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Abstract

We study how preferences may co-evolve with the ability to detect other

peoples�preferences, and the ability to deceive other people regarding one�s

preferences and intentions. An individual�s type is a tuple consisting of a

preference type and a cognitive type. Preferences are allowed to be de�ned

not only over action pro�les but also over the opponent�s type. The cognitive

type is an integer representing level of cognitive sophistication. The cognitive

levels of the individuals in a match determine the probability that one of them

observes the opponent�s preferences and is able to deceive the opponent. For

preferences de�ned solely over action pro�les we �nd that, for low enough

cognition costs, if a preference con�guration is evolutionarily stable then all

the induced outcomes are Nash equilibria, and in same-type matches, an

e¢ cient symmetric Nash equilibrium is played. Conversely any symmetric

Nash equilibrium can be implemented as the outcome of an evolutionarily

stable preference con�guration. In contrast, for preferences de�ned over both

actions and opponents� types, all Nash outcomes that give more than the

minmax payo¤ can be implemented by evolutionarily stable preferences.
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1 Introduction

For a long time economists took preferences as given. The study of their origin

and formation was considered a question outside the scope of economics. Over the

past twenty years this has changed dramatically. In particular there is now a large

literature on the evolutionary foundations of preferences (for an overview see Rob-

son and Samuelson (2011)). A prominent strand of this literature is the so-called

"indirect evolutionary approach" to game theory, as pioneered by Güth and Yaari

(1992).1 It has been used to explain the existence of a number of "non-standard"

preferences �preferences that do not coincide with material payo¤s. For example

Huck and Oechssler (1999) study the evolution of reciprocity in the form of a taste

for rejecting unfair o¤ers. Sethi and Somanthan (2001) consider reciprocity in the

form of preferences that are conditional on the opponent�s preference type. Bester

and Güth (1998), Bolle (2000), and Possajennikov (2000) study combinations of

altruism, spite and sel�shness. Güth and Napel (2006) study preference evolu-

tion when players use the same preferences in both an ultimatum and a dictator

game. Koçkcesen and Ok (2000) investigate survival of more general interdepen-

dent preferences in aggregative games. In all these models the authors �nd that

various non-materialistic preferences are evolutionarily stable even under uniformly

random matching.

A crucial feature of these models is that they explicitly or implicitly assume

that preferences are at least partially observable. Consequently the results are

vulnerable to the existence of mimics who signal that they have e.g. a preference

for cooperation, but actually defect on cooperators, thereby earning the bene�ts of

having the non-standard preference, while not having to pay the cost. The e¤ect

of varying the degree to which preferences can be observed has been investigated

systematically by Ok and Vega-Redondo (2001), Dekel et al. (2007), and Herold and

Kuzmics (2009). They con�rm that the degree to which preferences are observed

decisively in�uences the outcome of preference evolution. However, the degree to

which preferences are observed is still exogenous in these models. In reality we

would expect both the preferences and the ability to observe or conceal preferences

to be the product of an evolutionary process. On this topic, Robson and Samuelson

(2011) write:

The standard argument is that we can observe preferences because

people give signals �a tightening of the lips or �ash of the eyes �that
1We do not �nd the term �indirect�ideal since evolution selects on the basis of �tness and any

feature of an organism, be it strategies, preferences, beliefs or something else, is selected for, only
insofar as it (indirectly) contributes to �tness.
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provide clues as to their feelings. However, the emission of such signals

and their correlation with the attendant emotions are themselves the

product of evolution. [...] We cannot simply assume that mimicry is im-

possible, as we have ample evidence of mimicry from the animal world,

as well as experience with humans who make their way by misleading

others as to their feelings, intentions and preferences. [...] In our view,

the indirect evolutionary approach will remain incomplete until the evo-

lution of preferences, the evolution of signals about preferences, and the

evolution of reactions to these signals, are all analysed within the model.

[Emphasis added] (pp. 14-15)

This paper studies the missing link between evolution of preferences and evo-

lution of how preferences are concealed and detected. In our model the ability to

observe preferences as well as the ability to deceive and induce false beliefs about

preferences, is endogenously determined by evolution, jointly with the evolution of

preferences. Moreover we consider all preferences that are de�ned either on the

set of action pro�les or on the joint set of action pro�les and opponents preference

types.

As in standard evolutionary game theory we assume a population of individuals

who are uniformly randomly matched to play a symmetric normal form game.2

Each individual has a type, which is a tuple, consisting of a preference type and a

cognitive type. A preference type is identi�ed with a utility function. The cognitive

type is simply a natural number, representing the level of cognitive sophistication

of the individual. The marginal cost of increased cognition is strictly positive. The

cognitive types of the individuals in a match determine the probability that one

individual observes the opponent�s preferences and is able to deceive the opponent.

When both individuals are of the same cognitive type they are assumed to play

a Nash equilibrium of the complete information game induced by their preferences,

just as in that standard indirect evolutionary approach. However when individuals

in a match are of di¤erent cognitive level we allow the outcome to di¤er from

a Nash equilibrium induced by the preferences of the matched individuals. We

2It is well-known that positive assortative matching, for instance due to spatially structured
populations, is conducive to the evolution of altruism (Hines and Smith (1979)). Recently Alger
and Weibull (2013) have shown that positive assortative matching allows for the evolution of
non-materialistic preferences even when preferences are perfectly unobservable. It is also well-
known that �nite populations allow for the evolution of non-materialistic preferences, e.g. spite,
even when preferences are perfectly unobservable (Scha¤er (1988)). By assuming that individuals
are uniformly randomly matched in an in�nite population, we avoid confounding the e¤ect of
endogenously determined degree of observability, with the e¤ect of non-uniform matching and
�nite population size.
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assume a strong form of deception: The deceiver observes the opponent�s type

perfectly, and consequently the deceiver is able to tailor the deception to the current

opponent�s type. The deceiver is allowed to choose whatever she wants the deceived

party to believe, both about the deceiver�s type, and about the deceiver�s intended

action choice. In e¤ect the deceiver is able to pick her favourite action pro�le,

that is consistent with the deceived party behaving rationally given her preferences.

In general the probability that one is able to deceive one�s opponent should be

increasing one�s own cognitive type and decreasing in the opponent�s cognitive type.

In order to obtain tractable and general results we focus on the limiting case where

the individual with the highest cognitive type in a match is always able to deceive

the individual with the lowest cognitive type. The fact that we make these strong

assumptions about deception allows us to interpret our results as providing an

"upper bound" on the e¤ect of endogenization of observation, and the introduction

of deception.

Our way of modelling observation and deception implies that behaviour in a

match is determined jointly by (i) the types of the matched individuals, (ii) the

attempts at deception, summarised in a deception policy, and (ii) the actions that

are taken as a function of the opponent�s type and the attepted deception, sum-

marised in a deception policy. A population state together with a set of action

and deception policies is a called a con�guration. We require con�gurations to be

consistent in the sense that they induce Nash equilibrium when no deception takes

place. In an evolutionarily stable con�guration (ESC) all incumbents earn the same

and if a small group of mutants enter they earn less than the incumbents in any

post-entry state where the incumbents behave against each other in the same way

as before the mutants entered.

We provide results both for preferences that are de�ned on the set of action

pro�les (type-neutral preferences) and for preferences de�ned or on the joint set of

action pro�les and opponents preference types (interdependent preferences). For

type-neutral preferences our main result is that, for low enough cognition costs,

if a con�guration is evolutionarily stable then all the induced outcomes are Nash

equilibria, and in same-type matches, an e¢ cient symmetric Nash equilibrium is

played. In contrast, for type-interdependent preferences, all Nash outcomes that

give more than the minmax payo¤ can be implemented in an evolutionarily stable

con�guration.

Dekel et al. (2007) (see also Ok and Vega-Redondo (2001)) show that if pref-

erences are unobservable, and if all preferences over outcomes are allowed, then

only Nash equilibria of the game with material/�tness payo¤s can supported by

3



evolutionarily stable preferences. If preferences are perfectly, or almost perfectly,

observable, then only e¢ cient outcomes can be supported by evolutionarily sta-

ble preferences. Herold and Kuzmics (2009) expand the framework of Dekel et al.

(2007) to include interdependent preferences, i.e. preferences that depend on the

opponent�s preference type. Under perfect or almost perfect observability, if all

preferences that depend on the opponent�s type are considered, then any symmet-

ric outcome above the minmax material payo¤ is stable in a strong sense, implying

stability in the sense of Dekel et al. (2007). Furthermore, they �nd that non-

discriminating preferences (including sel�sh materialistic preferences) are typically

not evolutionary stable except in a very weak form. In contrast, certain preferences

which exhibit discrimination are evolutionary stable in a very strong sense.

Within biology and evolutionary psychology there is a large literature on the evo-

lution of theory of mind (Premack and Wodru¤ (1979)). According to the "Machi-

avellian intelligence" hypothesis (Humphrey (1976)), and "social brain" hypothesis

(for an introduction see Dunbar (1998)), the extraordinary cognitive abilities of

humans evolved as a result of the demands of social interactions, rather than the

demands of the natural environment: In a single person decision problem there is

a �xed bene�t of being smart, but in a strategic situation it may be important to

be smarter than the opponent. From an evolutionary perspective, the potential ad-

vantage of a better theory of mind has to be traded o¤ against the cost of increased

reasoning capacity. Increased cognitive sophistication, in the form of higher order

beliefs, is associated with non-negligible costs (Holloway (1996), Kinderman et al.

(1998)).3

The rest of the paper is organized as follows: Section 2 presents the model.

Section 3 contains results on both type-interdependent and type-neutral preferences.

Section 4 concludes. Additional results, and proofs not in the main text, can be

found in the appendix.

2 Model

2.1 Game

Consider a symmetric two-player normal form game G with a �nite pure action

set A and mixed strategy set �(A). Payo¤s are given by � : A � A ! R, where
� (ai; aj) is the payo¤ to a player using strategy ai against strategy aj. The payo¤

function is extended to mixed actions in the standard way. Let � (�i; �j) denote

3There is also a smaller literature on the evolution of strategic sophistication in game theory;
Stahl (1993), Banerjee and Weibull (1995), Stennek (2000), Mohlin (2012), and Heller (2013).
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the payo¤ to a player, using strategy �i against strategy �j. With slight abuse of

notation let a denote the degenerate mixed strategy that puts all weight on pure

strategy a.

2.2 Types

There is a large population of individuals who are randomly matched to play the

game G. Each individual i in the population has a type

� = (�;  ) 2 � = ��	,

consisting of a preference type � 2 � and a cognitive type  2 	. Let X (�) be
the set of all �nite support probability distributions on �. A population state is a

point

x =
�
x�1 ; x�2 ; :::x�jC(x)j

�
2 X (�) ,

where C (x) denotes the support (carrier) of x 2 X (�).

2.2.1 Cognitive Types

We let 	 = N. There is a �tness cost to increased cognition, represented by the
positive and strictly increasing cost function k : N! R+. The �tness payo¤ of an
individual equals the material payo¤ from the game, minus the cognitive cost. Let

�max = sup
 2	

(k +1 � k ) ;

�min = inf
 2	

(k +1 � k ) :

In our view the most interesting case is that of a small but strictly positive marginal

cognitive cost. By small we mean that the cost does not outweigh the improvement

that arises from changing actions. We will make this more precise later.

2.2.2 Preference Types

Type-Interdependent Preferences We allow for type-interdependent (or inter-

dependent) preferences. Each preference type � is identi�ed with a utility function

de�ned over the set of types and action pro�les

u� : A� A� �! R.
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This formulation allows preferences that depend on the opponent�s preference type

but not the opponent�s cognitive type.4 The de�nition of u� extends to mixed

actions in the obvious way. Thus we will let u�i (�i; �j; �j) denote the payo¤ that

player i, of type �i, earns when she plays mixed action �i, against an opponent j

who is of type �j and plays the mixed action �j.

Type-Neutral Preferences We will also study type-neutral preferences, i.e.

preferences that can be represented with a utility function of the form

u� : A� A! R.

2.3 Observation and Deception

2.3.1 Probability of Observation and Deception

The cognitive types of the individuals in a match determine their ability to observe

and deceive each other. Consider two individuals i and j with cognitive types  i
and  j, who are are matched to play a game. If  i =  j then neither individual is

able to deceive the other, if  i >  j then i is able to deceive j, and if  i <  j then

j is able to deceive i, i.e.

Pr (i deceives j) =

(
1 if  i >  j

0 if  i �  j
. (1)

When neither individual is able to deceive the other, we assume that they play

a Nash equilibrium of the complete information game that is induced by their

preference types.

2.3.2 Outcome of Deception

Type-Interdependent Preferences Consider type-interdependent preferences.

If i makes j believe that i is of type �̂i and will take action �̂i then rationality

demands that j takes an action in argmax�j u
�j

�
�j; �̂i; �̂i

�
. Moreover, rationality

requires i to pick a pair
�
�̂i; �̂i

�
so as to maximize her utility. The only restriction

on
�
�̂i; �̂i

�
is that the action �̂i should be rationalizable for an individual with

4For an explanation of why this way of de�ning interdependent preference types avoids incon-
sistencies, see Herold and Kuzmics (2009). See also Gul and Pesendorfer (2010).
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preference type �̂i. The set of pairs
�
�̂i; �̂i

�
satisfying this restriction is

R =
n�
�̂i; �̂i

�
2 �(A)� � : �̂i is rationalizable given �̂

o
:

Fix a state x 2 X (�). For any type �i 2 C (x) an action policy (at state x) is
a mapping ��i : � (A)� C (x)! �(A). The action policy ��i is rational if for all

�j 2 C (x) and all (�j; �j) 2 R it holds that

��i 2 argmax
�i

u�i (�i; �j; �j) :

For any type �i 2 C (x) a deception policy (at state x) is a mapping ��i : C (x) !
�(A)�� such that ��i 2 R. The deception policy ��i is rational, given the rational
action mappings f��g�2C(x), if for all �j 2 C (x), it holds that

��i 2 arg max
(�̂i;�̂i)

u�i
�
��i
�
��j
�
�̂i; �̂i

�
; �j

�
; ��j

�
�̂i; �̂i

�
; �j

�
:

This description assumes that when i deceives j then i knows how j will respond

to di¤erent beliefs that i might give j. That is, when i deceives j then i knows ��j .

Type-Neutral Preferences The above treatment of deception can be adapted

quite naturally to the case of type-neutral preferences. If i makes j believe that i will

take action �̂i then rationality demands that j takes an action in argmax�j u
�j (�j; �̂i).

Moreover, rationality requires i to pick �̂i so as to maximize her utility.

Fix a state x 2 X (�). For any type �i 2 C (x) an action policy is a mapping

��i : � (A)! �(A). The action policy ��i is rational if for all �j it holds that

��i 2 argmax
�i

u�i (�i; �j) :

For any type �i 2 C (x) a deception policy (at state x) is a mapping ��i : C (x) !
�(A). The deception policy ��i is rational, given the rational action mappings

f��g�2C(x), if for all �j 2 C (x), it holds that

��i 2 argmax
�̂i

u�i
�
��i
�
��j (�̂i)

�
; ��j (�̂i)

�
:

This description assumes that when i deceives j then i knows how j will respond

to di¤erent beliefs that i might give j. That is, when i deceives j then i knows ��j .
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2.3.3 Outcome of Mutual Observation

As mentioned above, if i and j are matched and both observe each other�s prefer-

ences then they are assumed to play a Nash equilibrium of the complete information

game induced by their preference types (like in the standard indirect evolutionary

approach). We need to impose restriction on the action pro�les in order to ensure

that they are consistent with Nash equilibrium in matches where both individuals

observe the opponent�s type. There may be more than one such equilibrium. Let

NE (�i; �j) be the set of Nash equilibria when the two players have preferences �i
and �j.

Again, �x a state x 2 X (�). An equilibrium selection is a mapping � : C (x)�
C (x) ! �(A) � �(A) such that � (�i; �j) = � (�j; �i) 2 NE (�i; �j). Let �(�i;�j)

and �(�j ;�i) be the action played by i and j, respectively, in � (�i; �j).

For type-interdependent preferences, we say that the equilibrium selection � is

consistent with the action policies f��g�2C(x) if for all �i 2 C (x), and �j 2 C (x),

�(�i;�j) = ��i
�
�(�j ;�i); �j

�
.

For type-neutral preferences The equilibrium selection � is consistent with the

action policies f��g�2C(x) if for all �i 2 C (x), and �j 2 C (x),

�(�i;�j) = ��i
�
�(�j ;�i)

�
.

2.3.4 Con�gurations and Payo¤s

We combine our rationality and consistency requirements:

De�nition 1 A policy and selection pro�le ! (x) =
�
f��g�2C(x); f��g�2C(x); �

�
is

rational and consistent if (i) for each type � 2 C (x) the action policy ��i is ratio-
nal, (ii) for any type � 2 C (x) the deception policy ��i is rational given f��g�2C(x),
and (iii) the equilibrium selection � is consistent with f��g�2C(x).

A policy and selection pro�le ! (x) =
�
f��g�2C(x); f��g�2C(x); �

�
induces an out-

come mapping �!(x) : C (x)�C (x)! �(A)��(A), such that in a match between
types �i and �j the outcome is �!(x) (�i; �j). The payo¤ to individual i when facing

individual j is

w (�i; �j) = �
�
�!(x) (�i; �j) ; �

!(x) (�j; �i)
�
:

To compute expected payo¤ we need to combine the information in the policy and

selection pro�le with information about the state.
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De�nition 2 A con�guration (x; ! (x)), is the combination of a state x 2 X (�)
and a rational and consistent policy and selection pro�le ! (x) =

�
f��g�2C(x); f��g�2C(x); �

�
.

Thus in con�guration (x; ! (x)) the expected (�tness) payo¤ to an individual of

type � is

�� (x) =
X
�02�

x�0w (�; �
0)� k� =

X
�02�

x�0�
�
�!(x) (�; �0) ; �!(x) (�0; �)

�
� k�:

2.4 Evolutionary Stability

Recall the de�nition of an evolutionarily stable strategy, due to Maynard Smith and

Price (1973) (see also Taylor and Jonker (1978)).

De�nition 3 A mixed strategy � 2 �(A) is an evolutionarily stable strategy
(ESS) if for every �0 2 �(A), �0 6= �, there is some �" 2 (0; 1) such that if " 2 (0; �"),
then ~� (�0; (1� ")� + "�0) < ~� (�; (1� ")� + "�0). If the strict inequality is replaced

by weak inequality then � 2 �(A) is a neutrally stable state (NSS).

We extend the notion of an ESS to an evolutionarily stable con�guration (ESC).

Note that a con�guration completely determines payo¤s w (�i; �j) for all �i; �j 2
C (x). We use this fact to de�ne a type game as follows:

De�nition 4 For any con�guration (x; ! (x)) the corresponding type game is the
symmetric two-player game, where each player�s strategy space is C (x), and the

payo¤ to type-strategy �, against type-strategy �0, is w (�; �0)� k�.

The de�nition of a type game allows us to apply notions and results from stan-

dard evolutionary game theory, where evolution acts upon strategies, to the present

setting where evolution acts upon types.5

We want to capture robustness with respect to small groups of mutants. Sup-

pose that a fraction " of the population is replaced by mutants and suppose that

the distribution of types within the group of mutants is x0 2 X (�). Consequently
the post-entry population state is ~x = (1� ")x + "x0. In line with the rest of the

literature on the indirect evolutionary approach we assume that adjustment of poli-

cies is in�nitely much faster than the adjustment of the distribution of preferences

(i.e. the movement between population states).6 Thus we require that behaviour at

5A similar notion was de�ned in Mohlin (2012).
6Mohlin (2010) examines a model where the speed of learning relative to evolution is less

extreme.
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the new state ~x is described by a rational and consistent policy and selection pro-

�le ~! (~x) =
�
f~��g�2C(~x); f~��g�2C(~x); �

�
de�ned for the set of types in the support

of ~x. There is no reason for an incumbent type � 2 C (x) to change its behav-

iour towards other incumbent types. A post-entry pro�le that exhibits this kind of

conservativeness relative to the initial pro�le is called focal:

De�nition 5 Given an initial state x, and a post-entry state ~x = (1� ")x+ "x0, a

post-entry pro�le ~! (~x) =
�
f~��g�2C(~x); f~��g�2C(~x); �

�
is focal relative to the initial

pro�le ! (x) =
�
f��g�2C(x); f��g�2C(x); �

�
, if for all �i; �j 2 C (x) and all ai 2 A, it

holds that ~��i (ai; �j) = ��i (ai; �j), ~��i (�j) = ��i (�j), and � (�i; �j) = � (�i; �j).

Our stability notion requires that incumbents outperform all mutants for all

focal pro�les that are consistent at ~x.

De�nition 6 A con�guration (x; ! (x)) constitutes an evolutionarily stable con-
�guration (ESC), if for every x0 2 X (�), x0 6= x, and every rational and con-

sistent post-entry pro�le ~! (~x) which is focal relative to the initial pro�le, the state

x is an ESS of the type game induced by the con�guration (~x; ~! (~x)). If ESS is

substituted for NSS then x is a neutrally, stable con�guration (NSC).

3 Results

3.1 Some Preference Types

We wish to consider the largest possible set of preference types. For the case of type-

interdependent preferences we may let � contain one type for each utility function

u : A� A! R. This means that � = Rn2. Since von Neuman-Morgenstern utility
functions are unique up to a¢ ne transformations we may assume � = [0; 1]n

2

.

In the case of type-interdependent preferences we need to be more careful in

specifying the content of �. It turns out that we are able to prove all our results

below provided that � contains a set of types that we are able to list explicitly.

Individuals with preferences that coincide with �tness /material payo¤s will be

called materialistic.

De�nition 7 The set of materialist (M) types �M is the set of types such that if

�i = (�i;  i) 2 �M then u�i (ai; aj; �j) = � (ai; aj) for all ai, aj, and �j.

Next we de�ne the minmaxing discriminator type. The minmax action is

am 2 min
ai
max
aj

� (aj; ai) :
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The minmaxed player earns

m = max
aj

� (aj; a
m) ;

and the player that attempts to minmax her opponent earns at least n = minaj � (a
m; aj).

We also de�ne a type which has preferences that induce play of a pro�le (a1; a2)

when meeting someone of the same type, but when meeting an opponent of another

type it strictly prefers the action that minmaxes the opponent (in terms of �tness).

We call this the minmaxing discriminator preference type.

De�nition 8 For a given pro�le a = (a1; a2), the set of MMDa-types, �MMDa, is

the set of types such that for �i = (�i;  i) 2 �MMDa:

(a) If �i 6= �j then u�i (am; aj; �j) > u�i (ai; aj; �j) for all ai and aj.

(b) If �i = �j then u�i (a1; a2; �j) > u�i (a2; a1; �j) > u�i (ai; aj; �j) for all

(ai; aj) =2 f(a1; a2) ; (a2; a1)g.

The type which combines �-preferences with cognitive type  , is denoted � .

When there is no risk of confusion we will simply write � .

Throughout the paper we will assume that each of the above mentioned types

is contained in the set of type-interdependent preference types �. Moreover we

assume that any combination of such a preference type with a cognitive type  2 	
is contained in the set of types �. Formally we assume:

fM g 2	 [ fMMDa g 2	;a2A�A � �:

3.2 Results for Single Pure Outcome Con�gurations

In this subsection we restrict attention to con�gurations that induce play of one

single pure outcome in all matches. That is, there is some pure action a such that

�!(x) (�; �0) = a for all �; �0 2 C (x). The fact that there is a single outcome implies
that the outcome has to be symmetric, since (according to the way our model is

set up) when two indvividuals of the same type play they will play a symmetric

outcome

The �rst result concerns the cognitive types that are present in an NSC.

Proposition 1 Consider either type-interdependent or type-neutral preferences:
Suppose a is the only outcome in (x; ! (x)). If (x; ! (x)) is NSC then all individuals

have the same cognitive type. Moreover, if preferences are type-neutral then all
individuals are of the lowest cognitive type.

11



Proof. Since both players earn the same payo¤ in a they must also incur the
same cognitive cost for the state to be part of an NSC con�guration. In the case of

type-neutral preferences this level must be the lowest level. Otherwise a mutant of

a lower level, who prefers to play a against all actions would be able to invade.

Next result relates stable outcomes to Nash equilibrium and e¢ ciency.

Proposition 2 Consider type-interdependent preferences: If a is a symmetric
Nash equilibrium, then there is an NSC in which each match results in a, and if

� (a) > m then there is an ESC in which each match results in a.

Consider type-neutral preferences:
With one kind of mutant at a time: If a is a symmetric Nash equilibrium (in

�tness payo¤s), and there is no symmetric pro�le with a higher payo¤, then there

is an NSC in which each match results in a.

[With more than one kind of mutant at a time: If a is a symmetric Nash

equilibrium (in �tness payo¤s), and there is no pro�le with a higher average payo¤

per player, then there is an NSC in which each match results in a. ]

Proof. Let a = (a�; a�) be a Nash equilibrium such that � (a) = � (a�; a�) > m.

Type-interdependent preferences: Consider a population consisting entirely of

the MMDa1-type. Suppose a mutant enters. A mutant cannot earn more than

� (a) when deceiving an incumbent. When a mutant is deceived by an incumbent

the mutant earns at most m. When a mutant and an incumbent observe each

others�preferences the mutant earns at most m. Thus a mutant of cognitive type

1 will earn at most expected payo¤ m against incumbents. A mutant of higher

cognitive type will earn at most � (a) against incumbents, and will have to pay a

higher cognitive cost than the incumbents.

Type-neutral preferences: Consider a state where all incumbents are of cognitive

level 1, and of the same preference type, which prefers to play a� regardless of what

the opponent plays. A mutant could not earn more than an incumbent against

an incumbent. Suppose a single kind of mutant enters. When a mutant meets a

mutant of the same type they play a symmetric pro�le, and by assumption, there

is no symmetric pro�le that gives a higher payo¤ than what the incumbents get.

[If we allow for more than one kind of mutant at the same time then we need to

make sure that the the group does not earn more than the incumbents. Unless we

assume that � (a) is larger than the average payo¤ in any pro�le one can construct

counter examples in which a group of mutants is able to invade.]

12



Is it possible to say that if (i) a is not a Nash equilibrium, or (ii) a is not e¢ cient,

then then there is no NSC (and hence no ESC) in which a is the outcome of every

match? Yes this holds for a su¢ ciently low marginal cost. Let

Proposition 3 Consider either type-interdependent or type-neutral preferences:
Suppose

�max = sup
 2	

(k ( + 1)� k ( )) < min
ai;a0i;aj

j� (ai; aj)� � (a0i; aj)j = �:

Suppose a is the only outcome in (x; ! (x)). If (x; ! (x)) is NSC then a is a Nash

equilibrium.

Proof. We want to prove that � (a�; a�) = � (a) is a Nash equilibrium. To

prove this by contradiction assume that a� is not a best response to itself, i.e.

maxai � (ai; a
�) > � (a�; a�) = � (a). If all incumbents are of cognitive level  � then

the average payo¤ in the population is �� = � (a) � k �. Consider a materialist

mutant �0 of level  0 =  � + 1. For a (vanishingly) small fraction of �0 we have

��0 = max
ai

� (ai; a
�)� k �+1 � � (a) + � � k �+1:

Hence ��0� �� � �� (k �+1 � k �). By the assumption assumption that 0 < �min �
�max < �. we have � > k �+1 � k �. Thus ��0 > ��.

For the case of type-interdependent preferences we are also interested in the

following result, which provides a partial converse to proposition 2.

Proposition 4 Consider type-interdependent preferences. Suppose a is the only
outcome in (x; ! (x)). If (x; ! (x)) is ESC, and �max < � as de�ned in proposition

3, then � (a) > m.

Proof. Suppose (x; ! (x)) is an ESC. It follows from proposition 3 that a is NE.
If it were the case that � (a) � m then there are mutants that earn weakly more

than the incumbents.

Furthermore, for the case of type-neutral preferences, we add the following re-

sult, which completes the converse to proposition 2.

Proposition 5 Consider type-neutral preferences:
With one kind of mutant at a time: Suppose a is the only outcome in (x; ! (x)).

If (x; ! (x)) is NSC then there is no symmetric pro�le a0 with a higher payo¤, i.e.

it holds that � (a) � � (a0) for all a0.

13



[With more than one kind of mutant at a time: Suppose a is the only outcome in

(x; ! (x)). If (x; ! (x)) is NSC then there is no pro�le with a higher average payo¤

per player]

Proof. Suppose x is an NSC. Suppose only a single type of mutant at a time
is allowed. If there is a symmetric pro�le a0 =

�
a0i; a

0
j

�
such that � (a) < � (a0) then

a mutant can invade which prefers to play ai against aj and a0i against a
0
j (which

is the same thing as prefering aj against ai and a0j against a
0
i since the pro�les

are symmetric). If more than one kind of mutant is allowed to enter at the same

time then the condition needs to be strenghthened to rule out asymmetric pro�les

a0 =
�
a0i; a

0
j

�
such that � (a) < � (a0). To see this consider two mutants both of

whom prefer ai against aj. One of them prefers a0i against a
0
j, and the other prefers

a0j against a
0
i (which is not the same thing since the pro�le is asymmetric).

Example 9 Consider the Stag Hunt game

S H

S 3; 3 0; 1

H 1; 0 2; 2

; (2)

where there are two Nash equilibria (S; S) and (H;H) with payo¤s � (S; S) = 3

and � (H;H) = 2. The minmax payo¤ is 2. Consider type-neutral preferences.

Proposition 2 implies that there is an NSC in which (S; S) is the outcome of every

match. Propositions 3 and 5 imply that if marginal cognitive cost is su¢ ciently low

then (S; S) is the only outcome that can be part of an NSC.

The above propositions together imply the following characterization.

Corollary 1 Consider type-neutral preferences: Suppose

�max = sup
 2	

(k ( + 1)� k ( )) < min
ai;a0i;aj

j� (ai; aj)� � (a0i; aj)j = �:

With one kind of mutant at a time: Suppose a (symmetric) is the only outcomes

in (x; ! (x)). The con�guration (x; ! (x)) is NSC if and only if a is a Nash equi-

librium and there is no symmetric pro�le a0 with a higher payo¤, i.e. it holds that

� (a) � � (a0) for all a0.

[With more than one kind of mutant at a time: The con�guration (x; ! (x)) is

NSC if and only if a is a Nash equilibrium and there is no pro�le with a higher

average payo¤ per player]
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Consider type-interdependent preferences: Suppose a (symmetric) is the only
outcomes in (x; ! (x)). The con�guration (x; ! (x)) is ESC if and only if a is a

Nash equilibrium and � (a) � m.

3.3 Results for Multiple Outcomes Con�gurations

When trying to establish what is implied by a state being ESC (or NSC) we need

to distinguish more carefully di¤erent levels of cognitive cost. For any con�guration

(x; ! (x)) let � (x) denote the smallest gain that some type can obtain by unilaterly

switching action;

� (x; ! (x)) = min
�;�0

���max
a
�
�
a; �!(x) (�0; �)

�
� �

�
�!(x) (�; �0) ; �!(x) (�0; �)

���� :
Note that � ((x; ! (x))) > 0 if and only if (x; ! (x)) induces some outcome that is

not a Nash equilibrium. Furhermore let

�� (x; ! (x)) = � (x; ! (x))�
min�2C(x) x�
max�2C(x)  

:

Recall �max = sup 2	 (k +1 � k ). If �max is low enough relative to �� (x; ! (x)) then

(x; ! (x)) cannot be an ESC unless it induces only Nash equilibrium outcomes:

Proposition 6 Consider either type-interdependent or type-neutral preferences:
For any (x; ! (x)), if �max < �� (x; ! (x)), and if (x; ! (x)) is an NSC (and hence if

(x; ! (x)) is ESC), then the outcome of each match is a Nash equilibrium in �tness

payo¤s, and in every match between two individuals of the same type, a symmetric

Nash equilibrium (in �tness payo¤s) is played.

Proof. Suppose we have an NSC (x; ! (x)) in which there are at least two types
�0 = (�0;  0) and �00 = (�00;  00), such that �0 does not play a best response (in terms

of �tness) against �00 (either when deceived or when deceiving or both). In this case

there is a mutant �� with cognitive type  � = max�2C(x)  + 1 such that

w (��; �00)� w (�0; �00) � � (x; ! (x)) :

Suppose a vanishingly small fraction " of the mutant �� enter the population.7 At

the new state ~x we have (for "! 0),

��� (~x)� ��0 (~x) � � (x; ! (x))x�00 � �max ( + 1�  0) .

7Alternatively a group of mutant may enter such that at the post-entry state the fraction x�00
is unaltered.
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Thus if � (x; ! (x))x�00 > �max ( + 1�  0) then the mutant �� outperforms the

incumbent �0.

In matches between two individuals of the same type a symmetric pro�le is

played. Hence in all matches between two individuals of the same type a symmetric

Nash equilibrium (in �tness payo¤) is played.

Next we show that for any given con�guration of type-interdependent prefer-

ences, if we push the marginal cost low enough then we ensure that if the con�g-

uration is ESC then in all outcomes in the con�guration, all players earn a payo¤

strictly above the minmax payo¤.

Proposition 7 Consider type-interdependent preferences. For any x, if �max <
�� (x; ! (x)), and if (x; ! (x)) is an ESC, then in each match both individuals earn

strictly more than m.

Proof. Suppose �max < �� and that (x; ! (x)) is an ESC with at least two types
�0 = (�0;  0) and �00 = (�00;  00). It follows from proposition 6 that all matches

result in Nash equilibria, and in every match between types �0 and �00, the payo¤ to

type �0 is the same (and the payo¤ to �00 is the same). Suppose that (�1; �2) and

(�2; �1) are the outcomes when �0 and �00 play. To obtain a contradiction assume

� (�1; �2) = � (�2; �1) � m so that. In this case there is a mutant �� with cognitive

type  � = max�2C(x)  + 1 such that

w (��; �00)� w (�0; �00) � � (x; ! (x)) :

Suppose a vanishingly small fraction " of the mutant �� enter the population.8 At

the new state ~x we have (for "! 0),

��� (~x)� ��0 (~x) � � (x; ! (x))x�00 � �max ( + 1�  0) .

Thus if � (x; ! (x))x�00 > �max ( + 1�  0) then the mutant �� outperforms the

incumbent �0.

Similarly, for type-neutral preferences we may show that, for any given con-

�guration, if we push the marginal cost low enough then we ensure that if the

con�guration is NSC then in all outcomes between individuals of the same type,

one of the symmetric Nash equilibria with the highest payo¤ is played.

8Alternatively a group of mutant may enter such that at the post-entry state the fraction x�00
is unaltered.
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Proposition 8 Consider type-neutral preferences. For any x, if �max < �� (x; ! (x)),
and if (x; ! (x)) is an NSC, then in every match between two individuals of the same

type, a symmetric Nash equilibrium (in �tness payo¤s) is played, and there is no

symmetric Nash equilibrium (in �tness payo¤s) that gives a higher payo¤.

Proof. Suppose �max < �� and (x; ! (x)) is an NSC. It follows from proposition 6
that the outcome of each match is a Nash equilibrium in �tness payo¤s, and in every

match between two individuals of the same type, a symmetric Nash equilibrium (in

�tness payo¤s) is played. Suppose that there is a type � 2 C (x) which plays a

symmetric Nash equilibrium � when it meets someone of the same type. To obtain a

contradiction assume that there is another symmetric Nash equilibrium ~� = (~��; ~��)

such that � (�) = � (��; ��) < � (~��; ~��) = � (~�). Consider a mutant �0 with  0 =  

and with materialistic preferences. Since it has materialistic preferences it is able

to behave exactly like type �0 against all incumbent types (because each outcome

in x is a Nash equilibrium in �tness payo¤s). Thus we have w (�0; �00) = w (�; �00) for

all �00 2 C (x). If the mutants play ~� against each other then � (~�) = w (�0; �0) >

w (�; �0) = � (�). Hence for a fraction " of mutants we have

��0 � �� = (w (�0; �)� w (�; �))x� + (w (�
0; �0)� w (�; �0))x�0

= (� (�)� � (�))x� + (� (~�)� � (�))x�0

= (� (~�)� � (�))x�0 > 0:

If the underlying game is a coordination game such that the highest payo¤ a

player can obtain is obtained in a symmetric Nash equilibrium, then such an e¢ cient

symmetric nash equilibrium is played in every match:

Proposition 9 Consider type-neutral preferences. Suppose that there is a sym-
metric Nash pro�le � such that � 2 argmax�02� � (�

0). For any x, if �max <

�� (x; ! (x)), and if (x; ! (x)) is an NSC, then in every match between two individu-

als of the same type, both players earn we = argmax�02� � (�0).

Proof. Consider two types � and �0. Let we denote the highest payo¤ that can
be obtained by a player, i.e. we = argmax�02� � (�

0). By the assumption of the

proposition this payo¤ can be obtained in a symmetric pro�le. Suppose we are in

an ESC (x; ! (x)). By de�nition ��0 (x) = �� (x). By the above lemma we know

that w (�; �) = w (�0; �0) = we.

17



To obtain a contradiction suppose w (�; �0) < we and w (�0; �) < we. If x� is

increased at the expense of x�0, and the fraction of all other types is kept constant,

then ��0 < ��. This implies that (x; ! (x)) is not an ESC. We have established that

w (�; �0) = we or w (�0; �) = we.

To obtain a contradiction suppose w (�; �0) < we and w (�0; �) = we. If x�0 is

increased at the expense of x�, and the fraction of all other types is kept constant,

then ��0 > ��. This implies that (x; ! (x)) is not an ESC. We have established that

w (�; �0) = we and w (�0; �) = we.

We can say the following for any cost level:

Proposition 10 Consider type-neutral preferences.
With one kind of mutant at a time: For any x, if (x; ! (x)) is an NSC, and

� is the (symmetric) outcome when two individuals of type � 2 C (x) meet each

other, then there is no symmetric pro�le �0 with a higher payo¤, i.e. it holds that

� (�) � � (�0) for all symmetric �0.

[With more than one kind of mutant at a time: For any x, if (x; ! (x)) is an

NSC, and � is the (symmetric) outcome when two individuals of type � 2 C (x)

meet each other, then there is no pro�le with a higher average payo¤ per player.]

Proof. Suppose only a single type of mutant at a time is allowed. Suppose x
is an NSC in which type � plays the symmetric pro�le �. If there is a symmetric

pro�le �0 =
�
�0i; �

0
j

�
such that � (�) < � (�0) then a mutant �0 can invade, which is

of the same cognitive type �, is indi¤erent between all actions, and behaves exactly

like �, except when meeting someone of its own type �0, in which case it would play

�0.

If more than one kind of mutant is allowed to enter at the same time then the

condition needs to be strenghthened to rule out asymmetric pro�les �0 =
�
�0i; �

0
j

�
such that � (�) < � (�0). To see this consider two mutants both of the same cognitve

level as �, and both indi¤erent between all actions. One of them plays �0i against

�0j, and the other plays �
0
j against �

0
i (which is not the same thing since the pro�le

is asymmetric).

4 Discussion

To be added.
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5 Appendix

5.1 Example in which not all ESC outcomes are Nash (Type-

Interdependent Preferences)

We de�ne the discriminating materialists:

De�nition 10 The set of DM-types, �DM , is the set of types such that for �i =
(�i;  i) 2 �DM :
(a) If �i 6= �j then u�i (am; aj; �j) > u�i (ai; aj; �j) for all ai and aj.

(b) If �i = �j then u�i (ai; aj; �j) = � (ai; aj) for all ai and aj.

The type which combines �-preferences with cognitive type  , is denoted � .

When there is no risk of confusion we will simply write � . We assume:

fM g 2	 [ fDM g 2	 [ fMMDa g 2	;a2A�A � �:

To prove the result we want for type-interdependent preferences we �rst need

to prove a lemma regarding ESCs involving multiple types. Consider a set of types

f(T; i)gJi=1, for arbitrarily large (but �nite) J . Let

w (T ; T 0) =

8><>:
t if  >  0

w if  =  0

s if  <  0
:

Thus t is the payo¤ that a player of type T earns when deceiving an opponent of

type T , and s is the payo¤ earned by the deceived party. When two individuals of

the same type meet they earn w. The following result can be proved:

Lemma 1 Suppose
t� w > ki+1 � ki for all i. (3)

(i) If 2w < s + t there is an ESC (x�; !� (x�)), such that x� is mixed, withPI
i=1 x

�
Ti = 1.

(ii) If 2w = s + t there is an NSC (x�; !� (x�)), such that x� is mixed, withPI
i=1 x

�
Ti = 1.

(iii) If 2w > s + t there is no NSC and hence no ESC. The replicator dynamic

converges to the boundary of the face where
PI

i=1 x
�
Ti = 1.

Proof. Available request.
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We begin constructing an ESC by limiting attention to a set of discriminating

materialist types f(DM; )gJ =1, for some �nite J . For brevity we denote the type
(DM; i) by DMi. Let

tm = max
a0;a00

�
�
a0; argmax

a
� (a; a00)

�
;

sm = �
�
argmax

a
� (a; â) ; �a

�
, for (�a; â) = argmax

a0;a00
�
�
a0; argmax

a
� (a; a00)

�
:

or, since �tness payo¤s are assumed to be generic,

tm = max
a0

� (� (� (a0)) ; � (a0)) ;

sm = � (� (â) ; � (� (â))) , for â = argmax
a0

� (� (� (a0)) ; � (a0)) :

The payo¤ tm is the highest �tness that a player can achieve against a materialist

player. In this case the deceived party earns �tness sm. Moreover, let wmm be the

payo¤ the symmetric Nash equilibrium that two individuals of type DM play in

the case they both observe each other�s preferences. Thus

w (DM ;DM 0) =

8><>:
tm if  >  0

wmm if  =  0

sm if  <  0
:

The payo¤s are

DM1 DM2 DM3 : : : DMI � 1 DMI

DM1 wmm � k1 sm � k1 sm � k1 : : : sm � k1 sm � k1

DM2 tm � k2 wmm � k2 sm � k2 : : : sm � k2 sm � k2

DM3 tm � k3 tm � k3 wmm � k3 : : : sm � k3 sm � k3
...

...
...

...
. . .

...
...

DMI � 1 tm � kI�1 tm � kI�1 tm � kI�1 : : : wmm � kI�1 sm � kI�1

DMI tm � kI tm � kI tm � kI : : : tm � kI wmm � kI

.

If the type set is � = f(DM; )gJ =1 then lemma 1 gives conditions under which
there is an ESC involving multiple types.

The following lemma provides a condition for when such an ESC obtains also

with a larger type set.

Lemma 2 If 2wmm > tm + m and m � sm then any su¢ ciently small group of

mutants not belonging to f(DM; i)gIi=1 that enter a population consisting of types
f(DM; i)gIi=1 is strictly outperformed.
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Proof. Suppose a type � = (�;  ) =2 f(DM; i)gIi=1 with  � I, enters a pop-

ulation consisting of types f(DM; i)gIi=1. Against DM 0 with  0 <  , the highest

�tness that � can earn is the same as a materialist could earn, i.e. tm. Against

DM 0 with  0 >  , the highest �tness that � can earn is the minmax payo¤ m,

since DM 0 minmaxes anyone who is not in f(DM; i)gIi=1. If m � sm then this is

weakly less than what DM earns against DM 0, when  0 >  . Against DM 0

with  0 =  , the highest �tness that � can earn is 1
2
(tm +m). If wmm > 1

2
(tm +m)

then this is strictly less than what DM earns against DM 0, when  0 =  . Thus

in any game with wmm > 1
2
(tm +m) and m � sm the type � = (�;  ) is strictly

outperformed by the DM type. Furthermore if a mutant with  > I enters then

by the de�nition of I she earns less than M1.

Using lemmas 1, and 2, we have:

Proposition 11 Consider a set of types including f(DM; )gJ =1. Suppose (3) and
2wmm > tm +m and m � sm hold.

(i) If 2wmm < sm + tm (i.e. if sm + tm > 2wmm > tm + m) there is an ESC

(x�; !� (x�)), such that x� is mixed, with
PI

i=1 x
�
DMi = 1.

(ii) If 2wmm = sm + tm (i.e. if sm + tm = 2wmm > tm + m) there is an NSC

(x�; !� (x�)), such that x� is mixed, with
PI

i=1 x
�
DMi = 1.

(iii) If 2wmm > sm + tm (i.e. if sm + tm < 2wmm > tm +m) there is no NSC

and hence no ESC. The replicator dynamic converges to the boundary of the face

where
PI

i=1 x
�
DMi = 1.

Proof. For the type set f(DM; )gJ =1 this follows from lemma 1. By lemma 2
all other types will earn strictly less than the incumbents.

Example 11 The Prisoners�Dilemma with outside option (PDO) has payo¤
matrix

C D O

C b; b s; t 0; 0

D t; s f; f 0; 0

O 0; 0 0; 0 0; 0

; (4)

with t > b > 0; f > s � 0. Consider the types f(DM; )gJ =1. In the case of mutual
observation the Nash equilibrium (D;D) is played. Thus wmm = f , tm = t, and

sm = s � m = 0. If s + t > 2f > t then sm + tm > 2wmm > tm + m. Thus

we are in case (i) of the above proposition. There is an ESC x�, such that x� is

mixed, with
PI

i=1 x
�
DMi = 1. The only outcomes that will be observed in matches

with individuals of di¤erent types are (D;C), and (C;D).
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