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Abstract

This paper shows the correct derivation of the equilibrium bid function for a
k-price auction with n bidders, where k ≥ 3 and n ≥ k.

1 Introduction

This paper explains the derivation of the k-price auction bidding equilibrium.1 We
show the complete derivation of equilibrium bid function for a k-price auction with
n bidders (with k ≥ 3 and n ≥ k) for the case where the valuations of bidders are
independently drawn from a continuous distribution that has the property that the
first derivative of its density function is a constant. This implies that all second and
higher order derivatives of the density function are zero. Apart from the uniform
distribution, one specific example of such distributions is: F (x) = x2, x ∈ [0, 1]. It is
shown that whenever the first derivative of the density function is a non-zero constant,
then for k ≥ 4, bid function has additional terms that do not appear in the derivation
of [1]-[4].

The mathematical foundations of independent private value (IPV) auctions have
been well understood since Vickrey [8]. A key result in the IPV auction theory is the
remarkable Revenue Equivalence Theorem (RET) which states that, under some mild
conditions, the seller’s expected profits are the same on average from all standard (En-
glish, Dutch, first-price sealed-bid,and second-price sealed-bid) and non-standard (e.g.
k-price sealed-bid, and all-pay) auction formats, and that buyers are also indifferent
among them all. The RET was later developed by Riley and Samuelson [7] under more
general conditions.

∗Faculty of Economics and Political Science, Cairo University, Giza 12613, Egypt. Email: abdel-
hameed@nawar.us

†Department of Economics, Ryerson University, Toronto, Ontario, Canada. Email:
dsen@economics.ryerson.ca

1A derivation of k-price auction had previously appeared in [1], [2], [3] and [4]. Unfortunately, that
derivation, despite being widely referenced, is incorrect.
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2 k-price auction

Consider a k-price auction with n bidders, where the highest bidder wins, and pays
only the k-highest bid. It is assumed that k ≥ 2 and n ≥ k. We also assume that the
valuations of the bidders are independent and identically distributed with distribution
function F (x), x ∈ R+, which is log concave continuous (cumulative) distribution
function with density f(x).

Let bk : R+ → R+ be the equilibrium (Nash Equilibrium) bid function of a k-price
auction. Kagel and Levine [5] and later on Wolfstatter [1] have provided an elegant
derivation for bk(x) by using the Revenue Equivalence Theorem (RET). From RET,
we have ∫ v

0

bk(x)
(n− 1)!

(n− k)!(k − 2)!
[F (x)]n−k[F (v)− F (x)]k−2f(x)dx

≡
∫ v

0

x(n− 1)F (x)n−2f(x)dx (1.1)

By iteratively differentiating the above k − 1 times with respect to v, and dividing by
f(v) on each iteration yields the following for k = 3:

b∗3(v) = v +
1

n− 2

F (v)

f(v)
(1.2)

Attempting to generalize to the k-price auction, Wolfstetter [1] and [2], derived the
following closed-form function:

b∗k(v) = v +
k − 2

n− k + 1

F (v)

f(v)
(1.3)

This result is not correct. The error with Wolfstetter’s derivation pertains in particular
to dealing with the term F (v)/f(v), which seems to be completely missing from the
derivation.

3 Derivation of correct bid function

Let us denote

φ0(v) :=

∫ v

0

bk(x)[F (x)]n−k[F (v)− F (x)]k−2f(x)dx, ψ0(v) :=

∫ v

0

x[F (x)]n−2f(x)dx

(1)
Then from (1.1), we have (

n− 2

k − 2

)
φ0(v) ≡ ψ0(v) (2)

Iteratively define

φt+1(v) := φ′t(v)/f(v) and ψt+1(v) := ψ′t(v)/f(v) for t = 0, 1, . . . (3)
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From (2) and (3), it follows that(
n− 2

k − 2

)
φt(v) = ψt(v) for t = 0, 1, . . . (4)

Observe from (1) that

φ0(v) =

∫ v

0

bk(x)[F (x)]n−k

[
k−2∑
`=0

(−1)`
(
k − 2

`

)
[F (x)]`[F (v)]k−2−`

]
f(x)dx (5)

Since all terms of (5) are bounded, the order of summation and integration can be
switched. Denoting

g`(v) :=

∫ v

0

bk(x)[F (x)]n−k+`f(x)dx (6)

from (5) we have

φ0(v) =
k−2∑
`=0

(−1)`
(
k − 2

`

)
[F (v)]k−2−`g`(v) (7)

Lemma 1
φk−1(v) = (k − 2)!bk(v)[F (v)]n−k (8)

Proof See the Appendix.

In contrast to φt(v), determination of ψt(v) is generally complex. Here we derive
ψt(v) for a class of density functions whose second or higher order derivatives vanish.
Let ft(v) denote the t-th order derivative of the density function f. Suppose f be such
that f1(x) = c, where c is a constant. Consequently all derivatives of second and higher
orders of f(x) are zero, i.e., ft(x) = 0 for all t = 2, 3, . . . .

To determine ψt(v), note from (1) and (3) that

ψ1(v) = v[F (v)]n−2 (9)

Since F ′(v) = f(v), from (3) and (9),

ψ2(v) = v(n− 2)[F (v)]n−3 + F (v)n−2/f(v) (10)

Denote
ρn(`) :=(n−2)P` = (n− 2)!/(n− 2− `)! (11)

and observe that
(n− 2− `)ρn(`) = ρn(`+ 1) (12)

To avoid notational clutter, we shall suppress the superscript n and denote ρn by simply
ρ.

For t = 3, 4, . . . and ` = 0, 1, . . . , let θt` be determined as follows:

θt` = 0 for ` = t− 2, t− 1, . . . . (13)
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θ30 = 1 and θt+1
0 = t− 1 + θt0 for t = 3, 4, . . . . (14)

θt+1
` = θt` + (2`+ 1)θt`−1 for ` = 1, . . . , t− 2 and t = 3, 4, . . . . (15)

Note from (14) that

θt0 = (t− 1)(t− 2)/2 > 0 for t = 3, 4, . . . (16)

Using (15) and the solution (16), it follows that

θt+1
` =

[
`−1∏
j=0

{2(`− j) + 1}

]
t∑

i`=`+2

i` − 1∑
i`−1=`+1

. . .

i3 − 1∑
i2=4

i2 − 1∑
i1=3

(i1 − 1)(i1 − 2)

2

for ` = 1, . . . , t− 2 and t = 3, 4, . . . . (17)

Lemma 2 Suppose f1(x) = c, where c is a constant. Then for t ≥ 3,

ψt(v) = ρ(t− 1)v[F (v)]n−t−1 + (t− 1)ρ(t− 2)[F (v)]n−t/f(v)

+
t−3∑
`=0

(−1)`+1ρ(t− 3− `)c`+1θt`[F (v)]n−t+1+`/[f(v)]3+2` (18)

where θt` are constants determined by (13)-(15).

Proof See the Appendix.

Taking t = k − 1 in (4), we have(
n− 2

k − 2

)
φk−1(v) = ψk−1(v)

Using the expression of φk−1(v) from (8) of Lemma 1, we have(
n− 2

k − 2

)
(k − 2)!bk(v)[F (v)]n−k = ψk−1(v) (19)

Using the permutation function ρ from (11) in (19), we have

bk(v) = ψk−1(v)/ρ(k − 2)[F (v)]n−k (20)

Let us first dispose off the cases of k = 2 and 3.
Case 1 k = 2: For this case k− 1 = 1. By (20) and using the expression of ψ1(v) from
(9) we have,

b2(v) = ψ1(v)/ρ(0)[F (v)]n−2 = ψ1(v)/[F (v)]n−2 = v (21)

Case 2 k = 3: For this case k− 1 = 2. By (20) and using the expression of ψ2(v) from
(10) we have,

b3(v) = ψ2(v)/ρ(1)[F (v)]n−3 = ψ2(v)/(n− 2)[F (v)]n−3 = v + F (v)/(n− 2)f(v) (22)
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3.1 The main result

Theorem 1 Consider a k-price auction where k ≥ 4. Suppose the valuations are
independently drawn from a continuous distribution function F that has density f with
the property f1(x) = c, where c is a constant. Then

bk(v) = v +
(k − 2)F (v)

(n− k + 1)f(v)

+
1

ρ(k − 2)

k−4∑
`=0

(−1)`+1ρ(k − 4− `)c`+1θk−1` [F (v)]2+`/[f(v)]3+2` (23)

where θt` are constants determined by (13)-(15).

Proof Let k ≥ 4 so that k− 1 ≥ 3. Taking t = k− 1 in Lemma 2 (since t = k− 1 ≥ 3,
Lemma 2 applies), by (20),

ψk−1(v) = ρ(k − 2)v[F (v)]n−k + (k − 2)ρ(k − 3)[F (v)]n−k+1/f(v)

+
k−4∑
`=0

(−1)`+1ρ(k − 4− `)c`+1θt`[F (v)]n−k+2+`/[f(v)]3+2` (24)

Then (23) follows from (20) and (24).

Remark The last term of (24) does not appear in the derivation of [1]-[4]. This shows
that the derivation of [1]-[4] is incorrect.

3.2 Conclusion

We conclude by providing the expressions of correct bid functions for the class of distri-
butions specified in Theorem 1 when k = 4, . . . , 7. Computer programs can determine
the bid function for k ≥ 7 from (24). So far as more general distributions are con-
cerned, in the Appendix we derive the bid function for a general continuous distribution
F when k = 4.

Examples Observe from (16), (13) and (15) that

θ30 = 1, θ40 = 3, θ50 = 6, θ60 = 10, θ31 = 0, θ41 = 3, θ51 = 12, θ61 = 30,

θ32 = 0, θ42 = 0, θ52 = 15, θ62 = 75, θ33 = 0, θ43 = 0, θ53 = 0, θ63 = 105 (25)

Let n ≥ 7. We find bk(v) for k = 4, . . . , 7.

k = 4: Taking k = 4 in (23) and noting that θ30 = 1,

b4(v) = v +
2F (v)

(n− 3)f(v)
− ρ(0)cθ30[F (v)]2

ρ(2)[f(v)]3
= v +

2F (v)

(n− 3)f(v)
− c[F (v)]2

(n− 2)(n− 3)[f(v)]3

(26)

k = 5: Taking k = 5 in (23) and by (25),

b5(v) = v +
3F (v)

(n− 4)f(v)
− ρ(1)cθ40[F (v)]2

ρ(3)[f(v)]3
+
ρ(0)c2θ41[F (v)]3

ρ(3)[f(v)]5
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= v +
3F (v)

(n− 4)f(v)
− 3c[F (v)]2

(n− 3)(n− 4)[f(v)]3
+

3c2[F (v)]3

(n− 2)(n− 3)(n− 4)[f(v)]5
(27)

k = 6: Taking k = 6 in (23) and by (25),

b6(v) = v +
4F (v)

(n− 5)f(v)
− ρ(2)cθ50[F (v)]2

ρ(4)[f(v)]3
+
ρ(1)c2θ51[F (v)]3

ρ(4)[f(v)]5
− ρ(0)c3θ52[F (v)]4

ρ(4)[f(v)]7

= v +
4F (v)

(n− 5)f(v)
− 6c[F (v)]2

(n− 4)(n− 5)[f(v)]3
+

12c2[F (v)]3

(n− 3)(n− 4)(n− 5)[f(v)]5

− 15c3[F (v)]4

(n− 2)(n− 3)(n− 4)(n− 5)[f(v)]7
(28)

k = 7: Taking k = 7 in (23) and by (25),

b6(v) = v+
5F (v)

(n− 6)f(v)
−ρ(3)cθ60[F (v)]2

ρ(5)[f(v)]3
+
ρ(2)c2θ61[F (v)]3

ρ(5)[f(v)]5
−ρ(1)c3θ62[F (v)]4

ρ(5)[f(v)]7
+
ρ(0)c4θ63[F (v)]5

ρ(5)[f(v)]9

= v +
5F (v)

(n− 6)f(v)
− 10c[F (v)]2

(n− 5)(n− 6)[f(v)]3
+

30c2[F (v)]3

(n− 4)(n− 5)(n− 6)[f(v)]5

− 75c3[F (v)]4

(n− 3)(n− 4)(n− 5)(n− 6)[f(v)]7

+
105c4[F (v)]5

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)[f(v)]9
(29)

Appendix

Proof of Lemma 1 Note that g′`(v) = bk(v)[F (v)]n−k+`f(v). Differentiating (7) with
respect to v, by (3) we have

φ1(v) =
k−2∑
`=0

(−1)`
(
k − 2

`

)[
(k−2−`)[F (v)]k−2−`−1g`(v)+[F (v)]k−2−`bk(v)[F (v)]n−k+`

]

+
k−2∑
`=0

(−1)`
(
k − 2

`

)
[F (v)]k−2−`bk(v)[F (v)]n−k+`

= (k − 2)
k−3∑
`=0

(−1)`
(
k − 3

`

)
[F (v)]k−3−`g`(v) + bk(v)[F (v)]n−2

k−2∑
`=0

(−1)`
(
k − 2

`

)
Since the last term of the expression above is zero, we have

φ1(v) = (k − 2)
k−3∑
`=0

(−1)`
(
k − 3

`

)
[F (v)]k−3−`g`(v) (30)
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From (30), using (3) repeatedly for t = 1, . . . , k − 2 we have

φt(v) = (k−2)Pt

k−2−t∑
`=0

(−1)`
(
k − 2− t

`

)
[F (v)]k−2−t−`g`(v) (31)

Taking t = k − 2 in (31) we have

φk−2(v) = (k − 2)!g0(v) (32)

Using (5) in (32), φk−1(v) = (k − 2)!g′0(v)/f(v). By (6), g′0(v) = bk(v)[F (v)]n−kf(v),
which proves (8).

Proof of Lemma 2 We prove the lemma by induction. First let t = 3. From (10) and
(3), and using the definition of ρ from (11), we have

ψ3(v) = vρ(2)[F (v)]n−4 + 2ρ(1)[F (v)]n−3/f(v)− c[F (v)]n−2/[f(v)]3 (33)

As ρ(0) = 1 and θ0(3) = 1, (33) shows that (18) holds for t = 3.
Now suppose (18) holds for an integer t ≥ 3. Differentiating (18) with respect to v,

ψ′t(v) = vρ(t− 1)(n− t− 1)F n−t−2f(v) + ρ(t− 1)F n−t−1

+(t− 1)ρ(t− 2)(n− t)[F (v)]n−t−1 − (t− 1)ρ(t− 2)[F (v)]n−tc/[f(v)]2

+
t−3∑
`=0

(−1)`+1c`+1θt`

[
ρ(t− 3− `)(n− t+ 1 + `)[F (v)]n−t+`/[f(v)]2+2`

−ρ(t− 3− `)[F (v)]n−t+1+`(3 + 2`)c/[f(v)]4+2`
]

(34)

Using (3) and the property of ρ from (12) in (34), we have

ψt+1(v) = vρ(t)F n−t−2 + tρ(t− 1)F n−t−1/f(v)− (t− 1)cρ(t− 2)[F (v)]n−t/[f(v)]3

+
t−3∑
`=0

(−1)`+1c`+1θt`ρ(t− 2− `)[F (v)]n−t+`/[f(v)]3+2`

+
t−3∑
`=0

(−1)`+1+1c`+1+1[2(`+1)+1]θt`ρ(t−2− (`+1))[F (v)]n−t+(`+1)/[f(v)]3+2(`+1) (35)

Denote the last term of (35) by A. Denoting j = `+ 1, observe that

A =
t−2∑
j=1

(−1)j+1cj+1(2j + 1)θtj−1ρ(t− 2− j)[F (v)]n−t+j)/[f(v)]3+2j (36)

From (35) and (36)

ψt+1(v) = vρ(t)F n−t−2 + tρ(t− 1)F n−t−1/f(v)− [(t− 1) + θt0]cρ(t− 2)[F (v)]n−t/[f(v)]3
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+
t−3∑
`=1

(−1)`+1c`+1[θt` + (2`+ 1)θt`−1]ρ(t− 2− `)[F (v)]n−t+`/[f(v)]3+2`

+(−1)t−1ct−1[2(t− 2) + 1]θtt−3ρ(0)[F (v)]n−2)/[f(v)]3+2(t−2) (37)

Using (14) and (15) in (37) and noting that θtt−2 = 0 (by (13)), we have

ψt+1(v) = vρ(t)F n−t−2 + tρ(t− 1)F n−t−1/f(v)

+
t−2∑
`=0

(−1)`+1c`+1θt+1
` ρ(t− 2− `)[F (v)]n−t+`/[f(v)]3+2` (38)

This shows that if the result holds for an t ≥ 3, it also holds for t+ 1. Since the result
holds for t = 3, it holds for all t ≥ 3.

Theorem 2 Consider the fourth-price auction, where the highest bidder wins, and
pays only the 4-th highest bid, and assume F is log concave. Then, the equilibrium bid
function is

b4(v) = v +
2

(n− 3)

F (v)

f(v)
− 1

(n− 2)(n− 3)

F (v)2

f(v)3
f(v)

′

Proof. Taking k = 4 in Lemma 1, we have

φ3(v) = 2b4(v)[F (v)]n−4 (39)

Note from (10) that

ψ2(v) = v(n− 2)[F (v)]n−3 + [F (v)]n−2/f(v) (40)

From (39), we have
ψ3(v) := ψ′2(v)/f(v) =

= v(n− 2)(n− 3)[F (v)]n−4 + 2(n− 2)[F (v)]n−3/f(v)− f ′(v)[F (v)]n−2/[f(v)]3 (41)

By (4), we have (
n− 2

2

)
φ3(v) = ψ3(v) (42)

From (39), (41) and (42), it follows that

b4(v) = v +
2F (v)

(n− 3)f(v)
− f ′(v)[F (v)]2

(n− 2)(n− 3)[f(v)]3
.
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