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VERY PRELIMINARY, COMMENTS ARE WELCOME

ASYMMETRIC ALL-PAY AUCTIONS,
MONOTONE AND NON-MONOTONE EQUILIBRIUM.

JINGLING LU1 AND SÉRGIO O. PARREIRAS2

ABSTRACT. We re-visit the two-bidder, all-pay auction of Amann and Leininger (1996) allowing

for interdependent values and correlation à la Lizzeri and Persico (1998) and Siegel (2014). We

study both monotone and non-monotone pure strategy equilibria (MPSE and NPSE): First, we

show the allocation and bidding strategies of MPSE can be obtained in the same manner as

in the independent private values environment. For correlated private values, the allocation

is the same regardless of correlation. For common-values, the allocation is determined by the

signals’ percentiles. Second, we present a local single-crossing condition which is necessary

for existence of MPSE. Using the allocation, we provide a standard single crossing, which is

sufficient for MPSE. Third, we exhibit common-value, families of examples that violate the local

single-crossing and thus lack MPSE. We also construct a correlated private values example,

where the slightest amount of correlation breaks down MPSE that exists under independence.

And lastly, we explicitly obtain NPSE for quadratic valuations in cases where no MPSE exists.

1. INTRODUCTION

In rent-seeking contests, distinct individuals may entertain different estimates of the prize.

Such estimates maybe of varying precision or accuracy; possibly they maybe interdependent

and/or correlated.

In this paper we model rent-seeking contests as all-pay auctions. Our aim here is limited to

provide a tractable characterization of pure strategy (monotone or not!) equilibria (henceforth

MPSE and NPSE) of the (first-price) all-pay auction with two (possibly asymmetric) players

with interdependent valuations and correlated, continuous signals.

Our model can be viewed either as an extension of Amann and Leininger (1996) as we

add correlation and interdependent values and or as specialization of Lizzeri and Persico

(1998) to the all-pay auction. It is also closely related to Siegel (2014) who studies a discrete
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signals model. However, we also study non-monotone equilibria which starkly departs from

previous studies of the all-pay auction. Araujo et al. (2008) study non-monotonic equilibria

in auctions but their assumptions rule out non-monotonic equilibrium in the all-pay auction.

As Siegel (2014), we do not restrict attention neither to affiliated signals, as in Lizzeri and

Persico (1998) nor to independent signals as in, Araujo et al. (2008). We allow for positive or

negative correlated signals. Speaking plainly, affiliation is (mostly) useless – in the context of

all-pay auctions with interdependent valuations. In Lemma 1, we prove that any equilibrium

with correlated signals must also be an equilibrium of some all-pay auction with independent

signals (but different valuations).

After Lemma 1 is established, the characterization of MPSE is a straightforward application

of the recursive algorithm of Amann and Leininger (1996) for the independent private values

case.1 The algorithm first solves for the allocation rule or tying function and next computes

bid functions. It can be implemented with any available differential equation solver, which

are available in all computer algebra systems2. Siegel (2014)’s algorithm is the analogous

version for discrete type spaces.

In any MPSE, the allocation rule (i.e. the assignment of the object given the signal of the

players) only depends on the players’ expected values for the object conditional on their

signals. In particular: For the correlated private values environment, the allocation rule is the

same regardless of the nature of the correlation in the sense it coincides with the allocation

of the independent private values case. For the common-value environment, the allocation

is dictated by the percentiles of the distribution of the agents’ signals3: when agent 1 gets a

signal in the p-percentile, he bids the same as when agent 2 gets a signal in the p-percentile.4

In Section 4, we show economically interesting all-pay auctions have MPSE when signals

are independent but even “small doses” of correlation “break-down” the MPSE. That moti-

vates us to study non-monotonic equilibria. For the class of quadratic valuations, we provide

an explicit equilibrium strategies of NPSE when no MPSE exists. Discrete pooling (i.e. two

or more types placing the same bid) allows the bidders incentives to be properly aligned

without requiring different tie-break rules to assure existence.

1See also Parreiras (2006) for an application to the first-price auction, common-value, affiliated case.
2See Mathematica, Maple, or for an open-source alternative, see Sage
3In the context of discrete signals, Siegel (2014) obtain this result.
4Corollary: if signals are conditionally (on the value) independent, winning probabilities of both agents are

identical. Einy et al. (2013) and Warneryd (2013) independently obtain this. They study models where one

agent’s signals is Blackwell’s sufficient for the other’s, which implies condition independence.
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2. THE MODEL

There are two agents, i = 1, 2. Let Vi be the random variable describing the value of the

object for player i. Let X1 and X2 be the agents’ signals. The conditional expected value

is vi(x, y) = E[Vi|X1 = x, X2 = y]. The cumulative distribution of Xi is Fi and, Fi|j is the

conditional cumulative distribution of Xi given Xj. The lower-case f denotes the respective

probability density function. Finally, we also define

λi(x, y) def
= E[Vi|Xi = x, Xj = y] · fXj|Xi

(y|x) where i, j = 1, 2 and j , i.

We assume:

CONTINUITY: FXi is absolutely continuous.

FULL SUPPORT: For all (x, y) ∈ [0, 1]2, fX1,X2(x, y) > 0.

UNIFORM MARGINALS: Without any loss of generality, Xi ∼ U[0, 1].5

As we are interested in non-monotone equilibria of the all-pay auction, unlike the previous

literature we do not assume λi(x, y) increasing in x.6

With interdependent valuations, there is no loss of generality in assuming independent

signals in the context of the all-pay auction as the reasoning below shows.

THE FICTITIOUS AUCTION: Given an all-pay auction, the corresponding fictitious (or auxiliary)

auction is the all-pay auction where signals are independently and uniformly distributed on

the unit interval, and expected conditional valuations are ṽi(x, y) def
= λi(x, y).

Lemma 1. The fictitious auction and the original auction are payoff equivalent.

Proof of lemma 1. Pick any strategy profile b = (b1, b2) then

Ũi(b|x) =
∫

{y:bj(y)≤b}
ṽi(x, y)dy− b =

∫
{y:bj(y)≤b}

vi(x, y) f j|i(y|x)dy− b = Ui(b|x), i = 1, 2. �

Best reply correspondences in the fictitious and original auctions coincide, so do equilibria

sets.

3. MONOTONE EQUILIBRIUM

Let φ1 and φ2 denote the inverse bidding functions of a (increasing) monotone7. As in

Amann and Leininger (1996) or Parreiras (2006), the tying function Q (or allocation rule)

5Say Si is the original signal, re-parametrize signals by taking as the new signal, Xi = FSi (Si) .
6See Amann and Leininger (1996),Krishna and Morgan (1997), Lizzeri and Persico (1998), Araujo et al. (2008),

and Siegel (2014).
7For brevity, we restrict attention to increasing equilibrium because analogous results hold for decreasing

equilibrium.
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maps the type of player 1 to the type of player 2 that bids the same in equilibrium, that is

Q(φ1(b))
def
= φ2(b).

Proposition 1. The tying function solves the differential equation,

Q′(x) =
v2(x, Q(x))
v1(x, Q(x))

and Q(1) = 1.

Also b1(x) =
∫ x

0 v2(z, Q(z)) f1|2(z|Q(z)) dz.

Proof. First-order conditions for an optimal bid are

v1(x, φ2(b)) f2|1(φ2(b)|x)φ′2(b)− 1 = 0 and v2(φ1(b), y) f1|2(φ1(b)|y)φ′1(b)− 1 = 0. (3.1)

Combine the first-order conditions with the identity Q′ · φ′1 = φ′2 and remember that, since

wlog. signals are uniformly distributed in the unit interval, the conditional density coincides

with the joint density by Baye’s rule. �

Under some assumptions, the equilibrium described by Proposition 1 is unique:

Proposition 2. Assume that v1(·) is bounded away from zero and, v1(·) and v2(·) are continuous

in the signal of player 1 and continuously differentiable in the signal of player 2. If a continuous,

monotone equilibrium exists, it is the unique.

Proof. Since the space of signals is compact and by assumption, the derivative of v2(x,y)
v1(x,y) with

respect to y is continuous, it satisfies the Lipschitz condition: exists K > 0 such that∣∣∣∣v2(x, y)
v1(x, y)

− v2(x, ŷ)
v1(x, ŷ)

∣∣∣∣ ≤ K · |y− ŷ| for all (x, y) ∈ [0, 1]2.

the differential equation characterizing the tying function has a unique maximal solution

that satisfies the boundary condition Q(1) = 1. By Proposition 1, the uniqueness of the bid

functions follows from the uniqueness of Q. �

Notice that distributions with unbounded support will typically violate the assumptions

of Proposition 2 because valuations are not continuous at the boundary of the signal space.

Proposition 1 says that the interdependence of valuations, as opposed to the correlation

between the signals, is the only factor that matters for determining the tying function. We

illustrate this remark in a couple of interesting environments:

Corollary 1. CORRELATED PRIVATE VALUES. In any monotone equilibrium, the tying function is

the identical to the tying function of the independent private values environment.

Corollary 2. COMMON-VALUES. In any monotone equilibrium, the tying function is the identity8

8Siegel (2014) obtains this result for the discrete signals case.
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Without re-scaling and with common values, the tying function is Q(x) = F−1
2 (F1(x)). In

the statistical literature, this Q is also known as quantile-quantile plot, or simply Q−Q plot.

To establish existence (or not) of a monotone equilibrium we define for player 1:

(LOCAL SINGLE CROSSING) For all x, λ1(·, Q(x)) is non-decreasing in neighborhood of x.

(INCREASING) For all x, z ∈ [0, 1]
∫ x

z (λ1(x, y)− λ1(y, y)) dy ≥ 0.

(SINGLE CROSSING) For all x̂ < x < x̃: λ1(x̂, Q(x)) < λ1(x, Q(x)) < λ1(x̃, Q(x)). And

similarly define the analogous conditions for player 2. We say a condition holds iff it holds

for both players.

Proposition 3. LOCAL SINGLE-CROSSING is necessary, SINGLE-CROSSING is sufficient and

INCREASING is necessary and sufficient for b1(x) =
∫ x

0 v2(z, Q(z)) f1|2(z|Q(z)dz and

b2(y) = b1(Q−1(x)) be an increasing equilibrium.

Proof. The function v1(x, φ2(b)) f2|1(φ2(b)|x)φ′1(b)− 1 satisfies LOCAL SINGLE-CROSSING and

only if v1(x, φ2(b)) f1,2(z, φ2(b)) is non-decreasing in x at x = φ1(b). Remember, marginals are

uniform, f1 = f2 = 1. Differentiating the identity, v1(φ1(b), φ2(b)) f2|1(φ2(b)|φ1(b))φ′2(b)−
1 = 0, with respect to b, and assuming φ′1 > 0, the local single-crossing in z at x = φ1(b) is

equivalent to the second-order condition for 1’s optimal bid. Clearly, local single crossing is

necessary.

The argument to establish SINGLE-CROSSING is sufficient is standard:9 single-crossing

implies that, at b = b1(x),
∂U1

∂b
(b|x̂) < ∂U1

∂b
(b|x) = 0 <

∂U1

∂b
(b|x̃).

Finally to establish INCREASING is necessary and sufficient, we write payoffs of the profile

as in a direct mechanism U1(z|x) =
∫ z

0 (λ1(x, y)− λ1(y, y)) dy. The incentive compatible

condition, for all x and z, U(z|x)−U(x|x) ≥ 0 is equivalent to INCREASING. Moreover, as

U(0|x) = 0, the individual rational constrained is satisfied.

�

Often10 the following monotonicity assumption, or one of its variants, is used:

(M) λi(x, y) is increasing in x for all y. We have M ⇒ SINGLE CROSSING ⇒ INCREASING

⇒ LOCAL SINGLE CROSSING.

To the best of our knowledge, Araujo et al. (2008) introduced INCREASING in the context of

auctions with independent signals, although they use the more stringent assumption M. In

section B of the Appendix, we characterize explicitly (in the context of quadratic valuations)

the parameter space regions where each of the conditions in proposition ?? holds.

9See Krishna and Morgan (1997, p. 351), Lizzeri and Persico (1998, p. 104) or Athey (2001).
10See Krishna and Morgan (1997), Lizzeri and Persico (1998), Araujo et al. (2008) or Siegel (2014)
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4. NON-EXISTENCE OF MONOTONE EQUILIBRIUM

When signals are correlated, the all-pay auction may lack monotone equilibria. Even for

”small doses” of correlation, provided the support of signals is sufficiently large.

Example 1. (CORRELATED PRIVATE VALUES) The signals (X1, X2) follow a truncated, sym-

metric, bivariate normal distribution specified by (µ, σ2, ρ)and truncation points µ−M and

µ + M. Valuations are vi(x) = exp (h(xi)) for i = 1, 2 where h is a given increasing function.

Proposition 4. If h′(x) ≥ 2ρ(µ−x)
σ2(1+ρ)

for some x, there is no increasing equilibrium for example 1.

Proof. As players are symmetric, by Proposition 1, if a monotone, pure strategy equilibrium ex-

ists then it must be symmetric. However, using the fact that Xj|Xi ∼ N
(
(1− ρ)µ + ρXi, (1− ρ2)σ2)

we obtain
∂

∂x
vi(x, y) · fXj|Xi

(y|x)
∣∣∣∣
y=x

> 0⇔ h′(x) >
ρ

σ2(1 + ρ)
(µ− x). �

As a result, the symmetric monotone equilibrium is not robust to the introduction of a

small degree of correlation for a family of examples:

Corollary 3. Assume ‖h′‖∞ < K then for any ρ > 0 there is M > 0 such that the private values

model of example 1 has no monotone equilibrium.

For common-values we have similar non-existence problems:

Example 2. (COMMON-VALUE) There is no monotone equilibrium an all three families given

by the table below, where signals and the value are affiliated; and the parameter θ measures

the precision of the players’ information.

V S1|V E[V|S1 = x, S2 = y] fS2|S1
(y|x)

ln N (µ, τ−1) N (V, θ−1) exp
(

τµ+θ x+θ y+ 1
2

τ+2θ

)
N
(

τµ+θ x
τ+θ , τ+2θ

θ(τ+θ)

)
Pareto(ω, α) V · B(θ, 1) α+2θ

α+2θ−1 max(ω, x, y) (α+θ)θ
α+2θ

ω
(α+θ)1[x<ω] x

(α+θ−2)1[x>ω] yθ−1

max(ω,x,y)α+2θ

Inv−Γ(α, β) Exp(θ V−1) Γ(α+2θ−1)
Γ(α+2θ)

(x + y + β) Γ(α+2θ)
Γ(α+θ)Γ(θ)

yθ−1(x+β)α+θ

(x+y+β)α+2θ

TABLE 1. Common-value models without MPSE.

5. NON-MONOTONE EQUILIBRIA

Consider a pure strategy equilibrium profile in which every bid strategy, bi(·), is piecewise

monotone, that is, b′i (provided it is well defined) changes sign a finite number of times11.

11This is related to the ’limited complexity strategies’ of Athey’s 1997 working-paper version of Athey (2001)
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x

b(x)

β

φ1(β) φ2(β)

FIG. 1. A piecewise monotone strategy and

its local inverse bids.

v(x, y) = x + y(3− 4x + 2x2)

b(x) =

−
2
3 x3 + x2 − 3x + 4

3 if x ≤ 1
2

2
3 x3 − x2 + 3x− 4

3 otherwise.

Valuations and bid of the eq. in figure 1.

Next partition i’s type space into finite intervals [0, 1] =
⋃ni

k=1 Ii
k such these intervals are

maximal with respect the property each restriction bi|Ii
k
(·) is monotone. For exposition

purposes, let’s focus on the case where bi(·) is increasing (decreasing) in odd (even) intervals.

The cases where one or both of the bi(·) is increasing in even intervals are analogous.

Now define the kth local inverse bid function of player i: φi
k : b−1(Ii

k)→ Ii
k. Using inverse

bids, the payoff of a type x of player i who bids b is:

Ui(b|x) =

 nj

∑
k=1

φ
j
2k−1(b)∫

φ
j
2k−2(b)

λi(x, y)dy

− b,

where by convention, φ
j
0(b) = 0, and for odd n, φ

j
2nj−1(b) = 1.

Later we shall use the ni×nj – matrices Λi(b) with entries given by Λi
k,l(b) = λi

(
φi

k(b), φ
j
l(b)

)
.

We abuse notation and write ni(b) for the number of types of player i that bid b.

Definition 1. A piecewise-monotone equilibrium b is regular if, ni(b) = nj(b) < +∞ is

constant in a neighborhood12 of b for almost all b and, Λi(b) is full-rank for i = 1, 2.

Any monotone equilibrium is regular. Without regularity, there is little hope to pin-down

the equilibrium using the first-order approach. Without regularity, the differential system

corresponding to FOCs is undetermined.

For a regular equilibrium we can construct tying functions in the same way we did in the

monotone case. See section A in the Appendix. But notice a tying function, unlike in the

monotone case, maps a type of a player to another type of the same player!

12In a regular equilibrium, ni(b) may vary with b but it can take at most a countable number of values.
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To make it more concrete, let’s restrict attention to the symmetric case and also assume (at

most) only two types are pooling. The tying function is a solution of the differential equation:

Q′(x) = − λ(x, x)− λ(Q(x), x)
λ(Q(x), Q(x))− λ(x, Q(x))

.

Once we solve for Q we can reduce the first-order conditions to a single ODE. In general, it

is hard to obtain a closed form solution for Q. Also the boundary condition is not obvious

unlike in the monotone case. One also has to characterize the region where pooling occurs.

Despite these difficulties, we show below, that for the case of quadratic preferences one can

solve for the equilibrium.

5.1. Quadratic Preferences. In this section we construct non-monotone equilibrium display-

ing mirror-symmetry. Tthat is, the tying function is a translation composed with a reflection:

Q(x) = c− x for some suitable constant c. We assume:

QUADRATIC MODEL Players are symmetric, wlog. signals are independent and, player

i’s value is v(x, y) = Ax2 + By2 + Cxy + Dx + Ey + F where x, y ∈ [0, 1], x is the signal of

player i and y is the signal of −i.

In the section B of the Appendix, we characterize explicitly the parameter space regions

where M, single-crossing, increasing, and local single crossing hold.

Some preliminaries and notation: Let c def
= −2D

2A+C and notice it is the unique solution of:

v(x, x) + v(x, c− x) = v(c− x, x) + v(c− x, c− x).

We also need the auxiliary function, λ̂(x, y) def
= v(x, y) + v(x, c− y).

Remark 1. The function λ̂(x, y) satisfies λ̂(x, y) = λ̂(c− x, y) for all x and y.

Remark 2. The derivative λ̂x(x, y) is linear in x with λ̂x(c/2, y) = 0 for all y, and λ̂xx = 4A.

There are four cases to consider:

Proposition 5. Assume C < 2A < 0 < 2D < −2A− C. The equilibrium bidding function is

bell-shaped for types in [0, c] and decreasing for types in [c, 1]. We have b(0) =
∫ 1

c v(x, x)dx and,

b(x) =


b(0) +

∫ x
0 λ̂(y, y)dy if 0 ≤ x ≤ c/2,

b(0) +
∫ c−x

0 λ̂(y, y)dy if c/2 ≤ x ≤ c, and

b(0)−
∫ x

c v(y, y)dy if c ≤ x ≤ 1.

.
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Proof. Let’s verify that b(·) is indeed a NPSE by a direct mechanism approach. Let U(z|x) be

the payoff of a player with type x who bids as if his type were z.

U(z|x) =


U(c|x) +

∫ z
0

(
λ̂(x, y)− λ̂(y, y)

)
dy if 0 ≤ z ≤ c/2,

U(c− z|x) if c/2 < z < c, and∫ 1
z (v(x, y)− v(y, y)) dy if c ≤ z ≤ 1.

We want to show that x = argmax
z

U(z|x) for all x. Of course, the first-order condition is

always satisfied since Uz(x|x) = 0. Because since the equilibrium of the direct mechanism

(i.e. truth telling) is always monotone, we only to check whether the single crossing condition,

Uxz(z|x) > 0, holds:

Uxz(z|x) =


λx(x, z) if 0 ≤ z ≤ c/2,

−λx(x, z) if c/2 < z < c, and

−vx(x, z) if c ≤ z ≤ 1.

Due to remark 2 and the fact A < 0, we have:

ẑ <
c
2
< z̃⇒ λx(x, ẑ) > λx(x, c/2) = 0 > λx(x, z̃) for all x,

which proves the single-crossing holds in the pooling region. It remains to prove Uxz(z|x) > 0

in the monotonic region, z ∈ [c, 1):

−vx(x, z) = −2Ax− D− Cz ≥ min(−D− C · c,−D− C) = min(D
C− 2A
C + 2A

,−D− C) > 0,

where the first inequality follows from A < 0 and, the last inequality is implied by C < 2A <

0 < D < −A− C/2. �

We have a dual proposition:

Proposition 6. If −2A− C < 2D < 0 < 2A < C then the bidding function is U-shaped for types

in [0, c] and increasing for types in [c, 1]. We have b(0) =
∫ c/2

0 λ̂(x, x)dx and

b(x) =


b(0)−

∫ x
0 λ̂(z, z)dz if 0 ≤ x ≤ c/2,∫ x

c/2 λ̂(z, z)dz if c/2 ≤ x ≤ c, and

b(0) +
∫ x

c v(z, z)dz if c ≤ x ≤ 1.

.

Proof. The proof is analogous to the previous case and therefore omitted. �
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Proposition 7. Assume C < 2A < 0 < −2A < D < −2A− C. The equilibrium bidding function

is increasing for types in [0, c− 1] and bell shaped for types in [c− 1, 1]. We have

b(x) =


∫ x

0 v(y, y)dy if 0 ≤ x ≤ c− 1,∫ c−1
0 v(y, y)dy +

∫ x
c−1 λ̂(y, y)dy if c− 1 ≤ x ≤ c/2, and∫ c−1

0 v(y, y)dy +
∫ x

1− c
2

λ̂(y, y)dy if c/2 ≤ x ≤ 1.

.

Proof. The proof is similar to the previous cases.

U(z|x) =


∫ z

0 (v(x, y)− v(y, y)) dy if 0 ≤ z ≤ c− 1,

U(c− 1|x) +
∫ z

c−1

(
λ̂(x, y)− λ̂(y, y)

)
dy if c− 1 ≤ z ≤ c/2,

U(c− z|x) if c/2 ≤ z ≤ 1,

and so:

Uxz(z|x) =


vx(x, z) if 0 ≤ z ≤ c− 1,

λ̂x(x, z) if 1− c ≤ z ≤ c/2,

−λ̂x(x, z) if c/2 ≤ z ≤ 1,

Once more, remark 2 implies Uxz > 0 for the pooling region. As for the monotonic region,

we have vx(x, z) = 2Ax + D + Cz ≥ 2A + D + Cz ≥ 2A + D + min(0, C(c − 1)) ≥ 2A +

D min(0,−C 2D+2A+C
2A+C ) > 0. �

Proposition 7’s dual is:

Proposition 8. Assume C > 2A > 0 > −2A > D < −2A− C. The equilibrium bidding function

is decreasing for types in [0, c− 1] and U-shaped for types in [c− 1, 1]. We have

b(x) =


∫ c−1

x v(y, y)dy +
∫ c/2

c−1 λ̂(y, y)dy if 0 ≤ x ≤ c− 1,∫ c/2
x λ̂(y, y)dy if c− 1 ≤ x ≤ c/2, and∫ x
c
2

λ̂(y, y)dy if c/2 ≤ x ≤ 1.

.

Proof. The proof is analogous to the previous prop. and so it’s omitted here. �

6. CONCLUSIONS

We characterized monotone equilibrium of all-pay auctions in the continuous signals case,

allowing for correlation and interdependent values.

We showed the monotone equilibrium may fail to be robust to small degrees of correlation.

Motivated by that finding, we characterized non-monotone equilibrium for the class of

quadratic preferences.
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The existence of non-monotone pure strategy equilibria, however, remains an open ques-

tion. Rentschler and Turocy (2012)’s results suggest that some models may lack pure strategy

equilibria. In this paper, we do not discuss mixed strategy equilibrium.
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APPENDIX A. TYING FUNCTIONS FOR NON-MONOTONIC EQUILIBRIUM

Lemma 2. Consider a regular equilibrium and let b ∈ bi([0, 1]) with φi
k(b) for k = 1, ..., ni as

the corresponding local inverse bids. Define the tying functions by Qi
k(φ

i
1(b))

def
= φi

k(b). Let

Qi(x) = (x, Qi
1(x), . . . , Qi

ni
(x)). The tying functions satisfy the system of differential equations:

∂

∂x
Qi

k(x) = (−1)k+1

∣∣∣Lj
k(x)

∣∣∣∣∣∣Lj
1(x)

∣∣∣
where (Lj

k)r,c(x) = λj(Qj
a(x), Qj

b(x)) if c , k and (Lk)r,k = 1 for all r.

Proof. Now notice the first-order condition for type x of player i who bids b is:
nj

∑
l=1

(−1)l+1 λi

(
x, φ

j
l(b)

) ∂φ
j
l

∂b
(b) = 1 (FOC)

As the FOC must be satisfied for x = φi
k(b) for all k, we obtain an ODE system, which in

matrix form reads as, Λi(b) ·Φj = 1, where Φj is the nj–column vector

(
(−1)l+1 ∂φ

j
l

∂b
(b)

)
.

Consider the matrices that are Λi but with the kth column replaces by a vector of ones:

Λi
k(b) =

(
Λi

1,...,k−1(b), 1, Λi
k+1,...,ni

(b)
)

. Now, applying Cramer’s rule yields the lemma. �

APPENDIX B. QUADRATIC MODEL

Lemma 3. Single crossing holds true, if and only if,

D < (−max(A + C, 0),−min(A, 0)−min(A + C, 0)).

Condition M holds, if and only if,

D < (−max(2A, 0)−max(C, 0),−min(2A, 0)−min(C, 0)).

The condition increasing (or decreasing) holds, if and only if, single crossing holds or

[C ∈ (−max(A, 4A),−min(A, 4A)) and

D ∈ (−max(2
3(A + C), A + C),−min(2

3(A + C), A + C))

D ∈ (−max(1
3(4A + C), A),−min(1

3(4A + C), A))
]

.

Proof. ... �

Proposition 9. The single crossing condition does not hold under proposition 5, 6, 7, or 8.

Proof. ... �
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