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at the end of any round. It turns out that there is only one such exogenous mechanism

and all other sequentially fair mechanisms we find are endogenous, in which kicking-

order patterns take the score at that round into consideration. Given this multitude of
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1 Introduction

Market design as a general field seeks to provide practical solutions to various resource

allocation problems, in which monetary transfers are often unavailable. This relatively new

field has already made concrete contributions and important applications in solving many

real-life problems. In particular, it has already enjoyed impressive successes in applying

economics tools and insights to improve the methods for allocating resources in organizing

markets such as the one between medical interns and residents, in assigning students to

public schools or to courses at a given university, in allocating housing to new immigrants

and dorms to college students, and in creating paired kidney exchanges between kidney

donors with medical incompatibilities and transplant patients, among others.1 What makes

these successes of market design more impressive is the limitation or absence of monetary

transfers acting as a very serious constraint in these real-world allocation problems (e.g.,

public school slots and human kidneys are not allowed to be traded for money), which means

that effi ciency and fairness need to be achieved through other means. As such, in this paper

we will explore a new application of this field by attempting to design a practical solution to

the problematic penalty shootouts, which currently constitute the only way to determine the

winning team worldwide when a match score is tied in major soccer elimination tournament

matches after the regular 90-minute period and the 30-minute extra time.

Soccer is not only the leading sports in the world (in terms of its fan base, its revenues,

and the number of players playing soccer in organized leagues), but also has profound - albeit

at times negative - impact on ordinary people’s daily lives and even on countries:2 Following a

World Cup elimination match between Honduras and El Salvador, soccer has been blamed for

1For more on recent accomplishments of market design, see for instance Abdulkadiroğlu and Sönmez

(2013), Che (2010), Nobel Prize Organization (2012), Sönmez and Ünver (2011), Sönmez and Ünver (2013).
2“. . . Over 3.2 billion people, or 46.4 percent of the global population, saw at least one minute of in-

home television coverage of the event, representing an eight percent rise on figures recorded during the

2006 FIFA World Cup in Germany,” FIFA World magazine reported in its August/September 2011 issue

(http://www.fifa.com/worldcup/archive/southafrica2010/organisation/media/newsid=1473143/).

The sports industry’s annual revenues are estimated to exceed $600 billion as of 2009, which in turn exceeds

half of the annual export revenues of the U.S. In particular, soccer accounts for 43% of the measurable part of

these revenues, namely of all ticketing, media and marketing revenues (see Zygband and Collignon, 2011). In

addition, prominent soccer teams easily compare to major conglomerates. Forbes reports that Real Madrid

posted a revenue of $650 million during the 2011-12 season and is worth $3.3 billion. Manchester United,

which is ranked second on Forbes list with a $3.17 valuation, has its shares trading publicly. “Those who

bought in, including legendary investor George Soros, have been richly rewarded. Most recently trading at

$17, shares of the soccer team have outperformed the S&P 500 by better than two-to-one since the IPO”

(see Ozanian, 2013).

FIFA reported that 265 million people played soccer in organized leagues in 2007 worldwide

(http://www.fifa.com/worldfootball/bigcount/).
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instigating a 100-hour war that took place in 1969 between these two neighboring countries

with devastating consequences.3 In addition, Edmans et al (2007) report significant market

declines ensuing soccer losses; these declines are stronger after important losses such as in

the World Cup elimination stage matches. Given these, it is not surprising that a special

attention is paid to soccer as a major social and economic phenomenon throughout the world,

in particular to major national- or club-team level soccer elimination tournaments (e.g., the

World Cup, the European Cup, the Champions League, etc.) - with an elevated interest in

its match-deciding penalty shootouts.

In the current shootout mechanism used since 19704 - with a minor tweak in 2003 -,5

each team takes five penalty kicks from the penalty mark in an alternating order, and the

order of the kicks is decided by the referee’s initial coin toss such that the team that wins

the coin toss gets to kick first in each round. An important feature of the current mechanism

has been intact since its inception, however: if the shootout score too is tied after each team

takes five penalty kicks, sudden-death rounds are reached, which go on until the tie is broken

such that the kicking order is preserved in these extra rounds as well.

Currently penalty shootouts in soccer are deeply problematic, since, as recently

Apesteguia and Palacios-Huerta (2010) found out, teams, which get to take the first penalty

kick, win the penalty shootout with more than 60 percent of the time.6 Clearly, teams that

win the coin toss and get to kick first cannot be constantly better than teams that lose the

coin toss. Thus, this finding, in a sense, implies that, winning the initial coin toss is also

very important alongside the penalty-kicking and goal-saving skills of the two teams’players

3“On July 14, 1969, the armed forces of the Republic of El Salvador invaded the territory of the neighbor-

ing Republic of Honduras. The attack began a war that lasted only 100 hours, but left several thousand dead

on both sides, turned 100,000 people into homeless and jobless refuges, destroyed half of El Salvador’s oil

refining and storage facilities, and paralyzed the nine-year old Central American Common Market”(Durham,

1979, p. 1).
4Until 1970, matches in major soccer tournaments that were tied after the extra time were either replayed

in two days or decided by a coin toss. In fact, in the 1968 European football championship, the semi-final

match between Italy and the Soviet Union was decided by a coin flip. Italy won the coin toss and proceeded

to the final match against Yugoslavia, which too ended in a tie after the extra time. But this time the public

outrage of soccer fans following the Italy-Soviet Union match and the fact that there was no further match

left in the tournament led authorities to repeat the final match in two days; Italy won the match. The

impracticality of repeat matches before the final match (causing a major delay in the tournament schedule)

and strong public aversion to determine the outcomes of such highest level matches by a coin flip led FIFA

in 1970 to replace both coin tosses and match replays by penalty kicks after the extra time instead.
5Since 2003, the team that wins the toss decides which team kicks first - needless to say, almost invariably

all team captains that win the toss chose their team to kick first.
6In their corrigendum, Apesteguia and Palacios-Huerta (2011) state that the winning percentage of teams

taking the first kick would be %64 in "the most complete specifications of columns 3 and 6" instead of %60.5,

which was reported in their original paper.
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in winning a critical major soccer elimination match. Thus, a situation with two teams

that are totally balanced in terms of their players’shootout abilities and possess exactly the

same number of opportunities to perform the same task is not necessarily suffi cient to yield

a ’sequentially fair’outcome where each team is expected to win the shootout with 50%

probability whenever the score is tied after any round in a penalty shootout.7

Without a doubt this concern also played a role when, between 1993 and 2004, FIFA

experimented with the Golden Goal and Silver Goal.8 It was hoped that these parallel

measures would produce more offensive flair and attacking play during extra time, and thus

would effectively reduce the number of penalty shootouts which strongly favored the team

that won the initial coin toss.9

A primary question to pose then would be the following: is it possible to devise a shootout

mechanism in which each of the teams, totally-balanced in terms of skills, has exactly 50%

chance to win the penalty shootout whenever the score is tied after any round in contrast

to the current mechanism.10 Thus, with a sequentially fair mechanism, the probability of

winning is supposed to depend only on these teams’kicking skills of their kickers and goal-

saving skills of their goalkeepers (i.e., goalies). The age-old Aristotelian Justice rests on

7A precursor of our concept of sequential fairness can be found in Che and Hendershott (2008), which uses

a static one-shot version of it, ex-post fairness: In the National Football League (NFL), matches that end

in a tie are determined by a sudden-death overtime, in which the first team that scores wins. Like in soccer

penalty kicks, the initial coin toss - and the consequent opening possession - yields a significant advantage to

the team which wins it, and thus overall the outcome fails to be ex-post fair. To minimize the impact of luck

imposed by the initial coin toss, i.e., to make sure that the team that receives the opening possession has no

real advantage, Che and Hendershott (2008, 2009) propose “auctioning off”or “dividing-and-choosing”the

starting possession to potentially restore ex post fairness.
8The golden goal is a type of sudden-death ending for a match, which was introduced in 1993; the team

that scores the first goal during extra time is the winner and the game ends when a golden goal is scored.

The similar silver goal, which was announced in 2002, supplemented the golden goal during 2003 and 2004 as

an alternative remedy especially in UEFA tournaments. With the silver goal, in extra time the team leading

after the first fifteen minute half would win, but the game would no longer stop the instant a team scored.
9Nevertheless, it was widely thought that golden goal encouraged teams to play more defensively to

safeguard against a loss. Teams often placed more emphasis on not conceding a goal rather than scoring a

goal, and many golden-goal extra time periods remained scoreless. When he introduced the silver goal to the

world press, “we believe that this will be good for clubs, players and fans,”said UEFA communications di-

rector Mike Lee. “We have addressed the problems created by the golden goal which many in the game have

identified. The new system will encourage positive football in the extra-time period, and produce a sensible

and fairer ending to a game.” Despite these high expectations, the silver goal lasted much shorter than

its original golden counterpart. See http://www.theguardian.com/football/2003/apr/28/newsstory.sport10,

http://www.telegraph.co.uk/sport/football/2373763/Silver-goal-loses-its-shine-for-rule-makers.html and

http://www.uefa.com/news/newsid=71448.html.
10See Table 6 of Apesteguia and Palacios-Huerta (2010).
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a two-part priciple: equals need to be treated equally and unequals unequally.11 In other

words, in our context, it would be unjust (1) for a team to win a shootout with a probability

higher than 50% if the other team is equally skilled, and (2) for both teams to have an exactly

50% chance to win the penalty shootout whenever they are unequal in skills - i.e., the better

team should have a higher probability to win the shootout. In this paper the answer to the

above question turns out to affi rmative; indeed, we find that there is a multitude of such

sequentially fair mechanisms (we will elaborate more on the types of different sequentially

fair mechanisms below).

First, what can be said about the kicking skills of players? The soccer players who take

the kicks are among the highest paid professionals in the world and the task they have to

perform - kick a ball once - is one of the simplest and effortless tasks they could possibly

perform in soccer, albeit each such kick involves an element of risk and thus can turn out

to be costly for the kicker if he misses it. It is possible that even the most skilled topnotch

kickers may not be able to hit an exact spot with the ball from 12 yards (approximately 11

meters) every time at a suffi cient speed to elude a high-caliber goalie.

The following quote by Italy’s Roberto Baggio, who in the 1994 World Cup final’s penalty

shootout missed one of the most important penalty kicks in the history of soccer against

Brazil, provides strong implications about plausible assumptions regarding players’prefer-

ences and various basic physical aspects of a penalty kick:12

“As for the penalty, I don’t want to brag but I’ve only ever missed a couple of penalties in

my career. And they were because the goalkeeper saved them not because I shot wide. That’s

just so you understand that there is no easy explanation for what happened at Pasadena.

When I went up to the spot I was pretty lucid, as much as one can be in that kind of

situation. I knew [the Brazilian goalie] Taffarel always dived so I decided to shoot for the

middle, about halfway up, so he couldn’t get it with his feet. It was an intelligent decision

because Taffarel did go to his left, and he would never have got to the shot I planned.

Unfortunately, and I don’t know how, the ball went up three metres and flew over the

crossbar. . . . I failed that time. Period. And it affected me for years. It is the worst moment

of my career. I still dream about it. If I could erase a moment from my career, it would be

that one.”
11See Aristotle (1999, p. 76).
12Roberto Baggio played for top clubs such as Juventus, AC Milan and Inter Milan, winning many Italian

League titles, Italian Cups and UEFA Cups, and was voted European Footballer of the Year in 1993. His five

goals in the tournament had helped Italy to reach the final’s match of the 1994 World Cup against Brazil.

With a 0-0 tie in the match after the regular and extra time, the shootout was reached. When the shootout

score was 3-2, it was Baggio’s turn to kick. Baggio had to score to keep Italy’s chances alive in the contest.

He aimed for the middle and the ball sailed over the crossbar. Years later, Baggio referred to this miss in

his 2001 autobiography ’Una Porta Nel Cielo’via the quote below.
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As Apesteguia and Palacios-Huerta (2010) have also noted, players’kicks and their out-

comes have "enormous consequences not only for their individual careers, but also for their

team, their city and even their country as in a World Cup final, for instance." From a team’s

perspective a goal is preferred to a non-goal, and clearly there is no difference at all between

a saved kick and a kick that is missed outright, i.e., a kick that goes out or hits the goal

post. From Baggio’s quote, we also infer that, from a player’s perspective on the other hand,

while scoring a goal is the best outcome and the goalie’s save is to some extent a face-saving

outcome, missing the penalty kick outright can be a devastating outcome for a kicker. Thus,

a kick can be really costly for the kicker if he misses it outright.

One can not, however, posit whether a player’s individual utility from his kick or his

collective utility from his team’s winning the shootout should outweigh one another. E.g., a

player can still be happy to some extent if he scored his penalty kick while his team lost the

shootout; likewise, a player can still be somewhat heartbroken and unhappy if he missed his

penalty kick outright while his team won the shootout. This implies a reasonable amount

of autonomy between a player’s utilities from his individual perspective and his team (or

collective) perspective.

We also infer from Baggio’s quote that goalies may feel the need to dive. This is because,

at the optimal speed-accuracy combinations of world-class kickers, the kicked ball typically

takes around 0.3 seconds to reach the goal line (i.e., plane). 13 This 0.3-second window is

less than the total of roughly 0.2 seconds reaction time of the goalie to clearly observe the

kick direction of the ball first, plus the time during his dive to reach the expected arrival spot

of the ball before it reaches the goal plane. Hence, a goalie cannot afford to wait until he

clearly observes the kick direction. To be able to prevent a goal with non-trivial probability,

the goalie must pick a side to dive - or alternatively stay in the middle -14 at the time the ball

is kicked. That way, the goalie can save the ball, albeit with less than 50% chance overall; to

see that note that, to make a save, he has to be lucky enough to dive in the correct direction

first and then be able to reach the ball as well, implying a less than 100% chance to save a

goal even after diving in the correct direction - staying in the middle will likewise lead to a

less than 50% chance to save a goal, and clearly less than a dive would.

We now turn to the primary question we intend to answer: is it possible to devise

a sequentially fair shootout mechanism. We will use a recursive definition of sequential

fairness: in a sequentially fair mechanism, at any round when the score is tied, the expected

probability of each team winning the shootout is 50% between two totally-balanced teams

and higher than 50% for the better team between two unbalanced teams, in any Markov

13See, for instance, Harford (2006), Chiappori et al (2002), and Palacios-Huerta (2003).
14See Bar-Eli et al (2007). But, as Baggio’s quote also indicates, a shot aimed at the middle may be missed

outright or hit the feet of the diving goalie and thus can be saved, even if the goalie dives.
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(stationary) equilibrium between two fully-balanced teams.15

We first consider exogenous mechanisms, which, like the current mechanism, has a pre-

determined, random or fixed, kicking-order pattern by teams which does not depend on the

score at any round; we also consider endogenous mechanisms of which endogenous kicking-

order pattern takes into consideration whether one of the teams is behind in scoring or the

score is tied after a round. We find that there is only one exogenous mechanism, namely

the random-order mechanism - in which the kicking order before any round is determined by

coin flip - that is sequentially fair. Any other exogenous mechanism, including the current

mechanism and even the one in which each round the kicking order would reverse, namely

the alternating order mechanism, turn out to fail sequential fairness.1617 Consequently, all of

the other sequentially fair mechanisms we identify turn out to be endogenous.

Any sequentially fair endogenous mechanism we find is such that, when the score is

tied at the end of any round, the kicking order can be determined arbitrarily (randomly or

not), while when any team is ahead at the end of any round, that team goes first with a

particular probability in the next round - where throughout the penalty kicks this probability

remains fixed for any team that is ahead score-wise. Thus, there is a continuum of ex-post

mechanisms. Sequentially fair mechanisms also satisfy the second part of the Aristotelian

Justice principle: among two teams with unequal kicking skills, the better team will have

a higher probability to win the shootout; any sequentially unfair mechanism, and thus the

fixed order mechanism, fails to satisfy it.

Because of the continuum of the sequentially fair mechanisms we find, one needs to resort

to other criteria beside sequential fairness to refine the set of mechanisms that can be deemed

desirable. Among the sequentially fair mechanisms, some have higher goal probabilities

than others. In our market-design section, we discuss the relative merits of different ex-

post fair mechanisms in terms of these additional criteria. We show that there is a unique

sequentially fair mechanism with the maximum goal effi ciency, which we term the Behind-

First mechanism, as follows: team one that won the coin toss kicks first in the next round

as long as the score is tied or team one is behind in score; once the other team, team two,

falls behind in score after some round, it starts kicking first in any round until team one falls

15A stationary Perfect Bayesian equilibrium is the one in which each kicker of each team adopts the same

strategy given a particular score and order (to be made precise later). We use a two-round game with

continuation rounds that can potentially go on forever until the tie is broken by one of the teams. Thus, it

is an infinite-horizon stochastic hidden-action Markov game.
16The current mechanism is marred by multiple equilibria, vast majority of which not being sequentially

fair.
17A more elaborate version of the alternating order mechanism, namely the Prouhet-Thue-Morse sequence

(which was proposed by Palacios-Huerta, 2012, to replace the current mechanism) also turns out to fail

sequential fairness. These mechanisms, however, are sequentially fair if they are employed in the sudden-

death rounds, which are taken after the five regular kicks yield a tie.
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behind in score, after which team one kicks first in any round until the sudden-death rounds.

This mechanism also satisfies another important property, Instant Rectifiability, which all

exogenous and most endogenous mechanisms fail to satisfy.

2 Related Literature

We will now provide a brief review of the relevant literature. Apart from the papers men-

tioned in the Introduction, our paper is related to the following strands of research as well.

The first of these strands is on regular penalty kicks in soccer matches (Chiappori et al,

2002, Palacios-Huerta, 2003, and Bar-Eli et al, 2007), the second one is on incentives various

different rules or their combinations - some partially involving penalty shootouts as well -

would give to teams (Brocas and Carrillo, 2004, and Carrillo, 2007), and the third one is on

economic design of sporting contests (Szymanski 2003’s literature review, and Groh et al,

2012).

Chiappori et al (2002) studied soccer penalty kicks both theoretically and empirically

to test mixed strategies, while Palacios-Huerta (2003) did so with a much more empirical

focus. Chiappori et al (2002), considered regular penalty kicks in the French first league over

a two-year period and in the Italian first league over a three-year period. Palacios-Huerta

(2003) considered regular penalty kicks from Spanish, Italian, English and various other first

leagues over a five-year period. As alluded to above, neither study considered any penalty

kicks in penalty shootouts. Bar-Eli et al (2007), after studying mostly regular penalty kicks

and some shootout penalty kicks in some championships, observed that goalies almost always

jump right or left whereas it would also be optimal for goalies to stay in the goal’s centre,

at least with some probability.18 They proposed an explanation for this behaviour via norm

theory: goalies do so because it is the norm to jump.

Brocas and Carrillo (2004) show that, in terms of the incentives of teams to play offen-

sively, the three-point victory rule (3PV) may not be more beneficial than 2PV, and the

combination of 3PV with golden goal is more beneficial than 3PV alone. Carrillo (2007)

considers having the penalty shootout before extra time where the shootout outcome counts

only if the tie is preserved during extra time. He finds that this rule promotes offense (de-

fense) for the team that loses (wins) the shootout. He also provides conditions under which

this rule would dominate the current regime in terms of offensive play.

18Both Chiappori et al (2002) and Palacios-Huerta (2003) find that kickers kick it to the middle relatively

rarely and goalies choose to stand in the middle even less often; thus a kicker kicking it to the middle and

the goalie waiting in the middle is not a highly expected outcome —although Chiappori et al (2002) find

that kickers achieve their highest average scoring probability by kicking to the middle (it is also noted by

Chiappori et al, 2002, however, that kickers in regular penalty kicks of these non-elimination regular matches

do not kick to the middle unless their team’s score advantage is large enough).
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The third strand focuses on topics of economic design of sporting contests such as the

optimal number of entrants/teams in a race/league, the optimal structure of prizes (revenue

sharing) for a tournament (league), and so on - see Szymanski (2003) for a review of this

literature. Another interesting recent topic in this latter literature is on optimal seedings of

teams or players in elimination tournaments - see, for instance, Groh et al (2012).

3 Model

Two soccer teams, which we refer to as Teams 1 (T1 for short) and 2 (T2 for short), are

facing-off in a penalty shootout. Each team shall take n sequential rounds of penalty shots.

Each round consists of one team kicking first, and after observing the outcome of that shot,

the second team taking the next shot. If one team scores more goals than the other at the

end of these n rounds, then the ahead team wins the game and eliminates the other team.

We refer to this n rounds as the regular rounds. Throughout the paper we will assume that

n = 2. This is suffi cient to characterize sequential fairness and analyze the current scheme

and other proposed mechanisms, such as the tennis tiebreak mechanism, ‘alternating order.’

With n = 2, the analysis is tractable and yet rich enough to capture the multi-round feature

of penalty shootouts.19

If the teams are still tied at the end of the regular rounds, the format reverts to sudden-

death; that is each team takes on additional round of shots and then if one team scores

while the other one does not, then the ahead team wins the game; otherwise next round of

sudden-death penalty shots are taken. We refer to the sudden-death rounds as n+1, n+2, ....

As potentially the game can continue forever, we assume that each team consists of an

infinite number of kickers and each kicker takes at most one shot.20

A penalty kick consists of a probabilistic event with three outcomes: Either a goal is

scored (G), the shot goes out wide (O), or the shot is saved by the goalie (S). The latter two

outcomes lead to the same score for the team: a goal is not scored.

While each kicker is a strategic player, the goalie is modeled as a probabilistic machine.

The goalie waits in the middle of the goal line prior to the shot. He jumps one side or the

other with probabilities 1
2

: 1
2
prior to the penalty shot, as he needs to react early to have

any realistic chance to save the kick. So with probability 1
2
he reaches to the same side of the

goal as the kick goes. Hence, we model the goal line a one dimensional line segment [0, 1],

19We have n = 3 results and can obtain results for n > 3. We skip those as the analysis will be extremely

cumbersome and lengthy without providing any further insight.
20In reality, each soccer player can take at most one shot, unless all players in his team have already kicked

penalty shots. As each team consists of 11 players, 11 shots need to be taken by each team before any player

can kick a second shot. As n = 5, this happens very rarely.
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where x = 0 refers to the center of the goal, and x = 1 refers to the goal pole on the side the

kick goes.

Each kicker, who is a single round player in our game, has an action summarized as

aiming to coordinate x ∈ [0, 1] of the goal line. When a kicker aims at x, the exact spot the

ball reaches on the goal line is determined by a continuous probability density function σx in

a closed support [εx, εx] for some εx > x > εx ≥ 0. The spot the ball reaches, y, is observable

by all other players, but not the intended spot, x. Both x and y are observable by the kicker

himself. Moreover, given the shot is aimed at x, there is a PG(x) > 1
2
chance that a goal

will be scored; and a PO(x) probability that, the shot will go out. Hence, the shot is saved

by the goalie with probability 1− PG(x)− PO(x).21 We assume that PG, PO, and σx for all

x ∈ [0, 1] are all common knowledge.

We assume that PG is twice continuously differentiable strictly concave function, single-

peaked at x ∈ (0, 1). Coordinate x is the optimal spot for scoring a goal. We assume that

neither aiming at exactly the middle, x = 0, or a goal post, x = 1.22 Function PO, on the

other hand, is an increasing twice continuously differentiable convex function. Increasing PO
is immediate to motivate: the closer to the middle the ball is aimed, the lower is the chance

the ball will go out. Single-peakednes of PG is also easy to motivate: Whenever the ball is

aimed at low x values, it can be saved with a higher chance by the diving goalie (he can

save with his lower part of body or his hands as he dives). For higher x values, although the

goalie’s chances of saving the ball decreases as he may no longer reach it, its chances of going

out increases. Hence, there is an optimal spot for the highest goal probability x. Concavity

of PG and convexity of PO are primarily assumed for the tractability of our analysis, and do

not play any other major role for the interpretation of our results.

We assume that each kicker of both teams is identical in ability and has the same goal

scoring and kicking out probability.

A shootout mechanism is a function, φ, which assigns a probability φ(hk−1, gT1 : gT2) to

T1 kicking first in Round k, given the sequence of first kicking teams in the first k−1 rounds

is hk−1 = (hk−1i )k−1i=1 where h
k−1
i ∈ {T1, T2} is the team that kicked first in Round i and that

gT1 : gT2 is the score (i.e., the goals scored by T1 and T2, respectively) at the beginning of

21Actually PG and PO are summary functions obtained from the following process: The spot the ball

reaches, y, is observable by all other players, but not the intended spot, x. If y > 1 then the ball goes out.

So PO(x) =
∫ εx
y=1

σx(y)dy. On the other hand, the goalkeeper can save the ball which arrives spot y with

probability S(y), which is a continuous function. Hence, PG(x) =
∫ 1
εx
[1 − S(y)]σx(y)dy. Hence, we assume

that the family of densities {σx}x∈[0,1] and save probability function S have all the properties that need the
below restrictions to hold for PG and PO.
22Even if the save probability could be very low when the kick exactly arrives at y = 0, the kick deviation

probability σ0 makes it a zero probability event that the ball will arrive exactly at y = 0. And once the ball

deviates even a bit from the middle, a diving goalie can potentially save it with his lower part of his body

or with his hands with a relatively high probability.
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Round k. Thus, the probability of T2 kicking first in Round k is 1− φ(hk−1; gT1 : gT2).

Each shootout mechanism φ induces a hidden action extensive-form game, which we will

simply refer to as the game, such that the exact spot that each kicker aims the ball on the
goal line is unobservable. Given the current state (hk−1; gT1 : gT2), for Rounds k = 1, 2, ..., the

order of first kicking teams in the previous k − 1 Rounds hk−1, and feasible scores gT1 : gT2,

the nature determines which team will kick next, with probability φ(hk−1; gT1 : gT2) T1

kicking next. Then a kicker of the team takes the penalty shot, observing the state and

the history of the outcomes of all the shots up to that point as goal, out, or save. The

kicker aims to some spot x ∈ [0, 1] to maximize his expected individual payoff (which we

explain in the next paragraph). Then the nature determines with probability distribution

PG(x), PO(x), 1 − PG(x) − PO(x) whether the penalty kick results with a goal, goes out, or

is saved, respectively. After the outcome of this shot is observed, the other team’s kicker

takes a penalty shot observing the history of the outcomes of the shots up to that point.

We continue until the end of regular rounds k = n similarly. If the score is tied, then we

continue with the sudden-death rounds until the tie is broken at the end of a Sudden-Death

Round k > n.

Each kicker aims to maximize his expected individual payoff in the game. Each kicker’s

payoff function consists of two additive components. The first one is the utility received

when his teams wins or loses the shootout: VW is the win payoff and VL < VW is the loss

payoff. This component of the payoff is common to each kicker of the same team. The second

component of the individual payoff consists of an individual outcome based valuation: If the

kicker scores a goal he gets the utility UG > 0, if he kicks the ball out he receives a payoff

UO < 0, and if the goalie saves the kick he receives a payoff US = 0. This is a normalization

that makes sure that scoring a goal is most desirable outcome, and kicking the ball out is

less desirable than kicking the ball inside the goal frame and yet the goalie saves the ball.

With this normalization, we can also drop a variable from our notation without affecting our

analyses. Overall ex-post payoff of a kicker is then

u = Vt + Up

where t ∈ {W,L} refers to the overall team outcome, win or loss; and p ∈ {G,O, S} refers
to the kicker’s penalty outcome, goal, out, or save.

An information set Hi that team i moves with positive probability consists of the exact

spot the ball went for each of the previous kicks, the team of the kick, and whether the kick

was scored as a goal, went out, or was saved by the goalie. This is the only thing observable

by the team i kicker moving in information set Hi. Each information set has an associated

round, order of kicking in the round as 1st or 2nd, and a current score difference between T1

and T2.
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A strategy Xi is a function from the set of information sets that team i moves with

positive probability to [0, 1], the spots that each player can target while taking the penalty

shot.

This is a sequential hidden action game, as each player only observes where the ball goes

and whether the kick was a goal, out, or a save in previous kicks, but not the intended spot

the ball was kicked. Hence, as a kicker takes a penalty shot, he has a belief over intended

spots of previous kicks. Formally, a belief µ(Hi) is a function that maps each information

set Hi that team i moves with positive probability to a probability distribution over histories

of actions taken that would lead to the same information set.

Our solution concept is a refinement of perfect Bayesian equilibrium, which we first define:

A perfect Bayesian equilibrium in the game of shootout mechanism φ is a strategy profile

- belief profile pair
[
X = (X1, X2), µ = (µ(H1), µ(H2))

]
such that

• for each team i, and information set Hi, Xi(Hi) ∈ [0, 1] maximizes the expected value

over possible ex-post payoffs u of i’s kicker among all spots in [0, 1] given Xi(H
′
i) for

all H ′i 6= Hi, Xj for j 6= i, and µ(Hi).

• for each team i and information set Hi, µ(Hi) is consistently derived by Bayes’rule

from φ, X, PG, PO, µ(H ′i) for all H
′
i 6= Hi, and µ(Hj) for j 6= i.

Observe that each kicker is a one-shot player and he maximizes his individual expected

payoff over his ex-post payoffs u defined in Equation ??. Exact formulation of this expected
payoff will be clear in our analysis.

Since, we are making a fairness analysis over different shootout mechanisms, we will focus

on a symmetric equilibrium concept:

A symmetric assessment (X,µ) is defined as

• In regular rounds: Xi(Hi) = Xj(H
′
j) and µi(Hi) = µj(H

′
j) for any team j = 1, 2

where both information sets Hi and H ′j pertain to the same Regular Round k ≤ n, and

the same kicking order, 1st or 2nd, in the round while the score difference between T1

and T2 in Hi, s, and in Hj, s′, satisfy s = −s′ if j 6= i and s = s′ if j = i.

• In sudden-death rounds: Xi(Hi) = Xj(H
′
j) and µi(Hi) = µj(H

′
j) for any team

j = 1, 2 where information sets Hi and H ′j may involve different Sudden Death Rounds

k > n and k′ > n respectively but they refer to the same kicking order, 1st or 2nd,

while the score difference between T1 and T2 in Hi, s, and in Hj, s′, satisfy s = −s′ if
j 6= i and s = s′ if j = i.

A symmetric assessment dictates two players in the same or different teams to aim exactly

at the same intended spot and have exactly the same beliefs if they were in each other’s shoes.
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We distinguish regular and sudden-death rounds in the definition of a symmetric assessment

because, every sudden-death round is identical if the game reaches it, while each regular

round is different.

A symmetric equilibrium of a shootout mechanism φ is defined as a perfect Bayesian

equilibrium that is a symmetric.

A symmetric equilibrium may not exist in general. It turns out that the mechanisms we

will consider, the current mechanism and our new proposals, all have one or more symmetric

equilibria.

We define the key design concept in our analysis as follows using symmetric equilibria: a

mechanism φ is sequentially fair if at all symmetric equilibria, at any state (hk−1; gT1 : gT2)

with gT1 = gT2, - i.e., when they are tied at the beginning of Round k for any k -, each team

has exactly 50% chance of winning.

Our desiderata are determining whether the current mechanism is sequentially fair, in-

specting other plausible mechanisms, and characterizing the class of sequentially fair mech-

anisms.

4 The Current Scheme: The Fixed-Order Mechanism

The current shootout scheme is the fixed order mechanism, in which the first kicker is

determined before Round 1 with an even lottery and then it continues with the same kicking

order throughout. Formally, the fixed order mechanism φ is defined as follows:

φ(∅; 0 : 0) = 0.5 and φ(hk−1; gT1 : gT2) =

{
1 if hk−11 = T1

0 if hk−11 = T2

for all Rounds k > 0, orders of first kicking teams in the previous k − 1 rounds hk−1, and

feasible scores gT1 : gT2 at the beginning of Round k.

We will characterize the symmetric equilibria of the fixed order mechanism. Therefore,

without loss of generality assume that T1 wins the coin toss before Round 1, and kicks first

throughout.

Since it is a sequential game with particular types of hidden actions, we can use backward

induction in the regular rounds. To do that, we need to characterize the symmetric equilibria

in the sudden-death rounds.

4.1 Analyzing the Sudden-Death Rounds of the Fixed Order
Mechanism

At symmetric equilibria, if they exist, each T1 kicker will use exactly the same action when

HE kicks in the sudden-death rounds, as T1 always goes first and the score is tied at the
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beginning of each sudden-death round.23

Similarly, by symmetry, each T2 kicker will use exactly the same action when his team is

behind (which can be by one goal at most); and he will use exactly the same action when the

score is even (which can happen if the preceding T1 kicker kicks out or HIS kick is saved).

On the other hand, T1 and T2 kickers may potentially use different actions at symmetric

equilibria, as they kick in different orders: in each round T1 going first and T2 going second.

Hence, if a symmetric equilibrium exists, the probability of Team i winning at the begin-

ning of each sudden-death round is the same for each i = 1, 2.

At a symmetric equilibrium, let us define VT1 to be the value function of T1, that is the

expected utility it contributes by winning or losing to its all kickers, in the first sudden-death

round. Denote by x the optimal kicking strategy for T1’s kicker. Define V B
T2 to be the value

function of T2 in the first sudden-death round when T2 is currently behind by one goal, V E
T2

to be the value function of T2 in the first sudden-death round when the score is currently

even. T2’s kicker’s optimal kicking strategy in each scenario is yB and yE respectively.

We can write the following Bellman equation for VT1, where recall that PG(x) ≥ 0.5 is

the goal probability when the kick is aimed at x, VW is the team victory payoff for each

kicker, and VL is the team loss payoff for each kicker:

VT1 = PG(x)PG(yB)V ∗T1 (if both teams score, one more round is played)

+ PG(x)[1− PG(yB)]VW (if T1 scores and T2 cannot, then T1 wins)

+ [1− PG(x)]PG(yE)VL (if T2 scores and T1 cannot, then T1 loses)

+ [1− PG(x)][1− PG(yE)]V ∗T1 (if both teams miss, one more round is played)

where V ∗T1 is the continuation payoff attributed to T1 in case game goes to a second sudden-

death round.

For T2, we have

V B
T2 = PG(yB)V ∗T2 + [1− PG(yB)]VL (1)

V E
T2 = PG(yE)VW + [1− PG(yE)]V ∗T2 (2)

where

V ∗T2 = VW + VL − V ∗T1
is the continuation payoff attributed to T2 in our win-or-lose game. In the right-hand sides

of Equations 1 and 2, the first addend refers to the event that will happen if T2’s kicker

scores (game goes to a new round when T2 was behind in Equation 1, and T2 wins when

game was tied in Equation 2, respectively, before T2’s kicker took his shot) and the second

23we will denote Team 1 kickers with upper-cased pronouns HE, HIM, or HIS, and Team 2 kickers with

lower-cased pronouns he, him, or his, whenever appropriate.
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addend refers to the event that will happen if T2’s kicker misses (T1 wins, if T2 was behind

in Equation 1, and game goes to a new round when the score was tied in Equation 2,

respectively, before T2’s kicker took his shot).

Next, we solve the decision problem faced by each kicker given other player’s actions and

beliefs. Recall that each kicker is a single-shot player maximizing his expected payoff, which

is the sum of his individual kick payoff and his team’s win-or-lose payoff. So at symmetric

equilibrium, T1’s kicker in the first sudden-death round solves

max
x∈[0,1]

VT1 + PG(x)UG + PO(x)UO + [1− PG(x)− PO(x)]0

where VT1 is given in Equation ??, taking V ∗T1 (HIS team’s continuation payoff to be de-
termined through the decisions of subsequent kickers in HIS team and kickers of the other

team) together with yE and yB given. Recall that UG > 0, UO < 0, 0 are the individual kick

payoffs HE gets if his kick becomes a goal with probability PG(x), goes out with probability

PO(x), and is saved by the goalie with probability 1− PG(x)− PO(x), respectively.

The objective function in Equation ?? is twice continuously differentiable. We seek an
interior local solution to it and then we verify that it is indeed a global maximum.

The first order necessary condition for an interior local maximum x∗ is written as

P ′G(x∗)

[
PG(yE)[V ∗T1 − VL] + [1− PG(yB)][VW − V ∗T1] + UG

]
+ P ′O(x∗)UO = 0. (3)

Second order condition is given by for all x ∈ [0, 1],

P ′′G(x)

[
PG(yE)[V ∗T1 − VL] + [1− PG(yB)][VW − V ∗T1] + UG

]
+ P ′′O(x)UO < 0, (4)

as P ′′G < 0, P ′′O ≥ 0, UO < 0, UG > 0, and PG(yE)[V ∗T1 − VL] + [1 − PG(yB)][VW − V ∗T1] ≥ 0

(since VW ≥ V ∗T1 ≥ VL). Hence, the first order condition is also suffi cient for global maxima.

Observe that from Equation 3, we get

P ′G(x∗) = − P ′O(x∗)UO
PG(yE)[V ∗T1 − VL] + [1− PG(yB)][VW − V ∗T1] + UG

> 0 (5)

(since by assumption P ′O(x) > 0 for goal-optimal spot x). As the optimal spot for a goal is

characterized by the first order condition P ′G(x) = 0 and as PG is concave, we have PG(x) is

weakly increasing for x < x and weakly decreasing for x > x, which together with Equation

5 in turn implies that

x∗ < x.

Hence, T1’s kicker does not aim at the optimal spot, but acts more conservatively and

aims at a more interior spot, although chance of such a kick being a goal is not maximized.
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Similarly, we can write the T2’s kicker’s decision problem when behind taking V ∗T2 as

given:

max
yB∈[0,1]

V B
T2 + PG(yB)UG + PO(yB)UO + [1− PG(yB)− PO(yB)]0

First order condition yields:

P ′G(y∗B)[V ∗T2 − VL + UG] + P ′O(y∗B)UO = 0. (6)

T2’s kicker’s decision problem when even taking V ∗T2 as given can be written as follows:

max
yE∈[0,1]

V E
T2 + PG(yE)UG + PO(yE)UO + [1− PG(yE)− PO(yE)]0

First order condition yields:

P ′G(y∗E)[VW − V ∗T2 + UG] + P ′O(y∗E)UO = 0 (7)

Second order conditions, as in Equation 4, shows the suffi ciency of the first order conditions

in either case. We skip them for brevity. Also like for T1, we get y∗B < x and y∗E < x.

At equilibrium, x = x∗, yB = y∗B, and yE = y∗E, and hence we can solve them using

Equations 3, 6, and 7. To do that we need to resolve the continuation values V ∗T1 and V
∗
T2

for each team.

Hence, it is useful to note that in any symmetric equilibrium VT1 = V ∗T1. Therefore, by

Equation ??,

V ∗T1 =
PG(x)[1− PG(yB)]VW + [1− PG(x)]PG(yE)VL
PG(x)[1− PG(yB)] + [1− PG(x)]PG(yE)

= αVW + (1− α)VL (8)

where the winning probability of T1, α is given by

α =
PG(x)[1− PG(yB)]

PG(x)[1− PG(yB)] + [1− PG(x)]PG(yE)
. (9)

A value for α > 0.5 at a symmetric equilibrium will signal that the fixed order mechanism is

biased in favor of the first kicking team in the sudden death rounds (and α < 0.5 is vice versa

for the second kicking team). On the other hand, the fixed order mechanism is a sequentially

fair mechanism if and only if α = 0.5 at every symmetric equilibrium. For T2 then we get

by Equation 8,

V ∗T2 = (1− α)VW + αVL.

Hence, Equations 3, 6, and 7 become self-contained to solve for x∗, y∗B and y∗E. The

following theorem characterizes the symmetric equilibrium strategy candidates solving these

equations:24

24In our analysis, we did not have to model the beliefs of agents explicitly. We use the summary functions

PG and PO, and the agents have to best respond to what the other players are doing at equilibrium. The

beliefs will be crucial in equilibrium selection criterion, though, later in Section XXX.
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Theorem 1 (Fixed-Order Mechanism, Sudden-Death Rounds) (i) A symmetric

equilibrium exists if and only if P ′G(0)[VW−VL
2

+ UG] + P ′O(0)UO ≥ 0.

(ii)When it exists, there are generically multiple symmetric equilibria with strategy profiles

(x∗, y∗B, y
∗
E), all of which are to the left of the goal-optimal spot, satisfying

• x∗ = y∗E, i.e. T1 kicker and T2 kicker when even kick at the same spot; and

• for every equilibrium with (y∗E, y
∗
B), there exists another equilibrium with (ŷE, ŷB) such

that ŷE = y∗B and ŷB = y∗E.

It will be useful to quantify the term “generically” in the above theorem. The below

lemma answers this question:

Lemma 1 Suppose that in the sudden death rounds of the fixed-order mechanism, a sym-
metric equilibrium exists. Then, multiple symmetric equilibria exist if and only if there are

multiple solutions β to the equation

β =
1− PG(y(1− β))

2− PG(y(β))− PG(y(1− β))
, (10)

where y(β) = f−1
(
− (VW−VL)β+UG

UO

)
for f(.) = P ′O(.)/P ′G(.).

Moreover, there is an odd number of solutions with β = 1
2
always being a solution and

others being located symmetrically around it. We also have y∗B = y(β) and x∗ = y∗E = y(1−β)

for any solution β.

Thus, generically, the fixed order mechanism is not sequentially fair as the winning prob-

ability of T1 α 6= 1
2
, whenever yB 6= yE.

Theorem 2 (Fixed-Order is not fair) Generically, the fixed order mechanism is not se-

quentially fair.

Its proof is immediately implied by Theorem 1.

4.1.1 Equilibrium Refinement

Next, we address the question which symmetric equilibrium is more likely to be observed

when there are multiple symmetric equilibria in the fixed-order mechanism.

We use a selection criterion similar to Cho and Kreps (1987) ‘Intuitive Criterion.’

Suppose there are multiple symmetric equilibria. Let the symmetric equilibrium with

(x∗, y∗E, y
∗
B) be the one with highest x, i.e., the intended spot by T1’s kickers is the closest

to the optimal spot among all symmetric equilibria. We will refer to this equilibrium as the
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most aggressive one for T1 for the following reason: As x∗ = y∗E > y∗B, we have the winning

probability of T1, α =
1−PG(y∗B)

2−PG(y∗E)−PG(y∗B)
> 1

2
by Equation 4; and moreover, such a winning

probability for T1 is the highest among all symmetric equilibria.

Being the first mover, if T1 can credibly ‘signal’T2 that they are indeed playing this

most aggressive equilibrium, this would be the most beneficial for T1. In this case, we can

use such a signaling through beliefs in the symmetric equilibrium to obtain a refinement. For

example, if σx∗, the probability density function of the ball reaching to a particular spot on

the goal line when it is aimed at x∗ has the support set [x∗− εx∗ , x∗+ εx∗ ]. Suppose that this

support is disjoint from such support sets of other equilibria. Then, whenever T2 kickers

observe a kick spot in σx∗’s support, they can credibly deduce that indeed T1 is playing

this aggressive equilibrium. Hence, beliefs of T2’s kickers in information sets that are never

reached in a symmetric equilibrium can be fine-tuned so that less aggressive equilibria can

be eliminated.

Definition 1 (Refinement Criterion) If the most aggressive symmetric equilibrium for

T1 involves aiming at x∗ for each kicker, and the possible spots that the ball can go under x∗

(as determined by the support of σx∗, [x∗ − εx∗ , x∗ + εx∗ ]) is different from any of the spots

that the ball can go under all other symmetric equilibria, then T1 can credibly enforce the

most aggressive symmetric equilibrium.

Hence, we get the following corollary:

Corollary 1 (Team 1 wins more often) If the symmetric equilibria can be refined, then
T1, the team that kicks first, wins with a higher probability than T2 in the sudden-death

rounds of the fixed-order mechanism.

Hence, in our pathological analysis with equal-strength players and similar goalies, fixed-

order mechanism is biased toward the first mover. This is also supported by the data

reported by Apesteguia and Palacios-Huerta (2010) from shout-outs in major tournaments

in the world in their Table 6: In the sudden-death rounds T1 wins with probability around

59%.

5 Mechanism Design: Sequentially Fair Mechanisms

In the previous section we concluded that the currently used fixed-order mechanism is not

sequentially fair. It turns out that even if we introduced a sequentially fair extension to the

fixed order mechanism in the sudden-death rounds, it would still be sequentially unfair.

In fact a large class of intuitive mechanisms turn out to be sequentially unfair. Another

example of such mechanisms is the alternating-order mechanism, a version of which is used
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in tennis tie-breaks. In the alternating-order mechanism, in every round, the kicking order

reverses. So if T1 starts off the shootout, T2 kicks first in Round 2, T1 kicks first in Round

3, so on so forth. It turns out that even this mechanism is sequentially unfair.25

In fact, a large class of mechanisms, which we refer to as exogenous mechanisms, turn

out to me sequentially unfair. A mechanism φ is exogenous if φ(k : g1 : g2) = ρ(k) for

some function ρ, i.e. who goes first in each round is determined independent of the current

score but as a function of the round we are in. Hence, both fixed-order and alternating order

mechanisms are exogenous.26.

Another interesting exogenous mechanism is the random-order mechanism φ, which de-

termines who goes first in every round using an even lottery, that it φ(k; g1, g2) = 1
2
for all

k.27

Despite its impracticality, one may expect that this exogenous mechanism to be sequen-

tially fair. Indeed, it turns out to be the case. However, the class of sequentially fair

mechanisms are far richer than the random-order mechanism. There are some very practical

mechanisms in this class.

Next, we characterize the sequentially fair mechanisms. Initially, we will focus on the

regular rounds. We will assume that a mechanism that gives sequential fairness in the

sudden-death rounds exists (and then show that actually there are many such mechanisms).

We introduce a class of mechanisms that will be crucial in our analysis of sequentially

fair mechanisms. A mechanism φ is uneven score symmetric if for all (k; g1 : g2) such

that g1 6= g2 and k ≤ n, we have φ(k; g1 : g2) = 1 − φ(k, g2 : g1). That is, as long as the

score is not tied, the probability of who goes first is the same for T1 and T2 whenever they

are in each other’s shoes. E.g., when T1 is ahead 3 : 2 in (the beginning of) Round 4, and

when T2 is ahead in Round 4 with score 2 : 3, in Round 4 T1’s probability of kicking first

in the first case is the same as T2’s probability of kicking first in the second case.

It turns out that such mechanisms fully characterize the sequentially fair mechanisms in

the regular rounds.

Theorem 3 (Sequentially fair mechanisms) Suppose both teams have equal chance of
winning in sudden-death rounds. Then a mechanism φ is sequentially fair if and only if φ is

uneven score symmetric in regular rounds.

25Since there are 5 regular rounds in the shootout, Team 1 goes first in three rounds and Team 2 goes

first in two rounds in this mechanism. One may think that this unevenness causes sequential unfairness.

However, even if we flipped a coin to determine who goes first in Round 5, sequential unfairness would still

prevail.
26Even the version of the alternating order mechanism in which the 5th round order is determined randomly

is exogenous
27However, an uneven random order mechanism where the probability of who goes first does not depend

on the current score is sequentially unfair.
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Interestingly, there is only one sequentially fair exogenous mechanism: The random-order

mechanism is also uneven-score symmetric, and hence, sequentially fair.

The theorem makes another interesting point. We do not need to treat both teams

symmetrically all the time to obtain sequential fairness. In fact, when the score is tied, it

does not matter which team kicks first.

This feature opens the door for some interesting practical mechanisms to be sequentially

fair. Two examples of such mechanisms are ahead first and behind first mechanisms. In
ahead first [behind first] mechanism, the team who is ahead [behind] in score after a round

kicks first, and otherwise the order of the teams does not change after a round.

These mechanisms are quite practical and we will discuss the reasons behind their prac-

ticality in the next section.

There are also many other uneven-score symmetric mechanisms in which lotteries play a

significant role. For example, a lottery mechanism that forces the behind team to go first in

75% of the time and T1 to go first 60% of the time when the score is tied is also sequentially

fair. Moreover, among the deterministic mechanisms, ahead first and behind first are not

the only two that are sequentially fair. For example, a mechanism which forces T1 to go

first in Round 1, then behind team to go first in Round 2, and if the score is tied in Round

2, T2 to go first.

5.1 Sequential Fairness in Sudden-Death Rounds

The class of sequentially fair mechanisms is larger when sudden-death rounds are considered

additionally.

First we introduce a practical sequentially fair mechanism for the sudden-death rounds.

As we concluded in the previous section, fixed order mechanism fails sequential fairness

in the sudden-death rounds miserably. So is there a simple and deterministic mechanism

that is sequentially fair in the sudden-death rounds? The answer is affi rmative, and the

alternating order mechanism is sequentially fair in sudden-death rounds, although it is not

in regular rounds. The intuition is straightforward: Under alternating order, we can have

uneven scores, such as T1 being ahead, in an intermediate regular round. Hence, it cannot

satisfy uneven-score symmetry as required in a sequentially fair mechanism. On the other

hand, in the sudden-death rounds, the score is never uneven at the beginning of a round.

Hence, exogeneity of the alternating order does not prevent sequential fairness.28

28One can argue that the situation is similar for the fixed-order mechanism. So why is it not sequentially

fair in the sudden-death rounds? However, the game is an infinite game. The recursive nature of the infinite

game can lead to existence of multiple symmetric equilibria for the fixed-order mechanism, in most of which

either the first kicking team or the second kicking team has an advantage.
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Theorem 4 The alternating-order mechanism is sequentially fair in sudden-death rounds.

In fact there are many other mechanisms that are sequential fair:

Theorem 5 Take any mechanism φ and any sequentially fair mechanism ϕ. Construct a

mechanism ψ such that for a given sudden-death Round k, for all n < ` < k and feasible

scores g1 : g2, ψ(`; g1 : g2) = φ(`; g1 : g2) and for all ` ≥ k and ` ≤ n and feasible scores

g1 : g2, ψ(`; g1 : g2) = ϕ(`; g1 : g2). Then φ is also sequentially fair.

That is, we can replace the continuation of any mechanism in the sudden-death rounds

after some round with a sequentially-fair mechanism, and regardless of what the initial part

of the mechanism looks like, the newly constructed mechanism becomes sequentially fair.

6 Market Design and Practical Criteria

Sequential fairness is capable of ruling out many mechanisms, including the mechanism

used worldwide currently. Interestingly, it also rules out seemingly a very fair exogenous

mechanism in which teams would alternate the kicking order in each round - just like tennis

players alternate their serve sequence in their tiebreaks (i.e., the first player takes the first

serve, then the second player serves twice, then the first player serves twice, and so on until

one of the players wins the set). Nevertheless, a case could easily be made for the latter

mechanism over the only sequentially fair exogenous mechanism, namely randommechanism,

especially in the sudden-death rounds.

In terms of endogenous mechanisms, however, sequential fairness doesn’t pose much

restriction. In any such mechanism, when the score is even at the end of a round, it doesn’t

matter which team kicks first in the next round. In addition, when the score is not even at

the end of a round, as long as the same probability is used in determining the team to kick

first, whether the winning team or the losing team kicks first wouldn’t matter. Thus, one

needs a relevant property to help refine the set of sequentially fair mechanisms.

It is not hard to make a case that requiring a high goal effi ciency for a penalty shootout

mechanism is a desirable property since most soccer fans want to see higher penalty shootout

scores - or simply more goals in a match to some extent regardless of how they take place.

Thus, a very crucial question is ‘does one of the sequentially fair mechanisms have an ad-

vantage over others’ in terms of goal effi ciency?’ To that end, we consider the following

property:

Maximum Goal Effi ciency: A maximum-goal-effi ciency mechanism φ ∈ SF is such

that there is no other φ′ ∈ SF which has a higher goal-effi ciency whenever the score is even

or one of the teams is ahead (or behind) in score at a Round k.
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As a matter of fact it turns out that there is no other sequentially fair mechanism which

has a higher goal effi ciency than the mechanism below:

Behind-First mechanism: T1 kicks first in Round k as long as the score is tied or T1

is behind in score in Round k − 1 ; once T2 falls behind in score after some Round k′ > k,

T2 kicks first until T1 falls behind in score after some Round k′′ > k′, after which T1 kicks

first, ....

Then we have the following result:

Theorem 6 The Behind-First mechanism is the unique sequentially fair mechanism which

satisfies maximum goal effi ciency.

In fact, as already hinted above, in practice it would be ideal to combine the behind-first

mechanism in regular rounds with the alternating order mechanism (or the Prouhet-Thue-

Morse sequence in general) in the sudden-death rounds.

Another relevant concern one can have would be ‘whether a mechanism could increase

score rectifiability for the team that is behind in score’. Consider the following property:

Instant Rectifiability: In any φ ∈ SF , whenever any Ti is behind in score after Round
k, Ti should have the chance to make the score discrepancy smaller before Tj where i 6= j

has a chance to make the score discrepancy larger in Round k + 1.

Thus, instant rectifiability intends that the team that is behind in score catches up

with the team that ahead in score as soon as possible before a larger score deficit may

arise. A larger score deficit may put the losing team in a totally non-rectifiable position

especially towards the end of a shootout which would deprive one of that team’s kickers

from contributing at all while he could still contribute to his team under another mechanism

that satisfies insant rectifiability; e.g., consider the fixed order mechanism suppose that T1

is up 4-3 in the beginning of Round 5 - in that case, if T1 scores T2’s kicker who is supposed

to kick at Round 5 won’t be able to help his team by kicking. Further, in a mechanism which

violates insant rectifiability, this issue could even be more profound and subtle, due to the

forward-looking rectifiability concerns of other kickers who will kick before their team may

fall behind in score. In the next paragraph, we will try to illustrate how insant rectifiability

can also alleviate any such concerns.

Consider a situation in which the third round (R3) ends with a tie; for simplicity, say,

the score is 3-3 by then. Consider T1’s and T2’s kickers who will kick first and second in

the fourth round (R4) respectively - whether it is the current mechanism or the behind-first

mechanism.

First, consider the current mechanism. T2’s kicker at R4 knows that, if he misses his

kick, T1’s last kicker (at R5) can finish the shootout by scoring and T2’s last kicker can’t

even get an opportunity to contribute to this process on behalf of his team, as elaborate
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above. So, if he misses, T2’s kicker at R4 is likely to put his team and his team’s kicker in

R5 in a less rectifiable situation compared to that in which T1’s kicker at R4 would put his

team and his team kicker in R5.

Now, consider the behind-first mechanism or any other similar mechanism which satisfies

insant rectifiability. T2’s kicker at R4 knows that, even if he misses his kick, right after that

his team’s last kicker can have a chance to tie the game and put T1’s last kicker in a less

rectifiable position than he would be in the current mechanism. Thus, in that case, it is

true that in the behind-first mechanism T2’s last kicker will be in a non-rectifiable position

as well, but, compared to the situation with the current mechanism, at least he will be in

a position to contribute on his team’s behalf instead of facing the possibility of not being

able to kick at all. Thus, in the behind-first mechanism, putting his team in a less rectifiable

position will shift to both kickers at R5 together, from the likelihood of T2’s kicker in R4

putting his team in a less rectifiable position alone by missing his kick.

Clearly, the behind-first mechanism satisfies insant rectifiability as well. In this paper,

we chose not to get into a rather complicated equilibrium analysis along the lines of instant

rectifiability, simply because our results, based on one simple assumption about a kicker’s

individual utility ranking in the case of not scoring - where he prefers the goalie saving

his shot to his missing his kick outright - already capture the fairness difference between

the current fixed order mechanism and our sequentially fair mechanisms. Surely, this type

of a rectifiability-based and forward-looking analysis would magnify the fairness differences

between these mechanisms, but would not really be needed at the level analysis that suffi ces

for our purposes in this paper.

7 Concluding Remarks

In the recent decades, market design has made many tangible contributions in solving a wide

variety of real-life problems most notably in areas such as interns-to-hospitals matching,

school choice, kidney exchanges, in which monetary transfers are typically not allowed. In

this paper we have explored a new application and designed a practical solution to another

challenging real-life problem. To that end, we have considered and analysed sequentially

fair mechanisms and other supporting criteria in soccer tiebreaks, i.e., in soccer penalty

shootouts.

It has turned out that there is only one such exogenous mechanism and all other se-

quentially fair mechanisms are endogenous. Because of this multitude of sequentially fair

mechanisms, we had to resort to other criteria to refine the set of desirable mechanisms

further. We showed that there is a unique sequentially fair mechanism with maximum goal

effi ciency, i.e., the behind-first mechanism. In that mechanism, team one that won the coin

23



toss kicks first in the next round as long as the score is tied or team one is behind in score;

once the other team, team two, falls behind in score after some round, it kicks first until team

one falls behind in score, after which team one kicks first until the continuation rounds. The

behind-first mechanism also satisfies another relevant property, namely instant rectifiability.

Recall that the only significant assumption we used in our analysis is that, as far as a kicker’s

individual utility is concerned, one should prefer scoring to not scoring and, when it comes

to not scoring, he should prefer the goalie saving his shot to his missing his kick outright

—without positing as to whether a player’s individual utility from his kick or his collective

utility from his team’s winning the shootout should outweigh one, etc.

Note that these sequentially fair mechanisms and the additional criteria or properties

we have considered can help beyond soccer too. For instance, one can easily apply the

same idea to tennis tiebreaks in the same manner as well. In addition, ice hockey and

field hockey as well as water polo, handball, cricket and rugby also have their tiebreak or

penalty shootout mechanisms same as or similar to that of soccer. More generally, all of

the sequential player draft mechanisms in major professional leagues in the U.S. such as

National Football League (NFL), National Basketball Association (NBA), Major League

Baseball (MLB), National Hockey League (NHL), can be considered some special cases of

generalized behind-first mechanisms where the more disadvantaged teams (in terms of their

league record in the previous season) go first.

In addition, real life teems with tournament competitions which are often at the heart of

competitions not only in penalty shootout and draft mechanisms in sports but also in many

internal promotions of individuals or in relative support of sales/production teams in firms

and other organizations29 (including funding of some departments vs others in organizations

- e.g., academic departments in a university), multi-stage patent races,30 and many other

situations. Like the current fixed order shootout mechanism in soccer, some sequential

tournaments may be conducive to a first mover advantage and some others to a second mover

advantage, which may impede effi ciency and/or fairness of these tournaments.31 Further

analysis of related specific exogenous and endogenous tiebreak mechanims may help the

design of new tournament structures with more desirable effi ciency or fairness characteristics

in the above-mentioned competitions of real life as well.

29See, for instance, Prendergast (1999) for a review of this literature.
30See Fudenberg et al (1983) and Harris and Vickers (1985) in particular. See Reinganum (1989) for a

thorough survey of that literature.
31See, for instance, Harris and Vickers (1985), among others.
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A Proofs

Proof of Theorem 1. We drop “*”superscripts for convenience. We rewrite Equations 3,
6, and 7 for first order conditions as:

P ′G(x)[PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − (1− PG(yE))VT1 + UG] + P ′O(x)UO = 0

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

We first prove that x = yE.

Claim 1. x = yE.

Proof of Claim 1. Define

∆ = PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − [1− PG(yE)]VT1 − VW + VT2.

From the first-order conditions of x and yE, x ≥ yE if and only if ∆ ≥ 0. Recall that the

winning probability of T1 in equilibrium, α is given in Equation ??. Hence,

∆ = PG(yB)(VT1 − VW ) + PG(yE)(VT1 − VL) + VT2 − VT1
= PG(yB)(1− α)(VL − VW ) + PG(yE)α(VW − VL) + (1− 2α)(VW − VL)

= [−PG(yB)(1− α) + PG(yE)α + 1− 2α](VW − VL)

= [1− PG(yB) + (PG(yE) + PG(yB)− 2)α](VW − VL)
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We substitute α from Equation ?? as follows:

∆ = [1− PG(yB) + (PG(yE) + PG(yB)− 2)
PG(x)(1− PG(yB))

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
](VW − VL)

= (1− PG(yB))[1 +
(PG(yE) + PG(yB)− 2)PG(x)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
](VW − VL)

=

[
(1− PG(yB))(VW − VL)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)

]
× [PG(x)(1− PG(yB)) + (1− PG(x))PG(yE) + (PG(yE) + PG(yB)− 2)PG(x)]

=
(1− PG(yB))(VW − VL)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
[PG(yE)− PG(x)]

Suppose x > yE, then as both x, yE < x and PG is increasing on the left of x, we have

PG(x) > PG(y). But then ∆ < 0, contradicting that x > yE. Supposition x < yE leads to a

similar contradiction. Therefore, we must have x = yE. ♦

Given x = yE, α can be simplified as

α =
PG(x)(1− PG(yB))

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
=

1− PG(yB)

2− PG(yB)− PG(yE)
,

and α = 1
2
iff x = yB. Then the first-order condition w.r.t. yB can be simplified as:

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

=⇒ P ′G(yB)[(1− α)(VW − VL) + UG] + P ′O(yB)UO = 0

=⇒ P ′G(yB)[(VW − VL)
1− PG(yE)

2− PG(yB)− PG(yE)
+ UG] + P ′O(yB)UO = 0 (11)

Similarly, the first-order condition w.r.t. yE can be simplified as:

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

=⇒ P ′G(yE)[α(VW − VL) + UG] + P ′O(yE)UO = 0

=⇒ P ′G(yE)[(VW − VL)
1− PG(yB)

2− PG(yB)− PG(yE)
+ UG] + P ′O(yE)UO = 0 (12)

Now we are ready to prove part (i). First we show that P ′G(0)[VW−VL
2

+UG]+P ′O(0)UO ≥ 0

implies the existence of equilibrium. Define H(z) ≡ P ′G(z)[VW−VL
2

+ UG] + P ′O(z)UO. H(z)

is continuously differentiable with H ′(z) < 0 as P ′′G(z) < 0 and P ′′O(z) ≥ 0. Then H ′(0) =

P ′G(0)[VW−VL
2

+UG] +P ′O(0)UO ≥ 0 and H ′(x) = P ′O(x)UO < 0 implies that there exists some

a ∈ [0, x) such that H ′(a) = 0. It can be readily seen that (x, yB, yE) = (a, a, a) solves the

two first-order conditions, and hence constitutes an equilibrium.

On the other hand, assume now P ′G(0)[VW−VL
2

+UG]+P ′O(0)UO = H(0) < 0. AsH ′(z) < 0,

H(z) < 0 for every z ∈ [0, 1]. Suppose to the contrary that there exists an equilibrium
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(x, yB, yE). Clearly yB 6= yE, for otherwise
1−PG(yE)

2−PG(yB)−PG(yE) = 1
2
and the first-order condition

of yB becomes H(yB) < 0. Suppose yB > yE. Then the first-order condition w.r.t. yE in

Equation 12 becomes:

P ′G(yE)[(VW − VL)
1− PG(yB)

2− PG(yB)− PG(yE)
+ UG] + P ′O(yE)UO

< P ′G(yE)[
VW − VL

2
+ UG] + P ′O(yE)UO = H(yE) < 0,

a contradiction! Then yB < yE; and similarly, the first order condition for yB is negative,

leading to a contradiction. Therefore, an equilibrium exists if and only if P ′G[VW−VL
2

+UG] +

P ′O(0)UO = H(0) ≥ 0.

Generically there are multiple solutions (yE, yB) and whenever one exists then (ŷE, ŷB)

satisfying ŷE = yB and ŷB = yE also lead to a symmetric equilibrium.

Proof of Lemma 1. The first order conditions are given by Equations 11 and 12 for
yB and yE in the proof of Theorem 1, respectively (dropping the superscript “∗”). We
get yB=y(β)and yE = y(1 − β), since f = P ′O/P

′
Gis an invertible differentiable increasing

function in the region [0, x̄]by assumption that POis convex and increasing and PGis strictly

concave and increasing in the interval [0, x̄]. Thus, circularly, plugging in yBand yE, we get

Equation 10. Optimal spots yBand x = yEare multiple valued if and only if βis multiple

valued. β = 1
2
always solves Equation 10, and if β = αis a solution then β = 1 − αis also a

solution. Thus, there are an odd number of solutions.

Proof of Theorem 3. We solve it by backward induction. As both teams have equal
chance of winning in sudden-death rounds, the value function is VW−VL

2
for each team at

the end of the regular rounds. In Round 2, whether the last-kicking team is currently even

or behind, the optimal kicking strategy is always ξ, where ξ is determined by the following

first-order conditon:

P ′G(ξ)[
VW − VL

2
+ UG] + P ′O(ξ)UO = 0

Next we look into the optimal kicking strategy for the first-kicking team in Round 2.

Consider two cases:

Case I. When T2 kicks first in Round 2. When the score is currently even, the value

function for T2 is VW+VL
2

.

When T2 is currently behind, the value function for T2 is

VT2,P2,B = PG(y2B)PG(ξ)VL + PG(y2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(y2B))VL
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The optimal kicking strategy, y2B, satisfies the following first-order condition:

P ′G(y2B)[PG(ξ)VL + (1− PG(ξ))
VW + VL

2
− VL + UG] + P ′O(y2B)UO = 0

=⇒ P ′G(y2B)[(1− PG(ξ))
VW − VL

2
+ UG] + P ′O(y2B)UO = 0

On the other hand, when T2 is currently ahead, the value function for T2 is

VT2,P2,A = PG(y2A)VW + (1− PG(y2A))[(1− PG(ξ))VW + PG(ξ)
VW + VL

2
]

The optimal kicking strategy, y2A, satisfies the following first-order condition:

P ′G(y2A)[VW − (1− PG(ξ))VW − PG(ξ)
VW + VL

2
+ UG] + P ′O(y2A)UO = 0

=⇒ P ′G(y2A)[PG(ξ)
VW − VL

2
+ UG] + P ′O(y2A)UO = 0

As PG(ξ) > 1
2
, y2A > y2B.

Case II. When T1 kicks first in Round 2. When the score is currently even, the value

function for T1 is VW+VL
2

. When T1 is currently behind, the value function for T1 is

VT1,P2,B = PG(x2B)PG(ξ)VL + PG(x2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(x2B))VL

The optimal kicking strategy, x2B, satisfies the following first-order condition:

P ′G(x2B)[PG(ξ)VL + (1− PG(ξ))
VW + VL

2
− VL + UG] + P ′O(x2B)UO = 0

=⇒ P ′G(x2B)[(1− PG(ξ))
VW − VL

2
+ UG] + P ′O(x2B)UO = 0

On the other hand, when T1 is currently ahead, the value function for T1 is

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))[(1− PG(ξ))VW + PG(ξ)
VW + VL

2
]

The optimal kicking strategy, x2A, satisfies the following first-order condition:

P ′G(x2A)[VW − (1− PG(ξ))VW − PG(ξ)
VW + VL

2
+ UG] + P ′O(x2A)UO = 0

=⇒ P ′G(x2A)[PG(ξ)
VW − VL

2
+ UG] + P ′O(x2A)UO = 0

As PG(ξ) > 1
2
, x2A > x2B.

Next we study the second team’s optimal kicking strategy in Round 1. When T1 does

not score in Round 1, the value function for T2 is

VT2,P1,E = PG(y1E)[φ(T1; 0 : 1)(VW+VL−VT1,P2,B)+(1−φ(T1; 0 : 1))VT2,P2,A]+(1−PG(y1E))
VW + VL

2
,
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where

VT1,P2,B = PG(x2B)PG(ξ)VL + PG(x2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(x2B))VL

=
VW + VL

2
− [1− PG(x2B)(1− PG(ξ))]

VW − VL
2

VT2,P2,A = PG(y2A)VW + (1− PG(y2A))[(1− PG(ξ))VW + PG(ξ)
VW + VL

2
]

=
VW + VL

2
+ [1− (1− PG(y2A))PG(ξ)]

VW − VL
2

Therefore

VT2,P1,E =
VW + VL

2
+ PG(y1E){φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))]

+(1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)]}VW − VL
2

The optimal kicking strategy, y1E, satisfies the following first-order condition:

P ′G(y1E){α1
VW − VL

2
+ UG}+ P ′O(y1E)UO = 0, where

α1 = φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)].

When T1 scores in Round 1, the value function for T2 is

VT2,P1,B = PG(y1B)
VW + VL

2
+(1−PG(y1B))[(1−φ(T1; 1 : 0))VT2,P2,B+φ(T1; 1 : 0)(VW+VL−VT1,P2,A)],

where

VT2,P2,B = PG(y2B)PG(ξ)VL + PG(y2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(y2B))VL

=
VW + VL

2
− [1− PG(y2B)(1− PG(ξ))]

VW − VL
2

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))[(1− PG(ξ))VW + PG(ξ)
VW + VL

2
]

=
VW + VL

2
+ [1− (1− PG(x2A))PG(ξ)]

VW − VL
2

We substitute the equations of VT2,P2,B and VT1,P2,A into VT2,P1,B as follows:

VT2,P1,B =
VW + VL

2
− (1− PG(y1B))[(1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))]

+φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]]
VW − VL

2

31



The optimal kicking strategy, y1B, satisfies the following first-order condition:

P ′G(y1B){[(1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))]

+φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]]
VW − VL

2
+ UG}+ P ′O(y1B)UO = 0

Given that y2B = x2B and x2A = y2A, the first-order condition can be rewritten as

P ′G(y1B){α2
VW − VL

2
+ UG}+ P ′O(y1B)UO = 0, where

α2 = (1− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))] + φ(T1; 1 : 0)[1− (1− PG(y2A))PG(ξ)].

Therefore y1B = y1E iff α1 = α2 iff

φ(0, 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(0, 1))[1− (1− PG(y2A))PG(ξ)]

= (1− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))] + φ(T1; 1 : 0)[1− (1− PG(y2A))PG(ξ)]

⇐⇒ (1− φ(T1; 0 : 1)− φ(T1; 1 : 0))[1− (1− PG(y2A))PG(ξ)]

= (1− φ(T1; 0 : 1)− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))]

⇐⇒ φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1 or (1− PG(y2A))PG(ξ) = PG(x2B)(1− PG(ξ))

Finally, we solve for T1’s optimal kicking strategy in Round 1. The value function for

T1 is

VT1 = PG(x1)[VW + VL − VT2,P1,B] + (1− PG(x1))[VW + VL − VT2,P1,E]

= VW + VL − PG(x1)VT2,P1,B − (1− PG(x1))VT2,P1,E

=
VW + VL

2
+ [PG(x1)(1− PG(y1B))α2 − (1− PG(x1))PG(y1E)α1]

VW − VL
2

The optimal kicking strategy, x1, satisfies the following first-order condition:

P ′G(x1){[(1− PG(y1B))α2 + PG(y1E)α1]
VW − VL

2
+ UG}+ P ′O(x1)UO = 0

Therefore

x1 R y1E ⇐⇒ (1− PG(y1B))α2 R (1− PG(y1E))α1

On the other hand, we have

VT1 =
VW + VL

2
⇐⇒ PG(x1)(1− PG(y1B))α2 = (1− PG(x1))PG(y1E)α1

⇐⇒ (1− PG(y1B))α2 = (1− PG(y1E))α1

This condition holds when φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1. When φ(T1; 0 : 1) + φ(T1; 1 :

0) 6= 1, generically this condition does not hold.
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Proof of Theorem 4. Without loss of generality assume T1 kicks first in the first
sudden-death round (i.e., in Round n + 1). In a symmetric equilibrium, denote by xI the

optimal kicking strategy for the first kicker in each sudden-death round, and xB (xE) the

optimal kicking strategy for the second kicker in each sudden-death round when the score is

behind (tied). Let VT1 (VT2) denote T1’s (T2’s) value function at the beginning of the first

sudden-death round (Round n+ 1). Then

VT1 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]VT2

+ PG(xI)(1− PG(xB))VW + (1− PG(xI))PG(xE)VL

VT2 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]VT1

+ PG(xI)(1− PG(xB))VL + (1− PG(xI))PG(xE)VW

We substitute VT2 into the equation of VT1 as follows:

VT1 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]2VT1

+ {[PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]PG(xI)(1− PG(xB)) + (1− PG(xI))PG(xE)}VL
+ {[PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))](1− PG(xI))PG(xE) + PG(xI)(1− PG(xB))}VW

Then VT1 can be solved as:

VT1 = γVW + (1− γ)VL, where

γ =
1− (1− PG(xI))PG(xE)

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
.

As this is a zero-sum game, we have VT2 = (1− γ)VW + γVL.

The optimal kicking strategy, xI , satisfies the following first-order condition:

P ′G(xI){[PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL +UG}+ P ′O(xI)UO = 0.

Similarly, the optimal kicking strategies xB and xE are determined by the following

conditions:

P ′G(xB){VT1 − VL + UG}+ P ′O(xB)UO = 0

P ′G(xE){VW − VT1 + UG}+ P ′O(xE)UO = 0

We are going to claim that all three kicking strategies are equivalent, i.e., xI = xB = xE,

which in turn implies that VT1 = VT2 = VW+VL
2

as γ = 1
2
, and sequential fairness is established.

First we compare xI and xE. Define

∆IE = [PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL − (VW − VT1)
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By comparing the first-order conditions of xI and xE, we observe that

∆IE T 0 if and only if xI T xE.

Substituting the equations of VT2 and VT1 into ∆IE gives us

∆IE = VT1 − VT2 − PG(xB)(VW − VT2) + PG(xE)(VT2 − VL)

= [2γ − 1− PG(xB)γ + PG(xE)(1− γ)](VW − VL)

= [(2− PG(xB)− PG(xE))γ − 1 + PG(xE)](VW − VL).

Plugging in the expression of γ and doing some simplifications, we have

∆IE =
PG(xI)(1− PG(xB))− PG(xB)(1− PG(xE))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

We can then conclude that

xI T xE if and only if xI T xB

Next we compare xI and xB. Define

∆IB = [PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL − (VT1 − VL)

By comparing the first-order conditions of xI and xB, we observe that

∆IB T 0 if and only if xI T xB.

By the same token, we can simplify ∆IB as

∆IB =
PG(xE)(1− PG(xI))− PG(xB)(1− PG(xE))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

Therefore

xI T xB if and only if xE T xB.

Finally we compare xE and xB. Define

∆EB = VW − VT1 − (VT1 − VL)

∆EB can be simplified as

∆EB =
PG(xE)(1− PG(xI))− PG(xI)(1− PG(xB))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

Accordingly,

xE T xB if and only if xE T xI .
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Combining all three observations (inequalities) above, we conclude that in a symmetric

equilibrium we must have xI = xE = xB.

Proof of Theorem 5. Take any mechanism φ and any sequentially fair mechanism ϕ.

Construct a mechanism ψ such that for a given Sudden-Death Round k, for all n < ` < k

and feasible scores g1 : g2, ψ(`; g1 : g2) = φ(`; g1 : g2) and for all ` ≥ k and ` ≤ n and feasible

scores g1 : g2, ψ(`; g1 : g2) = ϕ(`; g1 : g2).

Now in the Sudden-Death Round k and after, whenever the game reaches to this round,

the probability of winning is given as 1
2
for each team. By backward induction, consider

Round k − 1. Consider the team that kicks second. Without loss of generality suppose it is

T2, and T1 goes first in Round k− 1. We can reuse the same first order conditions for both

teams that we used in the proof of Theorem 1 setting

VT1 = VT2 =
VW + VL

2

is the continuation value under the sequentially fair mechanism in Round k. Suppose x is

T1’s kicker’s optimal spot, yE is T2’s kicker’s optimal spot when they are still tied and yB
is T1’s kicker’s optimal spot when T1 is ahead (by one goal). We remind the first order

conditions Equations 3, 6, and 7 as:

P ′G(x)[PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − (1− PG(yE))VT1 + UG] + P ′O(x)UO = 0

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

We rewrite T2’s kicker’s first order conditions plugging in VT1 = VT2:

P ′G(yB)[
VW − VL

2
+ UG] + P ′O(yB)UO = 0

P ′G(yE)[
VW − VL

2
+ UG] + P ′O(yE)UO = 0

The last two equations yield yB = yE (each has a unique solution by assumptions). Given

that T1’s equation yields:

P ′G(x)[
VW − VL

2
+ UG] + P ′O(x)UO = 0

As T1 has the same first order conditions as T2, we get x = yB = yE. So each team’s

winning probability is the same, 1
2
in Round k, as well. The mechanism ψ is sequentially

fair starting from Round k. We repeat this argument for each Sudden-Death Round ` =

k − 2, k − 3, ..., n+ 1 and obtain the desired result.
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Proof of Theorem 6. From the proof of Theorem 3, we observe that any sequentially

fair mechanism must satisfy the condition φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1. Moreover, under

this condition, the three optimal kicking strategies in the first round are the same: x1 =

y1E = y1B, and they are determined by the following first-order condition:

P ′G(x1){α1
VW − VL

2
+ UG}+ P ′O(x1)UO = 0, where

α1 = φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)].

Hence the higher the value of α1, the higher the goal effi ciency. As x2B < ξ and y2A < ξ,

1 − PG(x2B)(1 − PG(ξ)) > 1 − (1 − PG(y2A))PG(ξ). Therefore maximum goal effi ciency is

achieved when φ(T1; 0 : 1) = 1, i.e., when φ is the Behind-First mechanism.
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B Online Appendix: Analysis of the Regular Rounds

of the Fixed-Order Mechanism

Let Ω > VW+VL
2

denote T1’s value function after two rounds.

Second Round, Second Kick
When the score is currently even, the value function for the second kicker in T2 is

VT2,P2,E = PG(y2E)VW + (1− PG(y2E))(VW + VL − Ω)

The optimal kicking strategy, y∗2E, satisfies the following first-order condition:

P ′G(y∗2E)[Ω− VL + UG] + P ′O(y∗2E)UO = 0

When T2 is currently behind, the value function for the second kicker in T2 is

PG(y2B)(VW + VL − Ω) + (1− PG(y2B))VL

The optimal kicking strategy, y∗2B, satisfies the following first-order condition:

P ′G(y∗2B)[VW − Ω + UG] + P ′O(y∗2B)UO = 0

Accordingly, we have y∗2B < y∗2E.

Second Round, First Kick
When the score is currently even, the value function for the second kicker in T1 is

VT1,P2,E = [PG(x2E)PG(y∗2B) + (1− PG(x2E))(1− PG(y∗2E))]Ω

+ PG(x2E)(1− PG(y∗2B))VW + (1− PG(x2E))PG(y∗2E)VL

The optimal kicking strategy, x∗2E, satisfies the following first-order condition:

P ′G(x∗2E)[(PG(y∗2B)− 1 + PG(y∗2E))Ω + (1− PG(y∗2B))VW − PG(y∗2E)VL + UG] + P ′O(x∗2E)UO = 0

=⇒ P ′G(x∗2E)[(1− PG(y∗2B))(VW − Ω) + PG(y∗2E)(Ω− VL) + UG] + P ′O(x∗2E)UO = 0

When T1 is currently behind, the value function for the second kicker in T1 is

VT1,P2,B = PG(x2B)[PG(y∗2E)VL + (1− PG(y∗2E))Ω] + (1− PG(x2B))VL

The optimal kicking strategy, x∗2B, satisfies the following first-order condition:

P ′G(x∗2B)[(1− PG(y∗2E))(Ω− VL) + UG] + P ′O(x∗2B)UO = 0

When T1 is currently ahead, the value function for the second kicker in T1 is

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))[PG(y∗2B)Ω + (1− PG(y∗2B))VW ]
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The optimal kicking strategy, x∗2A, satisfies the following first-order condition:

P ′G(x∗2A)[PG(y∗2B)(VW − Ω) + UG] + P ′O(x∗2A)UO = 0

First Round, Second Kick
When the score is currently even, the value function for the first kicker in T2 is

VT2,P1,E = PG(y1E)(VW + VL − VT1,P2,B) + (1− PG(y1E))(VW + VL − VT1,P2,E)

= VW + VL − PG(y1E)VT1,P2,B − (1− PG(y1E))VT1,P2,E,

where

VT1,P2,B = PG(x∗2B)[PG(y∗2E)VL + (1− PG(y∗2E))Ω] + (1− PG(x∗2B))VL

= Ω− [PG(x∗2B)PG(y∗2E) + (1− PG(x∗2B))](Ω− VL)

and

VT1,P2,E = [PG(x∗2E)PG(y∗2B) + (1− PG(x∗2E))(1− PG(y∗2E))]Ω

+ PG(x∗2E)(1− PG(y∗2B))VW + (1− PG(x∗2E))PG(y∗2E)VL

= Ω + PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)

Therefore

VT2,P1,E = VW + VL − PG(y1E)VT1,P2,B − (1− PG(y1E))VT1,P2,E

= VW + VL − Ω + PG(y1E)[PG(x∗2B)PG(y∗2E) + (1− PG(x∗2B))](Ω− VL)

− (1− PG(y1E))[PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)]

The optimal kicking strategy, y∗1E, satisfies the following first-order condition:

P ′G(y∗1E){[PG(x∗2B)PG(y∗2E) + (1− PG(x∗2B))− (1− PG(x∗2E))PG(y∗2E)](Ω− VL)

+PG(x∗2E)(1− PG(y∗2B))(VW − Ω) + UG}+ P ′O(y∗1E)UO = 0

When T2 is currently behind, the value function for the first kicker in T2 is

VT2,P1,B = PG(y1B)(VW + VL − VT1,P2,E) + (1− PG(y1B))(VW + VL − VT1,P2,A)

= VW + VL − PG(y1B)VT1,P2,E − (1− PG(y1B))VT1,P2,A,

where

VT1,P2,E = Ω + PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)
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and

VT1,P2,A = PG(x∗2A)VW + (1− PG(x∗2A))[PG(y∗2B)Ω + (1− PG(y∗2B))VW ]

= Ω + [PG(x∗2A) + (1− PG(x∗2A))(1− PG(y∗2B))](VW − Ω).

Therefore

VT2,P1,B = VW + VL − PG(y1B)VT1,P2,E − (1− PG(y1B))VT1,P2,A

= VW + VL − Ω− PG(y1B)[PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)]

− (1− PG(y1B))(PG(x∗2A) + (1− PG(x∗2A))(1− PG(y∗2B)))(VW − Ω)

The optimal kicking strategy, y∗1B, satisfies the following first-order condition:

P ′G(y∗1B){(1− PG(x∗2E))PG(y∗2E)(Ω− VL)− [PG(x∗2E)(1− PG(y∗2B))− PG(x∗2A)

−(1− PG(x∗2A))(1− PG(y∗2B))](VW − Ω) + UG}+ P ′O(y∗1B)UO = 0

First Round, First Kick

The value function for the first kicker in T1 is

VT1 = PG(x1)[VW + VL − VT2,P1,B] + (1− PG(x1))[VW + VL − VT2,P1,E]

= VW + VL − PG(x1)VT2,P1,B − (1− PG(x1))VT2,P1,E

= Ω + PG(x1){PG(y∗1B)[PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)]

+ (1− PG(y∗1B))(PG(x∗2A) + (1− PG(x∗2A))(1− PG(y∗2B)))(VW − Ω)]

− (1− PG(x1)){PG(y∗1E)[PG(x∗2B)PG(y∗2E) + (1− PG(x∗2B))](Ω− VL)

− (1− PG(y∗1E))[PG(x∗2E)(1− PG(y∗2B))(VW − Ω)− (1− PG(x∗2E))PG(y∗2E)(Ω− VL)]}

C Online Appendix: Three Regular Round Sequen-

tially Fair Mechanisms

Let us define Vi,j,s to be the value function for the kicker who is the jth kicker to kick in

Round k when the state is s = (s1, s2), where si is the score for the team who kicks ith in

Round k. Denote by xi,j,s the optimal kicking strategy for this kicker.

Third Round, Second Kick
Whether the team is currently even or behind, the optimal kicking strategy is always x∗,

where x∗ is determined by the following first-order conditon:

P ′G(x∗)[
VW − VL

2
+ UG] + P ′O(x∗)UO = 0
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Third Round, First Kick
When the score is currently even (s = (2, 2), (1, 1) or s = (0, 0)), the value function for

the team is VW+VL
2

.

When s = (0, 1), the value function for the kicker is

V3,1,(0,1) = PG(x3,1,(0,1))PG(x∗)VL + PG(x3,1,(0,1))(1− PG(x∗))
VW + VL

2
+ (1− PG(x3,1,(0,1)))VL

=
VW + VL

2
− [1− PG(x3,1,(0,1))(1− PG(x∗))]

VW − VL
2

=
VW + VL

2
− α3,1,(0,1)

VW − VL
2

The optimal kicking strategy, x3,1,(0,1), satisfies the following first-order condition:

P ′G(x3,1,(0,1))[(1− PG(x∗))
VW − VL

2
+ UG] + P ′O(x3,1,(0,1))UO = 0

Similarly, we have V3,1,(0,1) = V3,1,(1,2) and x3,1,(0,1) = x3,1,(1,2).

When s = (1, 0), the value function for the kicker is

V3,1,(1,0) = PG(x3,1,(1,0))VW + (1− PG(x3,1,(1,0)))[(1− PG(x∗))VW + PG(x∗)
VW + VL

2
]

=
VW + VL

2
+ [1− (1− PG(x3,1,(1,0)))PG(x∗)]

VW − VL
2

=
VW + VL

2
+ α3,1,(1,0)

VW − VL
2

The optimal kicking strategy, x3,1,(1,0), satisfies the following first-order condition:

P ′G(x3,1,(1,0))[PG(x∗)
VW − VL

2
+ UG] + P ′O(x3,1,(1,0))UO = 0

Similarly, we have V3,1,(1,0) = V3,1,(2,1) and x3,1,(1,0) = x3,1,(2,1).

Second Round, Second Kick
Denote by φ3(s) the prob. that the first-kicking team in Round 2 kicks first in Round 3

when the state at the end of Round 2 is s.

When s = (0, 0), the value function for the kicker is

V2,2,(0,0) = PG(x2,2,(0,0))[φ3(0, 1)(VW + VL − V3,1,(0,1)) + (1− φ3(0, 1))V3,1,(1,0)] + (1− PG(x2,2,(0,0)))
VW + VL

2

=
VW + VL

2
+ PG(x2,2,(0,0))α2,2,(0,0)

VW − VL
2

,

where

α2,2,(0,0) = φ3(0, 1)α3,1,(0,1) + (1− φ3(0, 1))α3,1,(1,0)

The optimal kicking strategy, x2,2,(0,0), satisfies the following first-order condition:

P ′G(x2,2,(0,0)){α2,2,(0,0)
VW − VL

2
+ UG}+ P ′O(x2,2,(0,0))UO = 0
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When s = (1, 0), the value function for the kicker is

V2,2,(1,0) = PG(x2,2,(1,0))
VW + VL

2
+ (1− PG(x2,2,(1,0)))[φ3(1, 0)(VW + VL − V3,1,(1,0)) + (1− φ3(1, 0))V3,1,(0,1)]

=
VW + VL

2
− (1− PG(x2,2,(1,0)))α2,2,(1,0)

VW − VL
2

,

where

α2,2,(1,0) = φ3(1, 0)α3,1,(1,0) + (1− φ3(1, 0))α3,1,(0,1).

The optimal kicking strategy, x2,2,(1,0), satisfies the following first-order condition:

P ′G(x2,2,(1,0)){α2,2,(1,0)
VW − VL

2
+ UG}+ P ′O(x2,2,(1,0))UO = 0

When s = (1, 1), the value function for the kicker is

V2,2,(1,1) = PG(x2,2,(1,1))[φ3(1, 2)(VW + VL − V3,1,(1,2)) + (1− φ3(1, 2))V3,1,(2,1)] + (1− PG(x2,2,(1,1)))
VW + VL

2

=
VW + VL

2
+ PG(x2,2,(1,1))α2,2,(1,1)

VW − VL
2

,

where

α2,2,(1,1) = φ3(1, 2)α3,1,(1,2) + (1− φ3(1, 2))α3,1,(2,1)

The optimal kicking strategy, x2,2,(1,1), satisfies the following first-order condition:

P ′G(x2,2,(1,1)){α2,2,(1,1)
VW − VL

2
+ UG}+ P ′O(x2,2,(1,1))UO = 0

When s = (2, 1), the value function for the kicker is

V2,2,(2,1) = PG(x2,2,(2,1))
VW + VL

2
+ (1− PG(x2,2,(2,1)))[φ3(2, 1)(VW + VL − V3,1,(2,1)) + (1− φ3(2, 1))V3,1,(1,2)]

=
VW + VL

2
− (1− PG(x2,2,(2,1)))α2,2,(2,1)

VW − VL
2

,

where

α2,2,(1,0) = φ3(2, 1)α3,1,(2,1) + (1− φ3(2, 1))α3,1,(1,2).

The optimal kicking strategy, x2,2,(2,1), satisfies the following first-order condition:

P ′G(x2,2,(2,1)){α2,2,(1,0)
VW − VL

2
+ UG}+ P ′O(x2,2,(2,1))UO = 0

When s = (0, 1), the value function for the kicker is

V2,2,(0,1) = PG(x2,2,(0,1))VW + (1− PG(x2,2,(0,1)))[φ3(0, 1)(VW + VL − V3,1,(0,1)) + (1− φ3(0, 1))V3,1,(1,0)]

=
VW + VL

2
+ α2,2,(0,1)

VW − VL
2

,
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where

α2,2,(0,1) = PG(x2,2,(0,1)) + (1− PG(x2,2,(0,1)))[φ3(0, 1)α3,1,(0,1) + (1− φ3(0, 1))α3,1,(1,0)].

The optimal kicking strategy, x2,2,(0,1), satisfies the following first-order condition:

P ′G(x2,2,(0,1)){[1−[φ3(0, 1)α3,1,(0,1)+(1−φ3(0, 1))α3,1,(1,0)]]
VW − VL

2
+UG}+P ′O(x2,2,(0,1))UO = 0

When s = (2, 0), the value function for the kicker is

V2,2,(2,0) = PG(x2,2,(2,0))[φ3(2, 1)(VW + VL − V3,1,(2,1)) + (1− φ3(2, 1))V3,1,(1,2)] + (1− PG(x2,2,(2,0)))VL

=
VW + VL

2
− α2,2,(2,0)

VW − VL
2

,

where

α2,2,(2,0) = PG(x2,2,(2,0))[φ3(2, 1)α3,1,(2,1) + (1− φ3(2, 1))α3,1,(1,2)] + 1− PG(x2,2,(2,0)).

The optimal kicking strategy, x2,2,(2,0), satisfies the following first-order condition:

P ′G(x2,2,(2,0)){[1−[φ3(2, 1)α3,1,(2,1)+(1−φ3(2, 1))α3,1,(1,2)]]
VW − VL

2
+UG}+P ′O(x2,2,(2,0))UO = 0

Second Round, First Kick
When s = (0, 0) or s = (1, 1), the value function for the team is VW+VL

2
.

When s = (0, 1), the value function for the kicker is

V2,1,(0,1) = PG(x2,1,(0,1))(VW + VL − V2,2,(1,1)) + (1− PG(x2,1,(0,1)))(VW + VL − V2,2,(0,1))

=
VW + VL

2
− α2,1,(0,1)

VW − VL
2

,

where

α2,1,(0,1) = PG(x2,1,(0,1))PG(x2,2,(1,1))α2,2,(1,1) + (1− PG(x2,1,(0,1)))α2,2,(0,1).

The optimal kicking strategy, x2,1,(0,1), satisfies the following first-order condition:

P ′G(x2,1,(0,1)){[α2,2,(0,1) − PG(x2,2,(1,1))α2,2,(1,1)]
VW − VL

2
+ UG}+ P ′O(x2,1,(0,1))UO = 0

When s = (1, 0), the value function for the kicker is

V2,1,(1,0) = PG(x2,1,(1,0))(VW + VL − V2,2,(2,0)) + (1− PG(x2,1,(1,0)))(VW + VL − V2,2,(1,0))

=
VW + VL

2
+ α2,1,(1,0)

VW − VL
2

,
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where

α2,1,(1,0) = PG(x2,1,(1,0))α2,2,(2,0) + (1− PG(x2,1,(1,0)))(1− PG(x2,2,(1,0)))α2,2,(1,0).

The optimal kicking strategy, x2,1,(1,0), satisfies the following first-order condition:

P ′G(x2,1,(1,0)){[α2,2,(2,0) − (1− PG(x2,2,(1,0)))α2,2,(1,0)]
VW − VL

2
+ UG}+ P ′O(x2,1,(1,0))UO = 0

First Round, Second Kick
When s = (0, 0), the value function for the kicker is

V1,2,(0,0) = PG(x1,2,(0,0))[φ2(0, 1)(VW + VL − V2,1,(0,1)) + (1− φ2(0, 1))V2,1,(1,0)] + (1− PG(x1,2,(0,0)))
VW + VL

2

=
VW + VL

2
+ PG(x1,2,(0,0))α1,2,(0,0)

VW − VL
2

,

where

α1,2,(0,0) = φ2(0, 1)α2,1,(0,1) + (1− φ2(0, 1))α2,1,(1,0).

The optimal kicking strategy, x1,2,(0,0), satisfies the following first-order condition:

P ′G(x1,2,(0,0)){α1,2,(0,0)
VW − VL

2
+ UG}+ P ′O(x1,2,(0,0))UO = 0.

When s = (1, 0), the value function for the kicker is

V1,2,(1,0) = PG(x1,2,(1,0))
VW + VL

2
+ (1− PG(x1,2,(1,0)))[φ2(1, 0)(VW + VL − V2,1,(1,0)) + (1− φ2(1, 0))V2,1,(0,1)]

=
VW + VL

2
− (1− PG(x1,2,(1,0)))α1,2,(1,0)

VW − VL
2

,

where

α1,2,(1,0) = φ2(1, 0)α2,1,(1,0) + (1− φ2(1, 0))α2,1,(0,1).

The optimal kicking strategy, x1,2,(1,0), satisfies the following first-order condition:

P ′G(x1,2,(1,0)){α1,2,(1,0)
VW − VL

2
+ UG}+ P ′O(x1,2,(1,0))UO = 0.

First Round, First Kick
The value function for the kicker is

V1,1,(0,0) = PG(x1,1,(0,0))[VW + VL − V1,2,(1,0)] + (1− PG(x1,1,(0,0)))[VW + VL − V1,2,(0,0)]

=
VW + VL

2
+ [PG(x1,1,(0,0))(1− PG(x1,2,(1,0)))α1,2,(1,0)

− (1− PG(x1,1,(0,0)))PG(x1,2,(0,0))α1,2,(0,0)]
VW − VL

2
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The optimal kicking strategy, x1,1,(0,0), satisfies the following first-order condition:

P ′G(x1,1,(0,0)){[(1−PG(x1,2,(1,0)))α1,2,(1,0)+PG(x1,2,(0,0))α1,2,(0,0)]
VW − VL

2
+UG}+P ′O(x1,1,(0,0))UO = 0

Therefore

x1,1,(0,0) R x1,2,(0,0) ⇐⇒ (1− PG(x1,2,(1,0)))α1,2,(1,0) R PG(x1,2,(0,0))α1,2,(0,0)

On the other hand, we have

V1,1,(0,0) =
VW + VL

2
⇐⇒ PG(x1,1,(0,0))(1− PG(x1,2,(1,0)))α1,2,(1,0) = (1− PG(x1,1,(0,0)))PG(x1,2,(0,0))α1,2,(0,0)

⇐⇒ (1− PG(x1,2,(1,0)))α1,2,(1,0) = (1− PG(x1,1,(0,0)))α1,2,(0,0)

The condition holds if φ2(1, 0) + φ2(0, 1) = 1.
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