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1 Introduction

We study stochastic stability of a non-cooperative model of n-person coalitional bargaining.
In the model, a characteristic function describes the surplus available to different coalitions. A
coalition forms when its agents agree on how to share the surplus it generates. At any given
period, the surplus is divided as per the outcome of a bargaining game. We are interested in
which coalitions are formed and how the surplus is most likely divided among the agents in the
long run.

The present paper characterizes allocations that are stochastically stable against both individ-
ual deviations and coalitional deviations. The notion of stochastic stability was introduced by
Foster and Young (1990), Kandori et al. (1993) and Young (1993). It is a method to assess the ro-
bustness of equilibria by checking its resilience to stochastic shocks. We apply a version of the
method here. As in the literature, our approach can be viewed as performing a stability test for
allocations in a coalitional bargaining game by adding stochastic noise.

To assess robustness against deviations, we study a stochastic dynamic process which follows
the dynamic of Sawa (2013). In each period, some agents form a tentative team and randomly
choose a surplus distribution which each agent in the team will weigh up shortly. In the unper-
turbed updating process, an agent agrees to the distribution if it yields her higher payoff than
the current allocation. The distribution will be accepted if all agents in the team agree. To this
unperturbed dynamic process, we add stochastic noise that leads agents to agree to a distribution
according to the logit choice rule. Coalitional deviations sometimes occur even if not all members
of the team benefit, and this occurs with a probability that declines in the total payoff deficits to
team members. As a consequence, the stochastic process visits every allocations repeatedly, and
predictions can be made concerning the relative amounts of time that the process spends at each.
We examine the behavior of this system as the level of stochastic noise becomes small, defining
the stochastically stable allocations to be those which are observed with positive frequency in the
long run as noise vanishes.

We find that stochastically stable allocations are core allocations whenever the set of interior
points in the core is not empty.1 Moreover, we find the following characterizations. The stabil-
ity of a core allocation decreases in the wealth of the richest player, and the stochastically stable
allocations are core allocations which minimize the wealth of the richest. We view this result
interesting because equity consideration winds up playing an important role even with myopic
payoff-maximizing players.

The related studies in the literature which examines stochastic stability in coalitional bargain-
ing games are Agastya (1999) and Newton (2012). Both papers consider a perturbed dynamic of
games and characterize allocations which are stochastically stable against perturbations. One of
differences from ours is that those two papers assume a sort of central authority. Agents submit
their claims to it, and then it decides which coalitions to be formed and how demands are ra-

1The set of interior points is called strict core in the paper.
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tioned. While, we assume that agents randomly meet and decide whether to form a coalition by
themselves.

The related studies in coalitional bargaining models with rational agents are Okada (1996) and
Compte and Jehiel (2010). Those studies resemble ours in that the proposer is randomly chosen.2

One of differences is that the proposer rationally chooses her proposal in the two studies, while a
proposal is randomly chosen to be assessed in ours. Despite the differences, it is interesting to see
that an egalitarian outcome is favored by all of those studies and ours.

The paper is organized as follows. Section 2 contains the basic coalitional bargaining model.
Section 3 describes the dynamic of the bargaining model. In Section 4, we characterize stochasti-
cally stable allocations. We compare our result with the existing literature of coalitional bargaining
models in Section 5.

2 Model

We consider a non-cooperative model of multi-player coalitional bargaining situations ex-
amined by several studies, for example, Chatterjee et al. (1993). There is a set of players
N = {1, . . . , n}. Let R be the class of all subsets of N. Any J ∈ R may form a team and the
surplus that such a team generates is given by production function v : R → R+ with v(∅) = 0.
Surplus v(J) can be distributed to members if all members of J agree on a surplus distribution.
We assume that there exists small ∆ > 0 such that v(J)/∆ ∈ Z for all J ∈ R.3

Let Si = {0, ∆, 2∆, . . .} denote the set of player i’s claim si. For a team J ∈ R, its surplus
distribution has to satisfy the following feasibility constraints:∑i∈J si ≤ v(J) if |J| ≥ 2,

si = v(J) if J = {i}.
(1)

The second constraint implies that player i earns what she can produce by her own when she does
not form a team with other players. Player i gets payoffs equal to u(si) where u(·) is concave,
strictly increasing and satisfies that u(0) = 0.4 Let the set of feasible surplus distributions for team
J be denoted by

SJ =

{
sJ ∈∏

i∈J
Si : sJ satisfies (1).

}
.

Note that SJ = {v({i})} if J = {i}.
We assume that there can be more than one team, but an agent can participate in exactly one

2Another strand of studies assumes that the player who rejects an offer becomes the next player to make an offer.
See Chatterjee et al. (1993), for example.

3This assumption guarantees that surplus can be distributed without loss for all J ∈ R.
4We assume that surplus v(·) is transferable, but utility may not. Utility is transferable when function u is linear

over payments, and it is non-transferable otherwise.
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team.5 LetM denote the set of existing teams. Since each player participates one team,M must
be a partition of N.6 The space of claim profiles withM is defined as

SM =
{
(s,M) : sM ∈ SM ∀M ∈ M

}
.

Note that (s,M) in SM satisfies the feasibility constraints for all existing teams. The space of
feasible strategy profiles is given by

S =
⋃

M∈part(N)

SM,

where part(N) denotes the set of partitions of N.
We employ equilibrium concepts due to Sawa (2013). A pair (s,M) is an R-stable equilibrium

if for all J ∈ R and all sJ ∈ SJ ,
si ≥ s′i for some i ∈ J.

It is a strict R-stable equilibrium if the strict inequality holds in the above expression for all J ∈ R
and all sJ ∈ SJ .7

Our model of team formation is similar to Okada (1996) and is more general than the model
of Compte and Jehiel (2010) which restrict the number of (multi-player) teams to at most one.
We will compare the stochastically stable outcomes resulting from myopic players with outcomes
resulting from perfectly rational players shown in Okada (1996) and Compte and Jehiel (2010).

2.1 The Core

We say that coalition J blocks allocation s ∈ S if there exists s′ ∈ SJ such that

s′i > si ∀i ∈ J.

Similarly, coalition J weakly blocks allocation s ∈ S if there exists s′ ∈ SJ such that

s′i ≥ si ∀i ∈ J.

Note that if s cannot be weakly blocked by J, then there exists at least one player in J who would
be strictly worse off if J were to form a team and implement s′. Now, we define the core and the
strict core.

Definition 2.1. The core consists of the feasible allocations withM = {N} that cannot be blocked by any
coalition J ∈ R. The strict core consists of the feasible allocations withM = {N} that cannot be weakly
blocked by any coalition J ∈ R.

5An agent forms a singleton team when she does not form a team with others.
6M is a partition of N if N = ∪M, and M ∩M′ = ∅ ∀M, M′ ∈ M, M 6= M′.
7AR-stable equilibrium withR being the power set of N is a strong equilibrium due to Aumann (1959).
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A strict core allocation is a strict R-stable equilibrium, but a non-strict core needs not be. In
the present model, notice that a strict core allocation s satisfies the following set of inequalities:

∑
i∈J

si ≥ v(J) + ∆ ∀J ∈ R. (2)

Let C∆ denote the set of strict core allocations given ∆. In what follows, we assume that C∆ is
non-empty.

For example, a strictly convex interaction with ∆ sufficiently small has non-empty C∆. Produc-
tion function v is strictly convex if for all J, J′ ∈ N with J ∩ J′ /∈ {J, J′},8

v(J ∪ J′) > v(J) + v(J′)− v(J ∩ J′). (3)

An interaction is strictly convex if its production function is strictly convex. For sufficiently small
∆, a strictly convex interaction has at least one strict core allocation. The next example illustrates
this point.

Example 1. Let N = {1, 2} and ∆ = 2, and consider a strictly convex production function v(1) =
2, v(2) = 0, v({1, 2}) = 4. Note that S{1,2} = {(4, 0), (2, 2), (0, 4)}. (4, 0) and (2, 2) are core
allocations, but not strict. And they are not strict R-stable equilibria. The non-existence of strict
core is resolved with finer grids. For instance, for ∆ = 1, (3, 1) ∈ S{1,2} is a strict core allocation.

3 Dynamic

We apply the stochastic stability approach to coalitional bargaining problems described in the
previous section. In this approach, we embed a static interaction in a dynamic process in which
agents randomly form coalitions and jointly revise their strategies based on improvements in their
payoffs in the presence of stochastic payoff shocks. We examine the limiting probability distribu-
tion over strategy profiles as the level of stochastic shocks approaches zero.

The dynamic interaction proceeds as follows. Let st denote a profile of players’ claims in period
t, andMt the set of the existing teams in t. At the beginning of each period t, J ∈ R is randomly
chosen, and then a payment proposal s = {si}i∈N to share the surplus v(J) is randomly chosen.
We assume that proposal s given J satisfies the feasibility constraint (1). Each player in J is asked
whether she accepts or rejects proposal s. A player accepts with probability Ψη(st, s). If they all
accept, players in J form a team and each team member i ∈ J gets payoffs u(si). If coalition J forms
a team, then any existing team having some i ∈ J will be dissolved, i.e. members other than i in
such an existing team will form singleton teams. If at least one player in J rejects s, the state will
remain (st,Mt).

Note that a state of the Markov chain of this interaction consists of (s,M) ∈ S .9 A transition

8A similar production function is assumed in several studies, e.g. Okada (1996) and Okada (2011).
9Transitions depend on not only a current claim profile but also a set of existing teams. If a coalition forms a new

team, it will affect other players in dissolved teams. Which players will be affected depends onM.
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from (s,M) occurs when coalition J forms a new team (if J /∈ M), or J redistributes its surplus (if
J ∈ M). Formally, transition ((s,M), (s′,M′)) is said to be feasible if the following conditions are
satisfied.

(i) IfM 6=M′, then there exists J ∈ M′ such that for all M ∈ M

{i} ∈ M′ ∀i ∈ M \ J if J ∩M 6= ∅,

M ∈ M′, and si = s′i ∀i ∈ M if J ∩M = ∅.

(ii) ∑
i∈M′

s′i ≤ v(M′) ∀M′ ∈ M′.

(iii) IfM =M′, then there exists J ∈ M′ such that

si = s′i ∀i ∈ M′, M′ ∈ M′ \ {J}.

(iv) s′i = v({i}) ∀{i} ∈ M′.

Condition (i) is a feasibility constraint for the transition from M to M′. It says that when a
new team J is formed, an existing team M must be dissolved if at least one player leaves M to join
J. Otherwise, the existing team should remain. For the remaining teams, their distributions must
be unaffected. Conditions (ii)-(iv) are constraints on surplus distribution s′ givenM′. Condition
(ii) is a set of the feasibility constraints given by Equation (1) for all teams inM′. Condition (iii)
is the case of a surplus redistribution (M = M′). It says that at most one team redistributes the
surplus in a transition. Note that Condition (iii) also applies to the cases that someone rejects the
proposal (then, M = M′ holds). Finally, Condition (iv) is the feasibility constraint for players
forming singleton teams, including those players whose team is dissolved in the transition.

Let R(s,M),(s′,M′) be a set of coalitions potentially leading from (s,M) to (s′,M′). It is given by

R(s,M),(s′,M′) =


{J ∈ R : J satisfies (ii).} ifM 6=M′, and (i)–(iv) are satisfied,

{J ∈ R : J satisfies (iii).} ifM =M′, and (i)–(iv) are satisfied,

∅ if some (i)–(iv) is violated.

The last case denotes infeasible transitions. We write transition from (s,M) to (s′,M′) as
((s,M), (s′,M′)).

3.1 The Coalitional Logit Dynamic

Following Sawa (2013), we introduce stochastic shocks and formally describe a perturbed dy-
namic behavior. We focus on a logit-response dynamic of Blume (1993). To describe the logit
choice rule, suppose that the current claim profile is given by s, that a randomly chosen coali-
tion is J, and that s′J ∈ SJ is proposed as the surplus distribution. The probability that agent i in
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coalition J agrees with s′J is given by

Ψη
i (s, s′) =

exp
[
η−1ui(s′)

]
exp [η−1ui(s′)] + exp [η−1ui(s)]

. (4)

where s′ = (s′J , s−J) and η ∈ (0, ∞) denotes the noise level of the logit choice rule. Note that agent
i takes into account other agents’ new strategies, i.e. s′J , in Equation (4). The probability that all
members in J agree is given by ∏i∈J Ψη

i .
The logit-response dynamic is a Markov chain on the state space S with stationary transition

probabilities. The probability for transition ((s,M), (s′,M′)) is given by

Pη

(s,M),(s′,M′) = ∑
J∈R(s,M),(s′ ,M′)

qJ qs′(J, s) ∏
i∈J

Ψη
i (s, s′). (5)

Note that the unperturbed dynamic is obtained in the limit as η approaches zero, i.e.

P0
(s,M),(s′,M′) = ∑

J∈R(s,M),(s′ ,M′)

qJ qs′(J, s) ∏
i∈J

Ψ0
i (s, s′), (6)

where10

Ψ0
i (s, s′) =


0 ui(s) > ui(s′)

α ui(s) = ui(s′)

1 ui(s) < ui(s′).

3.2 Limiting Stationary Distributions and Stochastic Stability

The Markov chain induced by Pη is irreducible and aperiodic for η > 0, and so admits a unique
stationary distribution, denoted by πη . Let πη(s) denote the probability that πη places on state s.
πη(s) represents the fraction of time in which state s is observed over a long time horizon. It is
also the probability that state s will be observed at any given time t, provided that t is sufficiently
large. Thus, the agents’ behavior is nicely summarized by πη in the long-run. We say that state s
isR-stochastically stable if the limiting stationary distribution places positive probability on s.

Definition 3.1. State s isR-stochastically stable if limη→0 πη(s) > 0.

To determine which states will be observed most frequently in the long run, we now introduce
several definitions in order to compute the unlikeliness of transitions. Given a state s, define an
s-tree to be a directed graph T with a unique path from any state s′ ∈ S to s. An edge of a s-tree,
denoted by (s′, s′′) ∈ T(s), represents a transition from s′ to s′′ in the dynamic.

10An unperturbed dynamic with α = 1/2 is the limiting dynamic as η approaches zero. Our analysis will not differ
for all α ∈ (0, 1) because the set of recurrent classes in the unperturbed dynamic does not differ for α ∈ (0, 1).
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We define the cost of edge, or transition, (s, s′) as follows.

cs,s′ =


min

J∈Rs,s′

[
∑i∈J max{ui(s)− ui(s′), 0}

]
if Rs,s′ 6= ∅,

∞ if Rs,s′ = ∅.
(7)

In words, the cost of a transition is the sum of payoff losses of agents revising in that transition.
The next lemma shows that cost cs,s′ is equal to the exponential rate of decay of the correspond-

ing transition probability, Pη
s,s′ .

11

Lemma 3.2. If Rs,s′ 6= ∅, then
− lim

η→0
η log Pη

s,s′ = cs,s′ .

Proof. See Sawa (2013).

Lemma 3.2 implies that the amount of payoff losses plays a significant role in determining
transitions. An interesting observation is that the dynamic captures the notion of ”taking one for
team”. A transition in which an agent sacrifices a smaller amount of her payoffs to benefit others
will be more likely than transitions which lose a greater amount of their payoffs. For instance,
if everyone wants to go out but someone has to stay home to watch kids, it is more likely that a
person will volunteer than that everyone will stay home without volunteers.

Let T (s) denote the set of s-trees. The waste of a tree T ∈ T (s) is defined as

W(T) = ∑
(s′,s′′)∈T

cs′,s′′ . (8)

Note that Equation (7) shows the main difference from the standard stochastic stability analysis
which assumes unilateral deviations. The cost of (s, s′) evaluates the payoff disadvantages of
coalitional deviation s′J for J ∈ Rs,s′ instead of individual deviations, i.e. evaluating ui(s′J , s−J)

instead of ui(s′i, s−i). The waste of a tree is the sum of the payoff disadvantages along the tree. The
stochastic potential of state s is defined as12

W(s) = min
T∈T (s)

W(T).

As η approaches zero, the stationary distribution converges to a unique limiting stationary
distribution. Our main result is the following theorem which offers the characterization of R-
stochastically stable states.

11See Chapter 12 of Sandholm (2010) for a discussion of defining costs for stochastic dynamics.
12Our stochastic potential is a simplified version of that of Alós-Ferrer and Netzer (2010) which defines the stochastic

potential minimizing the waste over trees and transition mappings which map every edge of trees to a set of revising
agents. Lemma 3.2 embeds the minimization over transition mappings into transition costs of Equation (7) which gives
the minimum rate of decay over sets of revising agents. This allows us to directly apply the technique of Freidlin
and Wentzell (1988), and makes two technical contributions; (i) enabling us to characterize stochastically stable states
with other noisy best responses in Section ??, and (ii) characterizing an exact expression for the limiting stationary
distribution.
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Theorem 3.3. A state isR-stochastically stable if and only if it minimizes W(s) among all states.

Proof. See Sawa (2013).

4 Stochastically Stable Allocations

Recall that the dynamic chooses each J ∈ R with positive probability in each period. In this
sense, our model is closer to the ’random proposer’ model of Okada (1996) and Compte and Jehiel
(2010) rather than the ’rejecter proposer’ model of Chatterjee et al. (1993). We will compare our
result with the former papers in Section 5.

The next lemma guarantees that the set of stochastically stable allocations is a subset of the
collection of strict core allocations. The stochastic stability approach will allow us to select core
allocations that are most robust against perturbations.

Lemma 4.1. For s /∈ C∆, the unperturbed dynamic induced by P0 reaches some s ∈ C∆ with positive
probability.

For what follows, we assume that ∆ is sufficiently small such that v({i}) > ∆ for all i ∈ N. For
s ∈ S, let s(i) denote the i-th largest share in s. Let

smin = min
s′∈C∆

s′(1), smax = max
s′∈C∆

s′(1).

In words, smin is the lowest claim of the richest agent among all strict core allocations, and smax is
the highest one.

LetRi = {J ∈ R : i ∈ J}. In words, Ri is a set of coalitions including agent i. Let i# ∈ {i : si =

s(1)} denote one of the richest agents in s ∈ C∆. We define a condition: for all i#, the inequality
below holds:

∑
i∈J

si ≥ v(J) + 2∆ ∀J ∈ Ri# . (9)

We say that allocation s satisfies Condition (9) if Inequality (9) holds for all i# ∈ {i : si = s(1)}. Any
allocation satisfying (9) is a strict core allocation. Furthermore, even if there is a transfer of ∆ from
someone to another in an allocation satisfying (9), the resulting allocation satisfies Inequality (2),
i.e. it is still a strict core allocation.

Recall that R(s) in Equation (??) denotes the minimum waste for the process to escape from
the basin of attraction of s. We call a sequence of transitions from s ∈ C∆ to some other s′ ∈ C∆

the least-cost escape from s if its waste is R(s). Condition (9) is a key to identify which allocation
the process will most likely visit when it departs from a strict core allocation, as shown in the
following lemma.

Lemma 4.2. For all s ∈ C∆,
R(s) = u(s(1))− u(s(1) − ∆). (10)
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Furthermore, if allocation s satisfies Condition (9), then the least-cost escape from s leads the process to
s′ ∈ C∆ where s′ is either with the richest agent claiming s(1)−∆ or with one fewer richest agents claiming
s(1). If allocation s violates Condition (9), then the least-cost escape from s leads the process to any s′ ∈ C∆.

Lemma 4.2 shows that the stability of a core allocation depends on the richest player. Moreover,
the concavity of u implies that u(x) − u(x − ∆) < u(y) − u(y − ∆) for all x > y; the stability
decreases in the wealth of the richest player. Our main result in this section is the following
proposition which characterizes the stochastically stable allocations.

Proposition 4.3. Allocation s is stochastically stable if and only if s ∈ C∆ and

s(1) = smin (11)

Its formal proof, which is in Appendix, uses the modified Radius-Coradius theorem (Theorem
??). We provide a sketch here. For each h ∈ {0, 1, . . .}, we classify the strict core allocations into
two sets: those with s(1) ≥ smax − h∆ and those with s(1) < smax − h∆. Starting with h = 0, we
show that the radius of the latter set is greater than its coradius and so exclude allocations with
s(1) = smax from the stochastically stable allocations. By the inductive step, we show that the
radius of the latter set is greater than its coradius for all h = {1, 2, . . .} such that smin < smax − h∆.

5 Discussions

Model Agents Resulting allocation (among those in the core)
Okada (1996) rational Maximizing per capita (i.e. maxJ⊂N v(J)/|J|)
Compte and Jehiel (2010) rational Maximizing product of payoffs
Agastya (1999) myopic Minimizing payoff for the richest
Newton (2012) myopic Maximizing payoff for the poorest
This paper myopic Minimizing payoff for the richest

Table 1: Coalitional bargaining models and their resulting allocations

Table 1 summarizes related papers in coalitional bargaining, both with rational and myopic
agents. We note a few general observations among them, and then we compare our model with
the other papers which assume myopic agents. We say (s,M) is an egalitarian allocation if si =

v(N)/n for all i ∈ N and M = {N}. Observe that despite various differences between the
models, all papers favor the egalitarian outcome if it is in the core (or strict core).13 Even if the
egalitarian outcome is not in the core, equity considerations play a significant role in all papers.

13The model of Okada (1996) requires one more condition for the egalitarian outcome:

v(S)
|S| ≤

v(T)
|T| for all S, T ⊆ N with S ⊆ T.
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In the stochastically stable outcome of present paper, the richest agents transfer to others as much
money as possible subject to Constraint (2). As an example for other papers, surplus is equally
distributed among coalition members even if it is not a grand coalition in Okada (1996).

It is interesting to note that both Agastya (1999)’s centralized approach and our decentralized
approach lead to similar results. Both approaches have a common observation; agents who do
better in a coalition are less reluctant to reduce their demands. Then, a transition in which the
richest agent reduces her demand is the easiest way to leave a strict core allocation, as we see in
Lemma 4.2. This determines the stochastically stable allocations. The difference from Newton
(2012) comes from a tailored setting of Newton (2012) that agents evaluate a correlated strategy
and switch to a pure strategy profile in its support. We roughly sketch the setting here. Suppose
that N = {1, 2, 3} and that strict core allocations are s = {1, 6, 6}, s′ = {2, 5, 6} and s′′ = {2, 6, 5}.
In our model, all are stochastically stable, since the wealth of the richest agent is 6 in all the allo-
cations. Now, suppose that agents form a grand coalition with allocation s. If we allow correlated
strategies, then agents may evaluate a correlated strategy in which they play each of s′ and s′′ with
probability 1/2. In this way, agents 2 and 3 can (probabilistically) share the cost of accommodat-
ing the poorest with one unit of money. Newton (2012) showed that, in his setting, the cost of the
transition above is lower than the cost of transitions in pure strategies, e.g. evaluating switching
from s to s′. It will be interesting to study our model with correlated strategies in future research.14

There are two crucial differences between our paper and others assuming myopic agents. The
first is that others assume a central authority which collect agents’ claims and chooses coalition(s)
to be formed.15 Ours does not assume such an authority, but assumes instead that agents ran-
domly meet and decide whether to form a coalition by themselves. The second is about restric-
tions on production function v. Agastya (1999) assumes strict convexity (see Equation (3)), and
Newton (2012) assumes super-additivity:

v(J ∪ J′) ≥ v(J) + v(J′) if J ∩ J′ = ∅.

In contrast, our model does not require any restriction on v except the existence of strict core
allocations, which other two papers assume as well.

A Appendix

Proofs for Section 4

14We conjecture that our result will not change so long as logit choice is assumed. The cost of transition from s to
the correlated strategy is given by the sum of differences in agents 2 and 3’s expected payoffs:

u(6)− 1
2
(u(6) + u(5)) + u(6)− 1

2
(u(6) + u(5)) = u(6)− u(5).

Observe that the cost above is indifferent from the cost of both transitions (s, s′) and (s, s′′). However, the result would
differ with the probit choice (see Equation (??)), and we may obtain a similar result to Newton (2012).

15In Newton (2012), each agent submits to the authority her claim and acceptable players to form a coalition together.
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Proof of Lemma 4.1. By definition, it is obvious that any strict core allocation is an absorbing state
in the unperturbed dynamic. Let s∗ denote an arbitrary strict core allocation. We will show that,
for any s /∈ C∆, the unperturbed dynamic starting from s reaches s∗ with positive probability.

First, suppose that allocation s /∈ C∆ but in the core. Then, there exist a coalition J ⊂ N and an
allocation s′ such that s′i = 0 for all i /∈ J,

s′i ≥ si ∀i ∈ J

with at least one equality, and

∑
i∈J

s′i = v(J).

Let agents form coalition J and accept s′.16 Let s′′ be such that s′′i = s′i if i ∈ J and s′′i = v({i})
otherwise. Note that s′′ is feasible for a grand coalition, i.e. v(J) + ∑i/∈J v({i}) ≤ v(N).17 Let
agents form a grand coalition and accept s′′. Then, let agent i∗ /∈ J form a singleton coalition and
accept s′′′i∗ = v({i∗}). Note that the grand coalition is dissolved due to the deviation by i∗. Let
agents form a grand coalition again and accept s∗ ∈ C∆.

Second, suppose that the process is in allocation s that is not in the core. If no team is formed in
s, let agents form a grand coalition and accept s∗. Next, suppose that a set of teamsM exists in s.
Let ŝ be such that ŝi = si for all i ∈ N. Due to the existence of the core, such ŝ must be feasible for
a grand coalition, i.e. ∑i ŝi ≤ v(N).18 Let agents form a grand coalition and accept ŝ. If ŝ is a core
allocation, then there is positive probability the process reaches some s∗ ∈ C∆ as shown above.
If ŝ is not a core allocation, then there exist J and s′ such that J blocks ŝ. Let agents form J and
accept s′. Following the discussion in the previous paragraph, we can show that there is positive
probability the process reaches some s∗ ∈ C∆.

Proof of Lemma 4.2. First, observe that RHS of Equation (10) gives the minimum cost of a mistake
over all mistakes in allocation s because of the concavity of u(·).19 We will prove that this least-cost
mistake is enough for the process to switch to another strict core allocation.

Recall that i# ∈ {i : si = s(1)}, i.e. one of the richest agents. If allocation s satisfies Condition
(9), then any transfer of ∆ from i# to another agent will result in a new strict core allocation.

16We mean by ”let agents form J and accept s” that there is positive probability that coalition J and allocation s are
chosen, and agents accept it. We assume that that event is realized in the dynamic.

17This comes from non-emptiness of C∆. For s ∈ C∆,

∑
i∈J

si ≥ v(J) + ∆, and si ≥ v({i}) + ∆ ∀i /∈ J.

Summing up all inequalities, we have

v(N) ≥ ∑
i∈N

si > v(J) + ∑
i/∈J

v({i}).

18Note that ŝ is not necessarily a core allocation.
19Since s is core allocation, some player’s share must decrease by any switch from s. Due to the concavity of u(·),

the least cost is ∆ decrease in the richest’s share.
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More specifically, let s′ be such that s′i# = s(1) − ∆, s′h = sh + ∆ for some h ∈ N, and s′i = si

otherwise. Note that if s(1) > smin, we can choose h such that sh ≤ s(1) − 2∆. Observe that s′

satisfies Inequalities (2). Thus, the escaping-cost from s to s′ is given by (10). And the resulting
allocation s′ is either with the richest agent claiming s(1) − ∆ or with one fewer richest agents
claiming s(1).

Next, suppose that Condition (9) does not hold for allocation s. In other words, there exist at
least one richest agent i# and one coalition J ∈ Ri# such that

∑
i∈J

si = v(J) + ∆.

Consider allocation s′ such that s′i# = si# − ∆, s′h = sh + ∆ for some h /∈ J, and s′i = si for i /∈ {i#, h}.
Note that the cost to switch from s to s′ is given by (10). Suppose that the process start with s and
that the following events occur sequentially.

(i) Agents form a grand coalition and accept s′. This costs a waste of u(s(1))− u(s(1) − ∆).

(ii) Let s′′J ∈ SJ be such that s′′j = s′j for all j ∈ J. Agents in J form a coalition and accept s′′J . Note
that the grand coalition is dissolved.

(iii) Let ŝ ∈ S be such that ŝi = s′′i for all i ∈ J and ŝi = v({i}) otherwise. Agents forms a grand
coalition and accept ŝ.

(iv) Let i /∈ J and s̃i = v({i}) ∈ S{i}. Agent i forms a singleton team {i} and switches from ŝ to
s̃i. Note that the grand coalition is dissolved by the agent i’s deviation.

(v) Let s∗ ∈ C∆. Agents forms a grand coalition and accept s∗.

Observe that (ii)–(v) occur with positive probability even in the unperturbed dynamic. The pro-
cess reaches any strict core allocation without cost (after reaching s′), and the least escaping-cost
from s to s∗ is again given by (10).

Proof of Proposition 4.3. First, we show the ’only if’ part. Let h ∈ {0, 1, . . . , h̄} where smax − h̄∆ =

smin − ∆. Define

Usmax−h∆ =
{

s ∈ C∆

∣∣∣s(1) = smax − h∆
}

Uc
smax−h∆ = C∆ \Usmax \Usmax−∆ \Usmax−2∆ . . . \Usmax−h∆.

Usmax−h∆ is the set of strict core allocations with the richest agent claiming smax − h∆, and Uc
smax−h∆

is the set of strict core allocations in which the richest agent’s share is at most smax− (h + 1)∆. The
proof of the ’only if’ part is reduced to limη→0 πη(Usmin) = 1. We will prove it by induction. First,
we will consider h = 0 and show that

R(Uc
smax

) ≥ u(smax − ∆)− u(smax − 2∆), (12)
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CR∗(Uc
smax

) = u(smax)− u(smax − ∆). (13)

Lemma 4.2 shows that the radius of allocation s is given by Equation (10) and the process might
fall in a basin of attraction of any strict core allocation. Together with the concavity of u(·), this
gives R(Uc

smax
) above. Recall that CR∗ is the maximum of the (modified) least escaping-costs from

Usmax to Uc
smax

over all s ∈ Usmax . We will show that the least escaping cost from any state in Usmax

is given by (13). Choose s1 ∈ Usmax . Lemma 4.2 implies that the leas-cost escape can cause the
process switching to either some s′ ∈ Uc

smax
or s2 ∈ Usmax . In the case of switching to s′, the least

escaping cost to Uc
smax

is given by R(s1) = u(smax)− u(smax − ∆), which is consistent to Equation
(13). Suppose the case of s2. Lemma 4.2 implies that s2 has one fewer richest agents than s1, i.e.∣∣∣{si ∈ s2 : si = s1

(1)}
∣∣∣ = ∣∣∣{si ∈ s1 : si = s1

(1)}
∣∣∣− 1.

According to Lemma 4.2 again, the process can further move to either some s′′ ∈ Uc
smax

or s3 ∈ Usmax

by the least-cost mistake. In the case of s′′, observe that

W(d(s1, s′′)) = R(s1) + R(s2),

OW(d(s1, s′′)) = R(s2).

Thus, W(d(s1, s′′))−OW(d(s1, s′′) = R(s1). Again, it is consistent to Equation (13). For s3, now
let us turn to a general discussion. Suppose that a sequence of the least-cost mistakes makes the
process move from s1 to s2 to . . . to sk and then to ŝ, where si ∈ Usmax for 1 ≤ i ≤ k and ŝ ∈ Uc

smax
.

Lemma 4.2 guarantees that such a sequence of mistakes exists. Since the number of the richest
agents is finite, k must be finite. Let d(s1, ŝ) denote a path induced by this sequence of mistakes.
Its waste and offset are given by

W(d(s1, ŝ)) =
k

∑
i=1

R(si), OW(d(s1, ŝ)) =
k

∑
i=2

R(si).

Observe that
W(d(s1, ŝ))−OW(d(s1, ŝ)) = R(s1) = u(smax)− u(smax − ∆). (14)

Since the choice of s1 ∈ Usmax is arbitrary, Equation (14) implies that the modified Coradius of Uc
smax

is given by (13). The concavity of u(·) again implies that R(Uc
smax

) > CR∗(Uc
smax

). According to the
modified Radius-Coradius theorem, limη→0 πη(Uc

smax
) = 1.

Now, we begin the main part of the induction discussion. We assume that the condition below
is satisfied for h ≤ h̄ and show that the same condition is satisfied for h + 1:20

For all s ∈
⋃

h′≤h

Usmax−h′∆,

20In a subsequent dicussion, we also show that similar equations to (12) and (13) hold if (15) is satisfied.
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∃ŝ ∈ Uc
smax−h∆ and d(s, ŝ) such that W(d(s, ŝ))−OW(d(s, ŝ)) = R(s). (15)

Note that we have shown that Condition (15) is satisfied for h = 0. Lemma 4.2 implies that
from any s1 ∈ Usmax−(h+1)∆ there exists path d = {(s1, s2), . . . , (sk−1, sk), (sk, ŝ)} with the following
properties:

(I) si ∈ Usmax−(h+1)∆ for 1 ≤ i ≤ k and ŝ ∈ Uc
smax−(h+1)∆.

(II) W((si, si+1)) = R(si) = u(smax − (h + 1)∆)− u(smax − (h + 2)∆) for 1 ≤ i ≤ k− 1.

Observe that

W(d) =
k

∑
i=1

R(si), OW(d) =
k

∑
i=2

R(si).

This implies that, for all s1 ∈ Usmax−(h+1)∆, there exist ŝ ∈ Uc
smax−h∆ and d(s, ŝ) such that

W(d(s, ŝ))−OW(d(s, ŝ)) = R(s1). (16)

Together with Condition (15), the above observation implies that, for all s1 ∈ ⋃h′≤h Usmax−h′∆, there
exists path d(s1, ŝ) = d1 ∪ d2 where d1 = {(s1, s2), . . . , (sl , sl+1)} is defined in Assumption (15) and
d2 = {(sl+1, sl+2), . . . , (sl+k, ŝ)} satisfies properties (I) and (II) above. Observe that21

W(d(s1, ŝ))−OW(d(s1, ŝ)) = W(d1)−OW(d1)− R(sl+1) + W(d2)−OW(d2)

= R(s1). (17)

Equations (16) and (17) imply that Condition (15) is satisfied for h + 1. Furthermore, these equa-
tions imply that limη→0 πη(Uc

smax−(h+1)∆) = 1. To see this, observe that

R(Uc
smax−(h+1)∆) ≥ u(smax − (h + 2)∆)− u(smax − (h + 3)∆)

> u(smax − (h + 1)∆)− u(smax − (h + 2)∆) ≥ CR∗(Uc
smax−(h+1)∆).

We continue this induction discussion until h = h̄, and it leads us to conclude that

lim
η→0

πη(Uc
smax−h̄∆) = 1.

The proof of the ’only if’ part is complete by observing that Uc
smax−h̄∆ = Usmin .

21To see the first equality, suppose path d along which the process moves from s1 ∈ Usmax to s2 ∈ Usmax−∆ and then
to s3 ∈ Uc

smax−∆. Let d1 = (s1, s2), d2 = (s2, s3) and d = d1 ∪ d2. Observe that

W(d) = R(s1) + R(s2), W(d1) = R(s1), W(d2) = R(s2),

OW(d) = R(s2), OW(d1) = 0, OW(d2) = 0.

W(d)−OW(d) can be rewritten as W(d)−OW(d) = W(d1)−OW(d1)− R(s2) + W(d2)−OW(d2).
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Next, we show the ’if’ part, i.e. strict core allocations satisfying (11) are stochastically stable. By
the way of contradiction, suppose that s ∈ Usmin satisfying (11) is not stochastically stable. By the
existence and the ’only if’ part which we proved, there exists some s′ ∈ Usmin that is stochastically
stable. Note that the least costs to escape from s and from s′ are identical and given by R(s) =

R(s′) = u(smin)− u(smin − ∆). Now, consider s′-tree T∗(s′) minimizing the stochastic potential
of s′. The edge emanating from s in T∗(s′) must cost at least R(s). Lemma 4.2 implies that there
exists path d(s′, s) such that W(d(s′, s))−OW(d) = R(s′). Construct a new tree T(s) by removing
the edge from s in T∗(s′) and adding edges of d(s′, s) to T∗(s′). Then, observe that

W(s) ≤W(T(s)) ≤W(T∗(s′))− R(s) + R(s′)

= W(T∗(s′))

= W(s′)

This contradicts that s′ is stochastically stable, but s is not.
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