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Abstract─ We describe a system model for determining decision 
making strategies based upon the ability to perform data mining 
and pattern discovery utilizing open source information to 
prepare for specific events or situations from multiple 
information sources. Within this paper, we discuss the 
development of a method for determining actionable information. 
We have integrated open source information linking to human 
sentiment and manipulated other user selectable interlinking 
relative probabilities for events based upon current knowledge. 
Probabilistic predictions are critical in practice on many decision 
making applications because optimizing the user experience 
requires being able to compute the expected utilities of mutually 
exclusive pieces of content. Hierarchy game theory for decision 
making is valuable where two or more agents seek their own 
goals, possibilities of conflicts, competition and cooperation. The 
quality of the knowledge extracted from the information available 
is restricted by complexity of the model. Hierarchy game theory 
framework enables complex modeling of data in probabilistic 
modeling. However, applicability to big data is complicated by the 
difficulties of inference in complex probabilistic models, and by 
computational constraints. We focus on applying probabilistic 
models to resource distribution for emergency response. 
Hierarchical game theory models interactions where a situation 
affects players at multiple levels. Our paper discusses the effect of 
optimizing the selection of specific areas to help first responders 
and determine optimal supply route planning. Additionally we 
discuss two levels of hierarchies for decision making including 
entry decisions and quantitative Bayes modeling based on 
incomplete information.  

Index Terms—Game theory, Resource Management, Decision 
Making, Operations Research 

I. INTRODUCTION 
Game theory is the study of strategic decision making. It is 

the study of mathematical models of conflict and cooperation 
between intelligent rational decision-makers and is often 
thought of as an interactive decision theory. It has been applied 
to economics, political science, psychology, logic, biology and 
other complex issues. Modern game theory began with the idea 
regarding the existence of mixed-strategy equilibrium in two-
person zero-sum games, applied to economics. Later this 
evolved to provide a theory of expected utility, which allowed 
mathematicians and economists to treat decision-making with 
uncertainty. The notion of probabilistic predictions utilizing 
game theory is critical in practice to many decision making 
applications because optimizing user experience requires being 
able to compute the expected utilities of mutually exclusive 
pieces of data which is critical to geospatial analytics.  

Economic factors (e.g. unemployment rates, prices for 
food, such as bread, or fuel), Political factors (freedoms, type 
of government), Religious factors (type of religions, religious 
tensions) combined with trend information such as sentiment 
analysis on social media, open source data, news, etc. can 
provide indicators of areas undergoing stress or at risk.   

Current situational awareness requires efforts to seek to 
incorporate not only geospatial features and forces structures, 
but also the human element, especially in urban settings. An 
attempt to predict the likelihood of reaction to a future event 
will be based on correct situation analysis. Efforts to combine 
the information required for these predictions are time 
consuming and labor intensive. The availability of open source 
social media information and implementation of artificial 
intelligence (AI) methodologies makes this problem tractable. 
Our GlobalSite system, shown in Fig 1, can also be used as a 
method for asset management and reduce cost of analyses.  

 

 
Fig1. Overview 

 
As an example, consider the recent case of Typhoon 

Haiyan, which devastated portions of the Philippines in early 
November 2013.  Weather data and hurricane/typhoon forecast 
models could be used to project the path of the storm, and 
anticipate areas that may be affected.  This could lead to 
enriching Foundation GEOINT content for the Philippines in 
anticipation of the event (landfall of Typhoon Haiyan), as well 
as collection of additional data after the event to detect 

 



 

changes, assess damage, and support Disaster 
Relief/Humanitarian Aid.  For instance, change detection may 
reveal roads have been washed out, presenting logistics 
problems for the delivery of aid to folks in need. 

The Philippines has strategic importance to the U.S. as part 
of the strategy plans to counterbalance China’s rising military 
influence with strong American allies in the region. The U.S. 
and the Philippines are in the middle of negotiating an 
increased American military presence in the country [8]. 

II. OPEN SOURCE DATA 
The internet has forever changed the way people are able 

to respond to a disaster. Now, a person, business, 
or organization can create a call to action that generates 
millions of dollars’ worth of donations in money, food, and 
even volunteer power in a matter of minutes. This can happen 
via an email, a button on a website, or a YouTube video that 
goes viral. We have seen this during disastrous events like 
Hurricane Katrina, the 2010 earthquake in Haiti, or the recent 
typhoon in the Philippines.  The word, “crowdsourcing,” is a 
combination of two words, crowd and outsourcing. Thus 
crowdsourcing, as it applies to disaster response, is the process 
of gathering work or funding via the internet to benefit a 
particular person, organization, or event [9]. 

What makes crowdsourcing so important is the belief that 
more heads are better than one. Using the canned food drive as 
an example, if you were to do the work without the internet, 
you would have to run around town to various homes and 
businesses and ask individuals if they would like to participate. 
This would take up too much time and man power. The 
internet can be used to send email to friends, who would then 
pass the word on to their friends. An online donation campaign 
can be created where one can make a short video as to why 
people should donate to a cause [9]. 

The recent typhoon in the Philippines has seen an exciting 
change in how crowdsourcing can assist in disaster response. 
Rather than sit and wait for heads of organizations and 
governments to dictate what is needed on the ground, people 
are able to assist first responders in the very work of saving 
lives, both directly and indirectly. Through the use of powerful 
technology, people are able to track weather patterns that are 
more accurate than anything you will find on the evening 
news. Geography buffs are able to use satellite imaging 
technology to create maps and locate where people are 
stranded and in desperate need of food and water. There are 
even examples of people who have been able to locate others 
who were buried under debris.  This kind of response is a much 
more aggressive response to a disaster [9]. 

Social media tools like Twitter and Facebook, traditionally 
looked upon as a game for kids has been useful to relief 
workers as well. The group Standby Task Force has been able 
to gather over a million tweets, text messages, and other social 
media updates to track the extent of the damage in near real 
time. They were able to create a map using the assistance of 
hashtags that allowed them to gather the information much 

quicker than if relief workers just ran into the Philippines with 
no preparation or information [9]. 

The crowdsourcing involved people from all around the 
world who viewed satellite images from space and provided 
relief agencies with their knowledge of the changes that had 
occurred on the ground after the storm passed. Officials from 
the United Nations Office for the Coordination of 
Humanitarian Affairs (OCHA) coordinated the effort to get 
volunteers to help with the aid relief. Doctors Without Borders 
received updated maps generated by over 1,000 
OpenStreetMap volunteers in 82 countries. They identified 
hospital locations, which buildings were intact and which were 
damaged, blocked roads, and other key infrastructure [10]. 

Technological advances in sensing, computation, storage, 
and communications will turn the near-ubiquitous mobile 
phone into a global mobile sensing device. People-centric 
sensing will help drive this trend by enabling a different way to 
sense, learn, visualize, and share information about ourselves, 
friends, communities, the way we live, and the world we live 
in. It juxtaposes the traditional view of mesh sensor networks 
with one in which people, carrying mobile devices, enable 
opportunistic sensing coverage [3].  

Since people centric sensing began, content provided by 
ordinary people, so-called "citizen journalists" or individuals 
with particular agendas that is posted or shared on Social 
Networks such as Twitter, YouTube, Facebook, MySpace or 
Flickr, to name but a few, has increasingly made it into the 
channels and services of traditional information providers such 
as news organizations. New and affordable publishing and 
distribution tools for ordinary citizens such as Social 
Networks, blogs, or services have made this possible. Social 
Networks have more and more become an integral part of the 
communication mix for all kinds of aims, for example 
(political) campaigning, and awareness-raising [4]. See for 
example, Fox News revamped its newsroom for Shephard 
Smith Reporting on breaking news, such as December 2013 
shooting at Arapahoe High School in Colorado. Open source 
data is valuable in order to populate the reward matrices for 
game theory applications. 

III. GAME THEORY 
Current situational awareness efforts seek to incorporate 

not only geospatial features and structures, but also the human 
element, especially in urban settings. An attempt to predict the 
likelihood of human reactions to a future event should be based 
on correct situational analysis. Development of tools for more 
rapid refinement of flexible plans is required for adapting to a 
changing operational environment. 

Our solution populates a reward matrix in near real time 
through powerful game theory analysis. Once data accuracy is 
proven through sensitivity analysis, the information is can 
either be used as training data or  populated into a reward 
matrix in real time for resource allocation and adversarial 
planning utilizing game theory analysis. Our techniques enable 
a methodical approach to intelligent planning and reaction 
based upon construction and analysis of a decision model 

 



 

resulting in a structure of the most probable solution. This 
technique is useful for a number of applications ranging from 
behavioral economics, war fighter planning, and analysis of 
information, messaging, and risk management. Our system 
supports an artificial intelligence (AI) supervised learning 
approach to quantify information based on user selectable 
attributes and deriving probabilistic decision outcomes. Our 
approach trains with near real time execution.  

Our solution integrates multiple data sources into efficient 
intent analysis processes and uses training data to build the 
decision trees to predict categories for new events based upon 
classifiers created for the use case scenario. Given an event, we 
predict a category and then determine sentiment based on 
trained data. This information could then be applied during 
planning in support of course of action (COA) development in 
the military decision making process (MDMP).  

The approach combines the following input: open 
(unstructured) source, and/or direct user input/modification. In 
particular, we capture and model “sentiment” and other 
situational factors through the assignment of positive, neutral 
and negative values. A reward matrix is then populated using 
game theoretic concepts such as in a competitive game model. 
GlobalSite utilizes game theory which permits the ability to 
solve for iterative solutions, instantaneous visual feedback, and 
interactions by the user on demand. Our output enables a 
methodical approach to intelligent planning and reaction 
including interaction of variables, parameters and attributes by 
user resulting in updated probabilities. Game theory is useful 
for resource management of manpower, equipment, and 
warnings, etc., since it shows optimal decision for deployment.  

In many situations, the opponents know the strategy that 
they are following. We assume that the players know what 
actions are available. A maximin equilibrium often is the 
strategy and is called the Nash theory application of zero or 
constant sum strategy game. We also consider a constant sum 
game in which for both player’s strategies, the two player’s 
reward add up to a constant value. This means, while both 
players are in conflict, that there is more to gain than simply 
having one player’s reward equaling the other player’s loss. 

We can find optimal strategies for this two-person zero-
sum game [24].  For example, if a reward matrix exists, then 
the equilibrium point is the one where the reward is the 
smallest value in its row and the largest number in its column. 
A pure strategy provides a complete definition of how a player 
will play a game. A player's strategy set is the set of pure 
strategies available to that player. A mixed strategy is an 
assignment of a probability to each pure strategy. This 
equilibrium is also known as the Nash Equilibrium [15].  

Game theory is divided into two branches, non-
cooperative and cooperative [2]. Algorithms for computing 
Nash equilibrium are well-studied. N-player games are 
computationally harder than 2-player games, in important ways 
such as visualization of the solution [11].  

IV. EMERGENCY RESPONSE EXAMPLE 

A. Resource Planning 
In our example, there are several resource management stages 

or hierarchies as shown in Fig 2. These stages include information 
needs, collection objectives, observables, tasks and plans. The 
resource management process seeks to decompose information 
needed to satisfy mission objectives into one or more tasks. The 
essence of resource management is uncertainty management [13]. 
Resource allocation problems in which limited resources must 
be allocated among several activities are often solved by 
dynamic or linear programming. Operations Research is a 
branch of mathematics that studies decision making to obtain 
the best decision. Game theory can help determine the optimal 
investment strategy [24].  

 

 
Fig 2. Bayesian Hierarchy 

 
Our solution populates a reward matrix in near real time 

through powerful game theory analysis. Once data accuracy is 
proven through sensitivity analysis, the information can either 
be used as training data or populated into a reward matrix for 
resource allocation and adversarial planning utilizing game 
theory concepts such as in a competitive or cooperative game 
model. Much of the current focus is on human geography and 
terrain as well as population based sentiment analysis [17]. 

 

 
Fig 3. Reward Matrix 

 
Figure 3 shows populated example values for a resource 

planning game. We use the Nash equilibrium to solve for the 

 



 

mixed solutions in a repeatable and methodical manner to 
determine optimal choices. In our example, open source data is 
used to create a cost function. In our example using the reward 
matrix, we show the linear programming solution for the 
constant sum game as follows:   
 

max v      (1) 
 s.t. v -     372  x1 -     16 x2 -    7 x3 -    2 x4   <= 0 
      v -     181  x1 -       2 x2 -     1 x3 -    1 x4   <= 0 
      v -     160  x1 -       2 x2 -     1 x3 -    0 x4   <= 0 
      v -     100  x1 -     50 x2 -   20 x3 -    1 x4   <= 0 
      v -       40  x1 -     20 x2 -     5 x3 -    2 x4   <= 0 
      v -       12  x1 -       4 x2 -     2 x3 -    1 x4   <= 0 
      x1 + x2 + x3 + x4 = 1 
      x1, x2, x3, x4 >= 0 

 
Equation (1) is used to determine the best strategy for the 

blue player to deliver aid. The solution for the blue player’s 
mixed strategy in terms of probabilities x = (1, 0, 0, 0). Figure 4 
shows iterative modeling of the situation over time periods in 
order to optimize decision making. Initially, the best decision is 
to send aid to Eastern Visayas in accordance with the reward 
matrix. 

 

 
Fig 4. Iterative Modeling 

 
When the reward matrix contains no saddle point, we can use 

a linear program solver. Some tools use “strategies” measured in 
different units in the same reward matrix and can be 
problematic. If all strategies in a given decision model reward 
matrix are not in the same (equalized) units, then use of game 
theory and mini-max or maxi-min functions can provide 
misleading results. We can create purely dominant and 
incorrect solutions just due to relative size of unit measures. 
Our solution addresses this properly and uniformly for any 
decision model. We equalize all strategies (in a given decision 
model) to the same unit. This is a key point to the application 
of game strategies to a general class of decision problems. An 
adjustable “equalization” factor has the purpose to convert all 
strategy measures to the same unit (e.g., cost, time) and must 
be done for any decision model. The equalization factor for our 
solution is independent of additional (importance) weights that 
may be applied. 

Using different weights allowed for choices is to highlight 
the ability and need for a tool which can be used to allow the 
user to dial and modify modeled parameters of the reward 
matrix to model “what if” scenarios. Additionally saving the 

weights to a file allows for peer review in order to check and 
validate decisions. Our approach is modeled, so that the 
process can be repeated to allow for new or higher quality 
data/information to be inserted into the process to generate 
updated results.  

B. Path Planning 
Path planning algorithms are commonly used to find the 

least cost path from a start node to an end node through a 
gridded environment of cost. The cost of a given node-to-node 
transit may simply relate to the distance traveled combined 
with some measure of an obstruction. This allows the 
algorithm to find the shortest path through a maze for example. 
Given a weighted directional graph with a start node and a set 
of end nodes, the optimal path problem is to find a least-cost 
path from start to any member of end, where the cost of the 
path may, in general, be an arbitrary function of weights 
assigned to nodes and branches along path.  

Our algorithm applies an additive evaluation function: 
 

𝑓(𝑛) =  𝑐𝑡(𝑛) + s(𝑛) +  𝑒(𝑛) +  h(n) +  𝑑(𝑛) (2) 

where 𝑐𝑡(𝑛) is the cost of terrain movement due to damage to 
infrastructure evaluated along dynamic path in north direction. 
The safety value 𝑠(𝑛) is the cost of the safety along dynamic 
path in north direction. Elevation information value 𝑒(𝑛) 
derived from SRTM or LiDAR data is the cost in the dynamic 
path in the north direction. The hospital presence value ℎ(𝑛) is 
the cost in the dynamic path in the north direction. The 
distance value 𝑑(𝑛) is the minimum possible cost to reach the 
end from a given node and is a crucial component of the 
algorithm. It drives the algorithm towards the end node. It 
should be noted that𝑓(𝑒),𝑓(𝑤) and 𝑓(𝑠) correspond to nodes 
in the east, west, and south directions respectively. 

In order to avoid a combinatorial explosion of potential 
paths, the algorithm, and therefore target motion, is restricted 
to a gridded environment of nodes. This also ensures that the 
same node may be revisited from a different direction allowing 
for the best path to be continuously updated. The distance 
between nodes should be as large as possible in order to 
minimize the number of nodes that must be expanded, thereby 
reducing computation time, while not impacting on the 
solution [23].  

 

 
Fig 5. Eight Connected Movement Direction Methods 

 
The resolution of the grid we chose is 90 meters on a side. 

Figure 5 shows two possible movement methods through the 
grid. The eight connected method lets the user travel 
diagonally. This does mean extra compute time per movement, 
but yields more realistic results. The goal is to minimize cost 

 



 

of traveling along an optimal path. We are seeking a minimum 
cost function from the reward matrix shown in Table 1, with 
eight connected movements.  

Table 1. Reward Matrix 

 
 

It is acceptable to model a player’s choice of strategies with 
probabilities. A game with a randomized (or mixed) strategy is 
one in which all of a player’s choices add up to a value of one. 
A mixed strategy is comprised of possible actions and an 
associated probability. Any mixed strategy that guarantees an 
expected reward at least equal to the value of the game is an 
optimal strategy [24]. Our model’s possible choices of 
movement are: 

 
x1 = probability that blue player chooses north  
x2 = probability that blue player chooses north east  
x3 = probability that blue player chooses east  
x4 = probability that blue player chooses south east 
x5 = probability that blue player chooses south  
x6 = probability that blue player chooses south west  
x7 = probability that blue player chooses west  
x8 = probability that blue player chooses north west  
 
Our example can be considered a game in which the red 

player, or nature, has already placed obstacles due to destruction 
in the path of the blue player and now it is the blue player’s 
responsibility to navigate through the scene as shown in Figure 6. 
Our solution is dynamic since decisions of movement are made at 
every point on the grid along the path. The solution for the blue 
player’s mixed strategy in terms of probabilities 𝑥 =
(𝑛,𝑛𝑒, 𝑒, 𝑠𝑒, 𝑠, 𝑠𝑤,𝑤,𝑛𝑤). We can solve this linear program 
using several techniques such as the simplex method, the dual 
simplex method, or the artificial basis technique. To show how 
our system could work, we utilized a computer with LINGO 
software to solve for the mixed strategies as well as the value of 
the game. We apply the reward matrix to every grid point value 
from start to end. The path from the south is in yellow, in Fig 7a. 

 

 
Fig 6. Optimal Path to Drop Off Center 

 
More than one million Tweets and text messages were 

tapped and then mapped using MicroMappers, applications 
designed for disaster response. In Tacloban, the city that bore a 
direct assault from Haiyan’s storm surge, 58% of the built up 
areas were destroyed or damaged. In the image below you can 
see orange, red and yellow color-keyed buildings. The orange, 
shown in Fig 7b, represent seriously damaged structures. The 
red indicates buildings that were completely destroyed. The 
yellow are buildings largely intact [10].  

 

 
Fig 7.a  Optimal Path to Drop Off Center     b. Damage Areas 

 
Our solution uses a Markov processes since the current 

state depends only on a finite history of previous states. For the 
first-order Markov process we have: 

 
p(rk|{r0, r1, ..., rk−1}) = p(rk|rk−1)            (3) 

 
where r is the pixel to be labeled along the traversed path and k 
is time. In a Markov Chain we define transition probabilities as 
the probability that the system is in state i at time k when in 
state j at time k-1 [21]. In our Hidden Markov Model (HMM) 

 



 

problems we have modeled our transition probabilities as 
calculated from the Nash Equilibrium.  

During the traversal along dynamic path, if a repeat of path is 
encountered, then we use next highest mixed strategy probability 
direction in order to prevent an infinite loop from occurring. Our 
current solution only looks one step ahead. We also have 
accounted for a rescaling of the weights in the reward matrix if the 
algorithm gets stuck in a loop.  

Our Markov Decision Process is a sequential decision 
problem defined by a state set S, and an action A. The 
efficiency, for the blue player, of the algorithms is determined 
using the following formula [18]: 

 
Efficiency = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑝𝑎𝑡ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑑
 x 100 (4) 

 
Recent advances in self-supervised learning have enabled 

very long-range visual detection of obstacles and pathways (to 
100 hundred meters or more). Unfortunately, the category and 
range of regions at such large distances come with a 
considerable amount of uncertainty. A mapping and planning 
system that accurately represents range and category 
uncertainties, and accumulates the evidence from multiple 
frames in a principled way are desired [19].  

C. Bayesian Decision Making 
When a natural disaster occurs, one of the first decisions 

that a country or player makes is whether or not to participate 
or enter into the game. This is called an entry game. Another 
question which occurs is the how much commitment in terms 
of contribution is desired. Models decisions may be based on 
the toughness of the incumbent. 

A large class of sequential decision making problems 
under uncertainty with multiple competing decision 
makers/agents can be modeled as stochastic games. Non-
cooperative games can be solved in which each decision maker 
makes his own decision independently and each has an 
individual payoff function. In stochastic games, the 
environment is non-stationary and each agent’s payoff is 
affected by joint decisions of all agents, which results in the 
conflict of interest among decision makers [12]. Nash 
Equilibrium game theory considers the effect of a player’s 
decision on other decision makers [13]. 

Bayesian game is an interactive decision situation 
involving several decision makers (players) in which each 
player has beliefs about (i. e. assigns probability distribution 
to) the payoff relevant parameters and the beliefs of the other 
players. It is convenient to think of a state of nature as a full 
description of a ‘game-form’ (actions and payoff functions). 
Type also known as state of mind, is a full description of 
player’s beliefs (about the state of nature), beliefs about beliefs 
of the other players, beliefs about the beliefs about his beliefs, 
etc. ad infinitum. State of the world is a state of nature and a 
list of the states of mind of all players [25]. 

Game theory, as a model of conflict, suffers from several 
limitations. Players are assumed to always maximize their 
outcomes. Not all of the payoffs or situations can be quantified 
in a reward matrix. Game theory is not applicable to all types 

of problems. However, game theory offers important insights 
and demonstrates superiority of cooperation over competition. 
Game theory models the heuristics people use in managing 
their conflicts and helps to explain why rational decisions often 
miss opportunities for mutual gain [16]. 

Imperfect information may still be useful to help make 
decisions. Opponent modeling works by observing the 
opponent’s actions and building a model by combining 
information from a pre-computed equilibrium strategy with the 
observations [5]. Previous work performed in the community 
includes computing robust optimization equilibrium by 
methods analogous to those for identifying Nash Equilibrium 
of a finite game with complete information [1]. 

There is much attention given to simultaneous-move, one-
shot, normal form games with complete information. Each 
player or agent has a private payoff known only to that agent. 
The payoff to an agent x is not only a function of all the 
agents’ actions (as in the usual complete information game) but 
also of the realized private-type of agent x. The type of an 
agent may be discrete or continuous. Each agent’s realized 
type is chosen independently from some commonly known 
distribution over types, and the payoff matrices for the agents 
are also common knowledge. These games have incomplete 
information because each agent must choose its strategy, i.e., 
its probability distribution over its actions, without knowing 
the realized types of all the other agents [20]. 

Harsanyi proposed a method for transforming uncertainty 
over the strategy sets of players into uncertainty over their 
payoffs. The transformation appears to rely on an assumption 
that the players are rational. Without a common belief of 
rationality, such implications are not necessarily maintained 
under a Harsanyi transformation. Under the belief system 
model, such implications can be maintained in the absence of 
common belief of rationality [6].  

Generally, players may not possess full information about 
their opponents. In particular, players may possess private 
information that others should take into account when forming 
expectations about how a player would behave. To analyze 
these interesting situations, a class of games with incomplete 
information was created as use case scenarios (i.e., games 
where at least one player is uncertain about another player’s 
payoff function) which are the analogue of the normal form 
games with complete information similar to Bayesian games 
(static games of incomplete information) [22]. 

Several studies provide discussion and attempts to 
integrate and validate usefulness of the application of game 
theory models. The strategy action game is not only applicable 
in the field of commercial negotiation; subsequent research can 
extend further into the fields of education, marketing, finance, 
risk management, and society. The competition and 
cooperation relationship between manufacturer and distributor 
in other applications are delicate, allowing room for other 
methods besides strategy action game, such as series 
bargaining game and mean difference. Studies have been 
performed on the analysis aiming at the strategy application, 
and intervention into the negotiation harmonization with the 
manufacturer or distributor. On one hand, it insists on an 

 



 

objective observation attitude; on the other, it may also 
produce the deviation of unscrambling the behavior of game 
participants subjectively [14]. In our example, let: 

 
P(U)  = Probability of United States Giving 
P(¬U) = Probability of United States Not Giving 
P(S)  = Probability of Saudi Arabia Giving 
P(¬S)  = Probability of Saudi Arabia Not Giving 
 
P(U|S) = P(S|U)(P(U)

   P(S) 
       

P(U|S) = P(S|U)P(U)
 P(S|U) P(U) + P(S|¬U)P(¬U)  

       
 
Using event space, j = {give, not give},  

P(U|S) = P(S|U)P(U)
∑j P(S|Uj) P(Uj)  

 
 
Suppose a country receives an update about a situation, i, 

and interprets the information as motivation for giving aid, the 
probability of a country not giving when there is a desire for 
future cooperation with the Philippines is: 

 
P(¬U|i) = P(i|¬U)P(¬U)           

P(i|¬U)P(¬U) + P(i|U)P(U)
 

 
• Let p = probability of not giving with no desire for future 

cooperation  
• Let r  = probability of giving with desire for future 

cooperation  
• Let q = probability of not giving (historical) 

 
P(¬U|i) = (1−p)q      

(1−p)q + r(1−q)
  

 
The country’s payoffs are: 
•  0,       -if not give and do not desire help in future 

      -if give and desire help in future 
•  -z,       -if not give and desire help in future 
•  -(1-z),   -if give and do not need help in future 
•  z is cost of missing opportunity for giving (type I error), 
•  1 - z  -cost of giving without future benefit (type II error). 
 
We model that a country will give if (1-z)P(¬U|i) ≤  z(1-
P(¬U|i)): 

z ≥ P(¬U|i) = (1−p)q  
(1−𝑝)𝑞 + 𝑟(1−𝑞)

 
 
We model that a country will not give if:  

z ≤ P(¬U|i)  = pq
𝑝𝑞 + (1−𝑟)(1−𝑞)

 
 
A country optimally acts according to interpretation of 
situational awareness information as motivation for giving.  
 

pq
𝑝𝑞 + (1−𝑟)(1−𝑞)

≤ z  ≤  (1−p)q
     (1−𝑝)𝑞 + 𝑟(1−𝑞)

 
 
If another country is not motivated to give, then a country may 
not be as motivated to give (or give as much): 

 
P(¬U|i, ¬i) = P(i,¬i|¬U)P(¬U)      

P(i,¬i|¬U)P(¬U) + P(i,¬i |U)P(U)
 

P(¬U|i, ¬i) = (1−p)pq      
(1−𝑝)𝑝𝑞 + 𝑟(1−𝑟)(1−𝑞)

 
 
Let n = the number of countries. A country will give if [7]:  
 

z  ≥ (1−𝑝)𝑝𝑛−1 q          
(1−𝑝)𝑝𝑛−1 q+ 𝑟(1−𝑟)𝑛−1(1−𝑞) 

 

z  ≥ 1          
1+[𝑟/(1−𝑝][(1−𝑟)/ 𝑝)𝑛−1 ]([1−𝑞)/𝑞] 

             (5) 
 

Given that p > 1-r, and p > 1/2 > 1 – q, the denominator 
approaches 1 as n increases. Therefore, as n increases, if 
countries are motivated even slightly to give when there is no 
need without future benefit (type II error), then a country who 
interprets a piece of information as motivation for giving will 
nevertheless not give. Our model indicates that a country is 
less concerned about giving when there are multiple n givers. 
In this Nash Equilibrium the probability of a country not 
giving increases as n increases. Figure 8 shows a plot of z 
values with decreasing values for z as n increases using 
Equation 5. As q decreases, the value of z increases. 

 

 
Fig 8. Plot of z values vs. n players 

 
 Figure 9 shows the reward matrix of aid provided for 

countries competing for good will towards Philippines. Solving 
the reward matrix using a Bayes-Nash solver shows that the 
United States is best choice for Philippines as a national 
strategic ally. 

 

 
Fig 9. Adversarial Planning 

 



 

V. CONCLUSION 
No decision is ever 100% correct; however, understanding 

the effects of algorithmic decisions based upon multiple 
variables, attributes, or factors and strategies with probability 
assignments can increase the probability for the best decision 
for a particular situation or event. GlobalSite can perform open 
source discovery and data mining activities to parse 
information found from disparate, non-obvious, and previously 
unknown data sources and allows for the user to dial the 
weighting factors based upon their knowledge or expertise.  

We discussed a method for modeling asset management 
with limited resources. We realize that solution presented is 
only a guide and is not intended to replace the human brain in 
decision making. We offer a user assisted means of 
prioritization to make agent and resources more effective. 
Automated game theory is promising for automatically solving 
real world strategies and helps the security analyst make 
optimal decisions for target tracking and detection activities. 
Automated processing techniques are needed to augment 
tactical intelligence-analysis capabilities by identifying and 
recognizing features of obstruction. 

We have identified a mathematical application using linear 
programming optimization. Our solution provides the ability to 
populate a reward matrix from remotely sensed data. We 
calculate optimal strategies for path optimization which 
increases likelihood of best decision available using game 
theory in a constant sum game. We combine a number of 
technologies for data fusion/ visualization. Our solution is a 
multi-use application: course of action (COA) planning, 
strategies, resource management, risk assessment, etc.  

Automated processing techniques are needed to augment 
tactical intelligence-analysis capabilities by identifying and 
recognizing patterns, weighting them appropriately, providing 
near real time objective decisions where the user can interact 
with the information based upon their experiences and 
knowledge base. GlobalSite is a probabilistic decision solution 
which allows for users to interact with information in near real 
time using game theory to provide a reward matrix of the best 
possible outcomes. 
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