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Abstract 

The purpose of this work is to offer for any zero-sum game with a unique strictly mixed Nash 

equilibrium, a measure for the risk when deviating from the Nash equilibrium. We present 

two approaches regarding the nature of deviations; strategic and erroneous. Accordingly, we 

define two models. In each model we define risk measures for the row-player (PI) and the 

column player (PII), and prove that the risks of PI and PII coincide. This result holds for any 

norm we use for the size of deviations. We develop explicit expressions for the risk measures 

in the 
1
 - and 

2
 -norms, and compute it for several games. Although the results hold for all 

norms, we show that only the 
1
 -norm is suitable in our context, as it is the only norm which 

is consistent in the sense that it gives the same size to potentially equivalent deviations. The 

risk measures defined here enables testing and evaluating predictions on the behavior of 

players. For example: Do players deviate more in a game with lower risks than in a game with 

higher risk?  

 

Introduction 

One of the foci of experimental game theory in recent years has been the attempts to validate 

the predictions of game theory through classical tests of statistical hypotheses (e.g., O'Neille, 

1986; Brown and Rosenthal, 1990; Nagel, Rohde and Zamir, 2006). This encounters many 

difficulties. For example, in repeated games, mixed strategies involve independence (Brown 

and Rosenthal, 1990), but human subjects cannot produce perfect randomization and thus 

cannot play the Nash equilibrium exactly (e.g., Baddeley, 1966) thus often failing the 

statistical tests. Acknowledging this, Brown and Rosenthal suggest replacing the question: 

"Did the players play the Nash strategy?" with the question: "To what extent did the players 

play the Nash strategy?" This view presents a weaker or wider interpretation of "playing 

Nash", by concentrating on the closeness of the play to the prediction. In line with this 

approach, a basic prediction regarding the behavior of players would be that players deviate 

less in games that are "riskier" in some sense, than in games that are less risky. In order to 

validate this prediction a measure for the riskiness of a game should be defined for each of the 

players.  

In two-person zero-sum games, Nash-equilibrium points coincide with Minmax 

points, thus in addition to the stability property captured by the equilibrium concept, the 

solution has also a security property: in playing the Nash equilibrium, each player guarantees 

to receive at least the equilibrium payoff, independently of the behavior of his opponent.  

__________________________ 

*This work is part of a project with Y. Rinott and D. Azriel.  
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Hence zero-sum games should provide the most promising domain for finding empirical 

support for the Nash equilibrium theory. In particular, if the Nash equilibrium is unique then 

it makes a strong prediction regarding the behavior of players. Deviating from the Nash 

equilibrium is risky because it may result in a lower payoff if the other player is also deviating 

from the Nash equilibrium. The degree of risk depends on the specific game matrix. Although 

deviation from the Nash equilibrium does not seem reasonable in this context, there are two 

main reasons to still expect such deviations. The first is that if a rational player suspects that 

his opponent is not playing according to the Nash equilibrium then he should try to take 

advantage of this (playing a best-reply to the other player's strategy) in order to get more than 

the equilibrium payoff. Another reason to expect deviations, is that a deviation can be 

accidental, a manifestation of a 'trembling hand'. Accordingly, we define two models for 

deviations. The first model corresponds to the strategic and conscious deviation thus we name 

this model "the Strategic-model" (or "S-model"). The second model relates to the erroneous 

(accidental) deviation and thus is named "the Error-model" (or "E-model"). In each of the two 

models, we define a "risk-measure" representing, for each player, the potential risk in 

deviating from the Nash-play in that game. Given a direction of deviation, the resulting 

difference in payoff is linear in the magnitude of the deviation. Hence, the 'risk' (in any 

reasonable definition) must also be linear in the amount of deviation. Thus, in order to 

compare different directions of deviations, we restrict our attention to deviations of 'size' 1 

and define a measure R  for the risk per unit deviation. Thus from now on we assume that the 

magnitude of the deviations is 1. The choice of an appropriate norm to measure the size of 

deviations is a matter of importance and will be discussed in the sequel.   

The more interesting and challenging model among the two, is the S-model. In the S-

model the row player (PI) and the column player (PII) each chooses the direction of deviation 

and then PII pays PI the resulting difference from the Nash payoff. Thus the S-model can be 

viewed as a new zero-sum game, defined over the original game. We call this new game: 

"The game on the risk in deviation". Clearly this new game does not have a value in the usual 

sense, as we removed the unique Nash equilibrium from the strategy sets (by "forcing" the 

players to deviate). Our main result is that the risk of PI and the risk of PII always coincide. 

This result holds for any norm we use for the size of the deviations. We prove the equality 

between the risks of the two players in both the S-model and the E-model.  

We develop an explicit expression for the risk measures for the 
1
 - and 

2
 -norms,

1
 

and compute it for several games. Although the results hold for all norms, we show (Section 

5) that only the 
1
 -norm is suitable in our context, as it is the only norm which identifies 

between potentially equivalent deviations by giving them the same size.  

 

 

 

  

                                                           
1
 Recall that for 1( , , )t n

nx x x R   , 
1 i

i

x x  and 
2

2 i

i

x x    
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1. Deviation vectors 

Consider a two-person zero-sum game with an n n  payoff matrix A  with a unique strictly 

mixed Nash equilibrium. Denote the unique pair of Nash strategies of PI and PII by ,E Ex y

respectively.  If PI uses the strategy ( )Ex x  and PII uses the strategy ( )Ey y  we will say 

that x  and y  are the "deviation vectors" of PI and PII respectively.
2
  

 As probability vectors, , ( )E Ex x x both satisfy that their entries sum up to 1.  It 

follows that: 
1 1

0.
n n

i i

i i

x y
 

     

A well-known property of strictly mixed Nash equilibrium, referred to as the 

"indifference property" (see Maschler, Solan and Zamir, 2013), states that if only one of the 

players deviates from the Nash equilibrium he does not lose nor does he gain by it, thus:  

  .
t t

E E E Ex x Ay x Ay   

That is for all deviation vectors , :x y    

    0, 0.t t

E Ex Ay x Ay             (1.1) 

Therefore in order to measure the risk of a deviation one should look at the case 

where both of the players deviate. Then we have for all deviation vectors ,x y :   

     .
t t t

E E E Ex x A y y x Ay x Ay     

The term 
t

E Ex Ay  is the equilibrium payoff. Therefore from now on we will call 
tx Ay  "the 

deviation payoff".  

Let   be an arbitrary norm. Following the above discussion, given an n n  payoff 

matrix we define the set of strategies S  of both PI and PII, as: 

 ; 0, 1 .n

iS x R x x     

Note that real deviations are of the form , ,x y   with , ,   sufficiently small so that 

,E Ex x y y    are in fact probability vectors. The deviation payoff is then, as mentioned 

( ).tx Ay  Note also that since the Nash equilibrium in the original game is strictly mixed, 

one can deviate in all directions. 

Clearly, the set S  is not convex, therefore the generalized Nash existence theorem (see 

Maschler, Solan and Zamir, 2013) does not apply here.  

 

                                                           
2
 We denote by x  a column vector and by 

tx  its corresponding row vector.   
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2. The risk measures 

In this section we define for each model (the S- and E-models), and for each player (PI and 

PII) a measure for the amount that is risked as a result of a deviation. 

 

2.3. The S-model 

In the S-model the players control their deviations (of magnitude 1). They each 

choose a strategy ( x  and y  respectively) from ,S  and then PII pays PI the resulting 

deviation payoff 
tx Ay . Thus the S-model presents a new zero-sum game defined over the 

original game. This new zero sum game is between the same players and with the same 

payoff matrix as the original game but the set of mixed strategies is the ( 2) dimensionaln   

sphere S  (rather than the ( 1) dimensionaln   simplex in the original game). If we assume 

the players use a minmax approach (just like we assume they do in the original game) then the 

players should deviate in the least risky direction. Accordingly:  

PI can guarantee not to get less than:            max min t

y Sx S
x Ay


                                                      

and PII can guarantee not to pay more than:   min max .t

y S x S
x Ay

 
                                            (2)          

 

In Proposition 2.3 we prove that max min t

y Sx S
x Ay


 is negative and min max t

y S x S
x Ay

 
 is 

positive. In other words, if deviating, PI can guarantee not to lose more than 

max min ,t

y Sx S
x Ay


  and similarly, if deviating, PII can guarantee not to pay more than 

min max .t

y S x S
x Ay

 
 It is natural to define the risk as the potential damage in deviating. Hence we 

define the risk measures 1( )R A  of PI, and 2 ( )R A of PII, in the S-model as follows. 

 

Definition 2.1 

The risk measure 1( )R A  for a strategic deviation of PI in the A  matrix game is defined as: 

 
1( ) max min .t

y Sx S
R A x Ay


    

Similarly, the risk measure 2 ( )R A  for a strategic deviation of PII in the A  matrix game is 

defined as:  

 2 ( ) min max .t

y S x S
R A x Ay

 
   

 



5 
 

The main result of the present work is that the risk of PI and the risk of PII always 

coincide, namely 1 2( ) ( ),R A R A  and that this is true for any norm we choose to use for the 

size of the deviations. See Theorem 2.4. 

   

2.2 The E-model 

Unlike the S-model, in the E-model, in which the players are not in control over their 

deviations one should be interested in the worst possible outcome, namely:  

PI will not lose more than:            min min t

x S y S
x Ay

 
  

and PII will not pay more than:   max max .t

y S x S
x Ay

 
 

 

 

The risks in the E-model are thus defined as follows: 

 

 

Definition 2.2  

The error-risk measure 1( )e A  of PI in the A  matrix game is: 

 1( ) min min .t

x S y S
e A x Ay

 
    

Similarly, the error-risk measure 2 ( )E A  of PII in the A  matrix game is:  

 2 ( ) max max .t

y S x S
e A x Ay

 
   

 

In the E-model too, we show that the risk measures of the players coincide, namely 

that:  1 2( ) ( ).e A e A   

  

Proposition 2.3.  For any n n   matrix ,A  that has a strictly mixed and unique Nash 

equilibrium, and for 1,2 :i    

 
( ) ( ) 0.

( ) ( ) 0.

i

i

a R A

b e A




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Proof.    

We will prove the proposition for 2i   (i.e., for the column player PII). Applying this to 

tA  (in which PI is the column player) establishes it for PI ( 1i  ) as well. 

Note first that since S  is a compact set, then all the expressions appearing in the 

Proposition are well defined. Note also that:   

2 2( ) max max min max ( ),t t

y Sy S x S x S
e A x Ay x Ay R A

  
    thus the proof of ( )b  will follow from 

the proof of ( ).a   

In order to prove ( ),a  assume on the contrary, that min max 0.t

y S x S
x Ay

 
  Then there 

exists 0 ,y S  such that: 0max 0,t

x
x Ay  and thus for all :x S   0 0.tx Ay    

Since ,Ey  the equilibrium strategy of PII in the original game, is strictly mixed then 

for a small enough 0,   the deviation 0dy y  is a feasible deviation from the equilibrium 

strategy, that is E dy y  is a probability vector and 0,t

dx Ay  for all .x S   

Now: 

       .
t t t t

E E d E E d E dx x A y y x A y y x Ay x Ay        

By (1.1):    0,t

Ex Ay   and since we assumed that 0,t

dx Ay  we get that:  

      ,
t t

E E d E E dx x A y y x A y y       .x S                      (5) 

On the other hand, from the indifference property of the strictly mixed Nash equilibrium 

( , ),E Ex y  we also have, for all deviation vectors :y    

   .t t t

E E d E E E Ex A y y x Ay x A y y                      (6) 

Combining (5) and (6), we get that for all deviation vectors x  and y  in :S   

       .
t t t

E E d E E d E Ex x A y y x A y y x A y y       

 Hence the pair of strategies: ( , )E E dx y y  is also a Nash equilibrium of the original game 

,A  in contradiction to the assumption that ( , )E Ex y  is the unique equilibrium (note that this 

equilibrium is different from ( , )E Ex y  since 0y S  and 0   imply 0dy  ).  

 

Proposition 2.3 implies that it is not possible to deviate without any risk. 
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2.3 Main Results  

 

The main result of this work is: 

Theorem 2.4   

If the payoff n n  matrix A  has a strictly mixed and unique Nash equilibrium, then  

 1 2( ) ( ),R A R A   

and this holds for any norm we use for the deviations.  

 

Proof.       

Clearly:   1 2( ) ( ).tR A R A   

This is so since one can view PI as being the column player (and PII being the row player) in 

the 
tA  matrix game. In fact, it also holds that: 

 2 2( ) ( ).t tR A R A    

This is true since: 

 
2 ( ) min max ( ) min max( ) ,t t t t t

y S y Sx S x S
R A x A y x A y

  
       

and since x S  iff ,x S  then the above equals: 2min max ( ).t t t

y S x S
x A y R A

 
    

So finally, it remains to show that: 

 2 2( ) ( ).tR A R A   

Namely, that:          min max min max .t t

y S y Sx S x S
x y x y

  
 t

A A            

 

The ( 1)n -dimensional subspace of deviation vectors (that is, the subspace containing S ) is: 

 

 
1

: 0 .
n

n

i

i

V x R x


 
   
 

   

Since ,S V  we need to consider the restriction of 
tx Ay  to ,V and we identify V  

with 
1nR 
 via an appropriate choice of basis.  
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The following is straightforward. 

Lemma 2.5 The columns of the following ( 1)n n    matrix are an orthonormal basis of ,V    

  

 

1

1

1

1 1 1

t t t

t t t

E

t t t

n n n

 
 


 
 
 

 
 
 

  

 

where 
1

.t
n n




      

       

Since we identify V  with 
1nR 

 via ,E  we define a norm 
E

   on 
1nR 

 as follows: 

 : .
E

u Eu   

For , ,x y V  denote by 
1, nv w R   the vectors that satisfy:  , .Ev x Ew y   

So in terms of 
1, ,nv w R  the deviation payoff function is:   

 ( ) ( ) ,t t t tEv A Ew v E AEw v Bw    

where .tB E AE   

Thus:  
1 1

1 1

min max min max .
E E

t t

y V wx V v
y x

x Ay v Bw
  
 

  

Similarly:  
1 1

1 1

min max min max .
E E

t t t t

y V wx V v
y x

x A y v B w
  
 

  

So in order to prove Theorem 2.4, we need to prove that:    

1 11 1
min max min max .

E EE E

t t t

w wv v
v Bw v B w

  
      (7) 

For the sake of convenience, from this point until the end of the proof of Theorem 2.4, we 

drop the subscript E  from 
E

  and write simply .  This will cause no confusion with the 

norm on 
nR  since we will be working only in 

1.nR 
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We need the following definition for the dual-norm (see e.g., Lax, 1997): 

 

Definition 2.6  

Given any norm   on 
1nR 
, define the dual-norm 

*
  on 

1nR 
 as follows: 

 
1

*

1

max .
n

t

v R
v

u v u




  

Note that   
*

1 11
min max min ,t

w wv
v Bw Bw

 
 and similarly  

*

1 11
min max min .t t t

w wv
v B w B w

 
   

Thus we need to prove that:  

 
**

1 1
min min .t

w w
Bw B w

 
   

 

This is proved by the following two Propositions. 

Proposition 2.7.  If  B  is invertible then: 
**

1 1
min min .t

w w
Bw B w

 
  

Proposition 2.8.  If the payoff matrix A  has a strictly mixed and unique Nash equilibrium, 

then the matrix
tB E AE  is invertible.  

 

Proof of Proposition 2.7.  

 

*

*

1 0

*
0

1
min min .

max
w w

w

Bw
Bw

w w

Bw

 



 
 
 
 
 

   

We will focus on simplifying 
*

0
max

w

w

Bw

 
 
 
 

 . 

Substitute: ,u Bw  then since B  is invertible we may write:  

             

1

* *
0 0

max max .
w u

B uw

Bw u



 

  
   

   
   

 



11 
 

Now, since 
**
      (see e,g., Lax, 1997),  then:  

 
* * *

**
1 1

**
1 1

* *
0 0 1 1 1

max max max max max .t

u u u u s

B u B u
B u s B u

u u

 

 

    

  
     

   
   

  

Hence:              

*

*

*

11

1

1

1
min .

max tw

u

s

Bw
s B u





  

Similarly: 

*

*

*

11

1

1

1
min .

max ( )

t

t tw

u

s

B w
s B u





  

Now: 

* * *

* * *

* *

1 1 11 1

1 1 1

1 1 1

1 1 1
min min .

max ( ) max ( ) max

t

t t t t tw w

u u u

s s s

B w Bw
s B u s B u u B s   

  

  

     

 

 

To prove Proposition 2.8, we need to prove first the following lemma. 

  

Lemma 2.9. The matrix E  satisfies: 

        ,tE E I   and  ,t

VV
EE Id  

where 
tE  is the transpose of ,E  I is the ( 1) ( 1)n n    unit matrix, 

V
 denotes restriction 

to V , and VId  is the identity on .V  

 

Proof of Lemma 2.9. Since V  and 
1nR 
 are of the same dimension, it is sufficient to prove 

.tE E I  This follows from the fact that the columns of E  are orthonormal.  
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Proof of Proposition 2.8  

Assume on the contrary that B  is not invertible, then there is a vector 
1, 0,nw R w   such 

that 0.Bw   Since 0,Ew   and ,Ew V  then ˆ .
Ew

y S
Ew

      

By Lemma. 2.9, and the fact that: ,tB E AE  we get that for all , :x y V   

 .t t t t t tx EBE y x EE AEE y x Ay    

Therefore, for all :x S   

 
1

ˆ 0,t t t tEw
x Ay x EBE x EBw

Ew Ew
            since 0.Bw    

The above is true for all  .x S  In particular it is true for the max, that is:   

ˆmax 0,t

x S
x Ay


    and so      min max 0,t

y S x S
x Ay

 
    in contradiction to Proposition 2.3(a).  

                                                       

The proofs of Propositions 2.7 and 2.8 complete the proof of Theorem 2.4. 

 

 

We now prove the corresponding result for the E-model:  

Theorem 2.10   

If the payoff n n  matrix A  has a strictly mixed and unique Nash equilibrium, then  

 1 2( ) ( ),e A e A   

and this holds for any norm we use for the deviations.  

Proof.   

Note first that:   min min max max .t t t

x S y S y S x S
x Ay x A y

   
       

The above is obtained (as before) by viewing PI as the column player in .tA  Now:  

 

2max max max max max ( ).t t t t

y S x S y S y S x S
x S

x A y y Ax x Ay e A
    



     Hence:     1 2( ) ( ).e A e A  
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Theorems 2.4 and 2.10 imply that once a norm for the deviation has been chosen, the 

risk measure is a property of the payoff matrix A only. Accordingly, instead of the risk 

measures that were defined earlier for each player separately, we can now define the 

following risk measures for a given A -matrix game as:  

1 2( ) : ( ) ( ),R A R A R A          in the S-model, and:  

1 2( ) : ( ) ( ),e A e A e A      in the E-model.  

 

 Denote by  1  the n n  matrix with 1,ija    for all , .i j    

It is straight forward that: 

 

Lemma 2.31    For all :c R     

  (1) 1 ( )

(2) ( ) ( )

(3) Adding a constant to any row or column of does not change ( ).

R A c R A

R cA c R A

A R A

 

  

 The same is true for ( ).e A   

 

Lemma 2.31 states that the risk measures we have defined are invariant under 

addition, and linear under multiplication. These properties seem desirable for any risk 

measure, since an addition may be viewed as paying (or charging) the players a fixed 

payment before the game starts. This should not affect their rational choices during the game 

that follows. However, multiplying the matrix by a scalar presents a different game and thus 

should affect the rational behavior. One might still wish that the risk measure would be 

invariant also under positive multiplication, so that the risk would be relative to the 

magnitude of payoffs in the matrix. This would make the risk a property of the configuration 

(i.e., the relations between the elements) of the payoff matrix, and would enable a comparison 

between games with different configurations, ignoring differences between the order of 

magnitude of payoffs in each game. However, this together with the invariance under 

addition, would make the risk measure meaningless, since through addition and 

multiplication,  one can change any payoff matrix A into a matrix that is close as one wishes 

to the matrix  1 , e.g.:  
1

1 ,
M

A  where M  is a large positive number.   

Theorems 2.4 and 2.10 prove that our result holds for any norm we choose to use for 

the size of deviations.  It may be of interest to see and compare the risk values obtained using 

different norms. In the following two sections we develop explicit expressions for the risk 

measures for the 
1
 -norm (Section 3), and the 

2
 -norm (Section 4). 
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3. The  
1
 -norm 

In this case, the set S  of vector-deviations of PI and PII is:  

 

 
1 1

: 0, | | 1 .
n n

i i

i i

S x x x
 

 
   
 

    

 

 

3.1. The S-model (minmax approach) with the 
1
 -norm  

3.1.1. Calculating the risk 

In the proof of Proposition 2.7, we showed that the risk ( )R A  satisfies that: 

 

*

*

1

1

1

1
( ) ,

max t

s

u

R A
s B u





  

where 
1, ,ns u R  and .tB E AE     

Recall that the norm   we use on 
1nR 
 is not the 

1
 -norm of 

1,nR 
 but rather the 

norm 
1E
   induced on 

1nR 
via E  by the 

1
 -norm of 

nR , i.e., for 
1 :nu R     

 
1 1

: .
E

u Eu   

Since it is easier to calculate 
1
  on V  than 

1E
  on 

1nR 
, we return from 

1nR 
 to 

.nV R  The corresponding dual norm 
*

1V
  on V  is defined as follows. 

 

Extension of Definition 2.6 

 

1

*

1

1

max .t

V x V
x

y x y



  
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Let us focus on the denominator: 
*

1
*

1

1

1

1

max ,
E

E

t

s

u

s B u





  where 
1, .ns u R   As 

tE  is a one-

to-one map from V onto 
1,nR 

  there exist , ,x y V  such that:  , ,t tu E y s E x    and so: 

 
1 1 .t t ts B u x EB E y    

Denote  
1 ,tC EB E  then:  

1 ,t ts B u x Cy      and    ( ) ( ) ,tC V C V V    i.e. C  and 
tC  map V  onto V . 

Note that 
1: nE R V   and 

1:t n

V
E V R   preserve the inner product (as they 

transform an orthonormal basis to an orthonormal basis). Furthermore, by definition of the 

norm on 
1,nR 

 they preserve the norm. It follows that they also preserve the dual norm since 

it is determined by the norm and the inner product, namely: If y V  and 
tu E y  then 

* *

1 1
.

E V
u y    

So         
* *

1 1

* *

1 1

1

1 1

1 1

max max .
E V

E V

t t

s x

u y

s B u x Cy

 

 

   

For any ,a R  denote by a  the constant vector   , , .
t na a a a R   

 

Lemma 3.1 

For all constant vectors and :a b   

     .
t tx a C y b x Cy     

Proof.  

     .
t t t tx a C y b x Cy x Cb a C y b        

But  

 1 0.t t tx Cb x EB E b    

This is so since the rows of 
tE  belong to V  and thus the sum of the entries of each row is 0,  

so 0.tE b   Similarly, since 0 :ta E    

    1 0.t t ta C y b a EB E y b     
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Denote  : , 1 ,iK x i x     and   \ (1, 1, ,1) , ( 1, 1, , 1) .t tK K       

 

For the sake of convenience, from this point on we drop the subscript V  from 
*

1V
  

and write simply 
*
.   

 

Proposition 3.2 

 
*

*

,1

1
,

max max .t t

k r Kx

y
x y V

x Cy k Cr





   

This proposition says that for finding the maximum in the infinite set 

 * *
, ; 1, 1 ,x y V x y    it is enough to find the maximum in the finite set .K 

 

Note that  K 
 is not contained in .V  

 

Proof  

If ,x V  and 
*

1,x    then  
1

1
max 1.t

z

z V

z x




  This maximum will be attained at a vector z S  

for which the entry multiplying maxx  is 0.5,  the entry multiplying minx  is 0.5  and the rest 

of the entries are 0,  where maxx  is the maximal entry of ,x  and  minx  is the minimal entry of 

.x  Thus we get:  
1

*

max min
1

1 max 0.5 0.5 ,t

z

z V

x z x x x




     from which we get that:   

max min 2.x x   That is, we have obtained that x V  satisfies that 
*

1,x   iff  it satisfies 

that:  max min 2.x x   

Let L  be the set max min{ : 1, 1}nL x R x x     . Given any x L  let xe  be the 

average of the entries of x  , and let ˆ
xx x e  . Then ˆx x  is a bijection from L  onto the 

set 
*

{ : 1}x V x  , and by Lemma 3.1 ˆ ˆt tx Cy x Cy . We note that K L  , and so it 

remains to show  that  
,

max t

x y L
m x Cy


  is attained at a pair of points in K 

. Let 0 0,x y  be a 

pair of points in L   where the maximum is attained, i.e. 0 0

tm x Cy .  
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Fixing 
0y  it is clear that 0max t

x L
x Cy


is attained at the point k K   defined as follows. For 

all :i   

If  0 0,
i

Cy   then : 1,ik   and                         (8)            

if  0 0,
i

Cy   then : 1.ik                                                   

So we must have 0

tm k Cy . 

Note that indeed ,k K  namely that 

(1, 1, ,1) , ( 1, 1, , 1) .t tk      This is true because ( ) ,C V V and so  

00 y V   implies 00 .Cy V    Hence the entries of 00 Cy  sum to 0 which implies that 

it has both positive and negative entries. Thus ,k  which is determined by (8) must have both 

1 and 1  entries. 

We may now similarly replace 0y  with r K    defined as follows. For all :i  

If   0,t

i
k C   then : 1,ir   and                          (9)       

if   0,t

i
k C   then : 1.ir     

As before, we must have  
tm k Cr , so we have established that the maximum is attained at 

the pair  ,k r K   

(Again 
tk C  has both positive and negative entries since if ˆk z  where z V  then 

0t

ze C   so ,t tk C z C and 0 z V   so 0 tC z V  , since ( )tC V V  ).       

       

 

As a conclusion of our results so far, we have obtained: 

,

1
( ) .

max t

k r K

R A
k Cr



  

In order to find 
,
max ,t

k r K
k Cr


 one needs to consider all vectors .k K   Each such 

vector is matched with a vector r  that is determined by (9), in order to calculate ,tk Cr and 

find the pair , ,k r  for which 
tk Cr  is maximal. 

For a game matrix of dimension ,n  one needs to calculate 
tk Cr  for the 2 2n   

possibilities of ,k  (corresponding to the number of vectors in the set K 
). Clearly 
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max( ) max ,t t

r K r K
k Cr k Cr

  
    therefore one needs to make only 

12 2
2 1

2

n
n

    

calculations.  

 

3.1.2. The optimal strategies 

The optimal strategies  
*x  and 

*y  of PI and PII respectively are given by: 

 

1
*

1

1

t

t

EB E k
x

EB E k




            

1
*

1

1

t

t

EB E r
y

EB E r




           (10) 

 

This is obtained by starting at the end of the process described above, namely at the optimal 

vectors , ,k r  and following the process in the reverse direction. Note that we can skip the first 

step of ,
k

k k e  (where 
k

e  is the average of the entries of k ). This is because the next 

step is multiplication by 
tE , and 0.t

k
E e   The same goes for .r   

Note also that the normalization appearing in (10) is needed because the first step of the proof 

of Proposition 2.7 is  

*

*

1 0
min min

w w

Bw
Bw

w 
 , which relaxes the requirement 1.w    

  

Remark. Note that the matrix we are finally using is  
1 tEB E

, which can be expressed in 

terms of the matrix A  as:      
1( ) .t tE E AE E

  

That is, we induce A  on 
1nR 
 via  ,E  take the inverse in 

1nR 
 and then induce back to 

nR  

via .tE  If A  itself is invertible then one might think that the round trip through 
1nR 

can be 

saved by simply taking 
1.A

 The action of 
1A
is however completely different. Note e.g. that 

in general 
1( )A V V  . 

 

In the following section we will demonstrate the procedure described here. 
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3.1.3. Examples. 

 

We look at four different games: 

 

      MP                  O'Neille's game         Non-symmetric            Non-symmetric 

                                                                   3X3 game                     4x4 game 

                           

1 1

1 1

 
 
 

          

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 
 

  
  
 

  

  

0.1 0.8 0.7

0.9 0.2 0.5

0.3 0.1 1

 
 
 
 
 

   

1 0 0.5 0.25

0 1 0.25 0.5

0.25 0.25 0.75 0

0.5 0.5 0.5 0.5

 
 
 
 
 
  

                                                                                                                   

 

The first two games are symmetric; the first denoted MP is the well-known game of 

"Matching Pennies", and the second game was constructed by O'Neille (O'Neille, 1986). The 

last two games are non-symmetric. We will follow in detail the example of the non-symmetric 

3 3  game, and only give the final results for the other 3 games.   

In the two symmetric games above, only two different payoffs appear: 1 and -1. This, 

theoretically, makes irrelevant the subjects’ attitude to risk assuming they have von-Neumann 

Morgenstern linear utility functions (see O'Neille, 1986). We are interested in MP as an 

example for a very simple game that has a unique mixed Nash equilibrium. Our interest in 

O'Neille's game derives from the fact that it was carefully chosen to hold several desirable 

properties, one of which is that it is the simplest nontrivial game according to a definition of 

simplicity given in O'Neille, 1986.  

  

O'Neille's game was comprehensively discussed and debated upon in several papers 

(see O'Neille, 1986; Brown and Rosenthal 1990; O'Neille 1991). It is interesting to compare 

between the risks of MP and O'Neille's game. Nevertheless looking at symmetric games only 

would not be satisfactory since our main result, that the risks of the players coincide, holds 

trivially in symmetric games. Hence we look at non-symmetric games as well.  

 

Note that if x  is optimal then x  is optimal as well. In our solutions below we will 

not mention both. 

 

The Non-symmetric 3x3 game 

 

0.1 0.8 0.7

0.9 0.2 0.5

0.3 0.1 1

A

 
 

  
 
 
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The matrix E  appearing in Corollary 2.5 for the case of 3,n   is: 

 

 

3 3 3 3

6 6

3 3 3 3

6 6

1 1

3 3

E

   
 
 
   

  
 
 
  
 

  

3 3 3 3

6 63 3 3 3 1
0.1 0.8 0.7

.028 .6126 6 3 3 3 33
0.9 0.2 0.5 .

.555 .2616 63 3 3 3 1
0.3 0.1 1

1 16 6 3
3 3

tB E AE

   
 

       
                          

    
 

 

 
1

0.752   1.764

1.600 0.0 1
.

8
B 




  
 

  

 1

-0.578  0.962 -0.385

 1.057 -0.096 -0.960 .

-0.480 -0.866  1.345

tC EB E

 
 

   
 
 

  

The possibilities we need to check for the vector k  appear in the first column of the 

following table. For each vector k we define the vector r  according to (9). For each 

pair and ,k r  we calculate the value of tk Cr   in the third column.  

k  r  tk Cr  

(1,1, 1)  (1,1, 1)  5.381 

( 1,1,1)  (1, 1,1)  3.849  

(1, 1,1)  ( 1,1,1)  4.227  

 

From the table above, we see that the maximum is attained in the first case, namely for: 

(1,1, 1), (1,1, 1).k r     

And the value of the game is thus:   

,

1 1
( ) 0.18584.

max 5.381t

x y S

R A
x Cy



    
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 To find the optimal strategies 
* *, ,x y we use (10) and get: 

* *(0.178,0.322, 0.5), (0.143,0.357, 0.5).x y     

The results for the four games are summarized in the following table. Note that MP is riskier 

than the O'Neill's game. 

 

The game R   *x  = optimal strategy of PI 
*y  = optimal strategy of PII 

MP 1 ( .5,.5)  ( .5,.5)  

O'Neille's game 0.625  (.25, .5,.125,.125)  (.25,.125,.125,. .5)  

3X3 non-symmetric game 0.18584   (0.178,0.322, 0.5)  (0.143,0.357, 0.5).  

4X4 non-symmetric game 0.10227   (.318,.091, .409,.182)  (.316,. .227, .273,.364)   

 

 

3.2. The E-model (maxmax approach) with the 
1
 -norm 

As explained earlier, in the E-model each player is concerned with the worst possible 

outcome. In particular, PII is concerned with 
,

max .t

x y S
x Ay


 

 Denote: ,t tz x A   and denote iz  and jz   as the minimal and maximal entries of z  

respectively. Then given ,t tz x A  the strategy 
xy of PII, which will maximize ,tx Ay  

satisfies that:  0.5, 0.5x x

i jy y    and for all ,k i j : 0.x

ky    This is so since: ,y S

and so: 0, and 1.x x

i iy y   Hence the vectors 
* *, ,x y  are both of the form: 

0.5 (0 0,1,0 0, 1,0 0).   Define the set X  of such vectors as follows:  

  : . : 0.5, . : 0.5, , : 0 .i j kX x i s t x j s t x k i j x           

Then: 

 
,

max max ,t t x

x y S x X
x Ay x Ay

 
   

where 
xy  was defined above. 

Thus in order to find the risk one needs to make only 
2

n 
 
 

 calculations and not 2
2

n 
 
 

 

calculations since ,x xy y    and so:   ( ) .t x t xx Ay x Ay    
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3.2.3. Examples 

We will continue with our four examples above. 

For the non-symmetric 3x3 game 

 

0.1 0.8 0.7

0.9 0.2 0.5

0.3 0.1 1

A

 
 

  
 
 

 

 

2x  2 xy  4 t xx Ay  

(1, 1,0)  ( 1,1,0)  1.4  

( 1,0,1)  (0, 1,1)  1  

(0, 1,1)  ( 1,0,1)  1.1 

 

We see from the table above that the maximal value is attained in the first row and that it is: 

1.4 4 0.35.   Hence: ( ) 0.35,e A    

  

and the strategies 
* *, ,x y  are: 

 

*

*

(0.5, 0.5,0)

( 0.5,0.5,0).

x

y

 

 
  

 

The results for the four games are summarized in the following table.  

The game e   *x  
*y  

MP 1  0.5 0.5   0.5 0.5  

O'Neille's game 1  0 0 0.5 0.5   0 0 0.5 0.5  

3X3 non-symmetric game 0.35   (0.5, 0.5,0)  ( 0.5,0.5,0)  

4X4 non-symmetric game 0.5   0.5 0.5 0 0   0.5 0.5 0 0  
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4. The 
2
 -norm 

As before, for any deviation vectors x  and ,y  denote by 
1, nv w R    the vectors s.t.  

, ,Ev x Ew y   and denote: .tB E AE  Then, like before, the deviation payoff is:  

 ( ) ( ) ( ) .t t t t tx Ay Ev A Ew v E AE w v Bw     

 Now, given ,w  then by the Cauchy-Swartz inequality 
2

1
max t

v
v Bw


 is obtained when 

v  is in the direction of .Bw  That is: 

 
2

21
2

max .

t

t t t

v

Bw Bw
v Bw Bw w B Bw

Bw
     

 

Denote: ,tD B B  then D  is a symmetric and non-negative ( 1) ( 1)n n    matrix, thus it can 

be diagonalized, namely there exists an orthonormal basis  1 1, , nu u   such that if  

1 1 1 1,n nw u u      then:  

 
1

2

1

n
t

i i

i

w Dw d




            (11) 

where , 0,ii d   are the eigenvalues of .D  Note that 
2

1w    so   
1

2

1

1.
n

i

i






   

Hence:         
1

2

1

( ) min ,
n

i i

i

R A d




      and    
1

2

1

( ) max ,
n

i i

i

e A d




   so if we denote by  

mind  and maxd   the minimal and maximal eigenvalues of D  respectively, then: 

min max( ) , and ( ) .R A d e A d   

 

Accordingly, in the S-model, an optimal strategy of PII is ,Ew  where w  is an eigenvector of 

,D  corresponding to mind , and in the E-model, an optimal strategy of PII is ,Ew  where w  is 

an eigenvector of ,D  corresponding to maxd .   

   Similarly, for PI with ˆ tD BB  instead of .tD B B  
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4.3. Examples 

For the non-symmetric 3x3 game 

0.1 0.8 0.7

0.9 0.2 0.5

0.3 0.1 1

A

 
 

  
 
 

 

 

The matrix B  for this case was already found in section 3.1.3: 

.028 .612
.

.555 .261
B

 
  

 

 

 
0.309 0.128

.
0.128 0.443

tD B B
 

   
 

  

The eigenvalues of D  and their eigenvectors are: 

 
0.231, ( 0.855,0.518).

0.52, ( 0.518, 0.855).



 
  

Hence:  

 
( ) 0.231 0.4806,

( ) 0.52 0.7211.

R A

e A

 

 
 

The eigenvalues of 
tBB  are the same as for ,tB B  but their eigenvectors are different. The 

eigenvalues and their eigenvectors are:  

 
0.231, ( .708,.706).

0.52, ( .706, .708).



 
  

 

 

In the S-model:   

 
*

3 3 3 3

6 6
.706

.708 .7083 3 3 3
.708 .

.706 .7066 6
.001

1 1

3 3

x E

   
 
   
         

        
        

  
 
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And in the E-model:   

 

*

3 3 3 3

6 6
.409

.706 .7063 3 3 3
.407 .

.708 .7086 6
.816

1 1

3 3

x E

   
 
   
         

                 
  
 

 

and similarly, the optimal strategies of PII are: 

In the S-model:   

  * .589,.784, .195 .y      

And in the E-model:   

 * .565,.228, .793 .y    

The results for the four games are summarized in the following two tables. 

 

The S-model 

The game R   *x  
*y  

MP 2  1 1

2 2


 
 
 

 
1 1

2 2


 
 
 

 

O'Neille's game 2  0.000 0.408 0.408 0.816)

(0.001 0.567 0.793 0. 7)

(

22



 
 

0.000 0.408 0.408 0.816)

(0.001 0.567 0.793 0. 7)

(

22



 
 

3X3 non-

symmetric game 
0.4806   .706 .708 .001    .589,.784, .195   

4X4 non-

symmetric game 
0.34    .079, .34, .52,.781    .219,.31,.607, .698    

 

The E-model 

The game e   *x  
*y  

MP 2  1 1

2 2


 
 
 

 
1 1

2 2


 
 
 

 

O'Neille's game 2.5  0.577,  0.577,0.577   0.577,  0.577,0.577  

3X3 non-symmetric game 0.7211   .409 .407 .816   .565,.228, .793  

4X4 non-symmetric game 1.122    .333, .795,.506, .044     .703,.608, .212,.307    
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5. The appropriate norm to use is 
1
.   

Although Theorem 2.4 proves that our result holds for any norm, we argue that in fact 

the only norm that should be used is the norm 
1
  on ,V (or a multiple of it, i.e. 

1
c  ). 

This is because the norm we use should give the same norm to deviations which are 

equivalent in the sense, which is demonstrated in the following example. Consider a payoff 

matrix A  in which the first two rows are identical (or almost identical, in order for A  to have 

a unique Nash equilibrium). Then the deviation vector 3( ,0, , , )nx x x  and the deviation 

vector 3' (0, , , , )nx x x  satisfy that: ' ,t tx A x A  and so for all : ' .t ty S x Ay x Ay   

Hence x  and 'x  are equivalent deviations with respect to ,A  and so we would like them to 

have the same norm. 

 

For this we need the following definition.     

Definition 5.1.  Given a norm , and deviation vectors , ,x x V we say that andx x  are 

similar if there exists a subset of indices  1,2I n , s.t: 

 

:

0, 0, and : ,

and :

.

i i i i

i I i I

i i

i I

x x x x

i I

x x

 

 

   

 



 
  

 

Theorem 5.2. 

Given a norm ,  if for any similar deviation vectors , :x x V    ,x x  then there 

exists a constant ,c  s.t:  

 
1

c       on  .V  

Proof.  

For i j  denote by 
ijv  the vector that satisfies: 1, 1, and , : 0i j rv v r i j v       

and let 
12 .v k  Then we claim that 

ijv k  for all .i j  This is because exchanging 

between the places of two entries, one which is zero and another which is 1, creates a vector 

that is similar to the original one and since .v v   

Given 0 ,x V   replace one of its positive entries with the sum of all positive 

entries, and replace all other positive entries with 0.  Denote this new vector by ',x  then 
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andx x are similar. By passing to 'x  and repeating the procedure we obtain a vector ''x  

such that '' ijx av  for some i j  and some 0.a   Now: 

.ijx x x x av ak           

Clearly 
1
 also satisfies the requirement of the Proposition. Namely, that for any similar 

vectors , :x x    
1 1

.x x  Hence  
1 1

2 .ijx a v a   

Therefore:  
1
.

2

k
x ka x   

Since this is true for all ,x V  we have 
12

k
    on .V   
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