingly, it is not simply

such that the stronger of the two effects wins. This gives rise to optimal tests

which are partially revealing.

With regard to Huntington’s disease, some may think about more conventional

economic explanations for not taking the test. For instance, one might invoke

the costs of the test or the difficulties of finding a health insurer if the test
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result is bad.17 But neither of these explanations can fully capture what is

going on: To see this, recall the thought experiment from the introduction

about a reliable test which told you whether you would live for another t years.

The test in the thought experiment is costless. Assume the test predicted only

early sudden deaths. Then, finding a health insurer becomes easy in case of a

bad test result. Still it remains difficult to decide whether to take the test or

not.

A Proofs

Proof of Lemma 1. Fix a, b, ρ ∈ [0, 1] and define m = ρa + (1− ρ)b. Then by

the optimality of y∗, we have concavity:

c∗(ρa+ (1− ρ)b)

= (ρa+ (1− ρ)b)C(1, y∗(m)) + (1− (ρa+ (1− ρ)b))C(0, y∗(m))

= ρc(a, y∗(m)) + (1− ρ)c(b, y∗(m))

≥ ρc(a, y∗(a)) + (1− ρ)c(b, y∗(b))

= ρc∗(a) + (1− ρ)c∗(b).

Concavity over [0, 1] implies continuity over (0, 1). Continuity in 0 follows from

c∗(0) = c(0, 0) = 0, and from the facts that 0 ≤ c∗(b) ≤ c(b, 0) and

lim
b→0

c(b, 0) = lim
b→0

(1− b)C(0, 0) + bC(1, 0) = 0.

Continuity in 1 follows analogously.

Proof of Proposition 1. We first show that E[V (B)] ≤ V (p) for all B ∈ B and

then construct B∗ such that it attains this upper bound. For the upper bound

fix some B ∈ B and observe that since V is weakly greater than V and concave

we obtain

E [V (B)] ≤ E
[
V (B)

]
≤ V (E[B]) = V (p)

by Jensen’s inequality. Therefore, we can at most achieve V evaluated at the

prior belief p. Thus, B∗ = p is optimal whenever V (p) = V (p). To see that we

17Especially the second factor is an undeniable problem for patients with Huntington’s
disease.
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can always achieve V (p) we construct a random variable B∗ with

E[V (B∗)] = V (p)

for the other case where V (p) < V (p). Note that by its minimality, V is linear

on all open intervals J with V (b) < V (b) for all b ∈ J . Denote by I = (bl, bh)

the largest interval with the properties that p ∈ I and V (b) < V (b) for all b ∈ I.

Since this is the maximal interval, V and V must coincide in bl and in bh.18

Now choose B∗ as the unique random variable which takes only values bl and

bh and which has expected value p. B∗ is given explicitly in the proposition.

Since V and V agree on the two values of B∗ and by the linearity of V on I,

we have

E[V (B∗)] = E[V (B∗)] = V (E[B∗]) = V (p)

and thus B∗ indeed attains the upper bound.

Proof of Proposition 2. Applying Bayes’ rule, we immediately obtain the re-

quirements

P [X = 1|S = “Good”] =
αp

αp+ β(1− p)
!

= bh

and

P [X = 1|S = “Bad”] =
(1− α)p

(1− α)p+ (1− β)(1− p)
!

= bl.

Solving for α and β yields the solution given in the proposition. It remains

to check that α, β ∈ [0, 1]. For β this is clear since it is the product of two

fractions which obviously lie in [0, 1] by 0 ≤ bl < p < bh ≤ 1. α ≥ 0 also

follows immediately. α ≤ 1 is a consequence of the fact that

p− bl
bh − bl

≤ p

bh
.

Proof of Proposition 3. Since the optimal test is invariant to multiplying V by

a constant, we can reinterpret decreasing θ as adding a convex function to V .

Recalling the definition of bl and bh as the boundaries of maximal intervals

over which V strictly dominates V , the result follows from the following claim:

18In particular, for the case of I = (0, 1) where this does not immediately follow from the
definition of I, it is easy to check that by the minimality of V , V and V always coincide in
0 and 1: Otherwise we could modify V on a small interval to make it smaller.
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Let f be a convex function and denote by V + f the smallest concave function

greater than V +f . Then, if V is strictly greater than V on an open interval I,

V + f is strictly greater than V + f over I as well. The main step in proving

the claim consists of proving the inequality

V (b) + f(b) ≤ V + f(b) (3)

for all b ∈ [0, 1]. To see this inequality, fix some q ∈ [0, 1], denote by Bq
the random variables on [0, 1] with mean q and denote by B∗V a solution to

maxB∈Bq E[V (B)]. Then by Proposition 1 and the convexity of f we conclude

V (q) + f(q) = max
B∈Bq

E[V (B)] + min
B∈Bq

E[f(B)]

≤ V (B∗V ) + f(B∗V )

≤ max
B∈Bq

V (B) + f(B)

= V + f(q)

which proves (3). The claim now follows from (3) via

V (b) < V (b) ⇒ V (b) + f(b) < V (b) + f(b) ≤ V + f(b).

Proof of Proposition 4. For fixed dl the constrained optimal test can be con-

structed as follows: For d ∈ (p, 1], define gd as the straight line connect-

ing (dl, V (dl)) and (d, V (d)). For all dh, we have E[V (D(dh))] = gdh(p)

and by assumption there exists dh such that gdh(p) > V (p). Let g be the

straight line through (dl, V (dl)) with the property that g has the smallest slope

among all straight lines which are weakly greater than V over [p, 1]. Clearly,

g(p) ≥ E[V (D(dh))] for all dh ∈ (p, 1]. Moreover, by the continuity of V this in-

equality is an equality for some values of dh and, accordingly, g ≡ gdh for these

values. Denote by d∗h the smallest value in [p, 1] such that gd∗h ≡ g. By assump-

tion, d∗h > p. Thus we have identified a constrained optimal belief D(d∗h) and

it remains to show that d∗h ≤ bh. Note first that gbh(b) ≤ gd∗h(b) for all b > dl

by the definition of d∗h. Denote by f the straight line connecting (bl, V (bl))

and (bh, V (bh)) and note that f(b) = V (b) for b ∈ [bl, bh] and f(b) ≥ V (b)

for b ≥ bh by the concavity of V . Since f(dl) = V (dl) > V (dl) = gbh(dl)
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and f(bh) = V (bh) = gbh(bh), it follows that gbh(b) > f(b) for b > bh as both

functions are linear. Yet this implies that for b > bh

gd∗h(b) > gbh(b) > f(b) ≥ V (b) ≥ V (b).

Since gd∗h(d∗h) = V (d∗h) we must have d∗h ≤ bh.

Proof of Lemma 2. We have to show that the second derivative V ′′(b) = θU ′′(b)−
(1− θ)c∗′′(b) switches signs at most once and if it does then from negative to

positive. Under our assumption on C(x, ·), the function c∗(b) is given by

c∗(b) = b(1− b) and thus c∗′′(b) = −2 for all b. Since U ′′ is monotone, θU ′′(b)

and (1 − θ)c∗′′(b) intersect at most once and it is easily checked that the re-

sulting signs of V ′′ match the claims in the lemma, and that the point of

intersection bc moves to the right as θ increases.

Proof of Proposition 5. Case (i) is clear so we turn to Case (ii). Note that since

V is a continuous function on a compact set (and thus bounded) and since its

derivative in b = 1 must be bounded from below by strict convexity near 1, we

can choose real numbers zl < zh with the following properties: gzh(b) > V (b)

for all b < 1 and gzl(b) < V (b) for some b ∈ [0, 1]. Define the compact set

Z = [zl, zh] and define z∗ via

z∗ = inf{z ∈ Z|gz(b) > V (b) ∀b ∈ [0, 1)}.

By the continuity of V and our choice of Z this infimum is actually attained.

Since we are in Case (ii) we also know that z∗ > V (0) since gz is monotonic

in z. Since gz∗ is defined as an infimum over all gz which are greater than V

and since gz is continuous in z it follows that there must exist some bt ∈ (0, 1)

for which gz∗(bt) = V (bt). Here we can exclude bt = 0 since z∗ > V (0). gz∗

and V cannot cross at this intersection because otherwise we could increase

z∗ slightly and still have an intersection, contradicting the minimality of z∗.

Thus, gz∗ and V must have the same slope in bt, i.e. gz∗ is a tangent to V in

bt. Moreover, we must have bt < bc: Since V and gz∗ coincide in bt and in 1,

they must have the same average slope over the interval [bt, 1]. This average

slope equals their common slope in bt where they are tangential since gz∗ has

constant slope. This would immediately give a contradiction if we had bt ≥ bc

since in that case V would be strictly convex (strictly increasing slope) over
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[bt, 1]. The uniqueness of bt follows from the strict concavity of V over [0, bc]: A

strictly concave function cannot be tangential from below to the same straight

line at more than one point. Thus, we can always construct the function V̂

described in the proposition. The resulting function is indeed concave since it

equals V on [0, bt] ⊂ [0, bc] and then continues with constant slope. Moreover,

by the definition of z∗, we have V̂ (b) ≥ V (b) for all b > bt.

Proof of Proposition 6. Recall that the minimum of two concave functions is

again concave. Thus we must have V (b) ≤ V (b) ≤ V̂ (b) for all b ∈ [0, 1]:

If the second inequality was violated at some b then min(V , V̂ ) would be a

concave function dominating V which was strictly smaller than V at some b,

contradicting the minimality of V . Since V and V̂ coincide on [0, bt] and in

1, they must thus also coincide with V at these values. Yet on the remaining

values (bt, 1), V̂ is linear and thus no concave function which agrees with V̂

at the end points {bt, 1} can be smaller. This proves V (b) = V̂ (b) for all

b ∈ [0, 1].

Proof of Proposition 7. Note first that the signals relevant to our restricted

optimization are exactly those signals which induce beliefs B ∈ BG where

BG ⊂ B is the set of G-valued random variables with mean p. The requirement

minG ≤ p ≤ maxG ensures that BG is non-empty. Since V G is concave and

dominates V on G, we have by Jensen’s inequality the upper bound

sup
B∈BG

E [V (B)] ≤ E [VG(B)] ≤ VG(E[B]) = VG(p)

on what the doctor can achieve. Choose bl and bh as prescribed in the propo-

sition. Clearly, bl and bh must lie in G, since – due to its minimality – VG can

only change its slope at points in G and since the interval (bl, bh) was chosen

maximally. Thus, the random variable B∗G which takes only values bl and bh

and has mean p lies in BG. Since VG is linear over [bl, bh], the optimum is

attained: E[V (B∗G)] = VG(p).

Proof of Corollary 2. The proof is basically contained in the one of Proposition

4: In order to construct a test which induces a belief which is preferable

to D(bh) we would need the existence of a straight line gdh going through

(dl, V (dl)) and some point (dh, V (dh)), dh ≥ bh, with the property that gdh is

steeper than the line gbh which connects (dl, V (dl)) and (bh, V (bh)). Yet we
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have shown that gbh is strictly greater than V on (bh, 1] and thus no steeper

line through (dl, V (dl)) can intersect V on (bh, 1]. This proves the claim.

Proof of Proposition 8. Recall first that the same values bl and bh characterize

the optimal test for all priors p′ ∈ [bl, bh] and thus as long as the patient

holds a belief within this interval the optimal test induces these values. By

the definition of bl and bh in Proposition 1, we know that in bl and bh the

functions V and V coincide so that a patient who holds a posterior belief in

{bl, bh} will not accept any further offered tests. In particular, if bl = p = bh

the patient will never accept any test and the result follows trivially. Assume

thus bl < p < bh. It thus remains to show that one of these beliefs is always

reached through our procedure. The key observation is that if the patient

has accepted a test with values in {dl, dh} in our sequence of tests then we

can conclude that [dl, dh] ⊆ [bl, bh]. Suppose that the starting interval for the

current round of offers [sl, sh] is contained in [bl, bh] and that the current prior

p lies strictly between bl and bh. Observe that in our sequence of tests, we

always increase dh while keeping dl fixed until we reach dh = 1 or the patient

accepts a test. By Corollary 2 we know that if the patient does not accept

the test with {dl, bh} he will not accept any test with {dl, dh}, dh > bh either.

Yet since we decrease dl gradually and since the test {dl, bh} is always offered

before any too informative test with {dl, dh}, dh > bh, it is clear that if the

patient accepts a test we know that it cannot include a value of d outside

[bl, bh] – otherwise the patient would have accepted an earlier test. At the very

beginning we have {sl, sh} = {p − ε, p + ε} and thus [sl, sh] ⊆ [bl, bh]. Thus

it follows inductively that the results {dl, dh} of an accepted test always lie in

[bl, bh] and accordingly, the starting points for searching the next test always

lie in [bl, bh] as well. The only exception is the case where the patient has a

posterior belief in {bl, bh} after the test so that either sl = bl−ε or sh = bh +ε.

Yet this case is not problematic since a patient who holds an optimal belief

refuses all further tests. Finally, it is clear that a posterior belief in {bl, bh} is

ultimately reached since a test inducing these two values is eventually proposed

to the patient unless he has reached either of these values earlier. This follows

immediately from the way the sequence of tests is constructed.

Proof of Lemma 3. Let ρ ∈ [0, 1] and a, b ∈ ∆n. Then concavity of U follows
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from concavity of u via

U(ρa+ (1− ρ)b) = u

(
ρ

(
n∑

i=1

aixi

)
+ (1− ρ) (bixi)

)

≤ ρ u

(
n∑

i=1

aixi

)
+ (1− ρ)u

(
n∑

i=1

bixi

)
≤ ρU(a) + (1− ρ)U(b).

Proof of Proposition 9. Recall that the optimal test takes the same two values

bl(s) and bh(s) for all priors p in an open interval around p0 on which Vs

is strictly smaller than V s. Define bl(s) and bh(s) this way. Since we have

p0 ∈ [bl(s − 1), bh(s − 1)] ⊆ [bl(s), bh(s)] by Proposition 3, the result on bl(s)

and bh(s) follows immediately. Accordingly the test at time s induces either

p(s+ 1) = bl(s) or p(s+ 1) = bh(s) regardless of the value of p(s).
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