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Abstract

We analyze cooperative games with externalities generated by aggregative normal-
form games. We construct the characteristic function of a coalition and analyze the
core for various beliefs a coalition has about the behavior of the outside players. We
first show that the γ-core is non-empty, provided the payoff of a player is decreasing
in the aggregate value of all players’ strategies. We next define the class of linear
aggregative games. We show that if a coalition S believes that the outsiders will

form at least
n

s
− 1 coalitions, where n the number of all players and s the number

of members of S, then it has no incentive to break from the grand coalition and
the core is non-empty. Finally we allow a coalition to have probabilistic beliefs over
the set of partitions the outsiders can form. We present sufficient conditions for the
non-emptiness of the core in such an environment.
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1 Introduction

The core is the most widely used solution concept in cooperative game theory. To define the
core one needs to first define the characteristic function of a coalition. The characteristic
function specifies the worth a group of players can attain if they act on their own, i.e.,
without cooperating with the outside players (i.e., the players not in the group). For a
cooperative game with externalities, namely a game where the worth of a coalition depends
on the actions of the outsiders, this task is not straightforward as the specification of the
characteristic function relies on a prediction about the behavior of the non-members (in
particular, their coalition structure).
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Different conjectures about the reaction of the outsiders lead to different coalitional
worths and thus to different notions of core. The α and β cores (Aumann 1959) are based
on min-max behavior on behalf of the non-members. The γ core (Chander & Tulkens 1997)
is based on the assumption that the outsiders play individual best replies to the deviant
coalition; the same approach can be followed under the additional assumption that the
deviant coalition acts as a Stackelberg leader (Currarini & Marini 2003). The recursive
core (Huang & Sjostrom 2003; Koczy 2007) is constructed under the assumption that the
members of a coalition compute their value by looking recursively on the cores of the
sub-games played among the outsiders.

Cooperative games with externalities are generated by normal-form games where players
form coalitions and sign binding agrrements. The current paper focuses on cooperative
games generated by aggregative normal-form games, i.e., games where the payoff of a player
depends on his strategy and on the aggregate value of all players’ strategies. Many economic
models have this structure, such as common pool resource games, oligopoly models, rent
seeking games, etc. We utilize the structure of these games in order to analyze various
notions of core, each depending on certain beliefs a deviant coalition has about the behavior
of the non-members. In particular: (i) we analyze the γ-core (Chander & Tulkens 1997),
which is constructed under the assumption that a deviant coalition believes its opponents
will all stay separate (i.e., form singleton coalitions); (ii) we generalize the ”γ-beliefs” by
allowing a deviant coalition to have sets of beliefs over the reaction of the outside players
and determine the corresponding notion of core; (iii) we introduce the assumption that the
members of a coalition assign various probability distributions on the set of partitions of
the outsiders.

Our results can be summarized as follows:

(i) regarding normal-form games where the payoff of a player is decreasing in the aggre-
gate value of all players’ strategies and (weakly) concave in own strategy, it is shown
that the γ-core is non-empty

(ii) the above result holds if we drop the above assumptions and instead assume that the
payoff of each player satisfies some sort of linearity w.r.t. own strategy

(iii) regarding normal-form games where the payoff of a player satisfies the assumption
descrived in point (ii) above, sets of beliefs are found under which a coalition has
no incentive to deviate from the grand coalition; in particular, for a coalition S with

s players this holds if S believes that the outside players will form at least
n

s
− 1

coalitions, where n is the number of players in the game.

(iv) we consider 3-player games where a deviant coalition has probabilistic beliefs about
the coalitional behavior of the outsiders; we show that if a singleton coalition assigns
a sufficiently low probability to the event that the outsiders form a single coalition
then the core of the 3-player game is non-empty; we then generalize this result to any
number n of players by using an induction argument on n.

The paper is organized as follows. Section 2 discusses the core for aggregative games where
the payoffs are decreasing in the aggregate value of all player’s strategies. Section 3 focuses
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on the class of aggregative games where the payoff of a player is linear in own strategy
and analyzes beliefs that are set-valued (section 3.1) or probabilistic (sections 3.2 and 3.3).
Section 4 concludes.

2 Aggregative games and the γ-core

We consider a set N = {1, 2, ..., n} of players; Xi is the strategy set of player i ∈ N ; ui
is i’s payoff function. We will consider aggregative games, i.e., games where the payoff
of a player depends on his strategy and on an aggregate of the strategies of all players.
We take this aggregate to be simply the sum. Hence the payoff of player i is of the form
ui(xi,

∑
k∈N

xk).

Many economic phenomena are modelled via aggregative games, such us rent-seeking
contests, common pool resource games, oligopoly games, etc. In this section we consider
the class of aggregative games satisfying the following conditions.

A0 ui(xi,
∑
k∈N

xk) decreases in
∑
k∈N

xk.

A1 up(i)(xp(i),
∑
k∈N

xp(k)) = ui(xi,
∑
k∈N

xk), for all permutations p of players.

We examine frameworks where players form coalitions and sign contracts. If all players
agree to cooperate and form the grand coalition then the latter’s objective function is

uN(x1, x2, ..., xn) ≡
∑
i∈N

ui(xi,
∑
k∈N

xk)

We denote by (x∗1, x
∗
2, ..., x

∗
n) the choices of strategies the maximize the above sum. Then

the worth of the grand coalition is

v(N) =
∑
i∈N

ui(x
∗
i ,
∑
k∈N

x∗k)

The formation of the grand coalition is potentially blocked by the formation of smaller
coalitions. Let S ⊂ N be such a coalition, with |S| = s members. The payoff of S,
which is the sum of its members payoffs, depends on the partition of the players not in S.
In this section we assume that the members of S believe that the n − s outside players
stay separate, which is the scenario first introduced by Chander & Tulkens (1997). Under
this approach, should S deviate from the grand coalition, a normal-form game under the
partition {S, {j}j /∈S} will be played. The objective function S in this game is

uS(x1, x2, ..., xN) ≡
∑
i∈S

ui(xi,
∑
k∈S

xk +
∑
j /∈S

xj)

The payoff of player j /∈ S simply is uj(xj,
∑
k∈N

xk). We denote by (xS1 , x
S
2 , ..., x

S
n) the

equilibrium choices in the above normal-form game. The worth of coalition S is
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v(S) =
∑
i∈S

ui(x
S
i ,
∑
k∈N

xSk )

The resulting cooperative game is denoted by (N, v). An allocation in the game is a vector
r = (r1, r2, ..., rn) satisfying

∑
k∈N

rk = v(N). The γ-core is the set of all allocations that no

coalition S can block given the ”γ- beliefs” (Chander & Tulkens 1997).
In what follows we determine conditions for non-empty γ-core under the aggregative

normal-form structure. We begin with two preliminary results.

Lemma 1 Assume A0 and A1 hold and that ui(xi,
∑
k∈N

xk) is weakly concave in xi. Let

i ∈ S and j /∈ S. Then xSj ≥ xSi .

Proof Observe that xSi and xSj satisfy respectively1

∂ui(x
S
i ,

∑
k∈N

xSk )

∂xi
+
∑
l∈S
l 6=i

∂ul(x
S
l ,

∑
k∈N

xSk )

∂xi
= 0 (1)

∂uj(x
S
j ,

∑
k∈N

xSk )

∂xj
= 0 (2)

A0 implies that each term in the sum in (1) is negative. Hence by (1) we have that

∂ui(x
S
i ,

∑
k∈N

xSk )

∂xi
> 0 (3)

By assumption ui(xi,
∑
k∈N

xk) is weakly concave in xi. Hence if xSi > xSj then by (3) we

would have
∂ui(x

S
j ,

∑
k∈N

xSk )

∂xi
> 0

and hence by A1

∂uj(x
S
j ,

∑
k∈N

xSk )

∂xj
> 0

which violates (2). We conclude that xSj ≥ xSi .

Lemma 2 Assume the conditions of Lemma 1 hold. Let i ∈ S and j /∈ S. Then uj(x
S
j ,

∑
k∈N

xSk ) ≥

ui(x
S
i ,

∑
k∈N

xSk ).

1We assume that the equilibrium strategies are in the interior of the strategy sets.
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Proof We have that

uj(x
S
j ,
∑
k∈N

xSk ) = uj(x
S
j ,
∑
k∈N
k 6=j

xSk + xSj ) ≥ uj(x
S
i ,
∑
k∈N
k 6=j

xSk + xSi )

= uj(x
S
i ,

∑
k∈N

k 6=j,k 6=i

xSk + xSi + xSi )

≥ uj(x
S
i ,

∑
k∈N

k 6=j,k 6=i

xSk + xSj + xSi ) [as xSj ≥ xSi and A0 holds]

= ui(x
S
i ,

∑
k∈N

k 6=j,k 6=i

xSk + xSi + xSj ) [because of A1]

= ui(x
S
i ,
∑
k∈N

xSk )

So the result is proved.

Proposition 1 Assume the conditions of Lemmas 1-2 hold. Then the γ-core of (N, v) is
non-empty.

Proof Consider a coalition S with |S| = s members. Given symmetry, the core is non-
empty iff

v(N)

n
≥ v(S)

s
, for all S (4)

We have

v(N)

n
=

∑
i∈N

ui(x
∗
i ,

∑
k∈N

x∗k)

n
≥

∑
i∈N

ui(x
S
i ,

∑
k∈N

xSk )

n

=

sui(x
S
i ,

∑
k∈N

xSk ) + (n− s)uj(xSj ,
∑
k∈N

xSk )

n

≥
(s+ n− s)ui(xSi ,

∑
k∈N

xSk )

n
[by Lemma 2]

=

sui(x
S
i ,

∑
k∈N

xSk )

s
=
v(S)

s

So condition (4) holds.

3 Linear aggregative games

In this section we restrict ourselves to aggregative games satisfying the following condition:
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A2 ui(xi,
∑
k∈N

xk) = xiũi(
∑
k∈N

xk).

Let us give examples satisfying condition A2. Consider rent seeking contests with n players,
each exerting an effort level in order to win a prize of value A. Let ei denote the effort level
of i and c the unit cost of effort. Then the payoff of player i is

ui(ei,
n∑
k=1

ek) =
ei
n∑
k=1

ek

A− cei = ei(
1

n∑
k=1

ek

A− c) = eiũi(
n∑
k=1

ek)

Common pool resource games are another example of aggregative games satisfying A2.
Assume a set of n agents use a common resource (fisheries, forest, etc). If mi is agent i’s

level of exploitation then the value i achieves is miV (
n∑
k=1

mk). Letting c denote the cost

per unit of exploitation, the payoff of agent i is

ui(mi,
n∑
k=1

mk) = miV (
n∑
k=1

mk)− cmi = mi(V (
n∑
k=1

mk)− c) = miũi(
n∑
k=1

mk)

We will use the term linear aggregative games to denote the family of aggregative games
satisfying A1-A2 (recall that A1 is a symmetry condition) . The first result of this section
shows that the γ-core of a cooperative game that corresponds to a linear aggregative game
is non-empty without even assumming A0.

Proposition 2 Assume A1-A2 hold. Then the γ-core of (N, v) is non-empty.

Proof Let S be a coalition with |S| = s members. Define x =
∑
i∈S

xi. Then by A1-A2 we

can write the objective function of S as

uS(x1, x2, ...xn) ≡
∑
i∈S

ui(xi,
∑
k∈N

xk) =
∑
i∈S

xiũi(
∑
k∈N

xk)

= xũi(
∑
k∈N

xk) = ui(x,
∑
k∈N

xk)

Hence coalition S chooses simply the sum its members’ strategies. Therefore it is as if we
have a normal-form game with n− s+ 1 symmetric players. Let xS denote the equilibrium
choice of S and xSj the choice of j /∈ S. By symmetry, xS = xSj , all j /∈ S. Let XS =
(n− s+ 1)xS. Then, by the above, v(S) = ui(x

S, XS), any i ∈ S.
Using again A1-A2, we can write the objective function of the grand coalition as

uN(x1, x2, ..., xn) =
∑
i∈N

xiũi(
∑
k∈N

xk) = ui(
∑
i∈N

xi,
∑
k∈N

xk) = ui(X,X)
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where X =
∑
i∈N

xi. Hence the grand coalition selects simply X. Let X∗ denote its optimal

choice. Then, v(N) = ui(X
∗, X∗), any i.

We then have

v(N)

n
=
ui(X

∗, X∗)

n
≥ ui(X

S, XS)

n

=
XS

n
ũi(X

S) =
n− s+ 1

n
xSũi(X

S)

=
n− s+ 1

n
ui(x

S, XS) ≥ 1

s
ui(x

S, XS)

=
v(S)

s

where the first inequality holds because X∗ maximizes the value of the grand coalition and
the last inequality holds because (n− s+ 1)/n ≥ 1/s.

3.1 Set-valued beliefs

The γ-core is defined under the assumption that the members of a deviant coalition believe
the outside players will stay separate, i.e, they form singleton coalitions. In this subsection
we examine more general coalitional beliefs. Consider a candidate deviant coalition S and
let l denote the number of coalitions of the outside players. We will determine a range of
the values of l that guarantee S does not break off from the grand coalition.

Notice that if coalition S (as before it has s members) believes that the n− s outsiders
form l coalitions then, given A1-A2, we have a normal-form game with l + 1 symmetric
players. The next result identifies a threshold l(s) such that if S believes that the outsiders
will form at least l(s) coalitions, then it has no incentive to deviate from the grand coalition.

Proposition 3 Assume A1 − A2 hold. If a coalition S with s members believes that the

outsiders will form at least l(s) =
n

s
− 1 coalitions then the core is non-empty.

Proof Consider the normal-form game played among k outside coalitions and coalition S.
By A1−A2, we have a symmetric normal-form game. Denote by zS the Nash equilibrium
strategy of each of the l + 1 players and ZS = (l + 1)zS. The worth of S then is v(S) =
ui(z

S, ZS). We then have

v(N)

n
=
ui(X

∗, X∗)

n
≥ ui(Z

S, ZS)

n
=
ZS

n
ũi(Z

S)

=
l + 1

n
zSũi(Z

S) =
l + 1

n
ui(z

S, ZS)

Notice finally that
l + 1

n
≥ 1

s
if l ≥ n

s
− 1.

For singleton coalitions, l(1) = n − 1, i.e., as in the γ-core scenario. For s > 1, we have
that n− s > l(s). Hence for s > 1, a coalition does not break from the grand coalition not
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only when the outsiders form n− s singleton coalitions, but also for cases where they form
fewer coalitions.

3.2 Probabilistic beliefs

In this section we generalize the analysis of the previous section by assuming that a deviant
coalition assigns a probability distribution on the set of partitions the outsiders can form.
We restrict attention to linear aggregative games. As before, let S be a coalition with
|S| = s members. Denote by Πn−s the set of partitions that the n− s outsiders can form.
The members of S assign a probability distribution hn,s over Πn−s, so for π ∈ Πn−s, hn,s(π)
is the probability assigned to partition π.

Recall that assumptions A1-A2 imply that what matters for a deviant coalition S is
only the number of coalitions it faces. So it will be convenient to define a new probability
distribution on the set {1, 2, ..., n− s}. We denote this new distribution by fn,s(.). Then

fn,s(l) =
∑

π:|π|=k

hn,s(π), l = 1, 2, ..., n− s

The value of fn,s(l) is interpreted as the probability of the event that the outsiders form l
coalitions, l = 1, 2, ..., n − s. A generic partition with l members will be called l-partition
and will be denoted by πl = {S1, S2, ..., Sl}.

Consider the l-partition πk = {S1, S2, ..., Sk} of the outsiders. Let xk(l) be the strategy
of a generic (outside) player k. For Sj ∈ πl define

xSj(l) =
∑
l∈Sj

xk(l) and x−S(l) =
∑
Sj∈πl

xSj(l)

Using A2, and fixing a strategy xS =
∑
k∈S

xk for the deviant coalition S, we can write

uSj(xSj(l), x−S(l) + xS) =
∑
k∈Sj

uk(xk(l), x−S(l) + xS)

Moreover let
uS(xS, x−S(l) + xS) =

∑
k∈S

uk(xk, x−S(l) + xS)

The maximization problem facing coalition S then is

max
xS

n−s∑
l=1

fn,s(l)uS(xS, x−S(l) + xS) (5)

where xSj(l) (for Sj ∈ πl and l = 1, 2, ..., n− s) is chosen via

max
xSj (l)

uSj(xSj(l), x−S(l) + xS) (6)
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The solution of (5)-(6) is denoted by xfS, xfSj(l) and xf−S(l) =
∑
Sj∈πl

xfSj(l), l = 1, 2, ..., n− s.

The characteristic function of S is denoted by vfn,s(S) or simply vf (S). By the above
analysis we have,

vf (S) =
n−s∑
l=1

fn,s(l)uS(xfS, x
f
−S(l) + xfS) (7)

Finally, the value of the grand coalition is computed as in the previous sections. A cooper-
ative game in this section is denoted by (N, vf ). The core is the set of all allocations that
no coalition S can block, given distribution fn,s. We denote this core by Cf .

In this section we assume the following (in addition to A0− A2).

B1 Xi is compact and convex.

B2 ui(xi,
∑
j∈N

xj) is twice continuously differentiable in xi.

Return to (6) and fix l. The maximization problems in (6) define l best replies of the
outside coalitions Sj, j = 1, 2, ..., l. The solution of the system of the equations defined by
the l best replies is denoted by x̂Sj(xS, l), j = 1, 2, ..., l. Notice that the latter is not the
reduced-form solution (as everything is defined w.r.t xS) and hence it does not yet depend
on fn,s. Let

x̂−S(xS, l) =
∑
Sj∈πl

x̂Sj(xS, l)

Remark 0 Assumptions A1-A2 and B1-B2 imply that x̂−S(xS, l) increases in l.

Remark 0 follows by Acemoglu and Jensen (2013). They derive conditions under which the
entry of an extra player in an aggregative game increases the aggregate value of the players’
equilibrium strategies. The application of their result in our framework is immediate by
observing that for for each l, xS is a constant. Hence, using A2, for each k it is as if we
have a game with the k outside coalitions.

In the next subsection we analyze the core of a three-player game. This case will be
used later on to analyze the general n-player case.

3.3 The 3-player case

Consider a three-player game, i.e., N = {1, 2, 3}. Let (x1, x2, x3) denote the Nash equilib-
rium profile in the corresponding normal-form game and let (x∗1, x

∗
2, x
∗
3) denote the strategy

profile that maximizes the sum
∑
i∈N

ui(xi,
∑
j∈N

xj). Given the symmetry assumption, xi = x

and x∗i = x∗, all i.
A singleton coalition assigns probability f3,1(1) to the event that players 2 and 3 form

a coalition and probability 1− f3,1(1) to the event that they stay separate. For simplicity,
let f3,1(1) = f.
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Proposition 4 Assume that f is sufficiently low and that there exists a strategy profile that
Pareto dominates the Nash equilibrium of the normal-form game. Then Cf 6= ∅.

Proof The core is non-empty if for all S

v(N)

n
≥ vf (S)

s
(8)

Consider first a singleton coalition, say S = {1}. Given the notation defined earlier, xfS is
the choice of S; xf−S(1) is the choice of the outsiders under partition {2, 3}; and xf−S(2) the
choice of the outsiders under partition {{2}, {3}}. For simplicity, we write

xf (1) = xfS + xf−S(1), xf (2) = xfS + xf−S(2)

The worth of the singleton coalition S then is

vf (S) = fu1(x
f
S, x

f (1)) + (1− f)u1(x
f
S, x

f (2))

By A2 the value of the grand coalition is

v(N) =
∑
i∈N

ui(x
∗, 3x∗) = 3x∗i ũi(x

∗, 3x∗) = ui(3x
∗, 3x∗), i = 1, 2, 3 (9)

By (8), a singleton coalition will not deviate from the grand coalition (setting i = 1 in (9))
if

u1(x
∗, 3x∗) ≥ fu1(x

f
S, x

f (1)) + (1− f)u1(x
f
S, x

f (2)) (10)

Since xf−S(2) > xf−S(1) (applying Remark 0) we have by B0 that

u1(x
f
S, x

f (1)) > u1(x
f
S, x

f (2))

Hence when seen as a function of f, vf (S) is minimized at f = 0 and maximized at f = 1.
Moreover,

vf=0(S) = u1(x, 3x) < u1(x
∗, 3x∗)

where the inequality is due to the assumption that the Nash equilibrium outcome is Pareto
dominated. By continuity, for small enough values of f , say f ≤ f ∗, inequality (10) holds.

Consider now a coalition consisting of two players. We can apply the results of the
previous sections (there we show that the γ core is non-empty) and readily conclude that
for such coalitions, expression (8) holds.
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3.4 The n-player case

We will use the result of the previous section in order to discuss the case of n players. Let
m be a positive integer. Define the numbers n = n+m and s = s+m. With a slight abuse
of notation instead of v(S) we will write v(s), where s = |S|. We have the following two
intermediate results.

Lemma 1 The equality vn(s) = vn(s) holds.

Proof Appears in the Appendix.

Lemma 2 Fix n. The function vn(s) is increasing in s.

Proof We will use induction on the number of players n. Let first n = 2, i.e, N = {1, 2}.
We need to show that

v2(N) > v2(S) > v(∅)

By A1 we can write the payoff of the grand coalition as v(N) = ui(x
∗, x∗), where x∗ is the

optimal choice of N . On the other, consider a singleton coalition, say S = {1}. If it forms
we are in a two-player normal-form game. Denote by (x̂1, x̂2) the equilibrium strategies in
this game. Then v(S) = ui(x̂1, x̂1 + x̂2). By Acemoglu and Jensen (2013), we have that
x̂1 + x̂2 > x∗. Hence,

v2(N) = ui(x
∗, x∗) ≥ ui(x̂1, x̂1) > ui(x̂1, x̂1 + x̂2) = v2(S) > 0

where the first inequality is due to the fact that x∗ is the stategy that maximizes the value
of the grand coalition and the second inequality is due to B0.

Assume now that in a game with n > 2 players we have vn(s) > vn(s − 1), i.e, the
induction hypothesis. We will prove that vn+1(s) > vn+1(s − 1). By Lemma 1 and the
induction hypothesis we have that vn+1(s) = vn(s− 1) > vn(s− 2) = vn+1(s− 1).

We will now use Proposition 3 and Lemmas 1-2 tp show the following.

Proposition 4 Assume the conditions of Proposition 3 hold. Then the core of the n-player
game is non-empty.

Proof We will use induction to show

vn(n)

n
≥ vn(s)

s
(11)

Base: Proposition 3 establishes the base case (n = 3).

Induction hypothesis: For all S : |S| = s ≤ n,
vn(n)

n
≥ vn(s)

s
.

Induction step: We will show that for all S : |S| = s ≤ n+ 1,
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vn+1(n+ 1)

n+ 1
≥ vn+1(s)

s

By Lemma 1 we have that vn+1(s) = vn+1((s− 1) + 1) = vn(s− 1) and also vn+1(n+ 1) =
vn(n). So we have to show that

vn(n)

n+ 1
≥ vn(s− 1)

s
(12)

From the Induction hypothesis we have

vn(n) ≥ n

s− 1
vn(s− 1)

and thus

(s− 1)vn(n) ≥ nvn(s− 1) (13)

Using Lemma 2,

vn(n) > vn(s− 1) (14)

Adding (13) and (14) we have

svn(n) > (n+ 1)vn(s− 1)

which implies that (12) holds. So we have the proof for n + 1 and thus the proposition is
proved.

Appendix

Proof of Lemma 1 We first observe that

fn,s(k) = fn,s(k) (15)

where the first probability function corresponds to the case where a coalition has s members
while the game has n players; the second corresponds to the case where the coalition has
s = s + m members and the game has n = n + m players. Let xns and xns denote the
choices of a coalition in these two scenarios. Denote the choices of the outsiders in a similar
fashion. We observe that due to no synergies and (15), we have xns = xns and xn−s = xn−s.
Therefore

vn(s) =
n−s∑
k=1

fn,s(k)us(x
n
s , x

n
−s(k))

=
n−s∑
k=1

fn,s(k)us(x
n
s , x

n
−s′(k))

= vn(s)
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