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Abstract

We study the efficiency and stability properties of meritocratic matching in the context
of group formation and public goods provision. This institutional mechanism is meritocratic
in that it tends to assortatively match agents into groups according to their contributions.
However, we assume that the correlated matching process is imperfect and probabilistic.
The two extremes of our mechanism are the voluntary contributions mechanism (Isaac et al.,
1985) with random group re-matching at the one end, and the group-based mechanism (Gun-
nthorsdottir et al., 2010a) at the other. The characteristics of meritocratic matching as a
function of its degree of imperfection summarize as follows: (1) When matching is not suf-
ficiently meritocratic, the only equilibrium state is universal free-riding. (2) Above a first
threshold of minimum meritocracy, several Nash equilibria above free-riding emerge, but
only the free-riding equilibrium is stochastically stable. (3) There exists a second merito-
cratic threshold, above which an equilibrium with high contributions becomes the unique
stochastically stable state. This operationalization of meritocracy sheds light on critical
transitions, that are enabled by contribution-assortative matching, between equilibria re-
lated to “tragedy of the commons” and new, more efficient equilibria with higher expected
payoffs for all players. An important feature of the mechanism broadly speaking is that
both groups of players, those that are incentivized by the mechanism to contribute as well
as those that are not incentivized by the mechanism and continue to free-ride, will benefit
from meritocratic matching.
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1 Introduction

Meritocracy incentivizes effort and performance, thus promising efficiency gains. In environ-
ments such as education, job matching, or marriage markets, however, more meritocracy may
lead to an exacerbation of inequality because the gap between over- and under-performers
widens due to these added incentives (Young, 1958; Arrow et al., 2000; Greenwood et al., 2014).
In this paper, we study the effects of meritocratic regimes that assortatively match players by
their contributions to a public good. In particular, we apply meritocratic matching to games
of public goods provision based on voluntary contributions, where non-meritocratic matching
leads to free-riding and phenomena related to “tragedy of the commons” (Hardin, 1968; Ostrom
et al., 1992). In this paper, we shall analyze the conditions under which sufficiently meritocratic
matching can stabilize the provision of a public good. Moreover, we shall show that merito-
cratic matching in the context of public goods, in contrast to the environments previously
studied, incurs little or no welfare costs of inequality because non-free-riding equilibria ex-ante
payoff-dominate (Harsanyi and Selten, 1988) the free-riding equilibrium.

Specifically, we consider mechanistic variants of the public goods games introduced by Isaac
et al. (1985) (see also Isaac and Walker 1988). Our mechanism differs substantially from the
original set-up in several key aspects, but the common feature remains that individual players
make voluntary contributions to a group account which then returns even shares of the group
earnings back to the individual players in the group.1 The unfortunate feature of the voluntary
contributions game under the standard mechanism (Isaac et al., 1985) is that its unique equi-
librium outcome is characterized by universal non-provision of the public good. We shall use
the terminology voluntary contributions mechanisms (VCM) to refer to implementations of the
contributions game by Isaac et al. (1985) where several separate groups are randomly matched
from a wider population to produce several, separate, local public goods (e.g. Andreoni, 1988).
Random re-matching à la Andreoni (1988) does not improve the game’s pessimistic equilibrium
predictions; the only Nash equilibrium remains to be global non-contribution. We shall take a
different approach with respect to group configurations in this paper in that group matchings
will not be random. Instead, a meritocratic regime will assortatively match groups based on
players’ decisions whether to contribute or not. Contributors will tend to be matched with
contributors, and free-riders with free-riders. We shall call this contribution-assortative regime
‘meritocratic matching ’, abbreviated ‘MERIT’. We study MERIT’s efficiency and stability prop-
erties as a function of the protocol’s randomness reflecting its meritocratic matching fidelity.
MERIT nests what we defined as VCM above as the non-meritocratic limiting case. The other
limiting case is the group-based mechanism (GBM) (Gunnthorsdottir et al., 2010a), which in
our set-up represents the perfectly meritocratic case, and we shall elaborate on this case in more
detail shortly.

But before we get into these details, we would like to provide more intuition for the basic flavour
of the class of imperfect meritocratic matching mechanisms described by MERIT. While none
of the following real-world institutions coincides one-to-one with MERIT, all of them share
one of more of MERIT’s key features. Entrance examinations to schools or universities, for
example, assort individuals based on an imperfect measure of applicants’ adequacies for different

1These voluntary contribution situations are related in spirit to the aforementioned common-pool resource
problems (e.g. Ostrom et al., 1992; Ostrom, 1990), but one should not think of them as equivalent due to
important psychological differences (Andreoni, 1995a).
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streams of education. An important feature of this sorting mechanism is that the resulting
differences in educational quality amongst those different schools are not only determined by
the institutional design, but also largely by the different quality levels of students present
in them. Better students tend to study with better students, and worse students with worse
students. The incentive to work hard for the examinations is to get into a good school. We shall
develop a formal model of such a matching process in the context of public goods games with
ex ante homogeneous agents. Alternatively, imagine an assortative employment regime with
team-based payments that reward employees for performance by matching them with similarly
performant employees. Examples include trading desks in large investment banks, and again
this incentivizes hard work in order to get into better teams. Finally, we would like to point out
the similarity in spirit to the nature of team formation in professional sports, where performant
athletes tend to be rewarded by joining successful teams with better contracts. Importantly, as
with any real-world situation, all of these mechanisms are typically both noisy and not always
fair.

So what is known about the effects of meritocratic matching in public goods situations? As
mentioned before, standard VCM is non-meritocratic in terms of matching because players’
contributions have no effect on their group memberships. Under VCM, numerous experimental
and empirical studies show that contributions deteriorate towards the tragedy of the commons
outcome without mechanistic additions (see Ledyard (1995) and Chaudhuri (2011) for reviews).2

The recently proposed GBM (Gunnthorsdottir et al., 2010a), by contrast, is perfectly matching-
meritocratic in that high contributors are guaranteed to join groups with aggregate contribution
levels that are typically higher and definitely not lower than those of players with lower contri-
butions. As a result, contributions under GBM gain additional group-matching advantages, and
more efficient equilibria are enabled if the marginal rate of return is not too low (Gunnthors-
dottir et al., 2010a). Several recent laboratory studies show that contributions are consistently
stabilized by GBM in this case (Gunnthorsdottir et al., 2010a; Gunnthorsdottir and Thorsteins-
son, 2010; Gunnthorsdottir et al., 2010b), and also by a pairwise demotion-promotion variant
(Cabrera et al., 2013).

MERIT, the mechanism proposed here, bridges VCM and GBM. In the spirit of VCM and GBM,
our mechanism also affects only group interactions, hence, there are no inherently mechanistic
efficiency costs. There are also no payoff transfers via mechanistic additions such as taxes or
subsidies, and no payoff can be used to pay for signals or punishment. Instead, players are
assortatively matched based on their choices whether to contribute or not. Contributing and
free-riding respectively imply the following new up- and downsides: contributing increases the
chance of being matched into groups with high contributions; free-riding increases the risk of
being matched in groups with low contributions. The size of these additional incentives depends
on the level of meritocracy in matching. As a result, free-riding may seize to be a dominant
strategy if sufficiently many players contribute, and if the system is sufficiently meritocratic.
Indeed, MERIT enables equilibria above free-riding, which ex ante payoff-dominate the free-
riding equilibrium.3

We model MERIT in such a way that the correlation of contribution decisions and group match-

2Other mechanisms that stabilize contributions include tax schemes (e.g. Tiebout, 1956; Buchanan, 1965;
Groves and Ledyard, 1977), costly signalling (e.g. Gintis et al., 2001) and costly punishment (e.g. Ostrom et al.,
1992; Fehr and Gaechter, 2000), all of which effectively change the payoff structure of the game.

3Ex post, there are subtle distributive issues which we shall address later in the paper.
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ings is typically achieved imperfectly, e.g. due to monitoring issues, ill-defined measurements,
or incomplete information. This generalization is important to understand how robust the ef-
fects of assortative matching are to imperfections from noise, errors, or misperceptions. Under
imperfectly meritocratic matching, we shall therefore address the following questions: What are
the conditions and, in particular, minimum levels of meritocratic matching fidelity necessary to
generate equilibria that avoid tragedies of commons? And what are the efficiency, welfare and
stability properties of these equilibria?

MERIT’s meritocratic matching fidelity is described by parameter β ∈ [0, 1] characterizing a
class of mechanisms ranging from perfectly random to perfectly meritocratic. When β = 0,
players are randomly matched, that is, chosen contributions have no effect on group member-
ships. This case corresponds to VCM, and free-riding is the unique Nash equilibrium. When
β = 1, groups are formed according to an order of players’ contributions that perfectly repre-
sents their magnitudes. This case corresponds to GBM (Gunnthorsdottir et al., 2010a), where
near-efficient non-free-riding equilibria are shown to exist. Between the two extremes of no
non-meritocratic matching and perfectly meritocratic matching, we investigate the cases where
β ∈ (0, 1).

The remainder of this paper is structured as follows. Next, we discuss the related literature,
including the broad conceptual approach and the more specific models of public goods provision.
In section 3, we develop a formal model of MERIT, analyze its equilibria, and detail their
stability properties in an evolutionary setting. We conclude in section 4.

2 Related literature

2.1 Meritocracy and welfare

On a conceptual level, our paper contributes to the literature in political philosophy on merito-
cratic forms of rule. In political philosophy, meritocracy refers to the selection and promotion
of individuals (or groups of individuals) based on earned credentials, rather than other princi-
ples such as lineage, luck, looks or other (subjective or arbitrary) characteristics that are not
directly relevant to assess a person’s performance or capacity. Although the term “meritocracy”
is relatively recent (Young, 1958), the principle underlying such institutional mechanisms can
be traced back to ancient history and has been identified in many independent cultures. Indeed,
several institutions of early “modern” civilizations (e.g. China and Greece) were meritocratic,
and meritocratic practice was advocated explicitly by their thinkers (e.g. Confucius, Aristotle,
and Plato). Historically, these institutions included the selection of officials and councilmen,
reward and promotion schemes, and access to education.4 Until today, meritocratic institutions
like the Chinese civil service examination are in place. Other modern examples include honorary
circles, bonus wage schemes, etc.

The scope of this paper is limited to a class of public goods games, that is, strategic interactions
that are, on the one hand, non-constant sum, and, on the other, group-based rather than
individual-based. In other situations, where there is a constant sum of resources and/ or when

4See, for example, Lane (2004) for a description of the reward and promotion scheme in Genghis Khan’s army.
Another famous case (in place to the present day) is China’s civil service examination (Miyazaki, 1976).
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meritocratic incentives require welfare transfers, there is an inherent trade-off between efficiency
and welfare. Previous research has identified precisely this feature as the main weakness of
meritocratic regimes; i.e. that meritocracy increases heterogeneity of payoffs, and thus leads to
inequality. Indeed, most of the modern political philosophy of meritocracy has focussed on this
issue by analysis of situations with such an inherent efficiency-versus-equality trade-off (Young,
1958; Arrow et al., 2000). In the often-discussed context of education, for example, it is argued
that merit-based reward first leads to inequality of opportunities and ultimately to growing
inequality in wealth. Similarly, an increasing income-assortative matching on the marriage
market is shown to contribute to growing income inequality at household levels (Greenwood
et al., 2014).

As Amartya Sen points out in Arrow et al. (2000), however, the inequality feature of meritocracy
is not a general characteristic of meritocracy per se, but rather the result of interpreting what
constitutes “merit” without distributional concerns. This distinguishes these previously studied
meritocracy incentive structure from those present in non-constant-sum situations, which shall
be the focus of this paper. Naturally, distributive costs may be substantial when meritocracy
induces little efficiency gains or even none as in constant-sum environments. In strictly non-
constant sum contexts such as public goods production which we shall consider here, however,
our kind of meritocratic matching regime turns out to be a mechanism that is able to promote
large efficiency gains at no or little distributive cost.

In this paper, we provide a stochastic model of meritocratic group matching in public goods situ-
ations based on players’ contribution decisions. This distinguishes our model from an individual-
based meritocracy model, where, for example, each individual player would receive a fixed bonus
for every additional unit of contribution.5 Instead, the role of meritocracy in our model is to
match players into groups based on their contributions. The precision of this matching corre-
sponds to the level of meritocracy of the system. One equilibrium of the game is characterized
by uniform non-contribution. This state is maximally inefficient but perfectly equalitarian.
In sufficiently meritocratic environments, other equilibria exist, where only a small fraction of
players free-rides while the majority of players contributes. The new equilibria ex ante payoff-
dominate the free-riding equilibrium. Ex post, however, players are categorized in three groups,
the smallest of which will actually turn out to be worse-off. The first group are the free-riders.
They are substantially better-off because expected contributions increase in all groups, so they
will free-ride on higher contributions. Group two contains the majority of contributors who are
also better-off, because they are matched in groups with high contributions. Group three con-
tain the minority of contributors who are matched in groups with low contributions, and these
‘unlucky’ few will be slightly worse-off than in the free-riding equilibrium. Under severe ex-post
equality concerns (e.g. Rawlsian), therefore, will meritocracy lead to welfare decreases. Ex
ante, however, and for less-than-extreme levels of ex-post inequality aversion, will meritocracy
be regarded as welfare-increasing.

5In such a model, individuals’ decisions would be driven by assessments of marginal costs and benefits of
contributing without any concern for group-formation effects.
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2.2 Public goods, assortative matching and preference evolution

Our paper complements research on cooperative phenomena that arise from non-selfish prefer-
ences and altruism (Simon, 1990; Bowles and Gintis, 2011), in particular in public goods games
(e.g. Fehr and Camerer, 2007).6 It is a well-established finding in evolutionary biology that
kin selection can lead to pro-social behavior in many situations (e.g. Hamilton 1964a,b; Nowak
2006; ?). There are two recent papers studying the evolution of such preferences under differ-
ent assortative matching mechanisms, that are in particular applied to public goods provision
situations.7 Alger and Weibull (2013) and Grund et al. (2013) focus on the evolution of pref-
erences that are not purely self-regarding in the neoclassic sense (i.e., homo oeconomicus), and
show that non-selfish/ other-regarding concerns are evolutionarily stable if interactions amongst
agents in the population are sufficiently assortative: in the sense of “homophily” in Alger and
Weibull (2013), or “locality” in Grund et al. (2013). Such studies complement the analysis of
biological mechanisms of kin selection in human interactions.

Both papers are motivated by arguments that do not presuppose the existence of a meritocratic
institution, but rely on “higher-order” preference evolution driven by assortative matching.
Given the payoff structure of the public goods game, sufficiently other-regarding preferences
will incentivize voluntary contributions because players will seize to maximize only their own
material payoffs. Grund et al. (2013) simulate agentic play of a voluntary contributions game
on a lattice, and study the relative fitness of different embodied preferences as the players
interact locally in neighborhoods, rather than with randomly drawn players from the global
population. It is shown that local interactions facilitate the emergence and survival of agents
with pro-social preferences (i.e., other-regarding ‘homo socialis’ preferences). Alger and Weibull
(2013) consider an alternative matching regime where individuals have a tendency to sort based
on preference similarities (i.e. interaction homophily). Under this assumption, they find long-
term survival of populations with categorically imperative (‘homo moralis’; Kant 1785) utility
concerns characterized by homo hamiltoniensis (Hamilton, 1964a,b) as a function of the degree
of homophily.

Models like Alger and Weibull (2013) and Grund et al. (2013) show how non-selfish preferences
may emerge. Non-selfish preferences are evolutionarily successful in these models because non-
selfish populations evolutionarily outperform the homo-oeconomicus population. There are
two main drivers for this. First, non-selfish agents interact mostly with each other, and thus
attain payoffs that are superior to the homo oeconomicus. Second, even though the homo
oeconomicus has higher payoffs than non-selfish players in his rare direct interactions with them,
he is stuck most of the time with relatively low payoffs from interactions with other selfish agents.
Negatively put, the models of Alger and Weibull (2013) and Grund et al. (2013), therefore,
jointly imply that, if the interactions are sufficiently mixing (because the game is globally too
integrated or because there is too little homophily), then cooperation will not emerge because
the homo-oeconomicus population will always outperform any non-selfish population.

The interesting link with our model is that the phenomena in terms of players’ decisions in
Alger and Weibull (2013) and Grund et al. (2013) could be re-interpreted as if players with

6To use the terminology of Allchin (2009), our paper studies a ‘system’ rather than moral ‘acts’ or ‘intentions’
as is the terminology from other papers.

7In Grund et al. (2013) this is the main focus of the paper, in Alger and Weibull (2013) it is an example of a
class of games.
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homo-oeconomicus preferences interacted in a meritocratic world without any lattice structure,
homophily or non-homo-oeconomicus agents. If one interpreted only the correlation between
players’ chosen actions and resulting interactions in these models, it is as if the two models
generate meritocratic matching: essentially, contributors and free-riders have a tendency to be
rematched with players doing likewise. However, in these models this is not driven because
players’ actions are evaluated by some exogenous institution (as in our model), but due to the
game’s lattice structure or agents’ homophilic tendencies. The phenomenon of as-if meritocratic
matching in the long-run stable states in these models is then a consequence of emergent non-
homo-oeconomicus preferences and the mixing constraints. This implies, however, that if a
player in the models of Alger and Weibull (2013) and Grund et al. (2013) was to mutate from
a non-selfish player into homo oeconomicus again, he would always choose to free-ride.

That fact that homo oeconomicus rationally chooses to contribute is the key feature of our model
and the key difference with the models of Alger and Weibull (2013) and Grund et al. (2013). The
common feature lies in the assortativity of matching driving the results. Thus, we complement
previous studies by analysis of matching processes that explicitly assort agents based on a
meritocratic measure of their chosen actions. In principle, we are agnostic as to the origins of
that institution.8 We simply assume that it exists and study the resulting regime’s properties
as a function of the meritocratic fidelity. We shall show that sufficient meritocracy implements
high levels of stable contributions in a homo-oeconomicus population. MERIT is therefore a
mechanism that solves the tragedy of the commons while populated with homines oeconomici,
without changing the basic payoffs of the game. Players contribute based on purely egoistic and
fully rational motivations, without reputation-sensitive concerns, or hope to be ‘recognized’ for
contributing, or fear to be ‘stigmatized’ for free-riding (e.g. Andreoni and Petrie, 2004; Samek
and Sheremeta, 2014), that is, our mechanism functions without any non-selfish motivations
or non-material incentives. It is an avenue for future research to extend the analysis of social
preferences from standard environments (e.g. Fehr and Gaechter, 2000; Fehr and Camerer,
2007; Fehr and Schmidt, 1999; Fehr and Gaechter, 2002) to our kind of meritocratic matching
environment.

2.3 Contributions mechanisms in experimental economics

Our model contributes to the theoretical underpinnings of the literature on public goods games
with voluntary contributions in experimental economics; see Ledyard 1995 and Chaudhuri 2011
for reviews of that literature. The first formal model of a voluntary contributions game was
introduced in Isaac et al. (1985) and Isaac and Walker (1988). Within that literature, the
research on group formation is most closely related to this paper. In the initial models, the
groups within which the public good was provided remained fixed (Isaac et al., 1985). To
disentangle learning drom reputation effects in repeated games, this mechanism was extended to
random group re-matching (e.g. Andreoni, 1988).9 An important avenue has been to model how
groups may form endogenously. Several such mechanisms have been proposed. Cinyabuguma

8Even though there is some supportive evidence that players endogenously may be able to rank each other in
a way that approaches such an exogenous system (Ones and Putterman, 2007).

9Indeed, most of the literature on learning in public goods games uses variants of Andreoni’s random re-
matching (e.g. Andreoni, 1988, 1993, 1995b; Palfrey and Prisbrey, 1996, 1997; Goeree et al., 2002; Ferraro and
Vossler, 2010; Fischbacher and Gaechter, 2010; Bayer et al., 2013; Nax et al., 2013).
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et al. (2005) and Charness and Yang (2008) consider endogenous group formation and group-
size determination via voting. Ehrhart and Keser (1999) and Ahn et al. (2008) study the effects
of free group entry and exit. Coricelli et al. (2004) analyze roommate-problem stable matching
in pairwise-generated public goods. Page et al. (2005) study rematching in repeated games
based on reputation, and Brekke et al. (2007), Brekke et al. (2011) consider the effects of group
coordination with signaling. A common feature of the endogenous-group-formation literature
is that the non-random group dynamics stabilize higher contributions.

Most closely related to our model is the group-based mechanism (GBM; Gunnthorsdottir et al.
2010a). In fact, in MERIT we propose a mechanism that bridges the voluntary contributions
mechanism (VCM; e.g. Andreoni 1988) and GBM. These two ends of our model spectrum we
shall now detail. Random group re-matching as in VCM is the baseline model, defining the
no-meritocracy end of the continuum of MERIT. VCM proceeds as follows. First, n players
make voluntary contributions. Second, they are randomly sorted into n/s groups each composed
of s players. Importantly, players’ chosen strategies have no effect on which group they will
be part of. Finally, payoffs are realized dependent on the underlying marginal per capita rate
of return (MPCR), which aggregates the contributions in each group, multiples the sum by a
coefficient greater than one, and then evenly divides the product among the group members.
For MPCR in between 1/s (a fraction proportional to the group size) and one, total welfare is
highest if everybody makes the maximal contribution, but, given contributions of others, each
player maximizes his own payoff by contributing nothing; as a result, free-riding is the unique
dominant strategy.

Under GBM (Gunnthorsdottir et al., 2010a), players are ranked in order of magnitude of con-
tributions and subsequently matched into groups based on that order. GBM represents perfect
meritocracy in our model. It proceeds as follows. First, players make voluntary contributions.
Second, players are ranked such that no player who contributes less than another is ranked
higher than him (ties are randomly broken).10 Third, groups of fixed size s form by rank; the s
top contributors form group one, the next s contributors form group two, etc. Finally, payoffs
realize dependent on the MPCR ∈ (1/s, 1). The free-riding Nash equilibrium (NE) continues
to exist, but other equilibria may emerge depending on population, group size and MPCR. The
focus of the paper by Gunnthorsdottir et al. (2010a) is the near-efficient NE in which a large
majority of players contributes everything and only a small fraction of players free-rides.

We propose MERIT, and thus fill the space between VCM and GBM with a stochastically mer-
itocratic matching mechanism. Typically, MERIT is neither completely random nor perfectly
meritocratic. Players are ranked by their contributions such that a contributor is more likely
to be ranked higher than a free-rider, but with some positive probability he is ranked lower.
If we consider β as the level of meritocracy in the system, then at one extreme, when β = 0
(no meritocracy), the mechanism is VCM, and, at the other extreme, when β = 1 (perfect
meritocracy), the mechanism is GBM.

We shall now proceed to formalize the set-up of our model.

10Note that GBM, which corresponds to ‘perfect’ meritocracy in our model itself already bears an element of
probabilistic chance due to this element of random tie-breaking, which will mean that ‘unlucky’ contributors may
end up in groups with players who contribute less.
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3 Meritocratic matching in voluntary contributions games

3.1 A voluntary contributions game with meritocratic matching

Suppose population N = {1, 2, ..., n} plays the following meritocratic matching contributions
game, of which all aspects are common knowledge. The game is divisible in three steps. First,
players make simultaneous voluntary contributions. Second, players receive ranks that im-
perfectly represent their contributions. Third, groups and payoffs realize based on the rank-
ing.

Step 1. Voluntary contributions

Player i ∈ N decide simultaneously whether to contribute or free-ride; we shall write ci = 0 for
free-riding and ci = 1 for contributing, yielding the contribution vector c = {ci}i∈N .

Step 2. Ordering as a function of contributions

An authority imperfectly observes the contribution vector c and imperfectly ranks players ac-
cordingly. The measure of ranking precision is given by parameter β ∈ [0, 1]. The characteristics
of the regimes summarize as follows: (i) without meritocracy (β = 0), all rankings are equally
likely, and all players have the same expected rank; (ii) in perfect meritocracy (β = 1), all
rankings are perfect, and all contributors have a higher rank than all free-riders; (iii) in the
intermediate meritocracy range, when β ∈ (0, 1), all rankings have positive probability, but
higher contributors have a higher expected rank than free-riders.

We shall now proceed to formalize this.

Rank orderings. Let Π = {π1, π2, ..., πn!} be the set of orderings (permutations) of N .
Given any π ∈ Π, denote by ki the case when rank k ∈ {1, 2, ..., n} is taken by player
i ∈ {1, 2, ..., n}.

Write π̂ for a perfect ordering if, for all pairs of players i, j, ki < kj ⇒ ci ≥ cj , that is, all
free-riders are ranked below contributors. Any other ordering is called a mixed ordering, and is
denoted by π̃ (i.e. at least one free-rider is ranked above a contributor).

MERIT. Given regime β ∈ [0, 1], the probability distribution over orderings, P (Π), is a function

of β and c, P (Π) = F (c, β). Write fβπ for the probability of a particular ordering, π ∈ Π, under

β. Similarly, write fβik for the probability that agent i takes rank k given β, and k
β
i for i’s

expected rank. We shall write k
β
i (ci) to indicate that i’s expected rank is a function of his

contribution; an interesting function to analyze is k
β
i (ci = 0) − kβi (ci = 1), the expected rank

difference from contributing versus free-riding.

We shall assume that all functions f are continuous in β, and that the following properties
characterize MERIT:

(i) no meritocracy. if β = 0, then, for any c, f0π = 1/n! for all π ∈ Π; hence k
β
i = (n+1)

2 for all
i

(ii) perfect meritocracy. if β = 1, then, for any c with
∑

i∈N ci = m, f1π̃ = 0 for all mixed

orderings π̃, and f1π̂ = 1
m!(n−m)! for all perfect orderings π̂; hence kβi (ci = 1) = m+1

2 for all
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i with ci = 1, and kβj (cj = 0) = n+m+1
2 for all j with cj = 1

(iii) imperfect meritocracy. if 0 < β < 1, then, for all players i and for any c−i,

∂
(
k
β
i (ci = 0)− kβi (ci = 1)

)
/∂β > 0, (1)

k
β
i (ci = 1) < k

β
i (ci = 0). (2)

That is, a player’s expected rank difference is always positive and increasing in β. There are
many functional assumptions that satisfy these requirements, one of which is the following:

MERIT via logit. Given β and c, let li := βci
1−β . Suppose ranks are assigned according to the

following logit-response ordering: if any arbitrary number of (k−1) ranks from 1 to (k−1) < n
have been taken by some set of players S ⊂ N (with |S| = k− 1), then any player’s i ∈ {N \S}
probability to take rank k is

pi(k) =
eli∑

j∈N\S e
lj
. (3)

Other interpretations of β ∈ [0, 1] are (i) β represents the fraction of every contributed unit to
enter GBM and 1 − β to enter VCM, or (ii) (1 − β)/β represents some normally distributed
noise δ2 added to the contribution vector c after which GBM is applied to x ∼ N(c, δ2).

Step 3. Grouping as a function of orderings

Finally, groups form based on the ranking and payoffs realize based on the contributions made
in each group.

Groupings. Given π, we assume that m groups {S1, S2, ..., Sm} of a fixed size s < n form
the partition ρ of N (where s = n/m > 1 for some s,m ∈ N+): every group Sp ∈ ρ (s.t.
p = 1, 2, ...,m) consists of all players i for whom ki ∈ ((p− 1)s+ 1, ps].

Payoffs. Given contributions c and partition ρ, each i ∈ N receives φi(ci|c−i, ρ). Let φ =
{φi}i∈N be the payoff vector. When i ∈ S, given the marginal per capita rate of return (MPCR)
r/s, i receives

φi(ci|c−i, ρ) = (1− ci)︸ ︷︷ ︸
remainder from budget

+
∑
j∈S

(r/s)cj︸ ︷︷ ︸
return from the public good

. (4)

It is standard to assume that r/s ∈ (1/s, 1), in which case contributing is socially beneficial. But
note that, in the non-meritocratic-matching case, individual incentives lead to tragedy of the
commons (details are provided in the analysis of the Nash equilibria in the next section).
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3.2 Nash equilibria

From expression (4), the expected payoff of contributing ci given c−i for any i is

E [φi(ci|c−i)]︸ ︷︷ ︸
expected return from ci

= 1︸︷︷︸
(i) budget

−
(

1− r

s

)
ci︸ ︷︷ ︸

(ii) sure loss on own contribution

+
r

s
E

 ∑
j 6=i: j∈Sπi

cj |ci


︸ ︷︷ ︸

(iii) expected return from others’ contributions

,

(5)
where Sπi ∈ ρ is subgroup to which player i belongs. Note that term (iii), the expected return
from others’ contributions, is a function of one’s own contribution due to meritocratic matching.
We shall use expression (5) to make the following equilibrium observations.

Proposition 1. For any population size n > s, group size s > 1, rate of return r ∈ (1, s), and
meritocratic matching factor β ∈ [0, 1], there always exists a free-riding NE (FRNE) such
that all players free-ride.

Proof. The proof of Proposition 1 follows from the fact that, given c−i such that cj = 0 for all
j 6= i, we have:

1 = E [φi(0|c−i)] > E [φi(1|c−i)] = r/s.

The proof follows from the fact that it is never a best response to be the only contributor. Note
that if, for all i, given any c−i and β, E [φi(0)|c−i] > E [φi(1)|c−i], then we have a situation
where free-riding is the dominant strategy for any level of meritocracy.

Write 1m for “m players contribute, all others free-ride”, and 1m−i for the same statement ex-
cluding player i. Write mpcr1 for the marginal per capita rate of return r/s = n−s+1

ns−s2+1
.

Proposition 2. Given population size n > s, group size s > 1 and rate of return r such that
r/s ∈ (mpcr1, 1), there exists β ∈ (0, 1) above which there is a pure-strategy NE (PSNE),
where m > 0 agents contribute and the remaining n−m agents free-ride.

Proof. The following two conditions must hold for Proposition 2 to be true:

E
[
φi(1|1m−i)

]
≥ E

[
φi(0|1m−1−i )

]
(6)

E
[
φi(0|1m−i)

]
≥ E

[
φi(1|1m+1

−i )
]

(7)

The proof for the existence of an equilibrium with m > 0 when β = 1 follows from Theorem 1
in Gunnthorsdottir et al. (2010a), in which case both equations (6) and (7) are strictly satisfied
if r/s > mpcr1.

The fixed point argument behind Theorem 1 in Gunnthorsdottir et al. (2010a) becomes clear by
inspection of terms (ii) and (iii) in expression (5): the decision to contribute rather than to free-
ride is a trade-off between (ii), ‘the sure loss on own contribution’, which is zero for free-riding,
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versus (iii), ‘the expected return on others’ contributions’, which may be larger by contributing
rather than by free-riding depending on how many others also contribute. Obviously, when c−i
is such that

∑
j 6=i cj = 0 or (n− 1) (i.e. if either all others free-ride or all others contribute), it

is the case that φi(0|c−i) > φi(1|c−i). Hence, in equilibrium, 0 < m < n.

Now suppose 1m describes a pure-strategy NE for β = 1 with 0 < m < n and r/s ∈ (mpcr1, 1)
in which case equations (6) and (7) are strictly satisfied. Note that β has a positive effect on
the expected payoff of contributing and a negative effect on the expected payoff of free-riding:

∂E
[
φi(1|1m−i)

]
/∂β > 0 (8)

∂E
[
φi(0|1m−i)

]
/∂β < 0 (9)

When β = 0, we know that φi(1|1m−i) = r/s < φi(0|1m−i) = 1 for any m. However, by existence
of the equilibrium with m > 0 contributors when β = 1, provided that r/s > mpcr1 is satisfied,
there must exist some maximum value of β ∈ (0, 1), at which either equation (6) or equation
(7) first binds due to continuity of expressions (8) and (9). That level is the bound above which
the PSNE with m > 0 exists.

Note that, for a finite population of size n, a group size s larger than one implies that r/s > 1/s
for Proposition 2 to be true, but as n→∞, the range of r/s converges to (1/s, 1).

A special case of a PSNE is the near-efficient pure-strategy NE (NEPSNE) (see Gun-
nthorsdottir et al., 2010a): for any β > β, NEPSNE is the PSNE such that m is chosen to be
the largest value given n, s, r for which equations (6) and (7) hold.

Let pi ∈ [0, 1] be a mixed strategy with which player i plays contributing (ci = 1) while playing
free-riding with (1− pi) (ci = 0). Write p = {pi}i∈N for a vector of mixed strategies. Write 1p
for “all j 6= i play p”, and 1p−i for the same statement excluding player i.

Proposition 3. Given population size n > s and group size s > 1, there exists a rate of return
r such that r/s ∈ [mpcr1, 1) beyond which there exists β ∈ (0, 1) such that there always exist
two mixed strategy profiles, where every agent places weight p > 0 on contributing and 1− p on
free-riding, that constitute symmetric mixed-strategy NE (SMSNE), one with a high p (the
near-efficient SMSNE) and one with a low p (the less-efficient SMSNE).

Proof. The SMSNE exists if there exists a p ∈ (0, 1) such that

E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
. (10)

In that case, player i has a best response playing pi = p which would be a Nash equilibrium.
Proposition 2 implies that, if r/s > mpcr1, equations (6) and (7) are strictly satisfied when
β = 1 for m contributors corresponding to NEPSNE. Indeed, expressions (6) and (7) imply a
lower bound, l, and an upper bound, u, for the number of free-riders, (n −m), given by (see
Gunnthorsdottir et al., 2010a)

l =
n− nr/s

1− r/s+ nr/s− r
, u = 1 +

n− nr/s
1− r/s+ nr/s− r

. (11)
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Part 1. First, we will show, for the case when β = 1, that there is at least one SMSNE when
r/s→ 1, possibly none when r/s = mpcr1, and that there is a continuity in r/s such that there
is some intermediate value of r/s ∈ [mpcr1, 1) above which at least one SMSNE exists but not
below.

First, because ∂E [φi(ci|1p)] /∂p > 0 for all ci, there exists a p ∈ (m−1n , m+1
n ) such that expression

(10) holds if r/s → 1. This is the standard symmetric mixed-strategy Nash equilibrium in a
symmetric two-action n-person game when the only pure-strategy equilibria are asymmetric
(see the proof of Theorem 1 in Cabral 1988). In this case, the presence of the FRNE makes no
difference because the incentive to free-ride vanishes as r/s→ 1.

Second, if r/s = mpcr1, one or both of the equations, (6) or (7), bind. Hence, unless expression
(10) holds exactly at p = m/n (which is a limiting case that we will address in proposition
(5)), there may not exist any p such that expression (10) holds. This is because the Binomially
distributed proportions of contributors implied by p, relatively speaking, place more weight on
the incentive to free-ride than to contribute because universal free-riding is consistent with the
FRNE while universal contributing is not a Nash equilibrium. In this case, the incentive to
free-ride is too large.

Third, ∂E
[
φi(ci|1p−i)

]
/∂r is a linear constant > 0 for both ci = 0 and ci = 1. At and above

some intermediate value of r/s, therefore, there exists a p ∈ (0, 1) such that, if played in a
SMSNE, the incentive to free-ride is mitigated sufficiently to establish equation 10.

Finally, for any p > 0 constituting a SMSNE when β = 1, E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
> 1.

Because of this, a similar argument as in Proposition 2 applies to ensure the existence of some
β ∈ (0, 1) above which the SMSNE continues to exist when r/s > mpcr2: because, at β = 1,
equations (6) and (7) are strictly satisfied and E [φi(0|1p)] = E [φi(1|1p)] > 1, there exist some
β < 1 and p′ < p satisfying equation (10 while still satisfying E [φi(0|1p)] = E [φi(1|1p)] > 1.

Part 2. If r/s > mpcr2 and β > β, existence of two equilibria with p > p > 0 is shown by
analysis of the comparative statics of equation (10).

First note that, for any r/s > mpcr2 and β > β, ∂E
[
φi(0|1p−i)

]
/∂β < 0 while ∂E

[
φi(1|1p−i)

]
/∂β >

0. p therefore has to take different values for equation (10) to hold for two different values of
β above β. Note also that both ∂E

[
φi(0|1p−i)

]
/∂p > 0 and ∂E

[
φi(1|1p−i)

]
/∂p > 0 for all

β ∈ (0, 1). We can rearrange the partial derivative with respect to β of expression (10), and
obtain

∂p/∂β =
∂E
[
φi(1|1p−i)

]
/∂β − ∂E

[
φi(0|1p−i)

]
/∂β

∂E
[
φi(0|1p−i)

]
/∂p− ∂E

[
φi(1|1p−i)

]
/∂p

. (12)

Expression 12 is negative if the denominator is negative, because the numerator is always
positive.

Claim 4. The denominator of equation (12) is negative when p is low, and positive when p is
high.

Write wici and wici respectively for the probabilities with which agent i is matched in an above-

or below-average group when playing ci. Write E
[
φi(ci|1p)

]
and E

[
φ
i
(ci|1p−i)

]
for the corre-

sponding expected payoffs.
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Figure 1: Contributing versus free-riding (n = 16, s = 4, r = 1.6).

Expected values of φi(0|1p−i) and φi(1|1p−i) are plotted as functions of probability p and
meritocratic matching fidelity β under MERIT via logit (equation (3)). The two planes

intersect at the bifurcating SMSNE-values of p and p (see Proposition (3)). Notice that the
curves are linear when the meritocratic matching fidelity is zero but turn S-shaped for larger

values, thus intersecting at p and p.

Recall that, for β > 0 and 1p ∈ (0, 1), expression (1) holds, where k̂ is compatible with a perfect

ordering π̂, and k̃ is any rank compatible with a mixed ordering π̃. When 1p = 0 or 1, f ij is
independent of ci, and in particular wici = wici for any ci.

Hence, we can rewrite ∂E
[
φi(0|1p−i)

]
/∂p in the denominator of equation (12) as

∂wi0/∂p ·E
[
φi(0|1

p
−i)
]

+ ∂wi0/∂p ·E
[
φ
i
(0|1p−i)

]
(13)

and ∂E [φi(1|1p)] /∂p as

∂wi1/∂p ·E
[
φi(1|1

p
−i)
]

+ ∂wi1/∂p ·E
[
φ
i
(1|1p−i)

]
. (14)

It follows from continuity that the denominator of equation (12) is negative when p is low, and
positive when p is high.

Proposition 5. Given group size s > 1, then, if β = 1, as n→∞ (i.) 1k/n of NEPSNE and p
of the near-efficient SMSNE converge, and (ii.) the range of r/s for which these equilibria exist
converges to (1/s, 1).

Proof. Suppose r/s is such that both SMSNE and NEPSNE exist. Let 1k describe NEPSNE.
Recall that expressions under (11) summarize the lower bound, l, and upper bound, u, for
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the number of free-riders n− 1k under NEPSNE. Taking limn→∞ for the equations under (11)
imply a limit lower bound of 1

1+n
r/s−r/n
1−r/s

, and a limit upper bound of the expected proportion

of free-riders of 1
n + 1

1+n
r/s−r/n
1−r/s

, and bounds on the number of free-riders that contain at most

two integers and at least one free-rider. (Notice that the limits imply that exactly one person
free-rides as r/s → 1.) We know that, if there is one more free-rider than given by the upper
bound, then equation 7 is violated. Similarly, if there is one fewer free-rider than given by the
lower bound, then equation 6 is violated.

Let 1p describe the near-efficient SMSNE. Recall that E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
(expression

10) must hold for any player i given all j 6= i play p, where E
[
φi(ci|1p−i)

]
= E

[
φi(ci|1b)

]
where

1b is the proportion of other players actually contributing (playing one) which is distributed

according to a Binomial with mean E [b] = p and variance V [b] = p(1−p)
n−1 . As n → ∞, by

law of large numbers, we can use the same bounds obtained for the NEPSNE to bound p ∈
[(n− u)/n, (n− l)/n], which converge to the unique p at which expression 10 actually holds.11

Suppose all players contribute with probability p corresponding to the near-efficient SMSNE
limit value. Then, limn→∞V [b] = limn→∞

p(1−p)
n = 0 for the actual proportion of contributors

b. Hence, the limit for the range over r/s necessary to ensure existence converges to that of
the NEPSNE, which following the proof of Theorem 1 in Gunnthorsdottir et al. (2010a) is
(1/s, 1).

Remark 6. In light of the limit behavior, it is easy to verify that ∂mpcr2/∂n < 0 and
∂mpcr2/∂s > 0, .

Summary of unilateral best replies. The results from Propositions 1 to 5 are summarized
by the following four observations for the case when r/s > mpcr2:

A. Free-ride trumps contribute (unconditional case):
E
[
φi(0|1m−i)

]
> E

[
φi(1|1m−i)

]
for β < β and for any 1m ≥ 0

B1. Free-ride trumps contribute (conditional case).
E
[
φi(0|1p−i)

]
> E

[
φi(1|1p−i)

]
for β ≥ β and for any p < p or p > p

B2. Contribute trumps free-ride (conditional case).
E
[
φi(0|1p−i)

]
< E

[
φi(1|1p−i)

]
for β ≥ β and for any p ∈ (p, p)

C. Contribute-free-ride indifference.
E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
for β ≥ β and for p = p or p

Figure 1 illustrates the expected values of φi(0|1p−i) and φi(1|1p−i) as functions of probability
p with which players contribute, and meritocratic matching fidelity β under MERIT via logit
(equation (3)) for n = 16, s = 4 and r = 1.6.12

11Details concerning the use of the law of large numbers can be followed based on the proof in Cabral (1988).
12Parameter values used in related studies of VCM and GBM are n = 12, 16 or 20, s = 2 or 4, and r = 1.6

or 2 (see Ledyard 1995; Chaudhuri 2011 for the VCM, and Gunnthorsdottir et al. 2010a; Gunnthorsdottir and
Thorsteinsson 2010; Gunnthorsdottir et al. 2010b for the GBM). Our numerical implementations and illustrations
are done with n = 16, s = 4, r = 1.6 using MERIT via logit (equation (3)).
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3.3 Efficiency and welfare

Table 1: Stem-and-leaf plot for FRNE and NEPSNE (n = 16, s = 4, r = 1.6, β = 1).

NEPSNE payoff FRNE

0 0.0 0
0 0.2 0
0 0.4 0
0 0.6 0

13 14 (ci = 1) 2 0.8 0
0 1.0 16 (ci = 0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1.2 0
0 1.4 0

1 2 3 4 5 6 7 8 9 10 11 12 (ci = 1) 12 1.6 0
15 16 (ci = 0) 2 1.8 0

24.4 efficiency 16

The stem of the table are payoffs. The leafs are the number of players receiving that payoff
(with their contribution decision) and the individual ranks of players corresponding to payoffs

in the two equilibria with their contributions. At the bottom, the efficiencies of the two
outcomes are calculated. Note that NEPSNE is more efficien, whereas FRNE is more equitable.

Outcome. Let (ρ, φ) describe an outcome, describing realized groups and payoffs.

Efficiency.
∑

i∈N φi is the efficiency of outcome (ρ, φ).

Table 1 summarizes FRNE and NEPSNE when β = 1 for the economy with n = 16, s = 4 and
r = 1.6. Table 2 lists the efficiencies of the different NE in general.

Table 2: Efficiency of equilibria r/s ∈ (mpcr2, 1).

equilibrium existence condition efficiency

FRNE ∀β = n

PSNE if β > β = (n−m) +m · r > n

with m > 0 contributors

SMSNE if β > β ∈ [n, nr]∗

with p > 0 for contributing

∗: E[
∑

i∈N φi] = (1− p) · n+ p · n · r > n

Social welfare. Given outcome (ρ, φ), let W (φ) be a social welfare function (SWF) measuring
the welfare of π.

One particular SWF is Utilitarian (Bentham, 1907):

WU (φ) =
1

n

∑
i∈N

φi (15)
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Obviously, Utilitarianism maximizes efficiency favouring equilibria with high levels of contri-
butions, because there are no concerns for distributional inequality under the Benthiam SWF
criterion. Hence, Utilitarianism would prefer NEPSNE to any other equilibrium.

The other extreme is the Rawlsian SWF (Rawls, 1971):

WR(φ) = min(φi) (16)

Rawlsianism associates welfare with the utility of the person who is ex post worst-off. In our
game, the Rawlsian-optimal equilibrium is FRNE with perfect equality of payoffs (equal to one
for every player). This is because, in every other candidate SMSNE or NEPSNE with positive
contribution levels, every contributor, with strictly positive probability, receives a payoff of less
than one. Harsanyi’s SWF (Harsanyi, 1953), on the other hand, would prefer NEPSNE and
SMSNE to FRNE because every contributor and every free-rider is in expectation (i.e. ex ante)
better-off in NEPSNE than in any other equilibrium.13 Which equilibrium is preferable in terms
of social welfare for any SWF depends on the relative weights on efficiency and equality and
is related to whether an ex ante or an ex post view is taken with regards to payoff dominance
(Harsanyi and Selten, 1988).14

The Cobb-Douglas SWF nests both the Utilitarian and Rawlsian SWFs:

We(φ) =
1

n(1− e)
∑
i∈N

φ1−ei (17)

where e represents the parameter of inequality aversion of the SWF with e ∈ [0,∞).15 When e =
0, expression (17) reduces to expression (15), and when e→∞, expression (17) is approximated
by function (16). In our game, the value of e determines whether a move from FRNE to one
of the other equilibria would be ex-post welfare-enhancing or not. For the economy illustrated
in Table 1 (with n = 16, s = 4 and r = 1.6), an ex-post Cobb-Douglas SWF comparison with
e < 10.3 prefers NEPSNE to FRNE, while any Cobb-Douglas SWF with e ≥ 10.3 prefers FRNE
to NEPSNE. With inequity aversion of e = 10.3, the social planner requires efficiency gains of
more than twice the amount lost by any player. Ex ante, of course, any Cobb-Douglas SWF
prefers NEPSNE because of ex-ante payoff dominance.

3.4 Stability

Relative ex-ante payoff dominance and risk dominance (the size of the basins of attractions)
ultimately determine the stability of the different equilibria. In this section, we shall analyze the
stability properties of states as in evolutionary stability (Maynard Smith and Price, 1973) under
replicator dynamics (Taylor and Jonker, 1978; Helbing, 1996) and stochastic stability (Foster and
Young, 1990) under constant error rates (Kandori et al., 1993; Young, 1993). The motivation
for this analysis is that we view β as the policy choice. Depending on which welfare function
is pursued, MERIT will stabilize different equilibria, and we want to understand how much
meritocracy in matching is necessary and sufficient for stabilizing the different equilibria.

13Harsanyi’s SWF is WH(φ) = 1
n

∑
i∈N E[φi].

14φ payoff-dominates φ′ if φi ≥ φ′i for all i, and there exists a j such that φj > φ′j .
15See, for example, Binmore (2005) for a discussion of the Rawlsian and Harsanyi ‘original position’ approach

and the Cobb-Douglas generalization.
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We shall begin by defining the following dynamic game played by myopic agents. A large
population N = {1, 2, ..., n} plays our game in continuous time. Let a state of the process
be described by p, which is the proportion of p players contributing and the remaining 1 − p
free-riding. Let Ω be the state space.

3.4.1 Replicator dynamics

Suppose the two respective population proportions grow according to the following replicator
equation (Maynard Smith and Price, 1973; Taylor and Jonker, 1978; Helbing, 1996):

∂p/∂t = (1− p)p (E [φi(1|1p)]−E [φi(0|1p)]) (18)

Evolutionarily stable states. A state where a proportion p̄ of players plays ci = 1 is evolu-
tionarily stable (ESS) if, for all p ∈ [0, 1] in some arbitrarily small ε-neighbourhood around p̄,
∂p/∂t > 0 at p < p̄, ∂p/∂t = 0 at p = p̄, and ∂p/∂t < 0 at p > p̄.

Lemma 7. Given population size n > s, group size s > 1 and rate of return r such that
r/s ∈ (mpcr2, 1), there exists a β > 0 below which the only ESS is FRNE. When β > β, in
addition, the population proportions given by the near-efficient SMSNE are also ESS.

Proof. The proof of Lemma 6 and the cut-off structure of the ESS as given by Proposition 2
follow from Observations A-C: Observation A implies that the the only ESS when β < β is
given by FRNE. Observations B1 implies that FRNE is also ESS when β ≥ β. Observation B1,
B2 and C, jointly, imply that a population playing according to the contribution proportions
given by the near-efficient SMSNE is also ESS.

Remark 8. As replicator dynamics increase n, recall that the bound on r/s converges to (1/s, 1)
(proposition 5). Hence, proposition (7) is a general observation about the near-efficient SMSNE
for any rate of return.

Figure 2 illustrates the implied replicator dynamic phase transitions for proportions of players
contributing as a function of β under MERIT via logit (equation (3)) for s = 4 and r = 1.6
starting with n = 16. In particular, the figure shows how, for large enough values of β, a
relatively small ‘jump up’ is needed starting at the free-riding equilibrium to reach the basin of
attraction of the high-contribution equilibrium. By contrast, for low values of β, a small ‘drop
down’ is sufficient to drop out of the high equilibrium into the free-riding equilibrium.

3.4.2 Perturbed dynamics

Instead of replicator dynamics, suppose population N remains fixed, but that the dynamics are
perturbed by individual errors. Suppose further that individuals are activated by independent
Poisson clocks, thus starting a new discrete time step t. When individual i is activated (the
uniqueness of which is guaranteed by the independence of the Poisson clocks), all agents j 6= i

18



Figure 2: Evolutionary stability (n = 16, s = 4, r = 1.6).
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For β < β, and for β > β when p is in excess of the near-efficient SMSNE (p) but short of the
less-efficient SMSNE (p), ∂p/∂t < 0 (replicator tendency is down). For β > β when
p > p > p, ∂p/∂t > 0 (replicator tendency is up). Depending on the location along the

bifurcation, the evolutionarily stable states are therefore when either p = 0 (FRNE) and when
p is set according to the near-efficient SMSNE (p).

continue playing their previous strategy (ctj = ct−1j ), while i plays best reply with probability
1 − ε, but takes the opposite action with probability ε. When both actions are best replies, i
replies by playing ctj = ct−1j with probability 1− ε and ctj = 1− ct−1j with probability ε.

Let us begin with a couple of observations. First, the perturbed process (when ε > 0) is ergodic,
that is, it reaches every state from any state with positive probability in finitely many steps
(at most n). The process, therefore, has a unique stationary distribution over Ω. Second, the
absorbing states of the unperturbed process (when ε = 0) are the aforementioned FRNE and
PSNE for any given level of β as identified in section 3.2. Now, we analyze the stability of the
absorbing states based on equilibria’s “critical mass” necessary to destabilize them:

Critical mass. The critical mass Mβ
p ∈ [0, n − 1] necessary to destabilize state p given β

is defined as the minimum number of errors needed from any set of players S ⊂ N such that
playing the current strategy for at least one player in N \ S is no longer a best reply.
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Figure 3: Stochastic stability (n = 16, s = 4).

The two step functions in each panel illustrate the critical mass necessary to destabilize FRNE
and NEPSNE in four different economies as a function of β. The economies have population
size n = 16 and group size s = 4. Four rates of return r are chosen such that the MPCR is

r/s = 0.28, 0.4, 0.8 or 0.99. For β → 0, FRNE is the unique (stochastically stable) equilibrium
for all r/s. In the first panel (r/s = 0.28), FRNE is the unique stochastically stable

equilibrium for all β. In the other panels, NEPSNE becomes stochastically stable above some
intermediate value of β. In the second and third panel, NEPNSE exists above some value of β
and becomes stochastically stable above another. In the fourth panel, NEPSNE is stochastically

stable right from the β above which it exists.

Obviously, the critical mass for any non-equilibrium state p is Mβ
p = 0 for all values of β.

When β < β, there exists no critical mass to destabilize the only equilibrium which is free-

riding (p = 0); Mβ
0 = ∅. When β = β, the PSNE has a critical mass of Mβ

p = 1. When β > β,

for any NE that is not either FRNE or NEPSNE (with p = p), the critical mass is Mβ
p = 1

because one more contribution of some player incentivizes other non-contributors to contribute
(see Observations A, B1, B2). For β > β, ∂Mβ

0/∂β < 0 and ∂Mβ
p/∂β > 0.

Stochastically stable states. A state p is stochastically stable (Foster and Young, 1990) if
the stationary distribution as ε→ 0 places positive weight on p.

Lemma 9. The unique stochastically stable state is either NEPSNE with p = p if Mβ
0 <M

β
p

or FRNE with p = 0 when Mβ
0 >M

β
p . When Mβ

0 =Mβ
p , both are stochastically stable.
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Proof. This is an application of Theorem 3.1 in Young (1998), and follows from the fact that
the resistances of transitions between p = p and p = 0 are given by the critical masses, thus
yielding the stochastic potential for each candidate state.

Figure 3 illustrates the critical masses to destabilize FRNE and NEPSNE respectively as a func-
tion of β for four different economies. The economies vary in their rates or return. Whichever
curve lies higher indicates the stochastically stable state; when both curves lie on the x-axis,
FRNE is the unique (stochastically stable) equilibrium, in that case NEPSNE does not exist.
The two lines meeting indicates where both states are stochastically stable. Note that the level
of β necessary to destabilize FRNE is decreasing in r/s, hence decreasing in r but increasing in
s.

4 Conclusion

Many real-world institutions have a meritocratic element (such as admission to university ad-
mission or civil service), including those that aim to incentivize contributions to a public good
(such as sports or group efforts). In public goods games, a player’s contribution has positive
externality effects on others. Under standard mechanisms, and in particular when interacting
players are homogeneously and randomly mixed, free-riding is a dominant strategy, and non-
provision of the public good results. In this paper, we propose a mechanism that tends to
assortatively match players with similar contributions together. That way, players who con-
tribute more or less also tend to benefit more or less from others. This kind of meritocratic
matching constitutes a competitive principle that overcomes the dilemma of non-provision re-
sulting from random interactions in this class of games. Because measures and assessments
of merit and implementations of meritocracy are often imperfect in reality, this paper analyzes
which levels of meritocratic matching fidelity are necessary and sufficient to induce and stabilize
equilibria with high contributions. The corresponding robustness depends on population size,
group size, and rate of return. Moreover, when meritocratic matching leads to equilibria with
positive contributions, it turns out that the resulting distributional costs are small compared to
the efficiency gains. The reason for this is that the mechanism is group-based, not individual-
based, and therefore not only benefits contributors but also generates externality benefits for
free-riders, that is, for those players who are not incentivized to contribute by the mechanism.
This reflects the fact that meritocratic matching, for the majority of players, mitigates the free-
riding dilemma by incentivizing contributions, but, because such a mechanism does not change
the basic payoff structure of the game, does not completely overcome this inherent incentive for
all players.

It is an avenue for future research to study the effects of meritocratic matching in different and
more general classes of games, and to address the co-evolution of meritocratic institutions with
population geography, homophily and preferences. Our next step is to validate the model’s
imperfect meritocracy predictions in the economic laboratory. The status quo of experimental
public goods studies can be described as follows. Without meritocracy, contributions deteri-
orate towards the free-riding NE in the standard setting without mechanistic additions such
as punishment, signalling or taxes (see Ledyard, 1995; Chaudhuri, 2011). What we have de-
scribed as ‘perfect’ meritocracy, on the other hand, consistently stabilizes near-efficient contribu-
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tions (Gunnthorsdottir et al., 2010a; Gunnthorsdottir and Thorsteinsson, 2010; Gunnthorsdottir
et al., 2010b).
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