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Abstract

We provide a model that bridges the gap between two benchmark models of
strategic network formation: Jackson and Wolinsky�s model based on bilateral
formation of links, and Bala and Goyal�s two-way �ow model, where links can
be unilaterally formed. In the model introduced and studied here a link can be
created unilaterally. When it is only supported by one of the two players the �ow
through the link su¤ers a certain decay, but when it is supported by both the
�ow runs without friction. When the decay in links supported by only one player
is maximal (i.e. there is no �ow) we have Jackson and Wolinsky�s connections
model without decay, while when �ow in such links is perfect we have Bala and
Goyal�s two-way �ow model. We study Nash, strict Nash and pairwise stability
for the intermediate models. E¢ ciency and dynamics are also examined.
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1 Introduction

Two basic models of strategic network formation in economic literature are those of
Jackson and Wolinsky (1996), where the formation of a link between two players re-
quires the agreement of both, and Bala and Goyal (2000), where a link can be formed
unilaterally by any player. The �rst model has two variants: the connections model
and the coauthors model. Bala and Goyal�s model has also two variants: the one-way
�ow model, where the �ow through a link runs toward a player only if he/she supports
it, and the two-way �ow model, where �ow runs in both directions regardless of which
player supports it. These models have been extended in di¤erent directions, all of which
branch out from one of these stems1. In this paper we thicken the trunk instead, by
providing a model that bridges the gap between two of these basic benchmark models
of strategic network formation. In a previous paper (Olaizola and Valenciano, 2014)
we provide a model that integrates Bala and Goyal�s one-way and two-way �ow models
of network formation as particular extreme cases of a more general one that we call
the �asymmetric �ow�model, and characterize Nash and strict Nash structures for
the whole range of intermediate models. This paper is a contribution to the theory of
strategic network formation which takes this uni�cation a step further. More precisely,
we provide a model which has Jackson andWolinsky�s connections model without decay
and Bala and Goyal�s two-way �ow model as extreme cases. In the model introduced
and studied here, a link can be created unilaterally, but when it is only supported by
one of the two players (such a link is referred to as a �weak� link) the �ow through
the link su¤ers a certain decay (the same in both directions). However, when a link
is supported by both players (a �strong� link) the �ow runs without friction in both
directions. When the decay in weak links is maximal (i.e. there is no �ow) we have
Jackson and Wolinsky�s connections model without decay, while when �ow in such
links is perfect we have Bala and Goyal�s two-way �ow model. In contrast to these two
extreme cases, it seems reasonable to consider intermediate situations, where strong
doubly-supported links �work�better than weak singly-supported ones, but both types
of link are feasible. Moreover, this provides an extension of both models and allows
for a study of the �transition�from one to the other, providing a �neighborhood�of
each model which provides a point of view for testing the robustness of the results for
each of the extreme cases. We study Nash, strict Nash and pairwise stability for the
intermediate models. We also discuss e¢ ciency and dynamics.
A noteworthy outcome of this exercise is the emergence (for certain ranges of the

parameters, i.e. cost and decay through weak links) in this transition of a particularly
simple type of core-periphery structure2 in equilibrium, namely networks with a �core�

1Given the (to our knowledge) completely di¤erent direction of the joint extension studied here,
we omit an unavoidable, too long or incomplete list of extensions orthogonal to this one. Excellent
monographs on social and economic networks are Goyal (2007), Jackson (2008) and Vega-Redondo
(2007).

2Core-periphery networks arise in di¤erent contexts: geographical, biological, social, economic,
�nancial, industrial research, etc. See, for instance, Csermely et al. (2013), and the literature cited
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consisting of a tree of strong links whose terminal nodes are involved in one or more
weak links with �peripheral�players, each of whom supports a single weak link with
the core. Moreover, this arises in a context of ex-ante homogeneity3, and interestingly
enough in a model �close� to -in fact, intermediate between- the two best known
economic models of network formation.
The rest of the paper is organized as follows. Section 2 introduces notation and

terminology relative to graphs. Section 3 reviews the strategic models of network
formation of Jackson and Wolinsky (1996) and Bala and Goyal (2000). In Section 4,
a model that bridges the gap between these two is presented and Nash stable, Nash
strictly stable and pairwise stable structures are studied for the intermediate models.
Section 5 addresses the question of e¢ ciency, and Section 6 is devoted to dynamics.
Finally, Section 7 summarizes the main conclusions and points out some lines of further
research.

2 Graphs: notation and terminology

A directed N -graph is a pair (N;�), where N = f1; 2; :::; ng is a �nite set with n � 3
whose elements are called nodes, and � is a subset of N �N , whose elements are called
links. When both (i; j), and (j; i) are in �, we say that i and j are connected by a
strong link, while if only one of them is there we say that they are connected by a weak
link. If M � N , the M -subgraph of (N;�) is the M -graph (M;� jM) with

� jM := f(i; j) 2M �M : (i; j) 2 �g:

Alternatively, a graph � can be speci�ed by a map g� : N �N ! f0; 1g,

g
�
(i; j) :=

�
1; if (i; j) 2 �
0; if (i; j) =2 �:

When we specify a graph � in this way by a map g, we denote gij := g(i; j), and if
gij = 1 link (i; j) is referred to as �link ij in g�, and we write ij 2 g. Note that for
M � N , subgraph � jM is speci�ed by g jM�M but, abusing the notation, this subgraph
is denoted by g jM . The empty graph is denoted by ge (i.e. ge(i; j) = 0, for all i; j).
If gij = 1 in a graph g, g� ij denotes the graph that results from replacing gij = 1

by gij = 0 in g; and if gij = 0, g + ij denotes the graph that results from replacing
gij = 0 by gij = 1. Similarly, if gij = gji = 1, g� ij = (g� ij)� ji, and if gij = gji = 0,
g + ij = (g + ij) + ji. An isolated node in a graph g is a node that is not involved in

therein.
3Given their presence in economic contexts, models of formation of core-periphery networks have

attracted considerable attention. In some models, such structures arise via the assumption of some
form of heterogeneity among the players (e.g. van der Leij et al., 2014), while in others they originate
in spite of ex ante homogeneity (e.g. Galeotti and Goyal, 2010).
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any link, that is, a node i s.t. for all j 6= i, gij = gji = 0. A node is peripheral in a
graph g if it is involved in a single link (weak or strong).
Given a graph g, a path of length k from j to i in g is a sequence of k + 1 distinct

nodes j0; j1; :::; jk, s.t. j = j0, i = jk, and for all l = 1; :::; k, gjl�1jl = 1 or gjljl�1 = 1; if
for all l = 1; :::; k, gjljl�1 = 1, the path is said to be weakly i-oriented, and i-oriented if
for all l = 1; :::; k, gjljl�1 = 1 and gjl�1jl = 0. A graph g is acyclic or contains no cycles
if there is no sequence of k (k > 2) distinct nodes, i1; :::; ik, s.t. for all l = 1; :::; k � 1,
gilil+1 = 1 or gil+1il = 1, and gi1ik = 1 or giki1 = 1.

De�nition 1 Given a graph g, and C � N , the subgraph g jC is said to be:
(i) A weak component of g if for any two nodes i; j 2 C (i 6= j) there is a path from j
to i in g, and no subset of N strictly containing C meets this condition.
(ii) A strong component if for any two nodes i; j 2 C (i 6= j) there is a path of strong
links from j to i in g, and no subset of N strictly containing C meets this condition.

When a component in either sense consists of a single node we say that it is a trivial
component. In both senses, an isolated node, i.e. a node that is not involved in any
link, is a trivial component. The size of a component is the number of nodes from
which it is formed. For instance, the three graphs4 in Figure 1 have a unique weak
component, (a) has four strong componentes (two of them trivial), (b) has nine strong
componentes (all of them trivial), and (c) has only one strong component.
Based on these de�nitions we have two di¤erent notions of connectedness. We

say that a graph g is weakly (strongly) connected5 if g is the unique weak (strong)
component of g. Note that strong connectedness implies weak connectedness. The
three graphs in Figure 1 are weakly connected, but only (c) is strongly connected.
A weak (strong) component g jC of a graph g is minimal if for all i; j 2 C s.t.

gij = 1, the number of weak (strong) components of g is smaller than the number of
weak (strong) components of g � ij.
A graph is minimally weakly (strongly) connected if it is weakly (strongly) con-

nected and minimal. In both cases, a minimally connected graph is a tree (of weak
links in one case, of strong links in the other), but, in principle, any node in such
trees can be seen as the root, i.e. a reference node from which there is a unique path
connecting it with any other. Note that a weakly connected graph with no cycles is
a tree in general formed by weak and strong links, and in general neither minimally
weakly nor strongly connected. A minimally weakly connected graph is said to be an

4Throughout the text, a strong link between two nodes is represented by a thick segment connecting
them, while a weak link is represented by a thin segment between them only touching the node that
supports it.

5Note that the sense in which the term �strongly connected� is used here di¤ers from its usual
meaning in the literature, where a directed network or digraph is said to be strongly connected when
for any two distinct nodes, i; j there is a weakly i-oriented path from j to i. In our context, a clear
distinction between weak and strong links invites the use of the term in the sense in which we use it
here.
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Figure 1: Weak and strong connectedness

i-oriented tree if for any node j 6= i, the only path from j to i is i-oriented. Graph
(b) in Figure 1 is minimally weakly connected, and graph (c) is minimally strongly
connected.
Given a graph g, the following notation is also used:

Nd(i; g) := fj 2 N : gij = 1g (i.e. set of nodes with which i supports a link),
N e(i; g) := fj 2 N : gji = 1g (i.e. set of nodes which support a link with i),
N o(i; g) := Nd(i; g) [N e(i; g) (i.e. set of nodes involved in a link with i):

The set of nodes connected with i by a path is denoted by N(i; g). Note that
none of these sets contains i. Their cardinalities are denoted by �di (g) := #Nd(i; g);
�ei (g) := #N

e(i; g); �oi (g) := #N
o(i; g), and �i(g) := #N(i; g).

We consider two measures of distance between nodes in a graph g based on two
di¤erent notions of the length of a path. When there is no path connecting two nodes
the distance between them for both the two notions is said to be 1. The distance
between two nodes i; j (i 6= j), denoted by d(i; j; g), is the length of the shortest path
connecting them. In Section 4 we consider a situation where the �ow through weak
links has some friction or decay, in contrast with strong links, through which �ow is
without friction. This motivates the following notion. The discounting length of a path
from j to i in g is the length of the path minus the number of strong links in that path,
i.e. the number of weak links in it. The discounting distance between j and i (i 6= j)
in g, denoted by �(i; j; g), is de�ned as the discounting length of the path from j to
i with the shortest discounting length. Note that d(i; j; g) � �(i; j; g). The following
example illustrates the two notions of distance.

Example 1: Consider the 6-node graph g formed by links: 12; 23; 32; 43; 45; 56:

t t t t t t1 2 3 4 5 6

Then, d(1; 6; g) = d(6; 1; g) = 5; �(1; 6; g) = �(6; 1; g) = 4, d(2; 3; g) = d(3; 2; g) = 1,
�(2; 3; g) = �(3; 2; g) = 0:
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3 Strategic models of network formation

We consider situations where individuals may initiate or support links with other in-
dividuals under certain assumptions, thus creating a network formalized as a graph.
We assume that at each node i 2 N there is an agent identi�ed by label i and referred
to as player6 i. Each player i may initiate or, more generally, intend to initiate links
with other players as an intended link may or may not, depending on the assumptions,
actually be formed7. A map gi : Nnfig ! f0; 1g describes the links intended by i.
We denote gij := gi(j); and gij = 1 (gij = 0) means that i intends (does not intend)
to form a link with j. Thus, vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es the links
intended by i and is referred to as a strategy of player i. Gi := f0; 1gNnfig denotes
the set of i�s strategies and GN = G1 � G2 � ::: � Gn the set of strategy pro�les. A
strategy pro�le g 2 GN univocally determines a graph (N;�g) of intended links, where
�g := f(i; j) 2 N � N : gij = 1g. Given a strategy pro�le g 2 GN and i 2 N , g�i
denotes the Nnfig strategy pro�le that results by eliminating gi in g, i.e. all links
intended by i, and (g�i; g0i), where g

0
i 2 Gi, denotes the strategy pro�le that results by

replacing gi by g0i in g.
Let g be a strategy pro�le representing players�intended links. We denote by g�

the associated graph representing the actual network that results from g. We consider
several models under di¤erent assumptions, but the following are generally assumed:
1. Whether it actually forms or not, an intended link of player i with player j

means a cost cij > 0 for all j 6= i.
2. The player at node j has a particular type of information or other good8 of value

vij for player i.
3. If v = (vij)i;j2N is the matrix of values, c = (cij)i;j2N is the matrix of cost

(assuming9 cii = vii = 0), and g is the strategy pro�le and g� the resulting network,
the payo¤ of a player is given by a function

�i(g) = Ii(g
�;v)� ci(g; c); (1)

where Ii(g�;v) is the information received by i through the actual network g�, and
ci(g; c) =

P
j2Nd(i;g) cij the cost incurred by i.

Under di¤erent assumptions, di¤erent models specify g� and Ii di¤erently. In all
cases a game in strategic form is speci�ed: (GN ; f�igi2N), and we consider three forms

6However, so as not to overcomplicate our writing style due to e¤orts to avoid a biased language,
we often refer to players by the more neutral term �nodes�.

7This is similar to Myerson�s (1977) model, where all players simultaneously announce the set of
players with whom they wish form links. But while in Myerson�s model links are formed if and only
if they were proposed by both, we consider di¤erent scenarios here.

8Although other interpretations are possible, in general, we give preference to the interpretation
in terms of information.

9Only to make it possible to call c and v matrices. Nevertheless, in practice cii and vii play no
role. Note also that by de�nition gii remains unde�ned for any strategy.
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of stability: Nash equilibrium and two di¤erent re�nements of it: strict Nash equilib-
rium and pairwise stability (Jackson and Wolinsky, 1996).

De�nition 2 A strategy pro�le g is:
(i) A Nash equilibrium if �i(g�i; g0i) � �i(g); for all i and all g0i 2 Gi:
(ii) A strict Nash equilibrium if �i(g�i; g0i) < �i(g); for all i and all g

0
i 2 Gi (g0i 6= gi):

(iii) Pairwise stable if it is a Nash equilibrium and for any pair of players i; j (i 6= j)
s.t. gij = gji = 0, if �i(g + ij) > �i(g) then �j(g + ij) < �j(g).

We consider two basic models relating g� to g:

(i) g�ij := g
min
ij = minfgij; gjig: (2)

(ii) g�ij := g
max
ij = maxfgij; gjig: (3)

Under assumption (2) only links intended by both players actually form. This is
Jackson and Wolinsky�s (1996) model of network formation, where establishing a link
requires that both players intend it. Under assumption (3) a link forms between two
players as soon as at least one of them intends it. Thus, in this case a player can
create a strong link unilaterally. This is Bala and Goyal�s (2000) two-way �ow network
formation model.
If every node receives the value of the players with whom it is connected by a path

in g� without friction, then, according to each of these speci�cations of the resulting
actual network, i.e., whether g� is given by (2) or (3), the payo¤ of a player i given by
(1) becomes

�mini (g) =
X

j2N(i;gmin)

vij �
X

j2Nd(i;g)

cij; (4)

�maxi (g) =
X

j2N(i;gmax)

vij �
X

j2Nd(i;g)

cij: (5)

The model speci�ed by (2) and (4) is Jackson and Wolinsky�s connections model
without decay (�J&W model�often in what follows), that is, assuming that the �ow
through a link of the actual network is perfect or without loss. Similarly, (3) and (5)
specify Bala and Goyal�s two-way �ow model without decay (�B&G model�often in
what follows).

4 Between the J&W and B&G models

In both the J&W and B&G models, a level of friction in the �ow through a link can be
assumed, so that only a fraction � (0 � � � 1), referred to as the level of decay, of the
information at one node reaches the other through that link10. In both cases, whether
10In fact, this is the only situation considered by Jackson and Wolinsky (1996), while Bala and

Goyal (2000) also consider the case with no decay.
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perfect �ow or a level of decay is assumed, the �ow is assumed to be homogeneous (i.e.
the same through all actual links) in both models. In order to bridge the gap between
these models, making a transition from one to the other possible, we introduce a very
simple form of endogenous heterogeneity11 relative to the level of decay. We consider a
model where information �ows through strong links without friction in both directions,
while �ow through weak links is the same in both directions but with a certain decay.
This can be formalized as follows. In both benchmark models the actual network

g� speci�es the decay �g
�

ij through each link ij 2 g�, namely, �
g�

ij = g�ij if there is no
decay, and �g

�

ij := �g
�
ij if the level of decay is �. Note that the decay matrix (�

g�

ij )i;j2N

(assuming �g
�

ii = 0) encapsulates all the relevant information (along with costs and
values).
Assume now that when players�strategy pro�le is g the resulting decay matrix of

the actual network, �g = (�gij)i;j2N , is given by

�gij := �g
max
ij + (1� �)gminij ; (6)

for all i; j 2 N , with � 2 [0; 1]. In this model, for 0 < � < 1, when a link is supported
by both players (gij = gji = 1) we have gmaxij = gmaxji = gminij = gminji = 1, so that
�gij = �gji = 1, i.e. information �ows without friction in both directions, while when
one and only one player supports it (gij = 1 and gji = 0, or gij = 0 and gji = 1)
we have gmaxij = gmaxji = 1 and gminij = gminji = 0, i.e. �ow through is the same in both
directions but with a certain decay (�gij = �

g
ji = �). Note this model�s similarity to and

di¤erence from the two-way �ow model with decay. Weak links, i.e. links supported by
only one player, work as in that model, while the �ow through strong links, i.e. links
supported by both players, is perfect. This important di¤erence enriches the setting of
the benchmark models with the possibility of di¤erent treatment of links with strong
support12.
Now the point is to study the stable networks in this model for the di¤erent values

of the parameter � (0 � � � 1) assuming homogeneity in costs and values across
players, that is, we assume throughout the paper

vij = 1 and cij = c, where 0 < c < 1 and i 6= j;
11See Bloch and Dutta (2009) for a model with endogenous heterogeneity where players may invest

their endowments across links.
12Moreover, if a level of decay � is added to the model a new one emerges, whose decay matrix is

�0gij := ��
g
ij = ��g

max
ij + �(1� �)gminij ;

that is, when a link is supported by both players the �ow through it is the same in both directions
(�0gij = �0gji = �), while when only one player supports it (gij = 1 and gji = 0) the �ow through it
is the same in both directions but with a certain greater decay (�0gij = �

0g
ji = ��). That is, with and

without decay, doubly supported links are treated di¤erently, which may be a reasonable assumption
in certain contexts. Again, when � = 1 this is B&G two-way �ow model with decay �, while when
� = 0 this is J&W�s connections model with decay �.
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so that, for all values of the parameters, the cost for a player i in a pro�le g is given by

ci(g) = c�
d
i (g):

Let us �rst consider the extreme cases � = 0 and � = 1. When � = 0 we have
Jackson and Wolinsky (1996) connections model without decay13: a link is formed if
and only if both players intend it and in this case the �ow through it is perfect in both
directions. Thus (4) becomes

�mini (g) = �i(g
min)� c�di (g): (7)

Proposition 1 If the decay matrix �g is given by (6) with � = 0 and payo¤s by (7) :
(i) The Nash and strict Nash pro�les are those where all links are strong and all strong
components are minimal.
(ii) The pairwise stable pro�les are those minimally strongly connected.

Proof. (i) As �gij = 1 if and only if gij = gji = 1, and �
g
ij = 0 otherwise, in equilibrium

only links supported by both players may exist. As �ow is perfect within each strong
component, no redundant link may exist in equilibrium. Thus, all strong components
of g must be minimal. In these conditions no player has incentives to intend new links
which would actually not form, nor to sever current ones because c < 1. Therefore
such architectures of g are the only ones which are Nash equilibrium. Moreover, as
c < 1, severing a link in any of them means a strict loss. Therefore, they are also strict
Nash pro�les. Note that the empty network trivially meets the conditions for Nash
and strict Nash stability.
(ii) Now assume that there is more than one minimal strong component in an

equilibrium pro�le. Then for any two players in di¤erent strong components it is
pro�table to form a link. Thus assuming that bilateral agreements are feasible, only
those pro�les with a unique minimal strong component, i.e. those minimally strongly
connected, are pairwise stable.
Thus, in equilibrium, for any two players either there is no path that connects them

or there is a unique path formed by strong links, but note that a Nash network can be
non-connected, given that a player cannot form an actual link unilaterally.
As to the case � = 1 we have Bala and Goyal (2000) two-way �ow model (without

decay), where a link can be unilaterally formed by any player, and (5) becomes

�maxi (g) = �i(g
max)� c�di (g): (8)

In this model pairwise stability does not re�ne Nash equilibrium because bilateral
agreements add nothing in this context. As to noncooperative stability, we have Bala
and Goyal�s well-known result.

13As pointed out in footnote 10, unlike Bala and Goyal (2000), this case is not considered in Jackson
and Wolinsky (1996), where a decay of � < 1 is always assumed.
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Proposition 2 (Bala and Goyal, 2000) If the decay matrix �g is given by (6) with
� = 1 and payo¤s by (8) :
(i) The Nash pro�les are those minimally weakly connected.
(ii) The strict Nash pro�les are center-sponsored stars, where a player supports weak
links with all other players.

Let us consider now the intermediate situations between these two extreme cases
represented by the benchmark models and see how the transition occurs. That is,
assume that the decay matrix of the actual network is given by (6) with 0 < � < 1.
Then the information received by player i is given by

Ii(g) =
X

j2N(i;g)

��(i;j;g);

where �(�; �; g) is the discounting distance introduced in Section 2, and the payo¤
function (1) becomes

�i(g) =
X

j2N(i;g)

��(i;j;g) � c�di (g): (9)

Example 2: Consider the strategy pro�le given by the 6-node graph in Example 1.
Player 3 receives perfectly from player 2, and receives from players 1 and 4 with a decay

t t t t t t1 2 3 4 5 6

�, from player 5 with a decay �2, and from player 6 with a decay �3; and pays only
for link 32. Thus player 3�s payo¤ is �3(g) = 1 + 2�+ �2 + �3 � c: Similarly, �4(g) =
3�+ 2�2 � 2c; and �6(g) = �+ �2 + 2�3 + �4:
We thus have a model with two parameters, � and c, both ranging from 0 to 1.

In what follows we study stability for di¤erent con�gurations of values (�; c) of these
parameters within the open square (0; 1)� (0; 1) (see Figure 2).

4.1 Case c � 1��: only strong links
As the following lemma shows, in this region only strong links form in equilibrium.

Lemma 1 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and 0 < c < 1� �; in equilibrium only strong links occur.

Proof. Assume g is a Nash pro�le where gij = 1 and gji = 0. First note that then
there is no path of strong links connecting i and j, otherwise ij would be super�uous
for i. Therefore the contribution of i�s value to j�s payo¤ is �, while if j makes this
link strong by paying c it would be 1� c. Thus, as c < 1��, j�s payo¤would improve
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by doing this, and g would not be a Nash pro�le. Thus, in a Nash pro�le within this
range of values of � and c all links are strong.
The following proposition provides a characterization of Nash, strict Nash and

pairwise stable pro�les within the half square (0; 1)�(0; 1) below the line c = 1��, and
shows how the results for the J&Wmodel (Proposition 1) extend smoothly, establishing
the range of values of the parameters within which the pro�les described in Proposition
1 remain Nash, strict Nash or pairwise stable within this region.

Proposition 3 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and 0 < c < 1� �; then:
(i) If c � �; the Nash (strict Nash) pro�les are those minimally strongly connected and
those not minimally strongly connected where all links are strong, all strong components
are minimal and the maximal size of a strong component is smaller than or equal to
(strictly smaller than) c

�
.

(ii) If c < �; the Nash pro�les are all those minimally strongly connected, which are
also strict Nash.
(iii) For the whole range of values, the pairwise stable pro�les are those minimally
strongly connected.

Proof. (i) Assume g is a Nash pro�le. By Lemma 1, within this range of values
of � and c all links are strong in equilibrium and, as no super�uous link would be
supported in equilibrium, all strong components must be minimal. If g is minimally
strongly connected no player has an incentive to intend or sever a link. Otherwise,
let s (integer s.t. 1 � s < n) be the size of a strong component of g, and i a node
that does not belong to that component. By paying for a weak link with any node in
that component i would receive �s � c, and if �s � c > 0, i.e. if s > c

�
this would

mean a strict improvement in i�s payo¤. Therefore, for g to be a Nash pro�le no strong
component of g may be larger than c

�
. Reciprocally, if these conditions hold no node

has a best response that improves its payo¤. As to strict Nash stability, this condition
must hold strictly.
(ii) If c < �, as in (i) it is easy to conclude that in a Nash pro�le all links are

strong and all strong components are minimal. But now, as c < �, it is strictly
pro�table to initiate a weak link with an isolated player. Therefore, a Nash pro�le
must have a single strong component which must be minimal. Reciprocally, in any
minimally strongly connected pro�le no node has a best response that improves its
payo¤. Moreover, all these pro�les are strict Nash as any unilateral change of strategy
would cause a loss.
(iii) Once bilateral agreements are feasible, a pro�le which is not strongly connected

cannot be pairwise stable since for any two players in di¤erent strong components of a
Nash network it would be pro�table to form a strong link. Thus, whatever the values
of c and � within the range considered, only minimally strongly connected pro�les
remain pairwise stable.

10
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Figure 2: Stability for c < 1� �

Remarks:
(i) Figure 2 illustrates the situation described by Proposition 3. The left-hand

side of the rectangle, i.e. � = 0, corresponds to the J&W connections model without
decay, where Nash and strict Nash pro�les are those where all links are strong and
all strong components of g are minimal, and those minimally strongly connected are
pairwise stable (Proposition 1). Proposition 3 characterizes Nash, strict Nash and
pairwise stable pro�les within the triangle below the straight line c = 1 � �. Within
this triangle, where c < 1 � �, as one moves rightwards from the side where � = 0,
all the structures characterized in Proposition 1-(i) as Nash and strict Nash when
� = 0 remain strict Nash as far as n � 1 < c

�
, while at n � 1 = c

�
the only isolated

individual in a pro�le where the rest of the players form a minimal strong component
is indi¤erent as regards paying for a weak link with any individual, but when n�1 > c

�

this player has an incentive to pay. In this way, as c
�
decreases, smaller maximal sizes

of a strong component su¢ ce to make it pro�table for any player that does not belong
to that component to pay for a weak link with any player belonging to it. Thus, in
region S, where c > s�, all minimally strongly connected pro�les and those pro�les
described in Proposition 3-(i) where the size of the largest strong component is smaller
than or equal to (strictly smaller than) s are Nash (strict Nash) stable. When c

�
> 1

but its value is very close to 1, apart from minimally strongly connected pro�les only
the empty network, where all strong components are singletons, remains strict Nash.
Beyond this point, i.e. when c < � and c < 1 � �, the only Nash and the only strict
Nash stable pro�les are those minimally strongly connected.
(ii) Only minimally strongly connected pro�les are pairwise stable. But in view of

Proposition 3-(ii), within the range of values considered, below the line c = � pairwise
stability adds nothing to (i.e. does not re�ne) Nash stability, given that in this case
bilateral coordination is irrelevant because it does not really o¤er any new chances to
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the players.
As to strategy pro�les on the line c = 1 � �, we have the following conclusion

relative to the Nash pro�les emerging from propositions 1 and 3:

Proposition 4 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and c = 1�� : (i) The pro�les characterized as strict Nash for certain ranges of values
of c

�
in Proposition 3 are Nash but not strict Nash for the same ranges of values of c

�
,

with the sole exception of the empty network, which remains strict Nash if c > �. (ii)
Among them, only minimally strongly connected pro�les are pairwise stable.

Proof. (i) The pro�les characterized as strict Nash in Proposition 3, consist of one or
more minimal strong components and all their links are strong. When c = 1� � such
pro�les continue to be Nash for the same range of values of c

�
, but now, as c = 1��, a

node supporting a strong link with a peripheral node is indi¤erent between supporting
it or not. This leaves only the empty network pro�le as possible strict Nash. In this
case, if c = � a node is indi¤erent between supporting a weak link with any other or
not, while if c < � for any node it is pro�table to initiate a weak link with an isolated
player. Finally, if c > � for a node initiating a weak link with an isolated player means
a loss. Thus in this case the empty network is strict Nash.
(ii) From (i) a minimally strongly connected pro�le is a Nash network and obviously

no two players have incentives to form a new strong link. If the pro�le consists of
more than one strong component and all links are strong, any two players in di¤erent
components have incentives to create a strong link.
As shown below, there are some other stable pro�les when c = 1� �.

4.2 Case c � 1��: peripheral players weakly-linked
We now address the question of stability within the half square above the line c = 1��.
We �rst show that above this line, that is, when c > 1 � �, in equilibrium peripheral
players are involved only in weak links. Moreover, in this region, if c > �, in equilibrium
peripheral players must support their weak links.

Lemma 2 If the decay matrix �g is given by (6) and payo¤s by (9), with c > 1 � �,
and g is a Nash pro�le, then: (i) All peripheral players are connected by a weak link.
(ii) If in addition c > �, then peripheral players support their weak links.

Proof. Assume that g is a Nash pro�le and #N o(i; g) = 1, i.e. there is a unique
node j s.t. gij = 1 or gji = 1. (i) If gij = 1 and gji = 1, then, if c > 1 � �,
�j(g � ji) � �j(g) = � � (1 � c) > 0, which contradicts the fact that g is a Nash
pro�le. Therefore, necessarily gij = 0 or gji = 0. (ii) Now assume c > �. If gij = 0,
then gji = 1, but then �j(g � ji)��j(g) = c� � > 0, which contradicts the fact that
g is a Nash pro�le. Thus, necessarily gij = 1 and gji = 0.
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Therefore none of the pro�les characterized as Nash pro�les in Proposition 3, where
peripheral players are involved in strong links, continues to be Nash above the line
c = 1 � �. This raises the question of whether the pro�les that result if all strong
links connecting peripheral players in a pro�le which is strict Nash below c = 1�� (as
characterized by Proposition 3) are replaced by weak links (supported by the peripheral
players if c > �) are stable above the line c = 1 � �. Note that such architectures
can be precisely described in core-periphery terms as comprising one or more weak
components, each consisting of a minimally strongly connected part (i.e. a tree of
strong links), and a set of peripheral players, each of them connected by weak links
with nodes in that �core�14 (see Figure 3).
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Figure 3: Tree-core-periphery pro�les

Formally we have the following.

De�nition 3 A pro�le g is said to be �tree-core-periphery�if N is partitioned into two
nonempty sets, N = P [Q with P \Q = ?, such that (i) g jQ is a strong component
of g which is minimal, (ii) each node in P is peripheral and is connected by a weak link
with a node in Q; and (iii) P contains all peripheral nodes in g. We refer to Q as the
�core�of g and to P as its �periphery�.

A comparison with the usual features of a core-periphery structure mentioned in
footnote 14 is pertinent here. In a tree-core-periphery pro�le the core is a tree of strong
links, i.e. (strong) connectedness isminimal, unlike the usual high connectedness in the
core, but, given the perfect transmission through strong links, the communication is
perfect between nodes in the core, making further links between them unnecessary. As
to peripheral nodes, one single weak link connects each of them to the core and there
is no interconnection between them. Thus, the core-periphery term seems adequate
here.
14A variety of formal de�nitions of core-periphery graphs can be found in the literature, but the basic

ingredients are a core consisting of a set of nodes which are highly (or completely) interconnected, and
a periphery consisting of a set of nodes which are hardly (if at all) interconnected with one another
but are connected with some (one/at least one/all) nodes in the core.
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A tree-core-periphery pro�le where all peripheral players support their weak links
with the core is said to be periphery-sponsored (see Figure 3-(b)). When the core is
trivial, i.e. Q is a singleton, the structure is a star of weak links.
The following three lemmas help characterize stable pro�les with no cycles within

the region considered. Lemma 3 shows that in the region where c > 1�� the existence
of peripheral players in Nash pro�les with no cycles implies weak connectedness, which
explains why we only consider weakly connected structures of this type. Lemma 4 is
instrumental in proving Lemma 5, which establishes that a Nash pro�le with no cycles
contains at most one non-trivial strong component.

Lemma 3 Let the decay matrix �g be given by (6) and payo¤s by (9). Assume c > 1��,
and let g be a Nash pro�le; then either no player is peripheral in g, or g is weakly
connected.

Proof. Let g be a Nash pro�le. Assume that there is a peripheral player i in g, and
N o(i; g) = fjg. In view of Lemma 2, if c > �, it must hold that gij = 1 and gji = 0.
If g is not weakly connected, take any node k in another weak component of g. Then
�k(g+kj) = �k(g)+�i(g)+�

2 > �k(g), that is, k can improve its payo¤ by initiating
a weak link with j, which contradicts the fact that g is a Nash pro�le. Assume now
that c � �. In this case it may be gij = 1 or gji = 1. If gij = 1, proceed as before, and
if gji = 1 then k can also improve its payo¤ by initiating a weak link with i or j.
The next two lemmas establish some facts relative to Nash pro�les (6= ge) with

no cycles. Observe that such a pro�le must consist of a weakly connected (Lemma 3)
tree-structure, in general formed by weak and strong links.

Lemma 4 Let the decay matrix �g be given by (6) and payo¤s by (9), with c > 1� �.
If g is a Nash pro�le with no cycles, then a node connected by a weak link with a
non-trivial strong component must support it.

Proof. Let i be a node connected by a weak link with a node j in a non-trivial strong
component of a Nash pro�le with no cycles. Assume that the weak link between i
and j is supported by j. Node j must support at least one strong link jj0. Given the
tree-structure of g, node j does not have any incentive to withdraw its support from
that strong link if

�(Ij0(g � jj0) + 1) � Ij0(g � jj0) + 1� c i.e. c � (Ij0(g � jj0) + 1)(1� �):

But then it is worthwhile for i to double its link with j. To see this, note that a
necessary condition for i not to have an incentive to double its link with j is

�(Ij0(g � jj0) + 2) � Ij0(g � jj0) + 2� c i.e. c � (Ij0(g � jj0) + 2)(1� �):

Therefore the weak link between i and j must be supported by i.
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The following Lemma proves that in equilibrium acyclic pro�les cannot have more
than one non-trivial strong component, and that when a non-trivial strong component
does exist players in that component, and they alone, receive the maximal amount of
information.

Lemma 5 Let the decay matrix �g be given by (6) and payo¤s by (9), with c > 1� �.
If g 6= ge is a Nash pro�le with no cycles, then: (i) g is a weakly connected pro�le
with at most one non-trivial strong component: (ii) If g has a unique non-trivial strong
component it contains the nodes that receive the maximal amount of information in g:

Proof. (i) A Nash pro�le g 6= ge with no cycles must necessarily contain peripheral
players. Then, by Lemma 3, g must be weakly connected. Therefore either g is
minimally weakly connected or there is at least one strong link, in other words at least
one strong component with more than one node. We now prove that in this case g has
only one non-trivial strong component. Assume that there are two strong components
C and C 0 with more than one node. By Lemma 4, a weak link that connects a node
with a non-trivial strong component must be supported by that node. This implies
that in equilibrium the path connecting the two non-trivial strong components, C and
C 0, must contain at least two weak links, say kk0 and ll0, with k0 2 C and l0 2 C 0. Now
let i0 (j0) be a/the node in C (C 0) furthest away from k0 (l0) in C (C 0). Thus i0 (j0) is a
peripheral player in g jC (g jC0), which, by Lemma 2, cannot be peripheral in g. That
is, two nodes, i and j, must exist which support (by Lemma 4) weak links ii0 and jj0.
Let �(i; j; g) be the discounting distance between i and j (note that �(i; j; g) � 4). Let
ti (tj) denote the weak component containing i (j) in the graph resulting by deleting
link ii0 (jj0) in g. And let I ii

0
i (g � jj0) (I

jj0

j (g � ii0)) denote the information received
by i (j) in the graph that results from g by deleting jj0 (ii0) through link ii0 (jj0), that
is, the information that each of them receives from the part of the network between
them via their weak link with the corresponding strong component. Assume w.l.o.g.
I ii

0
i (g � jj0) � I

jj0

j (g � ii0). Then we have

Ii(g) = Ii(ti) + I
ii0

i (g � jj0) + ��(i;j;g)(Ij(tj) + 1);

while if i replaces its link with i0 by a link with j0, i will receive

Ii(g � ii0 + ij0) = Ii(ti) + Ijj
0

j (g � ii0) + �2(Ij(tj) + 1):

But then, as �(i; j; g) > 2, we have

Ii(g� ii0+ ij0)� Ii(g) = Ijj
0

j (g� ii0) +�2(Ij(tj) + 1)� I ii
0

i (g� jj0)���(i;j;g)(Ij(tj) + 1)

= Ijj
0

j (g � ii0)� I ii
0

i (g � jj0) + (�2 � ��(i;j;g))(Ij(tj) + 1) > 0:
That is, i can improve its payo¤ by replacing link ii0 by ij0, which contradicts the
fact that g is a Nash pro�le. Thus, a Nash pro�le has at most one non-trivial strong
component.
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(ii) Let g be a Nash pro�le with no cycles and a unique non-trivial strong component
g jC . Evidently, all nodes in C receive the same amount of information. Assume that
i0 =2 C receives the maximal amount of information in g. As g has no cycles, there
must be at least two peripheral nodes, say i and j, in g jC . By Lemma 2-(i), every
peripheral player in g must be connected by a weak link, so both i and j must be
connected by a weak link with another node each, say with i0 and j0 respectively. By
Lemma 3, such links must be supported by i0 and j0. Then either link i0i is critical
for i0 to receive i0 or j0j is critical for i0 to receive j0 (or both). Assume that i0i is
critical for i0 to receive i0. Then i0 has an incentive to replace its weak link with i by
a weak link with i0, which contradicts the fact of g being a Nash pro�le. Thus, the
nodes that receive the maximal amount of information in g are those in the non-trivial
strong component g jC and those alone.
The following result, based on the preceding lemmas, shows that when c > 1 �

� acyclic Nash pro�les must be minimally weakly connected or tree-core-periphery
pro�les.

Proposition 5 Let the decay matrix �g be given by (6) and payo¤s by (9), with c >
1 � �. If g(6= ge) is a Nash pro�le with no cycles, then: (i) If c > � then g is
necessarily a periphery-sponsored tree-core-periphery pro�le. (ii) If c � � then g is
either a minimally weakly connected pro�le or a periphery-sponsored tree-core-periphery
pro�le.

Proof. Let g 6= ge be a Nash pro�le with no cycles. Then, by Lemma 5, g must be a
weakly connected pro�le with at most one non-trivial strong component.
(i) Consider �rst the case c > �. In this case, by Lemma 2-(ii), in equilibrium

peripheral players support their weak links. Assume there are two peripheral players, i
and j, at discounting distance �(i; j; g) > 2: Assume w.l.o.g. that Ii(g) � Ij(g); then it
is advantageous for i to replace its weak link by a link with the same player linked by j,
which contradicts the fact that g is a Nash pro�le. Therefore the discounting distance
between any two peripheral players must be exactly 2, which entails the following. If g
does not contain a non-trivial strong component, then g is a periphery-sponsored star.
If g does contain a (necessarily unique by Lemma 5-(i)) non-trivial strong component,
that component must form a tree of strong links where, by Lemma 2-(i), none of its
nodes is peripheral in g, and this together with distance 2 between peripheral players
implies that g must be a periphery-sponsored tree-core-periphery pro�le. In both cases
the consequence is that g must be a periphery-sponsored tree-core-periphery pro�le.
(ii) Consider now the case c � �. As g is a weakly connected pro�le without

cycles, if it has no non-trivial strong component then g must be minimally weakly
connected. Assume now that g has a (unique by Lemma 5-(i)) non-trivial strong
component consisting of a tree of strong links. Then any node that does not belong
to that strong component must be connected with it by a weak link or a path of
weak links. We prove �rst that g must then be a tree-core-periphery pro�le. Assume
node i is at discounting distance 2 from the non-trivial strong component. Then
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�(i; k; g) = 2 where k is the node in the non-trivial strong component closest (w.r.t.
ordinary distance) to i. Thus, there is a node j connected with i and k by weak links.
By Lemma 4, the weak link between j and k must be supported by j. Now it can be
seen that the weak link connecting i and j must also be supported by j: By Lemma
5-(ii), it is the nodes in the non-trivial strong component of g that receive the maximal
amount of information. Thus, if the weak link connecting i and j were supported by i,
then i would strictly improve its payo¤ by replacing its weak link with j by a link with
k: Therefore j supports both weak links, with i and k; and k is involved in at least one
strong link, say with k0, since k belongs to the strong component. Now we see that
either k withdraws its support from its strong link with k0 or i doubles its link with j.
For k not to be interested in withdrawing its support from its strong link with k0 the
information received by k through link kk0 in g (i.e. 1+ Ik0(g�kk0)) must be such that

1 + Ik0(g � kk0)� c � �(1 + Ik0(g � kk0)):

That is, c � M (1� �), where M = 1 + Ik0(g � kk0). On the other hand, for i not
to be interested in doubling its link with j c � (1 + �+ �M) (1� �) is a necessary
condition. Therefore for g to be a Nash pro�le it must hold that

(1 + �+ �M) (1� �) � c �M (1� �) :

There is room for c if (1 + �+ �M) �M; that is ifM � 1+�
1�� : But since 0 � c � 1; the

lower bound for c must be smaller than 1: That is, (1 + �+ �M) (1� �) � 1; which
entails M � �

1�� . This leads to the impossible requirement

1 + �

1� � �M � �

1� �:

Therefore the discounting distance from any node not in the unique non-trivial strong
component to it must be exactly 1. Thus, g is a tree-core-periphery pro�le. But then,
by Lemma 4, peripheral players must support their links. In other words, g must be a
periphery-sponsored tree-core-periphery pro�le.
The following proposition shows that each periphery-sponsored tree-core-periphery

architecture is actually a Nash network for a range of values of c and � within the
region considered, and it establishes that range. Note that in view of Proposition 5
such architectures are the only ones without cycles which are Nash stable for c > �.

Proposition 6 Let the decay matrix �g be given by (6) and payo¤s by (9), with c > 1�
�. Then a periphery-sponsored tree-core-periphery pro�le g, with core Q and periphery
P = NnQ is:
(i) A Nash pro�le if and only if

c � q�+ (n� q � 1)�2; (10)
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where p = #P and q = #Q, and

c � (1 + pmin�)(1� �); (11)

where pmin is the number of peripheral nodes supporting a weak link with the same
peripheral node of the tree g jQ (which forms the core) for which this number is minimal.
(ii) A strict Nash pro�le if and only if it is a periphery-sponsored star and

c < �(1 + (n� 2)�):

(iii) A pairwise stable pro�le if and only if it is a Nash pro�le, i.e. (10) and (11) hold,
and

c � 1� �2: (12)

Proof. (i) Necessity ()). Let g be a periphery-sponsored tree-core-periphery pro�le,
with coreQ and periphery P = NnQ, which is a Nash pro�le. The payo¤of a peripheral
node in g is �(q + (p � 1)�) � c, and this number must be nonnegative, otherwise a
peripheral node has an incentive to withdraw support from its weak link with a node
in the core. That is, it must hold that

�(q + (p� 1)�) � c:

Then, as p = n� q, this condition can be rewritten as (10) and means that no periph-
eral node has incentive to sever its weak link with a node in the minimally strongly
connected subgraph g jQ formed by the nodes in the core Q. As to strong links connect-
ing nodes in the core, the di¤erence between the payo¤ of a node i 2 Q and its payo¤
after withdrawing its support from a strong link with j 2 Q should be nonnegative.
That is, it must hold that

qij + pij�� c� �(qij + pij�) � 0;

where pij and qij are the number of peripheral and non-peripheral nodes connected
with i through link ij in g. Thus, if

c � (qij + pij�)(1� �) (13)

for all i; j 2 Q s.t. gij = 1, no node in the core has incentive to withdraw support
from any of its strong links. But note that the nodes for which this condition is most
demanding are those that support a strong link with a peripheral node of the tree g jQ,
and for any such node qij = 1. Therefore, the node/s for which this condition is most
demanding is/are the node/s in the core that support a strong link with a peripheral
node of the tree g jQ with which a minimal number of peripheral nodes are supporting
weak links. If this number15 is pmin, condition (13) becomes (11). Therefore conditions
(10) and (11) are necessary for the architecture described to be that of a Nash pro�le.

15For instance, in the example represented in Figure 2-(b), this number is 2.
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Su¢ ciency ((). On the other hand, when both conditions hold, given the perfect
�ow within the core, no node can improve its payo¤ by supporting a di¤erent set of
links. Note �rst that a peripheral node of the tree g jQ has no incentive to double any
link with a peripheral player because c > 1 � �. Note also that, as c > 1 � � entails
c > � � �2, a peripheral node has no incentive to support a weak link with another
peripheral node.
(ii) As to strict stability, note that in a periphery-sponsored tree-core-periphery

pro�le all peripheral nodes have the same payo¤ whatever the node in the core with
which each of them chooses to link. This means that they are not strict Nash with
one exception: when #Q = 1. In this case, if inequality (10) holds strictly it becomes
c < � + (n � 2)�2, while (11) becomes vacuous. Therefore the periphery-sponsored
star (i.e. all peripheral players supporting a link with a single player) is the only
architecture of this type that is strict Nash.
(iii) It is easy to check that no pair of players in the core of a tree-core-periphery

pro�le has an incentive to establish any new strong link. As to peripheral players, no
pair of them would gain by establishing a new strong link if c � 1� �2:
Remarks:
(i) Inequality (10) just requires the core to be big enough to make it worth for

peripheral players to pay for their weak links. Note that for a �xed n, the right hand
side of (10) depends exclusively on q, the cardinal of the core, and the greater the
number of players in the core is, the less demanding condition (10) is. More precisely,
the boundary of the region where condition (10) holds is an increasing convex function
of � (i.e. cq(�) = q� + (n� q � 1)�2) in the interval � 2 [0; 1], such that at � = 0 its
value is 0, and at � = 1 its value is n� 1, and the greater q is, the higher is the upper
bound that this condition sets for c.
Condition (11) requires the cost of a link to be low enough to make it worth sup-

porting the less rewarding strong link with a peripheral player of the core g jQ. This
condition can be rewritten like this:

c � 1 + (pmin � 1)�� pmin�2:

which shows that the boundary of this region is a concave function16 of � (i.e. cpmin(�) =
1+ (pmin� 1)�� pmin�2) in the interval � 2 [0; 1], which at � = 0 its value is 1 and at
� = 1 its value is 0, and the greater pmin the weaker condition (11) is. It is then easy to
check that the region where both conditions hold is never empty. In other words, each
periphery-sponsored tree-core-periphery pro�le is Nash for a certain range of values of
the parameters. Figure 4 shows the region S where both conditions hold for n = 20,
q = 8 and pmin = 2.
(ii) The maximal value of q is n�2, which corresponds to a core consisting of n�2

nodes forming a line of strongly-linked nodes, and two peripheral players linking one of

16In fact, it is a parabola which intersects the �-axis at � = 1 and � = �1=pmin, and whose axis is
� = (pmin � 1) =2pmin.
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Figure 4: Tree-core-periphery Nash stability (n = 20; q = 8; pmin = 2)
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Figure 5: Periphery-sponsored tree-core-periphery pro�les

the two extremes each (see Figure 5 (e)). In this case pmin = 1 is minimal, so condition
(11) is the strongest that it can be, while condition (10) is the weakest that it can
be. Figure 6 shows the region S where this structure is Nash stable for n = 20 (thus,
q = 18, pmin = 1).
(iii) For a given value of q, condition (11) depends on the particular arrangement of

the tree-core and of the n�q weak links supported by the peripheral players. The most
stable architecture for a given q (i.e. the one for which condition (11) is least demanding
so that it is stable for a wider range of values of the parameters) corresponds to a core
arranged as a line, all peripheral nodes supporting weak links with the extremes, and
a minimal di¤erence (0 or 1) between the number of peripheral nodes connected with
each extreme, so as to make condition (11) as weak as possible. In other words, the
smaller the number of peripheral nodes in the core, i.e. in g jQ, and the more egalitarian
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Figure 6: Tree-core-periphery Nash stability (n = 20; q = 18; pmin = 1)

the distribution of peripheral nodes connected (exclusively) to peripheral nodes in the
core is, the wider the region of stability is. Graphs (b), (c) and (d) in Figure 5 represent
three di¤erent periphery-sponsored tree-core-periphery pro�les for n = 9 and q = 4, of
which (b) has the highest stability (pmin = 2), and (c) and (d) the lowest since in both
pmin = 1.
(iv) The minimal value of q is 1, which corresponds to the center of a periphery-

sponsored star, so condition (10) is the strongest that it can be, while condition (11)
vanishes (see Figure 5 (a)). Figure 7 shows the region S where the periphery-sponsored
star is Nash17 and strict Nash for n = 20.
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Figure 7: Periphery-sponsored star Nash stability (n = 20; q = 1; pmin = 19)

17This is the only stable structure in Hojman and Szeidl�s (2008) model, where bene�ts from con-
nections exhibit decreasing returns and decay with network distance.
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(v) In view of Proposition 6-(iii), pairwise stability sets a lower bound (condition
(12)) in addition to the two upper bounds required for Nash equilibrium. Figure 8
shows the region S where the tree-core-periphery pro�le for n = 20, q = 10 and
pmin = 3 is pairwise stable.
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Figure 8: Tree-core-periphery pairwise stability (n = 20; q = 10; pmin = 3)

As seen above, the peripheral nodes in a tree-core-periphery pro�le with a non-
trivial core must support their links in equilibrium. Given that in the region where c >
1�� and in addition c < � it is worth initiating a single link with an isolated player, it is
reasonable to wonder whether a non-periphery-sponsored tree-core-periphery structure
with trivial core, that is, a non-periphery-sponsored star of weak links (i.e. a star of
weak links where the center supports at least one link) can be stable. The following
proposition shows the conditions under which this is so.

Proposition 7 Let the decay matrix �g be given by (6) and payo¤s by (9) ; with c >
1� � and c < �, and let g be a non-periphery-sponsored star of weak links, then:
(i) g is a Nash pro�le if and only if

c � 1 + (n� 3)�� (n� 2)�2: (14)

(ii) g is a strict Nash pro�le if and only if (14) holds strictly.
(iii) g is a pairwise stable pro�le if and only if (14) holds.

Proof. (i) Assume that g is a Nash non-periphery-sponsored star of weak links. As
c < �, no player supporting a weak link has an incentive to sever it. On the other hand,
the greatest incentive to double a weak link is for a peripheral player. For a peripheral
player not to have an incentive to double its link it is necessary for the following to
hold:

(1 + (n� 2)�)� � 1 + (n� 2)�� c:
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Which sets a lower bound for c:

c � (1� �)(1 + (n� 2)�) = 1 + (n� 3)�� (n� 2)�2.

(ii) It is straightforward.
(iii) Note that (14) implies that c � 1� �2. Therefore no pair of peripheral nodes

has incentives to establish a new strong link.

Remark: Therefore, when the core consists of more than one node the only Nash
stable tree-core-periphery pro�les are those which are periphery-sponsored, while the
only structure of this type where some peripheral nodes are core-sponsored are stars,
including center-sponsored stars. But condition (14) con�nes the stability of these stars
to a region close to the side of the square where � = 1 (i.e. the B&G two-way �ow
model, where the only strict Nash pro�les are center-sponsored stars), which narrows
as the number of players increases. For instance, for n = 20 the limiting curve is
c = 1 + 17� � 18�2, which is represented in region S of Figure 918. In general, the
limiting curve of (14) intersects c = 1 at � = n�3

n�2 . In other words, the only Nash stable
tree-core-periphery pro�les where some peripheral nodes are core-sponsored are stars
and they occur in a narrow region close to � = 1.
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Figure 9: Non-periphery-sponsored star stability (n = 20; q = 1; pmin = 19)

Thus stars, which can be seen as degenerated core-periphery structures with a
singleton as their core, are Nash-stable for certain ranges of the parameters. Are there
other Nash pro�les which are minimally weakly connected? An immediate corollary
of Proposition 5 gives the answer for c > �.

Corollary 1 Let the decay matrix �g be given by (6) and payo¤s by (9) ; with c > 1��.
If c > � the only minimally weakly connected Nash pro�les are periphery-sponsored
stars.
18Compare with the region where the periphery-sponsored star is Nash, represented in Figure 7.

23



The region where c > 1�� and c < � remains to be explored. The following result
speci�es the structure of minimally weakly connected Nash pro�les required, but some
notation and terminology are necessary. A minimally weakly connected graph is a tree
of weak links. Let i0 be a reference node chosen as the root of that tree, so that for
any other node i 6= i0, there is a unique path from i to i0, and we denote by subtree ti
the weak component which contains i in the graph that results from deleting in g the
link containing i in this path.

Proposition 8 Let the decay matrix �g be given by (6) and payo¤s by (9), with c >
1 � �. A minimally weakly connected Nash pro�le g necessarily has the following
structure: a node i0 that receives most information in g is the root of a tree of weak
links such that: (i) for all i 2 N o(i0; g), ti is i-oriented; (ii) for all ij 2 g, j is a player
in the weak component of g� ij containing j that receives most information from that
component.

Proof. Let g be a Nash pro�le that is minimally weakly connected and let i0 be a
node that receives the maximal information in g and choose it as the root of g.
(i) Let i 2 N o(i0; g). Consider the tree ti and assume that it is not i-oriented,

i.e. a node j in this tree supports a link with a node k closer to i (and consequently
to i0). From the choice of i0, we have Ii0(g) � Ik(g), then we show that then j can
improve its payo¤ by replacing jk by ji0, that is, Ij(g � jk + ji0) > Ij(g). Note that
if d(i0; j; g) = r (r � 2), and g � tj denotes the tree that results from cutting subtree
tj o¤ g, we have the following:

Ii0(g) = �
r(Ij(tj) + 1) + Ii0(g � tj);

Ik(g) = �(Ij(tj) + 1) + Ik(g � tj):

As Ii0(g) � Ik(g) and �r(Ij(tj) + 1) < �(Ij(tj) + 1), it follows from these two
equalities, that Ii0(g � tj) > Ik(g � tj), and consequently

Ij(g � jk + ji0)� Ij(g) = �(Ii0(g � tj)� Ik(g � tj)) > 0;

that is Ij(g�jk+ji0) > Ij(g). Therefore the link connecting j and k must be supported
by k. Thus, subtree ti is i-oriented.
(ii) Assume ij 2 g. If j is not a player that receives most information from the

weak component of g � ij containing j, then i can improve its payo¤ by replacing the
link with j by a link with any player in that component who receives more information
than j.
Note that Proposition 8 establishes necessary conditions for a minimally weakly

connected pro�le to be Nash. Figure 10 shows an architecture that meets them. Note
that stars are a particular case of such architectures.
Remarks:
(i) Observe that condition (ii) in Proposition 8 is very demanding, as it is not true

in general for structures that meet condition (i). In particular, this condition entails
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Figure 10: A minimally weakly connected Nash pro�le

that the i0-rooted tree embodies and expresses a hierarchy of levels of information: the
best informed player is at the root, and as one moves away from it by any path the
level of information received by players decreases.
(ii) Not every structure of the type described by Proposition 8 is a Nash pro�le for

some range of values of the parameters. Additional conditions are required for them to
be Nash pro�les: no player must have incentive to double any link and/or to initiate
new ones. Note that both conditions amount to setting lower bounds for c. The �rst
condition is of the form c > K(�)(1��) (whereK(�) is a polynomial with nonnegative
coe¢ cients, consequently increasing with �), which requires a delicate trade-o¤ when
applied to the terminal nodes of any structure of this type, as the closer � to 1 one
gets, the smaller 1 � � is, but the greater K(�) is. Thus a high value of c= (1� �) is
required. In fact, as was the case with non-periphery-sponsored stars, these conditions
con�ne the stability of minimally weakly connected Nash pro�les to a region close to
the side of the square where � = 1:

Example 3: Let g be the pro�le in Figure 10, where node i0 supports links with 4
players, and node i1 supports links with 2 players, and node i2 supports links with i0
and i1. It is easy to check that i0 is the player that receives most information in g and
this pro�le �ts conditions (i) and (ii) in Proposition 8. The player with the greatest
incentive to double a link is any of those with whom i0 supports a link. For this not
to be so the following must hold:

c � (1� �)
�
1 + 4�+ �2 + 2�3

�
:

The player with the greatest incentive to initiate a new link (with i0 in fact) is any
of those with whom i1 supports a link. For this not to be so the following must hold:

c �
�
�� �3

�
(1 + 4�) :

As to changing links, both i0 or i1 can sever one of their links and double their link
with i2, but none of these responses results in an improvement for � su¢ ciently large
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(� � 0:73898 for i0 and � � 0:818 for i1), also i1 can sever one of its links and initiate a
link with i0, but this is not pro�table for � � 0:75. It can easily be checked that these
inequalities are implied by either of the two preceding conditions. Figure 11 shows the
region S where these conditions hold and g is a Nash pro�le.
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Figure 11: Stability of Example 3

As to strategy pro�les on the line c = 1 � �, the following conclusion is reached
relative to the stable pro�les which complements Proposition 4:

Proposition 9 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and c = 1�� : (i) Periphery-sponsored tree-core-periphery pro�les satisfying conditions
(10) and (11) are Nash but not strict Nash; (ii) Non-periphery-sponsored tree-core-
periphery pro�les are not Nash; (iii) No tree-core-periphery pro�le is pairwise stable.

Proof. (i) Note that, under conditions (10) and (11), when c = 1� � every player is
playing a best response in a periphery-sponsored tree-core-periphery pro�le. Among
them only the periphery-sponsored star is strict Nash when c > 1 � �; but when
c = 1 � � the center is indi¤erent between doubling links or not with peripheral
players.
(ii) Since c = 1��, a peripheral node involved in a weak link supported by a node

in the core has an incentive to double it.
(iii) As seen in Proposition 7-(iii), c � 1 � �2 is a necessary condition for a tree-

core-periphery pro�le to be pairwise stable, but this implies c > 1� �.
It remains to be seen whether other structures are possible for a Nash pro�le when

c > 1 � �. The core of the core-periphery structures considered so far, whenever it
is not trivial, consists of strong links which are in fact two-node wheels. This raises
the question of whether any sort of wheel-structure with three or more nodes can be
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the core of a Nash pro�le19. More generally, we are driven to the question of whether
pro�les with cycles can appear in equilibrium. We have not been able to answer this
in full generality. Nevertheless, the following result shows that �wheel-core-periphery�
pro�les are ruled out in equilibrium or, more precisely, no structure containing a unique
cycle with three or more nodes is Nash stable.

Proposition 10 Let the decay matrix �g be given by (6) and payo¤s by (9), with c >
1 � �. Then a pro�le with a weak component containing a unique cycle where 6 or
more of its links are weak cannot be a Nash pro�le.20

Proof. Let g be a pro�le and M � N , such that: (i) g jM is a weak component of
g; (ii) g jM contains a cycle containing 6 or more weak links; and (iii) that cycle is
the only one in g jM . That is, there is a sequence of 6 or more nodes, say w.l.o.g.
Q = fi0; i1; i2; :::; iq�1g �M , s.t. any pair ip; ip+q1 (where p+q 1 means (p+ 1) mod q)
is connected by a weak or a strong link, but the number of weak ones is 6 or more and
this is the only cycle. Let Q0; Q1; :::; Qk�1 be a partition of Q into k sets where any two
nodes in each Qr (0 � r � k � 1) are connected by a path of strong links, and every
such set contains a complete sequence of nodes in the cycle involved in consecutive
strong links (or a single node involved in two weak links). Note that each Qr, along
with any other nodes connected with any node in Qr by a path of strong links, forms
a strong component of g jM . In each sequence Qr a player is involved in a weak link
with a player in Qr+k1. Thus k is the number of weak links in the cycle. All nodes
in the same strong component must receive the same amount of information. Let wr
be the information received by any node in the strong component containing Qr from
outside the cycle. That is, wr is the information received by any node in the component
containing Qr from the network that results by deleting the two weak links connecting
that component to the cycle. We refer to wr as the weight of the r-component. Take
any pair of nodes i; j in consecutive strong components connected by a weak link, i.e.
i 2 Qr, j 2 Qr+k1; and assume w.l.o.g. gij = 1. Let Qr+k2 be the set of nodes that
form the next sequence of strong links in the cycle connected with Qr+k1 by a weak
link. If wr+k2 � wr+k1 and k � 6 it would be pro�table for node i to replace its link
with j by a link with a node in Qr+k2. This is because i interchanges the discounting
distances to the strong component containing Qr+k1 and to that containing Qr+k2
without loss and, as k � 6, shortens the discounting distance to one of the furthest
strong components away from i. Therefore, for g to be a Nash network, it is necessary
that wr+k2 < wr+k1. This has two consequences for a Nash pro�le if k � 6. First, the
number of strong components in the cycle (and therefore weak links, i.e. k) must be

19In Olaizola and Valenciano (2014), where intermediate models between the one-way �ow and
two-way �ow models of Bala and Goyal (2000) are studied, �wheels of trees�, structures intermediate
between the oriented wheel and root-oriented trees (or stars in particular), appear as strict Nash
equilibrium for values of the parameters close to the two-way �ow model.
20In fact, the result remains valid for a smaller number of weak links in the cycle. But each number

below 6 requires a speci�c proof, which is rather involved for cases 4 and 5, and which we omit here.
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even (otherwise this condition cannot be satis�ed). Second, the direction of weak links
in the cycle must alternate so that weak links connecting players in di¤erent strong
components are paid for by the player in the component whose weight is lesser. Then,
if k � 6, we can assume w.l.o.g. that wk�1 < w0 > w1 < w2 > ::: > wk�1 and k even.
Moreover, now we show that in that case w0 = w2 = ::: = wk�2, i.e. the weight of
all the �heavy� strong components is the same. Assume that w0 6= w2; and w.l.o.g.
w0 < w2. Let i be the node in Qk�1 that supports the only link connecting Qk�1 and
Q0: Then if k � 6 it is advantageous for i to replace this link by a link with any player
in Q2: Thus, when k � 6, we are left with the case where (i) the cycle connects an
even number of strong components by an equal number of weak links with alternating
directions, always supported by the player belonging to the strong component with the
least weight; (ii) the weight of all the �heavy� strong components is the same. But
now it can be seen that if k � 8 such an architecture cannot be that of a Nash pro�le
or a weak component of a Nash pro�le. Let i be the node in Qk�1 that supports the
only link connecting Qk�1 and Q0: Then if k � 8 it is advantageous for i to replace
this link by a link with any player in Q2: The discounting distances from i to Q0 and
Q2 interchange, one of the furthest nodes approaches and the rest remain at the same
distance. As w0 = w2, this improves i�s payo¤. This concludes the proof for k � 8. As
seen above, k must be even, so k = 7 is ruled out. Finally, if k = 6, we have three big
strong components of equal size and three smaller ones. And within each Qr of the
small ones there are two players (one if #Qr = 1) that support a link with a big strong
component each. Assume w0 > w1 < w2 > w3 < w4 > w5 < w0, with w0 = w2 = w4.
It is thus easy to check that either the player in Q0 that receives a weak link from a
player in Q1 has an incentive to double it, or the player in Q4 that supports the strong
link with the player in Q4 that receives a link from a player in Q3 has an incentive to
delete it. Therefore, a pro�le with a weak component containing a unique cycle with
6 or more weak links cannot be a Nash pro�le.

Remark:
A close examination of the proof shows that the conclusion is more general than

as stated in Proposition 10. The proof consists of showing the incompatibility of
equilibrium and the existence of a unique cycle, but the uniqueness is not crucial.
The proof is easily extended if the network contains a cycle (not necessarily unique)
where some of the sequences of strong links and/or some of the nodes involved in two
weak links in the cycle are connected with pairwise disjoint parts of the network. This
condition is guaranteed if the cycle is unique, but in general whether such parts of the
network contain other cycles or not is immaterial as long as they are disjoint.

5 E¢ ciency

Given the diversity of stable structures within each region of values of the parameters,
comparisons in terms of e¢ ciency (in the sense of aggregate utility and assuming a
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given number of players) should be made for each particular con�guration of values of
the parameters. First consider the case of structures which are stable when c < 1� �
(Proposition 3). That is, minimally strongly connected pro�les and those not minimally
strongly connected where all links in g are strong, all strong components are minimal
and the maximal size of a strong component is smaller than or equal to c

�
.

Proposition 11 Minimally strongly connected pro�les are more e¢ cient than those
not minimally strongly connected where all links in g are strong and all strong compo-
nents are minimal.

Proof. The aggregated payo¤ of any minimally strongly connected pro�le g is:X
i2N

�i(g) = n(n� 1)� 2c(n� 1) = (n� 1)(n� 2c):

This value is increasing with n and decreasing with c. It su¢ ces to prove that this is
greater than the aggregated payo¤ of a pro�le g0 of the type described which consists
of two minimal strong components of sizes n1 and n2, with n1 + n2 � n:X

i2N
�i(g

0) = (n1 � 1)(n1 � 2c) + (n2 � 1)(n2 � 2c)

= n21 + n
2
2 � (1 + 2c)(n1 + n2) + 4c:

Therefore X
i2N

�i(g)�
X
i2N

�i(g
0) � 2n1n2 � 2c = 2(n1n2 � c) > 0:

It follows easily from here that a minimally strongly connected pro�le is more e¢ cient
than those not minimally strongly connected where all links in g are strong and all
strong components are minimal.
Therefore the most e¢ cient of the architectures described in Proposition 3 is that

of minimally strongly connected pro�les, i.e. trees of strong links containing all nodes,
which are Nash, strict Nash and pairwise stable in the whole region. Other equilibria
in this area are not e¢ cient.
Now consider the periphery-sponsored tree-core periphery pro�les, stable for certain

con�gurations of values of the parameters when c > 1� � (Propositions 5 and 6).

Proposition 12 The greater the core of a tree-core periphery pro�le, the more e¢ cient
it is.

Proof. Let g be a tree-core periphery pro�le with n nodes, q nodes in the core (1 �
q � n� 2) and n� q peripheral nodes. Denote by �(g) :=

P
i2N �i(g) the aggregated

payo¤, given by

�(g) = q(q � 1 + �(n� q))� (q � 1)2c+ (n� q)(q�+ (n� q � 1)�2)� (n� q)c
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= (1� �)2q2 + (�2 � 2n�2 � c+ 2n�� 1)q + 2c� cn� n�2 + n2�2:
This function, increasing in � and decreasing in c, is increasing in q for q > 0; as it

is easy to check that

@�(g)

@q
= 2(1� �)2q + 2n(�� �2) + �2 � c� 1 > 0:

Remarks:
(i) Figure 12 shows this q-quadratic curve for n = 10, � = 0:4; 0:5 and 0:6, and

c = 0:7. The aggregated utility increases with q, the number of players in the core,
and the curve is higher with a higher �. Thus, the most e¢ cient tree-core periphery
pro�le occurs for q = n� 2, i.e. n� 2 nodes arranged in a line of strong links and the
other two players each supporting a weak link with each of the two extremes.
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Figure 12: Aggregate payo¤ for n = 10; c = 0:7; � = 0:4=0:5=0:6

(ii) Note that, unlike the case c < 1 � �, when c > 1 � � e¢ ciency and stability
do not go hand in hand. As the number of nodes in the core of a tree-core periphery
pro�le increases e¢ ciency increases too, but condition (11) becomes in general more
demanding. Moreover, the only strict Nash architecture in this region, the periphery-
sponsored star, is the least e¢ cient periphery-sponsored tree-core-periphery pro�le.
(iii) As to other stable architectures, as minimally weakly connected pro�les, the

most e¢ cient among them are the stars of weak links, all equally e¢ cient, but among
them the periphery-sponsored star is the one which is stable for the widest range of
values of the parameters.
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6 Dynamics

Our next goal is to explore Bala and Goyal�s dynamic model in the current context.
More speci�cally, we consider sequential best response dynamics: in every period a
single player chosen at random plays a best response (or randomizes on them if there
are more than one) while all others keep their links unchanged. In this way a Markov
chain on the state space of all networks is de�ned. Bala and Goyal (2000a) prove
that simultaneous21 best response dynamics converges to the center-sponsored star
for the two-way �ow model. Note that convergence for sequential dynamics implies
convergence for simultaneous dynamics.
Given that strict Nash networks have been fully characterized only within the region

c < 1 � �, we address the convergence of dynamics only in this case. We obtain the
following result:

Proposition 13 Let the decay matrix �g be given by (6) and payo¤s by (9), with 0 <
� < 1 and c < 1� �, then sequential best response dynamics converge to a strict Nash
network with probability 1.

In order to prove this, we use two lemmas and an algorithm to produce a sequence
of best responses that yields the desired outcome.
When c < 1� �, a double link will not be severed by any of the two players if and

only if there is no path of strong links connecting them other than the one consisting
of that link (Lemma 1). Based on this we have the following:

Lemma 6 Assume c < 1 � �, and let g be an arbitrary pro�le and g0 the resulting
pro�le after a player i plays a best response, then: (i) The set of nodes in the strong
component of g0 containing i contains the set of nodes in the strong component of g
containing i; (ii) Any strong link in which i is involved in g0 will never be broken by
any sequence of further best responses; (iii) Any weak link supported by i in g0 belongs
to a di¤erent strong component.

Proof. (i) As c < 1��, a player i will break a strong link with another player only if a
path of strong links (not containing that link) connecting them exists, and i will double
a weak link unless a path of strong links connecting them exists. In consequence, the
strong connection between nodes in the strong component to which i belongs will never
be broken by a best response of i. Note that the size of the strong component to which
i belongs may increase if new strong links are created by i doubling some weak links.
(ii) For the same reasons, for any strong link supported (i.e. doubled or not severed)

by a player after a best response, neither of the two players involved will ever have an
incentive to sever it after any sequence of best responses.
(iii) Otherwise, it would be super�uous.

21In the simultaneous model, at every period every player independenly exhibits inertia (i.e. does
nothing) with a certain probability, and otherwise plays a best response.
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Figure 13: Procedure 1

In the following procedure, which takes as its input a pro�le and one of its strong
components and applies a sequence of best responses, g denotes the current pro�le, C
a strong component of g and V � C a set of nodes. A sequence of best responses yields
a pro�le with an isolated minimal strong component.

Procedure 1 (Figure 13): Initialization: g := g0, where g0 is the initial pro�le; C is a
strong component of g0; and V := ?.
Step 1: Select a node i 2 CnV .
Step 2: Let i play a best response g0i and update g := (g�i; g

0
i), C := Ci(g) (i.e. the

strong component of new g which contains i), and V := V [ fig.
Q.1: V = C?,

- If No: go to Step 1, otherwise go to Q.2.
Q.2: Does any node in C support a weak link in g with a player in a di¤erent strong

component?
- If Yes: Let i be one such player in a di¤erent strong component and go to Step 2.
- If No: END.

Claim 1 Procedure 1 necessarily ends after a �nite sequence of best responses, and at
the end C is an isolated minimal strong component of a new pro�le g (i.e. none of its
nodes is involved in any weak links with nodes in others strong components).

Proof. By Lemma 6, after every iteration of Cycle 1, set C either remains unchanged
or incorporates some new players. Thus N is an obvious �upper� bound for set C.
After each iteration of Cycle 1, set V � C incorporates a new player. After each
iteration of Cycle 2 the sizes of both C and V increase. Therefore, condition V = C is
bound to hold after no more that n iterations. As to its output once V = C holds, note
that, by Lemma 2, no player in V = C supports super�uous strong links, but perhaps
some of them support some weak links with nodes in other strong components. In this
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Figure 14: Algorithm 1

case, no two nodes in C support weak links with the same strong component. Note
that no weak link supported by a player in a di¤erent strong component can survive
this iteration, because it would have been doubled by the player receiving it in the
strong component when playing a best response. As to Q.2, if the answer is Yes a best
response of the selected player would surely include doubling the link received from a
player in C, so that in the resulting new pro�le a strong component contains C and
the selected player. Thus, this new strong component is bigger. Thus at a certain
moment the answer to Q.2 must necessarily be No, and in that case C is a minimal
strong component none of the nodes of which is involved in a weak link.
We now describe an algorithm that takes as its input any strategy pro�le g0 and

generates a sequence of best responses that gives as its output a strict Nash pro�le or
a pro�le with a minimal strong component such that a sequence of best responses will
lead to a minimally strongly connected pro�le. The variables are: a strategy pro�le
g, a subset C � N (a strong component in fact) and a collection C of disjoint subsets
of N . The idea is to start from a strong component and, by reiterating Procedure 1,
generate by best responses a sequence (C) of minimal strong components which will
either be interrupted if one bigger than or equal in size to c

�
is generated or, otherwise,

form a strict Nash pro�le. As shown below, in the �rst case a further sequence of best
responses yields a minimally strongly connected pro�le (which is therefore strict Nash).

Algorithm 1 (Figure 14): Initialization: g := g0, choose a strong component C of g,
and C := ?.
Step 1: Apply Procedure 1 to pro�le g and its component C, and update g and C

to be the output of Procedure 1.
Q.1: #C � c

�
?

-If Yes, END-1, otherwise make : C := C [ fCg and go to Q.2.
Q.2: N =

S
C2C

C?

-If Yes, END-2; otherwise select a strong component C of g s.t. C =2 C and go to Step
1.
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Claim 2 Algorithm 1 ends in �nite time and yields either a strict Nash pro�le (END-
2) or a pro�le with a minimal strong component of size � c

�
(END-1).

Proof. In each iteration of the unique cycle of the algorithm (apart from the two within
Procedure 1), a new isolated strong component is added to C. Therefore, it must end
in no more than n rounds, and it may end in two ways. At END-1, the algorithm yields
a pro�le with an isolated minimal strong component of size � c

�
. Otherwise, whenever

the answer to Q.1 is No, current C is an isolated minimal strong component, not big
enough to make it worthwhile for any player outside C to initiate a weak link with a
player in C. Then C is added to C and the process continues. At END-2 the algorithm
yields a pro�le where all links are strong and which consists of several minimal strong
components (collected in C) of size smaller than c

�
. By Proposition 3, such a pro�le is

strict Nash.
It only remains to be shown that from any pro�le with an isolated minimal strong

component of size � c
�
(END-1) there is a sequence of best responses which yields a

strict Nash pro�le22.

Lemma 7 For any strategy pro�le with an isolated minimal strong component of size
� c

�
, there is a sequence of best responses that yields a minimally strongly connected

pro�le.

Proof. Let C be an isolated minimal strong component of a pro�le g s.t. #C � c
�
.

If C = N we are done. Otherwise, take i =2 C. As #C � c
�
, there is a best response

of i in which i supports a weak link with one player j 2 C (if #C = c
�
, player i is

indi¤erent between supporting it or not, otherwise one such link is certainly part of
any best response of i). Let i play that best response and let g0 be the new pro�le.
Now let j play a best response and let g00 be the resulting pro�le. Then we are sure
to have g00ij = g00ij = 1, so that if C 00 is the strong component of g00 containing C and
i, obviously #C 00 > #C � c

�
. Now, by applying Procedure 1 to g00 and C 00 a pro�le

with an isolated minimal strong component of size greater than or equal to that of C 00,
and consequently strictly greater than C, is generated. It is clear that by reiterating
the argument a sequence of pro�les is generated each of which has a minimal strong
component greater than the one in the preceding one. Such a sequence is bound to
reach a minimally strongly connected pro�le.
By Proposition 3, a minimally strongly connected pro�le is strict Nash whenever

c < 1 � �. Consequently, based on Algorithm 1 and Lemma 7, we have the result
stated in Proposition 13.

22In fact, it is easy to prove that such a sequence exists for any pro�le with a strong component of
size � c

� .
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7 Concluding remarks

This paper seeks to make a contribution to the theory of network formation. We intro-
duce a model which incorporates as extreme cases two benchmark models of network
formation: Jackson and Wolinsky�s (1996) connections model and Bala and Goyal�s
(2000) two-way �ow model. We study stability in three senses (Nash, strict Nash and
pairwise), e¢ ciency and dynamics.
Proposition 3 fully characterizes Nash, strict Nash and pairwise stable architectures

for the whole range of values of the parameters within the region c < 1� �: As to the
region where c > 1��, the results in Section 4.2 do not provide a full characterization
since the following issues are still open: (i) are multiple cycles possible in equilibrium?,
(ii) a full characterization of weakly connected architectures for c < � has not been yet
achieved, only necessary conditions which are, however, very demanding.
If cycles are ruled out in equilibrium, Propositions 5 and 6 would provide a complete

characterization of stable architectures for c > 1� � and c > �: Finally, in the region
where c > 1 � � and c < � we conjecture that, apart from the periphery-sponsored
star which is stable in the whole region, only certain minimally weakly connected
architectures can be stable and only for high values of c= (1� �) ; that is in a narrow
region very close to � = 1, as is the case with non-periphery-sponsored stars.
The point of view provided by this continuum of models bridging the gap between

the two benchmark models permits a comparison of the ways in which the results for
each of them expand. The results for Jackson and Wolinsky�s model without decay
expand smoothly below the line c = 1 � � (i.e. when c < 1 � �). In this region, as
parameter � increases, stable architectures where all links are strong and all compo-
nents are minimal, remain stable until the size of the largest component makes it worth
initiating a weak link with it, while minimally strongly connected pro�les are the only
pairwise stable ones in the whole region. Above the line c = 1�� (i.e. when c > 1��),
the expansion of Bala and Goyal�s two-way �ow model is, by contrast, more complex.
The only stable architecture in Bala and Goyal�s model, the center-sponsored star (as
any non-periphery-sponsored star), remains stable only in a region where � is very
close to 1, that is, a situation very close to the two-way �ow model23. As � increases,
periphery-sponsored tree-core-periphery pro�les emerge in equilibrium.
There are several lines of further research. The most obvious is the unsettled

question as to the possibility of there being multiple cycles in equilibrium. Also a
similar intermediate model between Jackson and Wolinsky�s (1996) connections model
and Bala and Goyal�s (2000) one-way �ow model could be studied. The e¤ects of
introducing decay in the model as pointed out in footnote 12 could also be explored.

23A similar situation is observed in the model which bridges the gap between the two Bala and
Goyal�s models studied in Olaizola and Valenciano (2014), where the extreme case represented by
the two-way �ow model appears as a singularity. A small asymmetry (i.e. a small degree of decay
in the reverse direction of a link) makes all root-oriented trees strictly stable, but when asymmetry
disappears only the center-sponsored star remains stable.
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This would mean a model intermediate between the two benchmark models with decay.
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