
Preference Uncertainty and Conflict of Interest

in Committees∗

Anne-Katrin Roesler†

April 13, 2014

– Preliminary –

Abstract

A committee of agents with interdependent values votes on whether

to accept an alternative or stick to the status quo. Agents hold two-

dimensional private information: about a quality criterion of the al-

ternative, and about their individual preference type. In equilibrium

committee members adopt cutoff strategies, and an agent’s preference

type is reflected in his acceptance standard: More extreme types adopt

more stringent acceptance standards and act less strategic. Agents

lower their acceptance standard if they believe to face a more parti-

san type. By contrast, more preference uncertainty will encourage an
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1 Introduction

In most organizations it has become the prevailing practice that complex

decisions are not made by individuals but by committees. Typically, this is

done by a more or less elaborate voting procedure. Corporate boards decide

how to invest, whom to hire and whether or not to adopt a new technol-

ogy. Examples include decisions about the allocation of research grants, the

approval of new drugs by the FDA for the market and academic hiring. By

the complexity of matters which are put to vote committee members usu-

ally cannot assess all information about the alternatives. Rather, committee

members receive private noisy signals. For example, jurors obtain this sig-

nal from listening to the evidence presented in a trial whereas in the hiring

process signals arise from evaluating application materials and interviews.

It is often the case that committee members have two types of private

information; they possess information not only about the state of the world,

which is payoff relevant to all agents, but also about their preference type,

which determines how they aggregate available information into preferences.

This means that, even if all private signals were publicly revealed, it would

still remain private information to the agents how they translate signals about

the state of the world into preferences – there is preference uncertainty. The

preference types of jurors could, for example, reflect their confidence level

about their abilities to assess the evidence presented in a trial. In a committee

of specialist who each have private information about the quality of the

proposal in the dimension of their own specialty, the preference types reflect

the agents’ levels of partisanship.

In this paper we study a committee setting in which agents have inter-

dependent preferences and hold two-dimensional private information: They

have differential information about the payoff relevant state of the world

and, moreover, there is preference uncertainty. We present a model which

captures these features. Our goal is to understand the interaction between

the two types of private information and how preference uncertainty, indi-

vidual preferences types and beliefs about them affect committee decisions,

in particular equilibrium acceptance sets.

A group of agents faces a binary decision, whether to implement an alter-
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native or stick to the status quo. The decision is made by generalized majority

voting. That is, each agent can indicate whether he accepts the proposal, and

the majority rule determines the minimal number of votes required to adopt

the alternative. Prior to voting each agent obtains a private signal about the

quality of the alternative.1 Committee members have interdependent values.

To be precise, the payoff of the status quo is zero for all agents, and the pay-

off obtained from adopting an alternative is a convex combination over the

private signals of all agents, in which agents put most weight on their own

signal. The private preference type of an agent reflects the extent to which

he favors his own private signal.

In this setting, we analyze voting behavior of agents and the resulting

acceptance sets. Our main contributions include establishing the existence of

a pure strategy Nash equilibrium in undominated strategies, and character-

izing properties of equilibrium strategies. As is typical for voting models with

continuous signals, in equilibrium agents adopt cutoff strategies.2 That is, an

agent accepts an alternative whenever his private signal is above a certain

threshold. We find that an agent’s private type is reflected in the cutoff he

adopts: more extreme types act less strategic. For example, under unanimity

voting, agents with higher preference types adopt more stringent acceptance

standards. We conclude the equilibrium characterization by establishing, un-

der some common distributional assumption, equilibrium uniqueness for the

unanimity rule.

Next, we exploit the flexibility of the new committee voting model in-

troduced in this paper, to address the question how private preference types

and beliefs about them affect committee decision. The results are illustrated

for a two-member committee. We study comparative statics with respect to

shifts in the distribution of agents’ types.3 If consensus is required to adopt

the alternative, we find that, if an agent believes to face a more confident or

partisan committee member4 he will lower his acceptance standard while the

other committee member reacts by increasing his. A further contribution of

1A random draw from a continuous signal space.
2See Feddersen and Pesendorfer (1997), Duggan and Martinelli (2001), Li and Suen

(2009).
3To be precise, shifts in the distribution of types in terms of first and second order

stochastic dominance.
4In the sense of a first order stochastic dominance shift in the distribution of agents’

types.
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this paper is to characterize the effect of more preference uncertainty on the

equilibrium strategies of committee members. One might think that more

preference uncertainty would lead an agent to be more cautious and adopt a

more lenient acceptance standard. It may be somewhat surprising that the

opposite occurs: more preference uncertainty causes an agent to increase his

acceptance standard, essentially focusing more on his own private signal. This

result illustrates a special feature of the private information about the pref-

erence type. For more preference uncertainty, defined as a mean-preserving

spread of the distribution of preference types of the other committee mem-

ber, all agents adjust their equilibrium strategies. This is true even though

for the decision of an agent only the expectation over all preference types of

the other committee member is relevant. By contrast, for a risk-neutral agent

for whom only the expectation over all payoff-relevant signals is relevant for

his decision, a mean-preserving spread of the distribution of states does not

affect the agent’s best response.

Some further comments on our payoff structure: It captures the natu-

ral assumption that agents pay attention to the aspect of the alternative

which is most important for them, but are aware that the signals held by the

other committee members also contain relevant information. This implies

that agents have interdependent, but typically not purely common, values.

Moreover, even if all signals about the proposal were publicly observable, it

is often private information to the agents how they aggregate this informa-

tion. In our model this is captured by the preference type, which indicates

how an agent weighs his own signal compared to the signals held by other

agents, that is, how biased the agent is towards his own information. This

brings more precision to the interpretation presented above that preference

types reflect, for example, the confidence of jurors or the partisanship levels

of specialists. The extent of the confidence or partisanship level is intrinsic

in nature, can be regarded as part of the personality of an individual and is

thus his private information. Consequently, there is conflict of interest among

committee members, but uncertainty about the extent of the conflict.

Related Literature An early observation made by Condorcet (1785) is

that, by pooling the information of their members, groups may take better
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decisions than individuals. This statement, known as the Condorcet Jury

Theorem, was initially formulated for non-strategic voters and thus a purely

statistical result. Starting from this insight, there is an extensive literature

on collective decision making, now typically focusing on strategic voters who

update their beliefs about the information held by other agents conditional

on the event of being pivotal. Li and Suen (2009) provide a good survey.

Most of the theoretical voting models study settings in which individuals

share a common interest. That is, committee members would agree on the

best outcome if they knew the state of the world. Often an even stronger

assumption is made, namely, that agents have perfectly aligned preferences.

This assumption implies that there is an underlying consensus: agents would

agree on the best action if there were no asymmetric information, that is, if all

private information were publicly available. Li et al. (2001) relax the second

assumption, but still assume that agents share a common objective. If there

is uncertainty about the state of the world there may be conflict of interest,

but disagreement vanishes if all uncertainty is resolved. The authors discuss

how the level of conflict among committee members affects their incentives to

strategically misrepresent their information and thus may hinder information

aggregation. In the model by Li et al. (2001) and related papers,5 agents are

heterogeneous in the sense that they require different levels of evidence to

prefer the alternative over the status quo. This specification of heterogeneity

implies that between any pair of agents there is only one direction of dis-

agreement, which is determined by the different evidence levels they require

to favor the alternative. By contrast, in the interdependent values model we

consider, the direction of conflict is not given and there exist different types

of disagreement. A more detailed discussion of the relation between these

models is provided at the end of Section 2.

Two recent related papers that also study settings in which committee

members have interdependent values are Moldovanu and Shi (2013) and

Yildirim (2012).6 Yildirim (2012) identifies time-consistent majority rules,

that is, majority rules which a designer can implement if he cannot commit

to a rule prior to observing the votes. Moldovanu and Shi (2013) consider

5e.g. Austen-Smith and Feddersen (2006) and Li and Suen (2009).
6Further interdependent values voting models are Grüner and Kiel (2004) and Rosar

(2012). They consider a different (quadratic) functional form of utilities.
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an infinite horizon search model where the decision to stop is made by a

committee by unanimity voting. They characterize a stationary equilibrium

in cutoff-strategies, and discuss how the level of conflict among commit-

tee members’ preferences affects acceptance sets and welfare. The preference

structure adopted in both papers, Yildirim (2012) and Moldovanu and Shi

(2013), is similar to ours in that agents have interdependent, additively sep-

arable utilities. To be precise, agents’ utilities are a convex combination over

private signals of all agents, and all committee members possess the same

bias-level or preference type.7 Our model departs from these assumptions in

two aspects: First, we allow agents to have individual preference types, and

second these are private information to the agents, that is, there is preference

uncertainty.8 Our model is therefore more flexible than the existing models

in the literature. This allows to address new questions, for example how indi-

vidual preference types and the composition of a committee may affect group

decisions. In this paper, we focus on the effects of beliefs about preference

types on equilibrium acceptance sets.

The rest of the paper is structured as follows. The model is introduced in

Section 2 and a more detailed discussion of its special features is provided.

Section 3 and Section 4 contain our main results. In Section 3 we establish

equilibrium existence and characterize fundamental properties of equilibrium

strategies. This is followed by a discussion of equilibrium uniqueness under

unanimity voting. Our results of the effects of preference uncertainty on equi-

librium strategies and acceptance sets are presented in Section 4. In Section 5

we discuss the benchmark case in which preference types are common knowl-

edge. Section 6 concludes. All proofs are relegated to the appendix.

2 The Model

Consider a committee of n agents, I = {1, . . . , n}, who take a binary deci-

sion, for example, whether to stick to the status quo or accept an alternative.

The payoff of the status quo is 0 for all members. An alternative (proposal)

7Meyer and Strulovici (2013) extend some of the results of Moldovanu and Shi (2013)
to more general preference structures.

8The benchmark in which agents have individual preference types which are common
knowledge is discussed in Section 5.

6



is characterized by an n-dimensional vector x = (x1, . . . , xn) ∈ X ⊆ Rn

where X = ×ni=1Xi is a closed compact set in Rn. Let X−i :=×
j 6=i
Xj and

x−i := (x1, . . . , xi−1, xi+1, . . . , xn). We refer to x1, . . . , xn as the attribute val-

ues of x. Attribute values xi, i ∈ I are determined by independent random

draws from Xi with distribution function Fi which are twice continuously

differentiable. The realization xi is private information to agent i, the distri-

butions Fi of the respective random variables Xi are common knowledge.

For agent i, the payoff of alternative x is

vi(θi, x) = θixi + (1− θi)
1

n− 1

∑
j 6=i

xj︸ ︷︷ ︸
=:x−i

, (1)

where θi ∈ Θi ⊆ [0, 1] reflects agent i’s preference type. We assume that

E(Xi) = 0 for every i ∈ I. This implies that before agents observe their

private signal xi about the proposal, they neither favor the status quo nor

the alternative. It is common knowledge that the payoff structure has the

form of Equation 1. Agents’ types are independently distributed on Θi with

distributions Gi and densities gi > 0. Preference type θi is private information

to agent i, the distribution of types is common knowledge.

We assume that agents’ valuations satisfy the single-crossing property

with respect to agents’ private signals xi:

Assumption 1 ((SC)). For all i, j ∈ I, j 6= i:

∂vi
∂xi

(θi, x) ≥ ∂vj
∂xi

(θj, x) ∀x ∈ X .

For the parametric form of Equation 1 this equivalent to θi ≥ 1
n−1

(1−θj),
for all (θi, θj) ∈ Θi×Θj, j 6= i. It follows that Θi ⊆

[
1
n
, 1
]

for every i ∈ I. Note

that, if θi = 1, agent i has private values, whereas θi = 1
n

for all i = 1, . . . , n

corresponds to the pure common values case.

Given our model specifications, agents hold two-dimensional private in-

formation; (xi, θi) is private information to agent i.

To interpret the model, one can think of the attribute values representing

the quality of the proposal x in different dimensions, or simply as the private
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signals observed by the agents. For example, they could represent the private

signals committee members obtain from evaluating the application material

of a job-candidate or the private information jury members acquire by fol-

lowing a trial. An agent’s preference type could be interpreted to reflect his

level of partisanship, altruism or confidence.9 Higher type agents are more

confident or partisan (less altruistic) than lower type agents.

Consider for example a committee of specialists. In this case, the pay-

off structure can be interpreted as follows: Agents are specialists in differ-

ent fields and can only assess the quality of the proposal in their own area

of expertise. Specialists are biased towards their own specialization but ac-

knowledge that there may be spill-over effects. This results in agents having

interdependent values. The realization of the levels of partisanship θi are

private information.

Under Assumption 1 the specialization of each agent is common knowl-

edge and hence the direction of his partisanship. In the jury model, Assump-

tion 1 implies that an agent is more confident about his own signal than

about any other signal.10

Decision Rule and Equilibrium Concept.

We assume that the committee decision is rendered by generalized majority

voting where the majority rule is characterized by a integer k ∈ {1, . . . , n}.
The majority rule k is publicly announced, agents indicate whether they want

to accept or reject the alternative and the alternative is adopted if and only

if there are at least k affirmative votes.

To avoid trivial equilibria we employ the concept of undominated Nash

equilibrium, that is, we restrict attention to Nash equilibria in which no agent

uses a weakly dominated strategy.11 This is standard in the voting literature

and as Feddersen and Pesendorfer (1997) we refer to it as a voting equilibrium.

Important Features of the Model. In this paper we present a very flexi-

ble model which relaxes some of the common assumptions made in the voting

9E.g. how confident an agent is about his ability to evaluate the evidence presented in
a trial, or the level of partisanship of a specialist towards his own area of expertise.

10Similarly, agents may be altruistic but not to an extent of being selfless.
11This eliminates trivial equilibria where all agents play extreme strategies, i.e., always

accept respectively, always reject the project.
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literature. Our framework allows us to study new questions, and in particu-

lar to better understand the role of private preference types and preference

uncertainty in voting models. The model we suggest has some important and

distinctive features, which we will now discuss in some more detail. We as-

sume neither that agents have identical preferences, and differences in opinion

arise only from differential information, nor that there is an underlying con-

sensus. In the latter case, agents would agree on the best outcome if the state

of the world were known. Consequently, our model differs from the models

adopted in most of the voting literature, even if there is no preference un-

certainty, that is, if the preference types are common knowledge.12 Li et al.

(2001) and related papers keep the assumption of an underlying consensus

among agents, but allow for preference heterogeneity. They assume that, if

there is uncertainty about the state of the world, conflict among committee

members arises from different preferences of agents for type-I and type-II

errors, which results in different evidence levels required to accept the alter-

native. In this model of preference heterogeneity, the direction of conflict is

always the same: If a pair of agents disagrees, it is always the same agent

who supports the alternative whilst the other favors staying with the status

quo. By contrast, in our model, if agents disagree it is not always the same

agent who votes for the alternative. For any two agents A and B, there exist

states of the world such that if the state were known agent A would want to

accept the alternative, while agent B would prefer to stick to the status quo,

and states in which this relation is reversed.13 The the two types of conflict

are illustrated in Figure 1.

3 Equilibrium Characterization

In this section we provide a discussion of equilibria in out model. We first

establish existence of a pure strategy equilibrium, to then characterize fun-

damental properties of the equilibrium strategies.

We consider a binary decision problem in which agents indicate whether

they want to accept an alternative (proposal) or stay with the status quo. A

12The models in Moldovanu and Shi (2013) and Yildirim (2012) are notable exceptions
and if preference types are common knowledge special cases of the model we study.

13To be precise this is not true if θA = θB = 1
n in which case, agent A and B have

perfectly aligned preferences. Not however, that this is a non-generic case.
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Figure 1: Agreement and disagreement sets in our model for (θA, θB) =
(

1
2 ,

1
3

)
, if the state

is known.
Agreement sets: A1 – agents prefer the alternative; A2 – agents prefer the status quo.
Disagreement sets: DA – agent A prefers the alternative, agent B favors status quo;
DB – agent B prefers the alternative, agent A favors the status quo.

mixed strategy for agent i is a measurable function:

σi : Θi ×Xi → [0, 1]

(θi, xi) 7→ σi (θi, xi) ,

where σi(θi, xi) is the probability that agent i votes affirmatively (i.e. in favor

of the alternative) if his type is θi and his private signal is xi. Strategy σi

is pure if σi(θi, xi) ∈ {0, 1}, for every (θi, xi) ∈ Θi × Xi. It will sometimes

be convenient to consider the strategy of a given type, θi, of agent i. With a

slight abuse of notation we will denote the strategy of agent i with type θi

by σθi , where σθi(xi) := σi(θi, xi).

In the binary decision problem we consider, a pure strategy for an agent

characterizes for each of his preference types θi a corresponding acceptance

set A+
i (θi) := σ−1

θi
(1) ⊆ Xi, which is the set of signals xi ∈ Xi that will induce

the agent to vote affirmatively. A strategy of agent i thus characterizes a set

of acceptance sets {A+
i (θi)}θi∈Θi

.

Let X i = Xi ∪ {x̃} be the space obtained by adjoining a point x̃ to Xi at

the upper boundary of Xi.14 A strategy σi of agent i is a cutoff-strategy if for

14Formally, consider x̃ as a duplicate of x and X i = Xi ∪ {x̃} as the space equipped
with the following topology: Let the set of open sets O consist of all subsets O ⊆ X i such
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every θi there exists some χi(θi) ∈ X i such that type θi votes affirmatively

if and only if he observes a signal xi ≥ χi(θi). Here χi(θi) = x̃ represents the

case in which agent i always rejects the proposal, irrespective of his private

signal. If agents adopt cutoff strategies, the acceptance sets A+
i (θi) are inter-

vals of the form [χi(θi), x].15

In a voting game, rational agents condition their decision on the event

of being pivotal. That is, they take into account the information they can

extract from the event of being pivotal. Consider agent i and suppose all other

agents adopt strategy profile σ−i. Then, for agent i with private information

(θi, xi), the expected payoff from implementing the alternative, conditional

on being pivotal is:

Vi ((θi, xi);σ−i) = θixi + (1− θi) · Eσ−i
[x−i | piv] , (2)

where Eσ−i
[x−i | piv] is the expected value agent i attaches to the average

signal of the other agents, conditional on being pivotal.16

Suppose
{
A+
−i(θ−i)

}
is the set of acceptance sets corresponding to strat-

egy profile σ−i. For any majority rule k and type-profile θ−i, the pivotal set

Apivi (θ−i) := {x−i : |{j ∈ I\{i} : πj(x−i) ∈ A+(θj)}| = k − 1} is the set of

signal profiles x−i for which agent i is pivotal.17 This implies:

Eσ−i
[x−i | piv] = Eσ−i

[
x−i | x−i ∈ Apivi (θ−i)

]
.

We use the Tychonoff-Schauder fixed-point theorem to establish existence

of a pure-strategy equilibrium. In equilibrium, agents adopt cutoff-strategies.

Theorem 1. Consider an n-person committee with interdependent values

and private types θi. Then for any quorum rule k ∈ {1, . . . , n}, there exists a

voting equilibrium. In every voting equilibrium agents adopt cutoff strategies

that for each x ∈ O there is an interval Ix ∈ {(a, b) , (a, x]}, with x ∈ Ix ⊆ O. And let
int [a, x̃] := (a, x], where int denotes the interior.

15with [x̃, x] := ∅.
16Reminder: x−i =

∑
j 6=i

xj .

17Here, πj denotes the jth projection map which maps vector x−i to coordinate xj .
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which, for all agent i ∈ I, are characterized by:

χ∗i (θi) =


x if Vi ((θi, xi);σ−i) ≥ 0 ∀xi ∈ [x, x]

x̃ if Vi ((θi, xi);σ−i) < 0 ∀xi ∈ [x, x]

−1−θi
θi

Eσ−i
[x−i | piv] otherwise,

(3)

where

Eσ−i
[x−i|piv] =EΘ−i,X−i

[
x−i | x−i ∈ Apivi (θ−i)

]
=

1

P(σ−i)

∫
Θ−i

∫
X−i

x−i · 1Apiv
i (θ−i)

dF−i(x−i) dG−i(θ−i),

and

P(σ−i) :=

∫
Θ−i

∫
X−i

1Apiv
i (θ−i)

dF−i(x−i) dG−i(θ−i),

is the probability that agent i is pivotal.

The rest of the section is devoted to characterize and provide a better

understanding of some fundamental properties of equilibrium strategies.

Lemma 1. In any voting equilibrium, for all i ∈ I,

(i) χ∗i (1) = 0 and agent i’s cutoffs χ∗i (θi) have the same sign for all types

θi ∈ Θi\{1}.

(ii) the cutoff functions χ∗i are continuous on Θi and twice continuously

differentiable a.e.,

(iii) |χ∗i (θi)| is non-increasing in θi.

Let us provide some intuition for this result. If agents have interdepen-

dent values, every agent – in his decision of choosing an optimal cutoff –

takes into account the expected value he attaches to the information held

by other committee members, where he updates his beliefs conditional on

the event of being pivotal. In particular, being pivotal is either good news

(if Eσ−i
[x−i|piv] > 0) or bad news (Eσ−i

[x−i|piv] < 0) for an agent. In the

first case, conditional on the event of being pivotal, agent i attaches a pos-

itive expectation to the information held by other agents. He will therefore

require weaker evidence himself to accept an alternative, that is, adjust his

own acceptance standard and adopt a negative cutoff.
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The expected information derived from the event of being pivotal is the

same for all types of agent i. Consequently, all types θi 6= 1 will strategically

adjust their acceptance standards in the same direction. An agent with type

θi = 1 has private values, that is, signals received by the other agents are

not payoff relevant for him, and the information he derives from the event of

being pivotal does not affect his decision. A private values type will therefore

vote sincerely, that is, solely based on his own private signal, and adopt

cutoff 0. Since equilibrium cutoff strategies are continuous (and even smooth

a.e.), similar types will adopt similar cutoffs. In particular, under unanimity

voting, all cutoffs are non-positive.

Corollary 1 (Unanimity Voting). For the unanimity rule k = n, equilibrium

cutoffs are non-positive:

χ∗i (θi) ∈ [x, 0] ∀θi ∈ Θi, i ∈ I,

and χ∗i (θi) is increasing in θi.

We now discuss if agents’ equilibrium strategies are responsive. That is,

whether agents condition their voting decision on the private signal they

observe, or not.

Definition 1. We say that type θi of agent i ∈ I is responsive, if he con-

ditions his decision whether or not to vote affirmatively on his observed

signal. For cutoff-strategies this is equivalent to adopting an (interior) cutoff,

χi(θi) ∈ (x, x].

We say that agent i’s strategy is responsive if there exists a set of types

ΘR
i ⊆ Θi with non-empty interior, such that all types θi ∈ ΘR

i are respon-

sive.

The question if agents’ equilibrium strategies are responsive is of funda-

mental importance since it is a necessary condition for information aggrega-

tion.

Lemma 2. In any voting equilibrium, agents’ cutoff strategies are responsive.

In particular, for every agent i, either all types are responsive, or there exists

some type θ̂i such that all types θi > θ̂i are responsive, whereas χ∗i is constant
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on
[
0, θ̂i

]
and all of these types adopt the same extreme cutoff, either x or

x̃. That is,

χ∗i (θi) ∈ (x, x] , ∀ θi ∈
(
θ̂i, θ

]
, and

χ∗i (θi) ≡ constant ∈ {x, x̃}, ∀ θi ∈
[
0, θ̂i

]
.

This result shows that there is always a set of responsive preference types

with non-empty interior. That is, in any voting equilibrium a positive mea-

sure of preference types (and profiles) condition their decision on the signal

they observe – some information aggregation occurs.

The following lemma characterizes the properties of the equilibrium cutoff-

functions in some more detail. It establishes that if for some agent equilibrium

cutoffs are non-positive (non-negative), the corresponding cutoff-function is

concave (convex) on the set of responsive types.

Lemma 3. In any voting equilibrium, equilibrium cutoff functions satisfy:

(χ∗)′ · (χ∗)′′ ≤ 0. (4)

In particular, equilibrium cutoff functions are concave (convex) on the set of

responsive types
[
θ̂i, θ

]
if cutoffs are non-positive, χ∗(θi) ≤ 0 (non-negative,

χ∗(θi) ≥ 0).

To illustrate the typical equilibrium strategies, we provide an example for

which we explicitly compute equilibrium cutoff-strategies and further illus-

trate them in Figure 2.

Example 1. Consider a two-member committee and unanimity voting, that

is n = k = 2. Suppose attribute values and types are uniformly distributed:

Xi
iid∼ U [−1, 1] and θi

iid∼ U [1/2, 1].

Equilibrium cutoff-strategies are characterized by:

χ∗i (θi) =


x if Vi ((θi, xi);σj) ≥ 0 ∀xi ∈ [x, x]

x̃ if Vi ((θi, xi);σj) < 0 ∀xi ∈ [x, x]

−1−θi
θi

Eχ∗j [xj | piv] otherwise.

(5)
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Figure 2: Equilibrium cutoffs in a 2-member committee under unanimity voting with

uniformly distributed signals and types: Xi
iid∼ U [−1, 1] and θi

iid∼ U [1/2, 1].

In the current example we obtain:

Eχ∗i [xi|piv] =
1

1 + log 4

P(χ∗i ) =
log(4)

1 + log(4)
≈ 0.58

χ∗i (θi) = −1− θi
θi
· 1

1 + log 4

The resulting cutoff-function is displayed in Figure 2.

3.1 Equilibrium Uniqueness

It is well known that for general majority rules there are typically multiple

equilibria. We now provide conditions under which there exists a unique

voting equilibrium in undominated strategies, as characterized in Theorem 1.

We show that, if all committee members have sufficiently strong preference

types, then, under some standard distributional assumptions on the attribute

values, for the unanimity rule there exist a unique voting equilibrium. We

need to introduce the following definition:

Definition 2. A random variable X with support X ⊆ R has the strict

diminishing mean residual life property (DMRL), if for x ∈ X

E [X|X ≥ x]− x

is strictly decreasing in x.18

18To be precise, this is the natural generalization of the standard definition for non-
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Definition 2 is equivalent to

E [X|X ≥ x]− E [X|X ≥ x′] < x− x′ ∀x > x′. (6)

Formally, this is a Lipschitz-continuity assumption for the truncated mean

E [X|X ≥ x], with Lipschitz constant 1.19 The DMRL-property also has an

intuitive interpretation in our committee-voting setting. The left hand side

of Equation 6 represents the effect of a change in cutoffs from x to x′, on the

informational value of an approval vote for the other committee members. It

requires that the effect of a change of an agent’s cutoff on the estimate of his

information conditional on him voting affirmatively is limited.

Theorem 2. If, for all committee members i ∈ I, the distributions of at-

tribute values Fi satisfy the monotone hazard rate property, and θi ∈
[

1
2
, 1
]
,

then in any unanimity voting game among n agents with private preference

types, there exists a unique voting equilibrium.

Notice that θi ∈
[

1
2
, 1
]

implies ∂vi
∂xi
≥
∑

j 6=i
∂vi
∂xj

. That is, the effect of a

marginal increase in agent i’s signal on his own valuation is at least as strong

as the sum of marginal changes in the signals of other agents. In the two-agent

case, the conditions on preference types for equilibrium existence (θi ∈
[

1
n
, 1
]
)

and equilibrium uniqueness (θi ∈
[

1
2
, 1
]
) coincide. The condition that the

distributions of attribute values satisfy the monotone hazard rate property

implies that for any subset J ⊆ I, the random variable YJ :=
∑

i∈J Xi has

the DMRL-property. The combination of the two conditions then implies

that the effect of a marginal change of agents’ cutoffs on the expected value

an agent attaches to the average signal of the other agents, conditional on

being pivotal, is limited. In the proof of Theorem 2, this property is used to

contradict the existence of multiple equilibria.

negative random variables to the case of real-valued random variables.
The diminishing mean residual life property is a slightly weaker condition than the familiar
monotone hazard rate assumption which is standard in the mechanism design literature.

It requires that f(x)
1−F (x) be increasing in x on the support of X.

19If E [X|X ≥ x] is differentiable in x, the DMRL property is equivalent to

∂E [X|X ≥ x]

∂x
≤ 1.
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4 Effects of Preference Uncertainty

The model presented in this paper establishes a framework to study how the

belief of an agent about the distribution of types of the other committee mem-

bers affects the acceptance standards and acceptance sets in equilibrium. In

this section, we address the following questions: How do agents’ acceptance

standards change according to their beliefs about the preference types they

face – particularly when they believe to find themselves among committee

members with extreme preference types? And what are the effects of more

preference uncertainty? That is, how do agents adjust their cutoffs if they

have in a sense less information about the preference types of their fellow

committee members?

Our analysis focuses on the two-agent case, referring to them as agent

A and agent B. We discuss comparative static effects with respect to the

distribution of agents’ types. More precisely, we analyze how shifts in the

distribution of agents’ types in terms of first and second-order stochastic

dominance affect the equilibrium outcome, that is, cutoffs and acceptance

sets.

To study these effects, we keep the distribution, GA, of agent A’s types

fixed, whereas the distribution of agent B’s types is either GB or HB. We

restrict attention to the case in which attribute values have the DMRL-

property and hence for any distribution of types with support Θi = [1/2, 1],

there exists a unique voting equilibrium. For distribution profiles (GA, GB)

and (GA, HB), the corresponding equilibrium cutoff-function profiles are de-

noted by (χ∗,GA , χ∗,GB ) and (χ∗,HA , χ∗,HB ), respectively.

4.1 Facing Higher Preference Types

We start off our discussion by considering the case in which agent A faces

“on average” a higher preference type. That is, we study the effect of a shift

in the distribution of agent B’s types in terms of first-order stochastic dom-

inance. In the applications we discussed, this could be interpreted as agent

B being on average more confident or partisan.

Which effects are to be expected for a shift of the distribution of agents’
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preference types? Consider a first-order shift of agent B’s types. It is easily

seen that this has no direct effect on the best response function of each

individual type of agent B. Indeed, for any strategy agent A may choose,

for agent B the best response for each of his types remains the same.20 Now,

consider the situation for agent A. For a first-order shift in the distribution of

agent B’s types, agent A is more likely to face an agent with a high preference

type. From Lemma 3 we know that those types adopt more stringent cutoffs

than low types. This implies that by keeping a strategy of agent B fixed,

a first-order shift in agent B’s types increases agent A’s expected value of

agent B’s information conditional on being pivotal. The best response for

any type of agent A is to adopt a lower cutoff than before. This results in

agent B being less optimistic in the event of being pivotal which induces him

to increase his cutoff. This reasoning shows that agents’ cutoffs are strategic

complements.

It still remains an open question in which direction agents adjust their

equilibrium cutoffs. It could be that for a first-order shift in agent B’s dis-

tribution of types, all types of this agent choose to lower their equilibrium

cutoffs, which would counteract the direct effect of the first-order shift on

agent A’ estimate of agent B’s information conditional on being pivotal.

Alternatively agent B may increase his acceptance standard, which would

enforce the direct effect of the shift in the distribution of types. It is not

obvious which of these effects prevails and one may think that both cases

may occur depending on the distribution of types or attributes. The next

result shows that the reaction of agents’ equilibrium strategies on first-order

shifts of the distribution of types is unambiguous. It is always the case that

all preference types of agent A will lower their cutoffs whereas all types of

agent B raise their acceptance standards.

Theorem 3. Suppose the distribution of attribute values F satisfies the

DMRL-property. Keeping the distribution GA of agent A’s types fixed, then,

20Keeping agent A’s strategy σA fixed, the best response function of agent B only
depends on θB and EσA

[XA|piv] and not on the distribution of his own type.
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if the distribution HB first-order stochastically dominates GB, (HB ≥st GB):

χ∗,GA (θA) ≥ χ∗,HA (θA) and

χ∗,GB (θB) ≤ χ∗,HB (θB) ∀θA, θB ∈
[

1

2
, 1

]
.

Interpreting this result in a setting of a committee of specialists indicates

that agents lower their acceptance standards if they face a more partisan

group. At the same time an agent from a more partisan population will adopt

a more stringent cutoff than an agent with the same level of partisanship from

a less partisan group.

4.2 More Preference Uncertainty

The next result provides insights into how more preference uncertainty affect

equilibrium strategies. More preference uncertainty corresponds to a mean

preserving spread of the distribution of types, denoted GB ≥MPS HB. If agent

B’s types are distributed according to GB, agent A is “more uncertain” (so

in a sense has less information) about the preference type of the other agent.

That is, agent A faces more preference uncertainty. One could think that

in this case agent A will adopt a less aggressive strategy and reduce his

acceptance standard. As we see in the next theorem the opposite is the case.

Theorem 4. Suppose the distribution of attribute values F satisfies the

DMRL property and is such that E [X|X ≥ x] is strictly increasing and con-

cave in x.21 Keeping the distribution of agent A’s types, GA, fixed, then, if

GB is a mean preserving spread of HB (GB ≥MSP HB):

χ∗,GA (θA) ≥ χ∗,HA (θA) and

χ∗,GB (θB) ≤ χ∗,HB (θB) ∀θA, θB ∈
[

1

2
, 1

]
.

We again interpret this result for a specialist committee. Suppose that, in

a committee of specialists, agent A faces more preference uncertainty about

the level of partisanship of the other committee member. This results in the

event of being pivotal being “less good news” than before and thus yields a

21This is for example the case if attribute values are uniformly distributed.

19



reduction of agent A’s estimate of the other committee member’s information,

conditional on being pivotal. Consequently, agent A will “play it safe” and

focuses more on his own private signal. He adopts a more stringent acceptance

standard. Agent B reacts by lowering his acceptance standard.

5 Benchmark: No Preference Uncertainty

In this section we analyze the benchmark case of a standing committee in

which the level of partisanship of committee members is common knowl-

edge.22 That is, θA, θB ∈
[

1
2
, 1
]

are common knowledge whereas attribute

values xA and xB are private information to agent A, respectively B. We

restrict attention to the case when unanimity is required to accept the alter-

native. This is without loss of generality in two-member committees.

We assume that attribute values are determined by random i.i.d. draws

from the interval [x, x], x < 0 < x, with x = −x.

To simplify the exposition, we use the following notation for the left- and

right-truncated mean in our analysis:

E+(x̂) := E [x|x ≥ x̂] =
1

1− F (x̂)

∫ x

x̂

xf(x) dx,

and E−(x̂) := E [x|x ≤ x̂] =
1

F (x̂)

∫ x̂

x

xf(x) dx.

A (mixed) strategy for agent A with partisanship type θA is:

σA : XA → [0, 1]

xA 7→ σA(xA),

where σA(xA) is the probability that agent A votes affirmatively (i.e. in

favor of the alternative) if his private signal is xA. Strategy σA is pure if

σA(xA) ∈ {0, 1}, for every xA ∈ XA. Strategies for agent B are characterized

analogously.

We consider a binary decision problem in which agents indicate whether

22This is an extension of the discussion in Yildirim (2012), allowing for individual het-
erogeneity levels, but restricting attention to 2-member-committees. Yildirim assumes that
all agents share the same level of partisanship, that is, θA = θB , the non-generic case in
our setting.

20



they want to accept a reform or stay to the status quo. Consequently, a pure

strategy for an agent is characterized by the corresponding acceptance set,

that is the set of private signals xi ∈ Xi which will induce the agent to vote

affirmatively. Agents’ acceptance sets are denoted by A+ ⊆ XA for agent A

and B+ ⊆ XB for agent B. A strategy σi is a cutoff-strategy if there exists

some x̂i ∈ Xi such that agent i votes affirmatively if and only if xi ≥ x̂i. In

this case the acceptance set A+ is an interval of the form [x̂i, x].

In a voting game agents choose their optimal action conditional on being

pivotal, that is, in their decision they take into account the information they

can extract from the event of being pivotal. In our unanimity voting expert

model, given agent B’s strategy and corresponding acceptance set B+, agent

A’s expected payoff from the alternative is

VA = θAxA + (1− θA)E
[
xB|xB ∈ B+

]
.

It is straightforward to establish equilibrium existence using Brouwer’s fixed-

point theorem and show that in equilibrium agents adopt cutoff-strategies.

Proposition 1. In a unanimity voting game of two agents with individual

preference types θA, θB, there exists a voting equilibrium. In a voting equilib-

rium agents adopt cutoff strategies which are characterized by the following

equations:

x∗A = −1− θA
θA

· E+(x∗B), (7)

x∗B = −1− θB
θB

· E+(x∗A). (8)

In equilibrium agents will adopt informative strategies, that is, they base

their decision whether to support the reform or not on the signal they observe.

This means in particular that they will adopt interior cutoffs.

Lemma 4. In the 2-member unanimity voting game with individual pref-

erence types, in equilibrium agents adopt interior cutoffs, that is, x∗A, x
∗
B ∈

(x, x). Moreover, cutoffs are non-positive, x∗A, x
∗
B ≤ 0.

Intuition: In their decision of choosing an optimal cutoff, agents take

into account the expected information of the other conditional on him vot-
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ing affirmatively. This expected information is always positive which yields

negative equilibrium cutoffs.

Equilibrium Uniqueness

To establish equilibrium uniqueness, as before we assume that attribute val-

ues satisfy the DMRL property (cf. Definition 2).

Proposition 2. Consider unanimity voting among two agents with indi-

vidual preference types. If the distributions of attribute values FA, FB satisfy

the strict DMRL-property, the voting game has a unique equilibrium in cutoff

strategies.

5.1 Comparative Statics: Changes in the Level of Par-

tisanship

In the given setting it is interesting to understand how the preference type of

agents affects equilibrium cutoffs. That is, do agents with higher preference

types adopt higher or lower acceptance standards than their less biased coun-

terparts? How do agents adjust to the preference type of other committee

member?

5.1.1 How the Level of Partisanship affects Acceptance Standards

We start by studying how acceptance standards, represented by equilibrium

cutoffs x∗A and x∗B change with the profile of partisanship levels (θA, θB).

Keeping agent B’s bias, θB, fixed, we analyze the effect of a (marginal) change

of θA on equilibrium cutoffs. Agents’ cutoffs are strategic substitutes. If agent

A lowers his cutoff, in the event of being pivotal agentB’s has a lower estimate

of agent A’s information about the candidate. Agent B wants to compensate

for this effect and thus raises his acceptance standard. Now, if agent A gets

more partisan there are two possible scenarios: Either agent A increases his

equilibrium cutoffs whereas agent B adopts a less stringent cutoff or the

other way around. We show that, whenever Definition 2 holds, as an agent

gets more partisan, he will increase his acceptances standard. In this sense,

the partisanship of an agent’s preferences in reflected in the partisanship of

his vote.
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Proposition 3. Suppose the distribution of attribute values F satisfies the

DMRL-property. Then, keeping θB fixed, in the voting equilibrium, x∗A is in-

creasing in θA and x∗B is decreasing in θA. That is,

x∗A,θA > 0 and x∗B,θA < 0.

Sketch of proof (The formal proof is relegated to the appendix).

If agentA gets more partisan he puts less weight on the dimension of the alter-

native about which agent B is holds private information. Thus, for the same

cutoff x̂B of agent B, conditional on being pivotal, agent A puts less weight on

the expected information of agent B. Consequently, agent A requires stronger

evidence of the alternative to be of high quality and thus adopts a higher

acceptance standard. Agent A’s best response to x̂B increases. Given that

agent B’s partisanship-level does not change, neither does his best response

function. If agent A raises his cutoff, agent B will react by lowering his cutoff.

This behavior even enforces the direct effect of an increase in θA.

That is, lower type agents will be more lenient and accept more candi-

dates. Furthermore, for any fixed preference type of agent A, his cutoff is

increasing in agent B’s type θB. That is, if agent B gets less biased, agent A

will use this and react by increasing his acceptance standard.

6 Conclusion

We have studied a flexible committee voting model in which agents have

two dimensional private information: about the payoff-relevant state of the

world and a private preference parameter. An important distinction between

the two kinds of private information is that the private information about

the state directly affects the utilities of all committee members. By contrast,

the private information about an agents preference type only has an indirect

effect on the utilities of other agents through equilibrium voting. We have

established equilibrium existence, characterized fundamental properties of

equilibrium strategies and discussed how private preference types and pref-

erence uncertainty affect equilibrium outcomes. We find that, a shift in the

distribution of preference types in terms of second order stochastic domi-

nance, induces all agents to adjust their equilibrium strategies, even though
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for the decision of an agent only the expectation over all preference types of

the other committee member is relevant. This result therefore illustrates a

distinction between the two kinds of private information.

We discuss implication of our results for various applications, among them

juries which consist of jurors with different confidence levels and committees

of specialists with private partisanship levels.

Appendix

A Proofs

Proof of Theorem 1. Consider some agent i ∈ I. Suppose σ−i denotes the

strategies adopted by all agents but i, and let {A+
−i(θ−i)}θ−i∈Θ−i

be the cor-

responding set of acceptance sets. For agent i with type θi, the expected

payoff of the alternative, conditional on being pivotal, and observing signal

xi is:23

Vi ((θi, xi);σ−i) = θixi + (1− θi) · Eσ−i
[x−i | piv] with (9)

Eσ−i
[x−i|piv] :=

1

P(σ−i)

∫
Θ−i

∫
X−i

x−i · 1Apiv
−i (θ−i)

dF−i(x−i) dG−i(θ−i).

It is agent i’s best response to vote in favor of the alternative if and only if

the expected payoff of the alternative, conditional on him being pivotal, is

greater than the payoff of the status quo, which is 0. Consequently, it is agent

i’s best response to vote affirmatively if and only if Vi ((θi, xi);σ−i) ≥ 0.

It is easy to see from Equation 9 that Vi ((θi, xi);σ−i) is continuous and

23Suppose agent i updates his beliefs, assuming that he is pivotal and all other agents
play according to σ−i. Then his expected payoff if he votes affirmatively is:

Ṽi ((θi, xi);σ−i) =

∫
Θ−i

∫
X−i

θixi +
1− θi
n− 1

∑
j 6=i

xj

 · 1Apiv
−i (θ−i)

dF−i(x−i) dG−i(θ−i)

=P(σ−i)θixi +
1− θi
n− 1

∫
Θ−i

∫
X−i

∑
j 6=i

xj

 · 1Apiv
−i (θ−i)

dF−i(x−i) dG−i(θ−i),

where P(σ−i) =
∫

Θ−i

∫
X−i

1Apiv
−i (θ−i)

dF−i(x−i) dG−i(θ−i) is the probability that agent i

is pivotal. Using that xi := 1
n−1

∑
j 6=i xj and conditioning on the event of being pivotal

yields Equation 9.
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strictly increasing in xi. This readily establishes that agent i’s best response

is to follow a cutoff-strategy. That is, for every preference type θi, there

exists some χi(θi) ∈ X i such that type θi votes affirmatively if and only if he

observes a signal xi ≥ χi(θi).
24 In particular, suppose all other agents adopt

strategy profile σ−i, then agent i’s best response is to adopt cutoff-function

φBRi characterized by:

φBRi (θi) =


x if Vi ((θi, xi);σ−i) ≥ 0 ∀xi ∈ [x, x]

x̃ if Vi ((θi, xi);σ−i) < 0 ∀xi ∈ [x, x]

−1−θi
θi

Eσ−i
[x−i|piv] otherwise.

(10)

From now on we assume that agents adopt cutoff-strategies. By a slight

abuse of notation, we denote agent i’s cutoff strategy by a function

χi : Θi → X i where χi(θi) is the cutoff agent i adopts if his type is θi.

Let X i
Θi

be the space of functions f : Θi → X i endowed with the product

topology (here: the topology of pointwise convergence). We denote agent i’s

best response function by φBRi : XΘ → X i
Θi
.25 This is well-defined since we

have shown that for any strategy profile σ−i agent i’s best response is a cutoff

function.

The discussion shows that, for every strategy profile σ−i a unique best re-

sponse for agent i exists, and, best responses take the form of cutoff functions.

It follows that the best response correspondence is a function, characterized

by:

Φ : XΘ1

1 × · · · × X
Θn

n −→ X
Θ1

1 × · · · × X
Θn

n

χ = (χ1, . . . , χn) 7−→
(
φBRi (χ) , . . . , φBRn (χ)

)
.

We use the Tychonoff’s Fixed Point Theorem26 to establish equilibrium ex-

istence.

First, notice that for every i ∈ I, Θi is compact. Moreover, X i is com-

24Reminder: X i := Xi ∪ {x̃}, and cutoff x̃ represents the case in which the agent rejects
all proposals.

25φBR identifies for every σ−i a corresponding cutoff-function φBR(σi, σ−i) = χi ∈ X i
Θi

.
Notice that φBR is constant in σi.

26cf. Aliprantis and Border (2006) p. 583
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pact for the given topology we have chosen. It is possible to interpret XΘi

i

as an infinite product of X i. It therefore follows from Tychonoff’s theo-

rem that XΘi

i is compact. Applying Tychonoff’s theorem again, yields that

K := XΘ1

1 × · · · × X
Θn

n is compact. It is easily verified that K is non-empty

and convex.

We also have to verify that the best response function Φ is continuous

for which it suffices to show continuity for each of the coordinate functions.

Consider the coordinate function

Φi : XΘi

i ×X
Θ−i

−i → X
Θi

i

χ = (χi, χ−i) 7→ φBR(χ)

It is easily seen that Φi is constant in χi. Moreover, since the expectation

operator is linear, and in the given setting bounded, it follows that Φi is con-

tinuous in χ−i (cf. Equation 10). This shows that every coordinate function

Φi is continuous, and so is Φ.

We can finally apply Tychonoff’s Fixed Point Theorem to establishes

the existence of a fixed point of φ. This completes the proof of equilibrium

existence.

Proof of Lemma 1.

(i): An agent with preference type θi = 1 has private values. In particular,

Vi
(
(1, xi);σ

∗
−i
)

= xi, ∀xi ∈ Xi. Given that the payoff of the status quo is 0

it follows directly that χ∗i (1) = 0. That is, these types always vote sincerely

and adopt cutoff 0 in equilibrium.

Consider any equilibrium strategy profile σ∗ with corresponding accep-

tance sets {A∗i (θi)}i∈I, θi∈Θi
. Notice that, for every agent i, Eσ−i

[x−i|piv] is

constant in θi. Moreover, −1−θi
θi

< 0 for all θi ∈ (0, 1). It follows that equilib-

rium cutoffs χ∗i (θi) have the same sign for all types θi ∈ Θi\{0}:

sign [χ∗i (θi)] = −signEσ−i
[x−i|piv] .

(ii): Continuity of equilibrium cutoff-functions.

Consider an agent with type θi who adopts and interior equilibrium cutoff,

that is, χ∗i (θi) = −1−θi
θi

Eσ−i
[x−i|piv] ∈ (x, x]. Given the equilibrium charac-
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terizing conditions in Theorem 1 it must hold that Vi
(
(θi, xi);σ

∗
−i
)
>
(<)

0 for

xi >
(<)

χ∗i (θi). Since Vi
(
(θi, xi);σ

∗
−i
)

is continuous in θi and xi this implies

that there exist an ε > 0 s.t. Vi
(
(θi, x);σ∗−i

)
> 0 and Vi

(
(θi, x);σ∗−i

)
< 0

for all θ′i ∈ Bε(θi), where Bε(θi) is the open ε−ball about θi. It then follows

from the equilibrium characterizing conditions of Theorem 1, that all prefer-

ence types θ′i ∈ Bε adopt interior cutoffs. In this case equilibrium cutoffs are

characterized by χ∗i (θi) = −1−θi
θi

Eσ−i
[x−i|piv]. Since Eσ−i

[x−i|piv] is constant

and −1−θi
θi

is twice continuously differentiable in θi, it follows that χ∗i (θi) is

continuously differentiable in θi.

Now, consider a preference type θi ∈ Θi who adopts a boundary cut-

off, χ∗i (θi) ∈ {x, x̃}, that is for type θi either Vi
(
(θi, xi);σ

∗
−i
)
≥ 0 for all

xi ∈ Xi, or Vi
(
(θi, xi);σ

∗
−i
)
< 0 for all xi ∈ Xi. Consider the first case,

that is, χ∗i (θi) = x and Vi
(
(θi, xi);σ

∗
−i
)
≥ 0, ∀xi ∈ Xi.

27 Given that

Vi
(
(θi, xi);σ

∗
−i
)

is monotone increasing in xi a necessary and sufficient condi-

tion for V
(
(θi, xi);σ

∗
−i
)
≥ 0 is V

(
(θi, xi);σ

∗
−i
)
≥ 0. Since Vi

(
(θi, xi);σ

∗
−i
)

is

continuous in θi, the set {θi ∈ Θi|Vi
(
(θi, xi), σ

∗
−i
)
≥ 0}, which is the inverse

image of
[
0, Vi

(
(θi, x);σ∗−i

)]
, is closed. Since ∂Vi

∂θi

∣∣
xi=xi

≤ 0, it follows that

there exists some θ̂ ∈ Θi such that {θi ∈ Θi|Vi
(
(θi, xi), σ

∗
−i
)
≥ 0} =

[
θ, θ̂
]
.

By Theorem 1, χ∗(θi) = x for θi ∈
[
θ, θ̂
]
. That is, the equilibrium cutoff

function is constant on this set and thus twice continuously differentiable in

θi. It is easy to check that lim
θi↓θ̂

χ∗(θi) = 0, which establishes continuity of the

equilibrium cutoff function. However, χ∗(θi) is not differentiable at θ̂, hence

equilibrium cutoff-functions are only differentiable almost everywhere and

the same holds true for higher order differentiability.

(iii): To prove the last statement we use again that Eσ−i
[x−i|piv] is constant

in θi. For all θi such that χ∗i (θ) ∈ (x, x], we have shown that the cutoff-

function is continuously differentiable. We obtain:∣∣∣∣ ∂∂θiχ∗i
∣∣∣∣ =

1

θ2
i

·
∣∣Eσ−i

[x−i|piv]
∣∣ ,

from which it follows directly that |χ∗i (θi)| is non-increasing in θi whenever

27The second case can be easily verified using analogous arguments.
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cutoffs are interior. But, given that for all θi ∈
[
θ, θ̂i

]
these types of agent i

adopt extreme cutoffs in {x, x̃}. Using that cutoff-functions are continuous,

we can conclude that |χ∗i (θi)| is non-increasing in θi for all types θi ∈ Θi.

Proof of Corollary 1. For unanimity voting, agent i is pivotal if and only if

all other committee members vote affirmatively. This implies

Eσ−i
[x−i|piv] =EΘ−i,X−i

[
1

n− 1

∑
j 6=i

Xj | Xj ≥ χ∗j(θj)

]

> EΘ−i,X−i

[
1

n− 1

∑
j 6=i

Xj | Xj ≥ x

]
= 0

We obtain the last equality because E [Xj] = 0 for every j ∈ I. The inequality

is strict because χ∗j(1) = 0 and χ∗j(θj) is continuous in θj, which implies that

in a neighborhood of θ−i = 1, χ∗j(θj) 6= x for all j ∈ I\{i}.
It follows that

χ∗i (θi) = −1− θi
θi

EΘ−i,X−i

[
1

n− 1

∑
j 6=i

Xj | Xj ≥ χ∗j(θj)

]
≤ 0.

That χ∗i (θi) is increasing in θi for every i ∈ I then follows directly from

Lemma 1 (iii).

Proof of Lemma 2. In Lemma 1 it was shown that χ∗i is continuous in θi,

χ∗i (1) = 0 and |χ∗i (θi)| is non-increasing in θi. Moreover, if χ∗i (θi) ∈ {x, x̃},
then χ∗i (θ

′
i) = χ∗i (θi) ∈ {x, x̃} for all θ′i ≤ θi. Continuity of χ∗i for interior

cutoffs and χ∗i (1) = 0 yield that if there are types which adopt extreme cutoffs

in {x, x̃}, then there exists some type θ̂i such that all types
[
0, θ̂i

]
adopt

extreme cutoffs in {x, x̃} whereas all types
(
θ̂i, 1

]
adopt interior cutoffs.

Proof of Lemma 3. By Lemma 1 χ∗i (θi) is constant on the set of non-responsive

types. That is, (χ∗i )
′ (θi) = 0 for all θi ∈

[
0, θ̂i

)
and Equation 4 is trivially

satisfied.

Now consider any responsive type θi ∈
(
θ̂, θ
]
. By Lemma 1 we know

that χ∗i is twice continuously differentiable at θi. It is easily verified that for

28



θi ∈
(
θ̂, θ
]

we obtain

(χ∗i )
′ · (χ∗i )

′′ (θi) = − 2

θ5
i

Eσ∗−i
[x−i|piv]2 ≤ 0.

The result about concavity/convexity of equilibrium cutoff functions follows

by combining this with the result of Lemma 1 (iii).

Proof of Theorem 2. We prove the result for n = 2, and then discuss how

the result extends to unanimity voting in an n-member committee for n ≥ 2.

We refer to the two agents as agent A and B.

The proof consists of two steps. We first show that a voting equilibrium

is essentially unique to then derive the stronger statement of equilibrium

uniqueness. Formally, a voting equilibrium is essentially unique, if there ex-

ist no voting equilibria which differ for a non zero-measure set of types,

Θ̃ ⊆ ΘA ×ΘB.28

Claim 1: A voting equilibrium is essentially unique.

Suppose multiple equilibria exist; two of them be characterized by the

distinct cutoff profiles (χ∗A, χ
∗
B) and (ξ∗A, ξ

∗
B), and suppose they differ on a

non zero-measure set of types. Both of these cutoff profiles have to satisfy the

equilibrium characterizing Equation 3. Moreover, for the two agent case we

know that all equilibrium cutoffs are interior (cf. Lemma 3). Combining these

observations we obtain that the cutoff profiles have to satisfy the following

equations:

ξ∗A(θA)− χ∗A(θA) = −1− θA
θA

EΘB

[
E+
XB

[ξ∗B(θB)]− E+
XB

[χ∗B(θB)]
]

ξ∗B(θB)− χ∗B(θB) = −1− θB
θB

EΘA

[
E+
XA

[ξ∗A(θA)]− E+
XA

[χ∗A(θA)]
]

where

E+
XA

[χ∗A(θA)] := EXA
[XA|XA ≥ χ∗A(θA)]

We use this compactified notation in following discussion.

28That is, Θ̃ has non-empty interior, and λ(Θ̃) > 0, where λ is the Lebesgue measure.
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For any preference type θA ∈ ΘA it must hold that:

|ξ∗A(θA)− χ∗A(θA)| =
∣∣∣∣−1− θA

θA
EΘB

[
E+
XB

[ξ∗B(θB)]− E+
XB

[χ∗B(θB)]
∣∣]

≤ 1− θA
θA

EΘB

[∣∣E+
XB

[ξ∗B(θB)]− E+
XB

[χ∗B(θB)]
∣∣]

<
1− θA
θA

· EΘB
[|ξ∗B(θB)− χ∗B(θB)|] .

We obtain the last inequality by using that the distribution functions Fi

satisfy the strict DMRL-property (cf. Equation 6). Applying an analogous

argument to |ξ∗B(θB)− χ∗B(θB)| yields:

|ξ∗B(θB)− χ∗B(θB)| < EΘA

[∣∣∣ ξ∗A(θ̂A)− χ∗A(θ̂A)
∣∣∣] .

Combining these two inequalities we obtain:

|ξ∗A(θA)− χ∗A(θA)| < EΘB
[EΘA

[| ξ∗A(θA)− χ∗A(θA)|]]

≤ EΘB

[
EΘA

[∣∣∣ ξ∗A(θ̂A)− χ∗A(θ̂A)
∣∣∣]]

<
∣∣∣ ξ∗A(θ̂A)− χ∗A(θ̂A)

∣∣∣ ,
where θ̂A := arg max

θA∈ΘA

{|ξ∗i (θA) − χ∗i (θA)|}. The above inequality has to be

satisfied for all θA ∈ ΘA including θ̂A, for which |ξ∗A(θ̂A)− χ∗A(θ̂A)| > 0. This

yields a contradiction which proves Claim 1.

Claim 2: If the equilibrium of Theorem 1 is essentially unique, it is unique.

If the voting equilibrium is essentially unique, equilibrium cutoff-functions

may differ on a null set. However, two equilibrium cutoff-functions which only

differ on a null set yields the same expectations E+
Xi

[χ∗i (θi)] for i ∈ {A,B}.
By Theorem 1 this fully characterizes the equilibrium cutoff for each pref-

erence type θi which completes the proof of equilibrium uniqueness for the

2-agent case.

To extend this result to n > 2 it is important to notice that the DMRL-
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property is not closed under convolution. This means, that if all random

variables Xi, i ∈ I satisfy the DMRL-property, this does not necessarily

imply that
∑

j 6=iXj has the DMRL-property. However, if all random variables

Xi have a monotone hazard rate29, then
∑

j 6=iXj has the DMRL-property.30

The result, that the voting equilibrium is essentially unique under unanimity

voting can then be established by following the same line of reasoning as for

the case n = 2.

Proof of Theorem 3. We use an indirect argument to prove this. Consider

any continuous, monotone increasing cutoff function χ̂B : ΘB → XB.31 In this

case E+(χ̂B(tB)) = E [XB|XB ≥ χ̂B(tB)] is monotone increasing in tB, which

implies that, if HB first-order stochastically dominates GB, HB ≥st GB, then

∫ θB

θB

E+(χ̂B(tB)) dGB(tB) ≤
∫ θ2

θ2

E+(χ̂B(tB)) dHB(tB). (11)

It follows that

χBR,GA (θA, χ̂B) ≥ χBR,HA (θA, χ̂B) ∀θA ∈ ΘA (12)

Claim 1. The equilibrium cutoff shifts in the same direction for all types.

Let EH(χ̂B) :=
∫ θ2

θ2
E+(χ̂B(tB)) dHB(tB) and similarly for EG(χ̂B). Then,

if θA ∼ GA and θB ∼ GB, equilibrium conditions are

χ∗,GA (θA) = −1− θA
θA

EG(χ∗,GB ) and χ∗,GB (θB) = −1− θB
θB

EG(χ∗,GA ),

and similarly for θB ∼ HB. Since, EG(χ∗,GB ) and EH(χ∗,H2 ) are constant in θA

and θB, we obtain

χ∗,GA (θA) ≥ χ∗,HA (θA) ⇔ EG(χ∗,GB ) ≤ EH(χ∗,HB ),

and similarly for the equilibrium cutoff functions of agent B.

Thus, if χ∗,GA (θA) ≥ χ∗,HA (θA) for some θA, then χ∗,GA (θA) ≥ χ∗,HA (θA) for all

29In the statistics literature this is known as the increasing failure rate property.
30cf. Shaked and Shanthikumar (2007), theorem 2.A.23 and corollary 2.A.24
31This is w.l.o.g. since equilibrium cutoff functions are continuous and monotone in-

creasing in θB (cf. Lemma 3)
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θA ∈
[

1
2
, 1
]

which verifies Claim 1.

Claim 2. If HB ≥st GB, equilibrium cutoffs of agent A and B move in differ-

ent directions.32

Suppose χ̂B(θB) ≤ χ̃B(θB) ∀θB ∈ ΘB, then

EH(χ̂2) =

∫ θ2

θ2

E+(χ̂B(tB)) dH(tB) ≤
∫ θ2

θ2

E+(χ̃B(tB)) dH(tB) = EH(χ̃B)

(13)

⇒ χBR,HA (θA, χ̂B) ≥ χBR,HA (θA, χ̃B)

Now, suppose χ∗,GB (θB) ≤ χ∗,HB (θB) ∀θB ∈
[

1
2
, 1
]
, then

χ∗,GA (θA) = χBR,GA (θA, χ
∗,G
B ) ≥ χBR,HA (θA, χ

∗,G
B ) ≥ χBR,HA (θA, χ

∗,H
B ) = χ∗,HA (θA)

where the first inequality follows from Equation 12 and the second inequality

follows by Equation 13.

With similar arguments we can show that if χ∗,GA (θA) ≤ χ∗,HA (θA), ∀θA ∈ ΘA,

then χ∗,GB (θB) ≥ χ∗,HB (θB), using that χBR,GB (θB, χ̂A) = χBR,HB (θB, χ̂A) given

that the distribution GA does not change. This proves Claim 2.

To prove the theorem, we still have to contradict the case

χ∗,GA (θA) ≤ χ∗,HA (θA) and

χ∗,GB (θB) ≥ χ∗,HB (θB).

32Agents cutoffs are strategic complements wrt first order shifts in the distribution
function of types.
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Assume those inequalities were true. We obtain:

0 ≤χ∗,HA (θA)− χ∗,GA (θA)

=− 1− θA
θA

[
EHΘB

[
E+
XB

[
χ∗,HB (θB)

]]
− EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
=

1− θA
θA

EHΘB

[
E+
XB

[
χ∗,GB (θB)

]
− E+

XB

[
χ∗,HB (θB)

]]
+

1− θA
θA

[
EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]
− EHΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
≤1− θA

θA
EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
+

1− θA
θA

[
EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]
− EHΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
≤1− θA

θA
EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
The last inequality follows since H ≥st G implies

EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
=

∫ θB

θB

E+(χ∗,HB (tB)) [ dGB(tB)− dHB(tB)] ≤ 0.

Analogous arguments show:

0 ≤ χ∗,GB (θB)− χ∗,HB (θB) <
1− θB
θB

EHΘA

[
χ∗,HA (θA)− χ∗,GA (θA)

]
Combining these inequalities yields:

χ∗,GB (θB)− χ∗,HB (θB) <

∈[0,1]︷ ︸︸ ︷
1− θB
θB

EHΘA


∈[0,1]︷ ︸︸ ︷

1− θA
θA

EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
≤ EHΘA

[
EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]]
= EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
Integrating both sides, to be precise, taking expectations using distribution
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GB, we obtain:

EGΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
≤ EGΘB

[
EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]]
⇒ EGΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
≤ EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
a contradiction.33

Proof of Theorem 4. As characterized in Theorem 1, equilibrium cutoff func-

tions are of the form χ∗i (θi) = −1−θi
θi
· Ci with θi ∈ Θi and some constant

Ci ∈ Xi. In particular, they are non-positive, strictly increasing and concave

in θ (cf. Lemma 3 and Corollary 1). By assumption, the distribution of at-

tribute values is such that E [X|X ≥ x] is strictly increasing and concave in

x. It follows that for every equilibrium cutoff function, E [X|X ≥ χ∗(θ)] is

non-negative, strictly increasing and concave in θ.34

Consider any fixed distribution GA, and distributions GB and HB such

that GB is a mean-preserving spread of HB, GB ≥MSP HB. The corre-

sponding equilibrium cutoff-strategy profiles are χ∗,G =
(
χ∗,GA , χ∗,GB

)
and

χ∗,H =
(
χ∗,HA , χ∗,HB

)
.

Consider any strictly increasing and concave function χ̂B : ΘB → XB. In

this case, E [X|X ≥ χ̂B(θ)] is strictly increasing and concave, and GB ≥MSP

HB implies:

∫ θB

θB

E+
XB

[χ̂B(θB)] dHB(θB)︸ ︷︷ ︸
=EH

ΘB

[
E+
XB

[χ̂(θB)]
]

≥
∫ θB

θB

E+
XB

[χ̂B(θB)] dGB(θB)︸ ︷︷ ︸
=EG

ΘB

[
E+
XB

[χ̂(θB)]
]

⇒ χBR,HA (θA, χ̂B) ≤ χBR,GA (θA, χ̂B) ∀ θA ∈ ΘA. (14)

Moreover, consider any two cutoff-functions χ̂B, χ̃B : ΘB → XB such that

33By assumption χ∗,GB (θB)−χ∗,HB (θB) ≥ 0. Moreover, χ∗,GB (θB)−χ∗,HB (θB) is monotone
decreasing in θB :

χ∗,GB (θB)− χ∗,HB (θB) = −1− θB
θB︸ ︷︷ ︸

incr. in θB

[
EGΘA

[
χ∗,GA (θA)

]
− EHΘA

[
χ∗,HA (θA)

]]
︸ ︷︷ ︸

≤0

.

Thus H ≥st G would imply lhs ≥ rhs.
34Indeed, if functions g and f are strictly increasing and concave, so is the composition

g ◦ f . Here, g(x) := E [X|X ≥ x] and f(θ) := χ∗(θ).
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χ̂B(θB) ≤ χ̃B(θB) for all θB ∈ ΘB. Since E [X|X ≥ x] is increasing in x, it

follows that, for any distribution of preference types HB:

EHΘB

[
E+
XB

[χ̂(θB)]
]
≤ EHΘB

[
E+
XB

[χ̃(θB)]
]

(15)

⇒ χBR,HA (θA, χ̂B) ≥ xBR,HA (θA, χ̃B) ∀ θA ∈ ΘA. (16)

Claim 1: For every agent i, the equilibrium cutoff function shifts in the same

direction for all preference-types θi ∈ Θi.

We use an indirect proof to establish the result. Suppose χ∗,GB (θB) ≤ χ∗,HB (θB)

for all θB ∈ ΘB. Then

χ∗,HA (θA) = χBR,HA (θA, χ
∗,H
B ) ≤ χBR,HA (θA, χ

∗,G
B ) ≤ χBR,GA (θA, χ

∗,G
B ) = χ∗,GA (θA),

where the first inequality follows from Equation 16 and the second inequality

follows by Equation 14. This contradicts the case:

χ∗,GA (θA) ≤ χ∗,HA (θA) and χ∗,GB (θB) ≤ χ∗,HB (θB) ∀θA, θB.

Analogous arguments can be used to contradict the case:

χ∗,GA (θA) ≥ χ∗,HA (θA) and χ∗,GB (θB) ≥ χ∗,HB (θB) ∀θA, θB.

This shows that if GB ≥MSP HB, equilibrium cutoffs move in different direc-

tions, that is, cutoff-functions are strategic substitutes.

Claim 2: If GB ≥MSP HB, then:

χ∗,GA (θA) ≥ χ∗,HA (θA) and χ∗,GB (θB) ≤ χ∗,HB (θB) ∀ (θA, θB) ∈ ΘA ×ΘB.

Again, we use an indirect argument to prove this statement. To be precise,

we contradict the case:

(∗) χ∗,GA (θA) ≤ χ∗,HA (θA) and χ∗,GB (θB) ≥ χ∗,HB (θB) ∀ (θA, θB) ∈ ΘA ×ΘB.
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Suppose these inequalities were true. This would imply:

0 ≤χ∗,HA (θA)− χ∗,GA (θA)

=− 1− θA
θA

[
EHΘB

[
E+
XB

[
χ∗,HB (θB)

]]
− EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
=

1− θA
θA

EHΘB

[
E+
XB

[
χ∗,GB (θB)

]
− E+

XB

[
χ∗,HB (θB)

]]
+

1− θA
θA

[
EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]
− EHΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
≤1− θA

θA
EHΘB

[
χ∗,GB (tB)− χ∗,HB (tB)

]
+

1− θA
θA

[
EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]
− EHΘB

[
E+
XB

[
χ∗,GB (θB)

]]]
≤1− θA

θA
EHΘB

[
χ∗,GB (tB)− χ∗,HB (tB)

]
(17)

The last inequality follows, from the fact that, since E+
XB

[
χ∗,GB (θB)

]
is non-

decreasing and concave in θB, GB ≥MSP HB implies

EGΘB

[
E+
XB

[
χ∗,GB (θB)

]]
− EHΘB

[
E+
XB

[
χ∗,GB (θB)

]]
≤ 0.

Using analogous arguments, if (∗) holds true, it follows that:

0 ≤ χ∗,GB (θB)− χ∗,HB (θB) ≤ 1− θB
θB

EGΘA

[
χ∗,HA (θA)− χ∗,GA (θA)

]
. (18)

Notice that

χ∗,HB (θB)− χ∗,GB (θB) = −1− θB
θB

EGΘA

[
E+
XA

[
χ∗,HA (θA)

]
− E+

XA

[
χ∗,GA (θA)

]]
.

The expectation on the rhs is constant in θB and, under assumption (∗),
positive. This implies that, since −1−θB

θB
is non-decreasing and concave in θB,

so is χ∗,HB (θB)− χ∗,GB (θB).

Combining Equation 18 with Equation 17 yields

χ∗,GB (θB)− χ∗,HB (θB) ≤EGΘA

[
EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]]
(19)

=EHΘB

[
χ∗,GB (θB)− χ∗,HB (θB)

]
.
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This inequality states that the expectation of χ∗,GB (θB)−χ∗,HB (θB) given distri-

bution HB is greater than χ∗,GB (θB)− χ∗,HB (θB) for every θB. This statement

obviously cannot be satisfied, unless agents’ cutoff-functions are constant

across preference types. Moreover, if any of the inequalities in (∗) are strict

on a non-zero measure set of types, the inequality in Equation 19 is strict.

We obtain a contradiction to (∗), which completes the proof.

Proof of Proposition 1. Consider a committee of experts with partisanship

levels θA, θB ∈
[

1
2
, 1
]
.

Suppose agent B adopts strategy σB with corresponding (measurable)

acceptance set B+. The expected payoff of the alternative for agent A, con-

ditional on being pivotal, as a function of his private signal xA is:

VA(xA, σB) = θAxA + (1− θA)E
[
xB|xB ∈ B+

]
. (20)

It is agent A’s best response to vote in favor of the reform if and only if the

expected payoff of the reform, conditional on him being pivotal, is greater

than the payoff of the status quo, which is 0. Consequently, agent A votes

affirmatively if and only if VA(xA, σB) ≥ 0. It is easy to see from Equation 20

that VA(xA, σB) is continuous and strictly increasing in xA. This readily es-

tablishes that if agents do not adopt weakly dominated strategies, agent A’s

best response is to follow a cutoff-strategy. The same reasoning applies to

agent B’s best response.

From now on we restrict attention to agents’ adopting cutoff strategies.

By a slight abuse of notation we denote an agents’ cutoff strategy by the

relevant threshold. That is, x̂B is agent B’s cutoff strategy where he votes

affirmatively if and only if xB ≥ x̂B.

Note that, E [X|X ≥ x] = E(X) = 0 and E [X|X ≥ x] = x. Moreover, on

(x, x), E [X|X ≥ x̂] is (strictly) increasing in x̂.35 Thus, E [X|X ≥ x̂] ∈ [0, x].

When combined with Equation 20 and the observation that it is agent A’s

best response to vote affirmatively if and only if VA(xA, x̂B) ≥ 0, we obtain

35Indeed,
∂

∂x
E [X|X ≥ x] =

f(x)

1− F (x)
(E [X|X ≥ x]− x) ≥ 0 (21)
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that agent A’s best-response function is characterized by:

xBRA (x̂B) = −1− θA
θA

E [XB|XB ≥ x̂B] . (22)

Since 1−θA
θA
∈ [0, 1] and E [X|X ≥ x̂] ∈ [0, x] it follows that xBRA (x̂B) ∈ XA,

for every x̂B ∈ XB.

The discussion shows that, for any cutoff-strategy of agent B, there exists

a unique best response of agent A and vice versa. It follows that the best

response correspondence, B(·), is a function:

B : XA ×XB −→ XA ×XB

(x̂A, x̂B) 7−→
(
xBRA (x̂B), xBRB (x̂A)

)
We use a simple fixed-point argument to show equilibrium existence:

Note that X = [x, x] with x < 0 < x. Hence, X non-empty and compact,

and so is X × X (by Tychonoff’s theorem). Moreover, X × X is a regular

polygon in R2 and thus convex. The best response function B(·, ·) is con-

tinuous for which it suffices to show continuity for each of the coordinate

functions. Consider

BA(·, ·) : X ×X −→ X

(x̂A, x̂B) 7−→ xBRA (x̂B).

It is easy to see that this function is constant in x̂A and monotone decreasing

in x̂B (cf. Equation 22). This implies that BA(·, ·) is continuous and analogous

arguments show continuity of BB(·, ·).
We can finally apply Brouwer’s fixed point theorem to establishes the

existence of a fixed point of B(·, ·). This completes the proof equilibrium

existence.

Proof of Lemma 4. As seen above, agents best responses are characterized

by Equation 22. Note that, if θA 6= 0 ∨ x̂B 6= x, then xBRA (x̂B) ∈ (x, x), and

the same holds true for agent B.

If θA = 0, xBRA (x) = −x = x. But xBRB (x) = 0 for every θB ∈ [0, 1]. Since,

in equilibrium, agents’ strategies have to be mutually best responses to each

other this shows that even for θA = 0 equilibrium cutoffs have to be interior
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which proves the first statement of the lemma.

Non-positive cutoffs: Equilibrium existence was already established in

Proposition 1. Moreover, since equilibrium cutoffs are interior and E [X|X ≥ x̂]

is increasing in x̂, E [X|X ≥ x∗B] ∈ (0, x). That is, under unanimity voting,

conditional on being pivotal, agent A’s posterior estimate of agent B’s signal

is positive. From the equilibrium characterizing equations (Equation 7 and

Equation 8) we obtain: x∗A, x
∗
B ≤ 0. That is, under unanimity voting, agents

adopt non-positive cutoffs in equilibrium.

Proof of Proposition 2. Equilibrium existence was already established in Propo-

sition 1. We only have to show that under Definition 2 the equilibrium is

unique. By Lemma 4 equilibrium cutoffs are non-positive, that is, x∗A, x
∗
B ≤ 0.

Now, assume there exist multiple equilibria and assume two of them are

characterized by the distinct cutoff profiles (x∗i , x
∗
j) and (x∗i +δi, x

∗
j+δj). Both

of these cutoff profiles have to satisfy the equilibrium conditions Equation 7

and Equation 8. Combining them (i.e. subtracting them from each other) we

obtain:

(1− θi
2

)δi +
θi
2

[
E+(x∗j + δj)− E+(x∗j)

]
= 0 (23)

(1− θj
2

)δj +
θj
2

[
E+(x∗i + δi)− E+(x∗i )

]
= 0 (24)

There exist multiple equilibria if and only if this system of equations has a

nontrivial solution (i.e. a solution (δi, δj) 6= (0, 0)).

We can re-write Equation 23 and Equation 24 as:

δi = − θi
2− θi

[
E+(x∗j + δj)− E+(x∗j)

]
and

δj = − θj
2− θj

[
E+(x∗i + δi)− E+(x∗i )

]
Now, since c = min{2−θ1

θ1
, 2−θ2

θ2
} it follows that max{c · θi

2−θi , c ·
θj

2−θj } = 1.

Assumption (A1s) implies that |E+(x) − E+(y)| < c|x − y| for all x, y ∈
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[
xBR, 0

]
which yields:

|δi| = | −
θi

2− θi
[
E+(x∗j + δj)− E+(x∗j)

]
|

< |δj|

= | − θj
2− θj

[
E+(x∗i + δi)− E+(x∗i )

]
|

< |δi|

a contradiction. Thus, no multiple equilibria can exist.

Proof of Proposition 3. From Equation 7 and Equation 8 which characterize

the equilibrium cutoffs, taking the derivative with respect to θi on both sides,

we obtain

dVi(x
∗
i , x
∗
j ; (θi, θj))

dθi
= −1

2
x∗i +

1

2
E+(x∗j) + (1− θi

2
)x∗i,θi +

θi
2
E+
x∗j

(x∗j)x
∗
j,θi

= 0

dVj(x
∗
i , x
∗
j ; (θi, θj))

dθi
= (1− θj

2
)x∗j,θi +

θj
2
E+
x∗i

(x∗i )x
∗
i,θi

= 0

⇔ x∗j,θi = − θj
2− θj

E+
x∗i

(x∗i )x
∗
i,θi

(25)

Combining these equations we obtain

1

2

−x∗i︸︷︷︸
≥0

+E+(x∗j)︸ ︷︷ ︸
>0


︸ ︷︷ ︸

:=G(x∗)>0

+

[
(1− θi

2
)− θiθj

2(2− θj)
E+
x∗j

(x∗j)E
+
x∗i

(x∗i )

]
︸ ︷︷ ︸

:=H

x∗i,θi = 0 (26)

Given assumption (A1s), E+′(x̂) < c = min{2−θ1
θ1
, 2−θ2

θ2
}, ∀x̂ ∈ [x, 0], we

obtain

H(x∗) = 1− θi
2

1 +

∈[0,1]︷ ︸︸ ︷
θj

2− θj
E+
x∗j

(x∗j)

∈[0,c)︷ ︸︸ ︷
E+
x∗i

(x∗i )


> 1− θi

2

[
1 +

2− θi
θi

]
= 0

40



Finally, Equation 26 yields

x∗i,θi = −G(x∗)

H(x∗)
< 0

which shows that agent i’s equilibrium cutoff x∗i is decreasing in θi. Moreover,

from Equation 25 we obtain:

x∗j,θi = − θj
2− θj

E+
x∗i

(x∗i )︸ ︷︷ ︸
>0

x∗i,θi︸︷︷︸
<0

> 0

That is, agent j’s equilibrium cutoff is increasing in θi.
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