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their talent demand in a subgame that depends on the cost implemented

in the first stage. I find that revenue sharing has no impact on competitive

balance and that this model cannot sustain the usual competitive equilibrium

as an equilibrium. Also, I find that the supply of talent is not exhausted in
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1 Introduction

The economic theory of professional team sports has yet to fully integrate

Game Theory into its field. Although sports economics is a young and grow-

ing field of research, the current modelling approach tends to follow the

so-called ”conjectural variation” approach from the Industrial Organization

literature. In this paper, I introduce a model that can be used to describe

and analyse the professional sports labour market. I depart from the ”con-

jectural variation” standard and use the the tools of Game Theory to forge

my model.

To appreciate the relevance of Game Theory to this field, let’s consider the

equilibrium concept that is standard in the labour market; the competitive

equilibrium. Think of the labour market as a noncooperative game in normal

form. There are three players: two professional teams, A and B, and the

Market. Assume that there is a fixed supply of workers. Each team wishes

to maximize their profits. The only action that a team is allowed to take

is the following: given the cost of labour, team i submits a demand to the

market representing the quantity of workers i wishes to hire at that price.

Teams have interfering desires as more workers hired by one team relatively

decreases the power of its opponent to earn revenues. The only desire of the

market is to maximize the value of residual demand which is defined by the

demand for talent minus the supply. If the demand is greater than the supply

the Market increases the cost. If the demand is lower than the supply the

Market decreases the cost and if the demand equals the supply, the residual

demand is equal to zero and so the Market has no incentive to change the

cost. The two teams formulate their demands and the Market sets the cost of

labour independently and simultaneously. The Nash equilibrium of the game

is precisely what economists may know better as the competitive equilibrium.

At the competitive equilibrium, neither the teams nor the Market have an

incentive to change their actions since they cannot be strictly better off by

doing so.
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With the conjectural variation approach, there are two equilibrium con-

cepts in the professional sports labour market. These concepts rely on two

distinct assumptions which are known as the ”Walras” and the ”Nash” as-

sumptions. The former states that prior to formulating a demand to the

market, team A must internalize the fact that his quantity demanded will be

taken away from team B and thus affecting his revenue directly through the

increase of his input and indirectly through the decrease of its opponent’s in-

put. The latter assumption stipulates that the indirect effect is restricted to

be null. Unfortunately, neither the ”Walras” assumption nor the ”Nash” is

coherent with the game-theoretical perspective on competitive equilibrium.

The definition of a Nash equilibrium is straightforward: For every individual

among the n players, taking as given the actions of the n−1 other players, one

cannot strictly be better off by changing his action. The Nash equilibrium

concept does not allow players to assume subsequent movements in response

to their own. This is precisely why the conjectural variation approach is

inconsistent with the concept of competitive equilibrium.

In this paper, I present a game-theoretical analysis of the market for

playing talent using an alternative to the perfectly competitive model for the

labour market in professional team sports. Recall that the usual competitive

equilibrium concept relies on the assumption that no team has market power.

That is, no team can affect the cost of labour by submitting demands to the

market. However, one may argue that in a sports league, teams may have

considerate power over the cost of talent. In line with this critique, I propose

a sequential game model in which teams have full control over the unit cost

of talent.

The main finding is that the implementation of a system of revenue shar-

ing has no impact of competitive balance. The second result is that for the

usual contest revenue functions, the standard competitive equilibrium is not

sustained as an equilibrium of the model. Consequently, the supply of talent

is not fully exhausted in equilibrium.
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This paper augments the sports economics literature in two ways. First,

I introduce a richer model that offers an alternative way to think about

the formation of professional teams in a sports league. Second, the model

proposed in this paper is used to analyse a situation where the cost of labour

can be affected by the actions of the teams.

2 Review of Literature

Gerard Debreu (Debreu [2]) shows the close link that exists between the

concept of competitive equilibrium and that of Nash equilibrium of a normal-

form game. Proving the existence of a competitive equilibrium necessitates

the same tools that are required to prove the existence of a Nash equilibrium

in any finite normal form game.

The use of the term ”competitive equilibrium” in Szymanski [6] refers

to the so-called Walrasian fixed-supply conjecture model while the ”Nash”

solution to the noncooperative game of talent choice in a professional sports

league is called the ”Contest-Nash” solution. This equilibrium concept has

been adopted in the subsequent work of Szymanski and Késenne [8]. The

conjectural variation hypothesis in the field of sports economics is well-

documented in Késenne [4] and in the references therein.

My research follows the work of Madden [5] who initiated a transition to-

wards a more game-theoretically oriented approach to club formation. Mad-

den suggested a new equilibrium concept where, instead of formulating de-

mands to the market in terms of quantity of talent, teams would first decide

the total budget dedicated to acquiring playing talent. Then the market de-

cides of the cost of talent such that the whole supply of talent is distributed

to teams. Szymanski [7] stated that the work of Madden is ”the most signifi-

cant contribution to this literature since 2004.” However, the situation where

teams may have full power over both the cost of talent and the quantity of

talent has not been looked at yet. My paper focusses on this last issue.
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My model shares some resemblance with the model of Jackson and Moulin

[3], but in a different context. Jackson and Moulin use a multi-stage mecha-

nism in order to efficiently provide a public good. My model also fits in the

Industrial Organization literature that takes game theory as its workhorse.

The books of Basu [1] and Vives [9] offer an extensive description of the

relevance of Game Theory to the IO literature.

3 The Model

A sports league consists of two teams; team A and team B. They are engaged

in a contest against each other. The only input used by teams is called talent,

which is a positive real number. This input represents what professional

sports player are assumed to be endowed with. We assume that talent is

a continuous variable and that the total quantity of talent is equal to 1.

Throughout the paper, the quantity of talent associated with team A and

team B will be denoted ta and tb, respectively.

Let the revenue functions for team A and team B be Ra and Rb, respec-

tively. For i = a, b,

Ri : R2
+ −→ R+

(ta, tb) 7−→ Ri(ta, tb)

The profit functions are for i = a, b,

πi(ta, tb; c) = Ri(ta, tb)− c · ti (1)

For i = a, b and i 6= j,

Assumption 1. Ri is continuous on R2
+.

Assumption 2. Ri is concave in ti.
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In order to distribute the total quantity of talent among the two teams,

I introduce a game that runs in two stages.

Definition 1 (The Talent Allocation Game). The Talent Allocation Game

is G = 〈N, (Ci)i=A,B, G〉 where

• N = {A,B}

• Ci = R++ and ci ∈ Ci, for i = A,B

• G : CA × CB −→ {G1,G2,G3}, (ca, cb) 7→


G1 if ca = cb

G2 if ca > cb

G3 if ca < cb

• For k = 1, 2, 3, Gk = 〈N, (T ki )i=A,B, (πi)i=A,B〉 is a strategic subgame

with perfect information

• For i = A,B and k = 1, 2, 3 ti ∈ T ki and

πi : T kA × T kB −→ R

(ta, tb) 7→

Ri(ta, tb)− c · ti if ta + tb ≤ 1

Ri

(
ta

ta+tb
, tb
ta+tb

)
− c · ti

ta+tb
otherwise

• c = max{ca, cb}

• T 1
A = T 1

B = [0, 1]

• T 2
A = [0, 1], T 2

B = [0, 1− ta]

• T 3
A = [0, 1− tb], T 3

B = [0, 1]

The Talent Allocation Game is a sequential game in which the profile

(ca, cb) determines what subgame is to be played next. In the first stage,

teams simultaneously bid on the cost of talent. For i = A,B, team i submits a
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positive real number ci that represents a price at which team i is willing to pay

for a unit of talent. The implemented cost will be equal to the highest bid1.

Then the first stage ends and players move on to the subgame G(ca, cb). If in

the first stage the bids are not equal, then the team who submitted the highest

bid will be allowed to choose any quantity of talent on the interval [0, 1]. In

turn, the other team is constrained by the choice of the unconstrained player.

The quantities of talent chosen by the teams is to be paid at the implemented

cost. Then, profits are realized and the game ends.

If in the first stage ca = cb then, in the second stage, both teams are

unconstrained. They are asked to simultaneously submit a quantity of talent

they wish to hire at the implemented cost. If ta + tb ≤ 1 then teams are

allocated exactly the quantity they submitted. Otherwise, both teams receive

a quantity of talent proportional to their own bid relative to the sum of the

bids. That is, team i receives ti = ti
ta+tb

, i = a, b. Then, profits are realized

and the game ends.

Definition 2 (Pure Strategy). For i = A,B a pure strategy for team i is a

list si = (ci, ti(c|G1), ti(c|G2), ti(c|G3)), specifying the action taken in the first

stage and, ∀c ∈ R++, the action taken in the second stage conditional on the

subgame that has been reached.

3.1 Optimal choices of talent

3.1.1 Subgame G1

It is understood that in G1, c has already been decided and thus is considered

to be fixed. Teams play mutual best responses to each other. This means

that each team must maximize an objective function – a profit function, in

this case – subject to a demand that is restricted to the interval [0, 1]. For

1This assumption is based on the existence of arbitration rules in the National Hockey
League and the Major League Baseball in North America. [Add the details]
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i = A,B, define the Lagrange function

Li = πi(ta, tb; c)− λi(ti − 1)

where λi is a so-called Lagrange multiplier. The Nash equilibrium in this

subgame is a solution to the system of constrained maximization problems(
max
ti
Li subject to λi, ti ≥ 0, ti − 1 ≤ 0 and λi(ti − 1) = 0

)
i=A,B

A solution to this system is a list(ta, tb, λa, λb) satisfying the first-order

conditions
∂

∂ta
La = 0,

∂

∂tb
Lb = 0

along with

ti − 1 ≤ 0,
∂

∂λi
Liλi = 0, and λi, ti ≥ 0, i = a, b

When the constraint ti−1 ≤ 0 is not binding for team i, then the solution

is such that ti− 1 < 0 which implies that λi = 0. The Lagrange multiplier is

then interpreted as a measure of the extent to wich ti − 1 ≤ 0 is restrictive

to i. The greater λi is, the more restrictive is the constraint.

3.1.2 Subgames G2 and G3

Define for i, j = a, b and i 6= j,

φi(tj, c) = arg max
ti∈[0,1]

{Ri(ta, tb, c)− c · ti}

and

ψi(tj, c) = arg max
ti∈[0,1−tj ]

{Ri(ta, tb, c)− c · ti}
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Without loss of generality, assume that ca > cb. Taking ta and ca as

given, team B will choose ψb(ta, ca). And so, A finds it optimal to choose

φa(ψb(ta, ca), ca).

An equilibrium in this subgame is a pair (t∗a, t
∗
b) such that

t∗a = φa(ψb(ta, ca), ca) and t∗b = ψb(t
∗
a, ca)

3.1.3 Equilibrium of G

Definition 3 (Subgame Perfect Equilibrium). Let (ŝ1, ŝ2) be a list of pure

strategies where for i = a, b, ŝi =
(
ĉi, t̂i(ĉ|G1), t̂i(ĉ|G2), t̂i(ĉ|G3)

)
and ĉ =

max{ĉa, ĉb}. (ŝ1, ŝ2) is a (subgame perfect) equilibrium of G if for k = 1, 2, 3,

the pair (t̂a(c|Gk), t̂b(c|Gk)) is Nash equilibrium in the subgame Gk and if there

is no c 6= ĉa such that

πa
(
t̂a(ĉ|G(ĉa, ĉb)), t̂b(ĉ|G(ĉa, ĉb)); ĉ

)
< πa

(
t̂a(c|G(c, ĉb)), t̂b(c|G(c, ĉb)); c

)
and there is no c 6= ĉb such that

πb
(
t̂a(ĉ|G(ĉa, ĉb)), t̂b(ĉ|G(ĉa, ĉb)); ĉ

)
< πb

(
t̂a(c|G(ĉ, c)), t̂b(c|G(ĉ, c)); c

)
4 A General Case

Let the revenue functions be

Ra(ta, tb) = z
ta

ta + tb
and Rb(ta, tb) =

tb
ta + tb

with z ∈ [1, 2).
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4.1 Optimal choices of talent

4.1.1 Subgame G1

Proposition 1. In G1, the list (ta(c), tb(c)) such that

ta(c) =

{
z2

c(z+1)2
if c ≥ z

z+1

1 otherwise

and

tb(c) =

{
z

c(z+1)2
if c ≥ z

z+1

1 otherwise

is a Nash equilibrium of G1.

Proof. See appendix

The corresponding profits are then

πa =

{
z3

(z+1)2
if c ≥ z

z+1
z
2
(1− c) otherwise

and

πb =

{
1

(z+1)2
if c ≥ z

z+1
1
2
(1− c) otherwise

4.2 Subgame G2

Proposition 2. In G2, , the list (ta(c), tb(c)) such that

ta(c) =

{
1 if c ∈

(
0, z − 1

4
z2
]

z2

4c
otherwise

and

tb(c) =

{
0 if c ∈

(
0, z − 1

4
z2
]

z(2−z)
4c

otherwise

is a Nash equilibrium of G2.
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Proof. See Appendix

It leads team A to a profit of

πa =

{
z − c if c ∈

(
0, z − 1

4
z2
]

1
4
z2 otherwise

and B to a profit of

πb =

{
0 if c ∈

(
0, z − 1

4
z2
]

(z−2)2
4

otherwise

4.3 Subgame G3

Proposition 3. In G3, , the list (ta(c), tb(c)) such that

ta(c) =

{
0 if c ∈

(
0, 4z−1

4z

]
2z−1
4cz

otherwise

and

tb(c) =

{
1 if c ∈

(
0, 4z−1

4z

]
1
4cz

otherwise

is a Nash equilibrium of G3.

Proof. See Appendix

It leads team A to a profit of

πa =

{
0 if c ∈

(
0, 4z−1

4z

]
(2z−1)2

4z
otherwise

and B to a profit of

πb =

{
1− c if c ∈

(
0, 4z−1

4z

]
1
4z

otherwise
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4.4 Equilibrium

Proposition 4. Let

t̂a(c|G1) =

{
z2

c(z+1)2
if c ≥ z

z+1

1 otherwise

t̂a(c|G2) =

{
1 if c ∈

(
0, z − 1

4
z2
]

z2

4c
otherwise

and

t̂a(c|G3) =

{
0 if c ∈

(
0, 4z−1

4z

]
2z−1
4cz

otherwise

Let

t̂b(c|G1) =

{
z

c(z+1)2
if c ≥ z

z+1

1 otherwise

t̂b(c|G2) =

{
0 if c ∈

(
0, z − 1

4
z2
]

z(2−z)
4c

otherwise

and

t̂b(c|G3) =

{
1 if c ∈

(
0, 4z−1

4z

]
1
4cz

otherwise

Let ĉa ≥ 4z−1
4z

and ĉb > ĉa. The list (ŝ1, ŝ2) is a subgame perfect equilib-

rium of G.

Proof. See Appendix

5 Revenue Sharing

The rule for profit sharing is as follows: it is decided by the league that a

team can only keep a fraction α of the revenue generated. The rest, 1 − α,

goes to the other team. We thus have the profit functions: for i, j = a, b,
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i 6= j

πa(ta, tb; c, α) = z
αta + (1− α)tb

ta + tb
− c · ta

πb(ta, tb; c, α) =
αtb + (1− α)ta

ta + tb
− c · tb

with α ∈ (0.5, 1).

5.1 Optimal Choices

5.1.1 Subgame G1

Proposition 5. In G1, the optimal actions are

t∗a(c) =

{
z2(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise

and

t∗b(c) =

{
z(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise

Proof. See Appendix

5.1.2 Subgame G2

Proposition 6. In G2,

t∗a(c) = φa(ψb(ta, c), c) =

 1 if c ∈
(

0, 1
4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
1
4
z2(2α−1)2
c(α+z α−z) otherwise

and

t∗b(c) = ψb(t
∗
a(c), c) =

 0 if c ∈
(

0, 1
4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
1
4
z (2α−1)(−z+2α)

c(α+z α−z) otherwise
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Proof. See Appendix

It leads team A to a profit of

πa =

 αz − c if c ∈
(

0, 1
4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
−1

4

z (4α2+3 z−4α−4 z α)
α+z α−z otherwise

and B to a profit of

πb =

{
0 if c ∈

(
0, 1

4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
−1

4
−6 z α−4α2+8 z α2+2 z−2 z2α+z2

α+z α−z otherwise

5.2 Subgame G3

Proposition 7. In G3,

t∗b(c) = φb(ψa(tb, c), c) =

{
1 if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
2α−1
4cz

otherwise

and

t∗a(c) = ψa(t
∗
b(c), c) =

{
0 if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
(2z−1)(2α−1)

4cz
otherwise

It leads team A to a profit of

πa =

{
0 if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
1
4
2α+4α z2−8α z+4 z−1

z
otherwise

and B to a profit of

πb =

{
α− c if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
−1

4
−2α+4α z+1−4 z

z
otherwise
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5.3 Equilibrium of G

Define

c2 =
1

4

z (2α− 1) (4α + 2 z α− 3 z)

α + z α− z
and c3 =

1

4

(4 z − 1) (2α− 1)

z

We have that for z ∈
[
1, α

1−α

)
and α ∈ (0.5, 1), if α < z(3 z−1)

2 z2+2 z−1 then

c2 < c3.

Proposition 8.

t̂a(c;α|G1) =

{
z2(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise

t̂a(c;α|G2) =

 1 if c ∈
(

0, 1
4
z(2α−1)(4α+2zα−3z)

α+zα−z

]
z2(2α−1)2
4c(α+zα−z) otherwise

and

t̂a(c;α|G3) =

{
0 if c ∈

(
0, (4z−1)(2α−1)

4z

]
(2z−1)(2α−1)

4cz
otherwise

Let

t̂b(c;α|G1) =

{
z(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise

t̂b(c;α|G2) =

 0 if c ∈
(

0, 1
4
z(2α−1)(4α+2zα−3z)

α+zα−z

]
z(2α−1)(−z+2α)

4c(α+zα−z) otherwise

and

t̂b(c;α|G3) =

{
1 if c ∈

(
0, (4z−1)(2α−1)

4z

]
2α−1
4cz

otherwise

Let ĉa ≥ c3 and ĉb > ĉa. The list (ŝ1, ŝ2) is a subgame perfect equilibrium

of G.

Proof. See Appendix
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6 Discussion

The competitive balance is a relative measure of the inequality in talent dis-

persion across teams. We say that competitive balance reaches its maximal

value when all teams own the same quantity of talent. Competitive balance

increases when the dispersion of talent changes from a relatively unequal

state to a relatively less unequal state. Inversely, competitive balance de-

creases when the dispersion of talent changes from a relatively equal state to

a relatively less equal state.

From proposition 8, we have that in equilibrium, team A owns a quantity

of talent equal to (2z−1)(2α−1)
4cz

while team B owns 2α−1
4cz

. We see that α is

positively correlated with both quantities of talent in equilibrium.

The competitive balance is

ta
tb

= 2z − 1 (2)

We can see that competitive balance is independent of α. This result con-

trasts with some recent results such as Szymanski and Késenne [8], where

revenue sharing was shown to have a negative impact on competitive balance.

I explain the result in this paper by the fact that the Talent Allocation Game

allows team to add an extra layer of strategy in the choice of the cost of tal-

ent. It permits weaker teams, such as team B in this case, to internalize the

parameter α in such a way that they are not disadvantaged in equilibrium.

We can also see from (2) that if z is greater than 1, team A owns more

talent in equilibrium, which means a negative impact of z on competitive

balance. This result is easily explained since a richer team is expected to

have an advantage when it comes to acquiring playing talent.

Revenue sharing has a mitigated impact on the profits of team A and a

positive impact on the profits of team B. We have that

∂

∂α
πa =

1 + 2 z2 − 4 z

2z
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and
∂

∂α
πb =

1− 2 z

2z

For z > 1.71, ∂
∂α
πa > 0. However, the possible positive impact of revenue

sharing on the profits of A should not be over emphasized as it happens only

for large values of z. Although revenue sharing is successful at increasing

the profits of the poor team, it comes at a cost of reducing the quantity

of playing talents in both teams. This last concern is absent from other

models of league formation such as Szymanski and Késenne [8] or Madden

[5]. The reason being that the equilibrium concept of these two models is

the competitive equilibrium. At this competitive equilibrium, the cost is

computed by forcing teams to jointly hire the total supply of talent. In my

model, the supply of talent is not completely exhausted. Consequently, the

total quantity of talent in the league varies with α. Moreover, the usual

competitive equilibrium which is defined by (tcea , t
ce
b , c

ce) such that

tcea = arg max
ta

πa(ta, t
ce
b ; cce)

tceb = arg max
tb

πb(t
ce
a , tb; c

ce)

tcea + tceb = 1

tcea , t
ce
b ≥ 0, cce > 0

cannot be sustained as an equilibrium of the Talent Allocation Game. For

simplicity of exposition, assume that α = 1. The result holds also for α < 1.

For all z ∈ [1, 2) we have that if A deviates by increasing c to z
z+1

+ 1
4
, A will

choose ta = 1 which leads to a profit of z −
(

z
z+1

+ 1
4

)
. We have that

z −
(

z

z + 1
+

1

4

)
− z3

(z + 1)2
=

(3 z + 1) (z − 1)

4 (z + 1)2

which is positive on z ∈ [1, 2).
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7 Conclusion

In this paper, a formal game-theoretical perspective on professional league

formation was considered. It was argued that revenue sharing has no impact

on competitive balance and it also leads to a decrease in the quantity of

talent hired in equilibrium. It has been shown that the usual competitive

equilibrium is subject to beneficial deviations if teams have the power to

affect the unit-cost of talent. This brings to light the possible negative effect

that revenue sharing may have on the labour market conditions. Future work

should concentrate on determining whether this last issue can be confirmed

by the data.

References

[1] Kaushik Basu. Lectures in Industrial Organization Theory. Blackwell,

1993.

[2] Gerard Debreu. Existence of competitive equilibrium. In K. J. Arrow

and M.D. Intriligator, editors, Handbook of Mathematical Economics,

volume 2 of Handbook of Mathematical Economics, chapter 15, pages

697–743. Elsevier, January 1993.
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Appendix

Proof of Proposition 1. Assume for the moment that c is high enough for

an equilibrium to locate in ∆ = {(ta, tb) ∈ [0, 1]2 | ta + tb ≤ 1}. Later, I will

compute a lower bound on such a c. Since teams are playing best-responses

to each other, in an interior solution, it must be the case that

∂

∂ta
Ra(ta, tb; c) =

∂

∂tb
Rb(ta, tb; c) = c (3)

The solution to (2) is

ta =
z2

c(z + 1)2
⇒ tb =

z

c(z + 1)2
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The lower bound on c is given by

z2

c(z + 1)2
+

z

c(z + 1)2
≤ 1 ⇒ c ≥ z

z + 1

When c is below the lower bound, teams are constrained by the require-

ment that ta + tb ≤ 1. The Nash equilibrium in a subgame where c < z
z+1

is

characterized by the solution to the system

max
ta

{
ta

ta + tb
(z − c)− λa(ta − 1)

}
max
tb

{
tb

ta + tb
(1− c)− λb(tb − 1)

}
λi(ti − 1) = 0, i = a, b

λi ≥ 0, i = a, b

The solution to this system of constrained maximization problems is

(ta, tb) = (1, 1), λa =
1

4
(z − c) and λb =

1

4
(1− c)

This solution is well-defined since z ≥ 1 implies that c < 1
2
. The corre-

sponding profits are then

πa =
1

2
(z − c) and πb =

1

2
(1− c)

Thus, in G1, the optimal actions are

t∗a(c) =

{
z2

c(z+1)2
if c ≥ z

z+1

1 otherwise

and

t∗b(c) =

{
z

c(z+1)2
if c ≥ z

z+1

1 otherwise
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Proof of Proposition 2. In an interior solution, we have that

∂

∂tb
πb(ta, tb; c) =

ta
(ta + tb)2

− c = 0

The positive root of the quadratic equation is

t∗b =
−cta +

√
cta

c

However, tb must be contained in [0, 1− ta]. Consequently,

ψb(ta, c) =


0 if c ≥ 1

ta

1− ta if c ≤ ta

t∗b otherwise

and

φa(ψb(ta, c), c) = arg max
ta∈[0,1]


z − c · ta if ta ≥ 1

c

ta(z − c) if ta ≥ c
zta
ta+t∗b

− c · ta otherwise

For c ≥ 1, choosing ta ≥ 1
c

gives a maximal profit of z − 1. Otherwise,

t∗a = z2

4c
and t∗b = z(2−z)

4c
which gives team A a profit of 1

4
z2 wich is strictly

greater than z − 1 on z ∈ [1, 2). If c ≤ 1, choosing ta ≥ c gives a maximal

profit of z − c. Team A will be better off choosing ta = 1 when

z − c ≥ 1

4
z2

which is equivalent to

c ∈
(

0, z − 1

4
z2
]

Thus in G2,
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t∗a(c) = φa(ψb(ta, c), c) =

{
1 if c ∈

(
0, z − 1

4
z2
]

z2

4c
otherwise

and

t∗b(c) = ψb(t
∗
a(c), c) =

{
0 if c ∈

(
0, z − 1

4
z2
]

z(2−z)
4c

otherwise

Proof of Proposition 3. In an interior solution, We have that

∂

∂ta
πa(ta, tb; c) =

ztb
(ta + tb)2

− c = 0

The positive root of the quadratic equation is

t∗a =
−ctb +

√
cztb

c

ta must belong to [0, 1− tb], hence

ψa(tb, c) =


0 if c ≥ z

tb

1− tb if c ≤ ztb

t∗a otherwise

In the second stage, team B chooses

φb(ta, c) = arg max
tb∈[0,1]


1− c · tb if tb ≥ z

c

tb(1− c) if tb ≥ c
z

tb
t∗a+tb

− c · tb otherwise

For c ≥ z, choosing tb ≥ z
c

gives team B a maximal profit of 1 − z ≤ 0

since it is assumed that z ≥ 1. Otherwise, B will choose t∗b = 1
4cz

which

implies that t∗a = 2z−1
4cz

with a profit for B of 1
4z

. If 1 ≤ c ≤ z, choosing tb ≥ c
z

gives rise to a profit of at most 0. If c < 1 ≤ z, choosing tb ≥ c
z

gives a
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maximal profit of 1− c. The interval in which 1− c ≥ 1
4z

is
(
0, 4z−1

4z

]
.

Thus, in G3,

t∗b(c) = φb(ψa(tb, c), c) =

{
1 if c ∈

(
0, 4z−1

4z

]
1
4cz

otherwise

and

t∗a(c) = ψa(t
∗
b(c), c) =

{
0 if c ∈

(
0, 4z−1

4z

]
2z−1
4cz

otherwise

Proof of Proposition 4. From proposition 1,2 and 3 we know that for

k = 1, 2, 3, (t̂a(c|Gk), t̂b(c|Gk)) is a Nash equilibrium of Gk. We have that

G(ĉa, ĉb) = G3. The profits corresponding to (t̂a(ĉ|G3), t̂b(ĉ|G3), ĉ) are

(2z − 1)2

4z
and

1

4z

for team A and team B, respectively. Note that 4z−1
4z
≤ z − 1

4
z2 and 4z−1

4z
≥

z
z+1

. If A deviates by setting c > ĉb, G(c, ĉb) = G2 and A’s maximal profit is

(2z − 1)2

4z

If A deviates by setting c = ĉb, G(c, ĉb) = G1 and A’s maximal profit is

z3

(z + 1)2
≤ (2z − 1)2

4z

Team B has no incentive to deviate by setting c ∈ (ĉa, ĉb) because the induced

subgame would still be G3 and its maximal profit does not depend on c. If

B deviates by setting c = ĉa then G(ĉa, c) = G1 and B’s maximal profit is

1

(z + 1)2
≤ 1

4z
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. If B deviates by setting c < ĉa then G(ĉa, c) = G2 and B’s maximal profit is

(z − 2)2

4
≤ 1

4z

. Thus there is no beneficial deviation from (ŝ1, ŝ2), which satisfies the equi-

librium requirement.

Proof of Proposition 5. Assume for the moment that c is such that the

solution to both first-order conditions belongs to ∆. Thus we have that the

solution to the system

∂

∂ta
πa(ta, tb; c, α) =

∂

∂tb
πb(ta, tb; c, α) = 0

is

t∗a =
z2(2α− 1)

c(z + 1)2
and t∗b =

z(2α− 1)

c(z + 1)2

In order for t∗a + t∗b ≤ 1, it must be the case that c ≥ z(2α−1)
z+1

. Otherwise,

both teams are constrained and the solution to the system

max
ta
{πa(ta, tb; c, α)− λa(ta − 1)}

max
tb
{πb(ta, tb; c, α)− λb(tb − 1)}

λi(ti − 1) = 0, i = a, b

λi ≥ 0, i = a, b

is

(ta, tb) = (1, 1), λa =
1

2
αz − 1

4
z − c and λb =

1

2
α− 1

4
− c

Since c < z(2α−1)
z+1

and α > 1
2

we can verify that λa, λb > 0.

Thus, in G1, the optimal actions are

t∗a(c) =

{
z2(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise
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and

t∗b(c) =

{
z(2α−1)
c(z+1)2

if c ≥ z(2α−1)
z+1

1 otherwise

Proof of Proposition 5. In an interior solution,

t∗b =
−cta +

√
cta (α− z (1− α))

c

t∗b is well-defined if z < α
1−α . Constraining tb ∈ [0, 1− ta], we have that

ψb(ta, c) =


0 if c ≥ α−z(1−α)

ta

1− ta if c ≤ ta(α− z(1− α))

t∗b otherwise

and

φa(ψb(ta, c), c) = arg max
ta∈[0,1]


zα− c · ta if ta ≥ α−z(1−α)

c

ta(α(z + 1)− (c+ 1)) + (1− α) if ta ≥ c
α−z(1−α)

z
αta+(1−α)t∗b

ta+t∗b
− c · ta otherwise

For c ≥ α−z(1−α)
ta

, by choosing ta ≥ α−z(1−α)
c

, A will get a maximal profit of

z − α ≥ 0. When c < α − z(1− α), it implies that α(z + 1) ≥ (c + 1), thus

choosing ta ≥ c
2α−1 gives A a maximal profit of αz − c > 0. Otherwise, A

chooses t∗a = 1
4
z2(2α−1)2
c(α+z α−z) which implies that t∗b = 1

4
z (2α−1)(−z+2α)

c(α+z α−z) . The pair

(t∗a, t
∗
b) induces a profit for A of

πa = −1

4

z (4α2 + 3 z − 4α− 4 z α)

α + z α− z
> 0

Note that

πa − (z − α) =
1

4

(z − 2α)2

α + z α− z
> 0

which implies that when c ≥ α − z(1 − α), A would prefer choosing ta = t∗a
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over choosing ta = α−z(1−α)
c

. When c < α− z(1− α) A will choose ta = 1 if

αz − c− πa ≥ 0

⇔ c ≤ 1

4

z (2α− 1) (4α + 2 z α− 3 z)

α + z α− z

and will choose t∗a otherwise.

Thus, in G2,

t∗a(c) = φa(ψb(ta, c), c) =

 1 if c ∈
(

0, 1
4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
1
4
z2(2α−1)2
c(α+z α−z) otherwise

and

t∗b(c) = ψb(t
∗
a(c), c) =

 0 if c ∈
(

0, 1
4
z(2α−1)(4α+2 z α−3 z)

α+z α−z

]
1
4
z (2α−1)(−z+2α)

c(α+z α−z) otherwise

Proof of Proposition 6. In an interior solution,

t∗a =
−ctb +

√
cztb(2α− 1)

c

ta must belong to [0, 1− tb], hence

ψa(tb, c) =


0 if c ≥ z(2α−1)

tb

1− tb if c ≤ ztb(2α− 1)

t∗a otherwise
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and

φb(ta, c) = arg max
tb∈[0,1]


α− c · tb if tb ≥ z(2α−1)

c

tb(2α− 1− c) + 1− α if tb ≥ c
z(2α−1)

αtb+(1−α)t∗a
t∗a+tb

− c · tb otherwise

For c > z(2α − 1), choosing tb ≥ z(2α−1)
c

gives team B a maximal profit

of α− z(2α− 1) < 0. Otherwise, B will choose t∗b = 2α−1
4cz

which implies that

t∗a = (2z−1)(2α−1)
4cz

with a profit for B of

πb = −1

4

−2α + 4α z + 1− 4 z

z

If c ≤ z(2α− 1), choosing tb ≥ c
z(2α−1) gives a maximal profit of α− c. Team

B will choose tb = 1 if

α− c− πb ≥ 0

⇔ c ≤ 1

4

(4 z − 1) (2α− 1)

z

and will choose tb = t∗b otherwise.

Thus, in G3,

t∗b(c) = φb(ψa(tb, c), c) =

{
1 if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
2α−1
4cz

otherwise

and

t∗a(c) = ψa(t
∗
b(c), c) =

{
0 if c ∈

(
0, 1

4
(4 z−1)(2α−1)

z

]
(2z−1)(2α−1)

4cz
otherwise

Proof of Proposition 8. From proposition ?,? and ? we know that for

k = 1, 2, 3, (t̂a(c;α|Gk), t̂b(c;α|Gk)) is a Nash equilibrium of Gk. We have that
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G(ĉa, ĉb) = G3. The profits corresponding to (t̂a(ĉ;α|G3), t̂b(ĉ;α|G3), ĉ) are

2α + 4αz2 − 8αz + 4z − 1

4z
and − −2α + 4αz + 1− 4z

4z

for team A and team B, respectively. Note that in G2, if c = c3 and that

c3 < c2 then A’s maxmimal profit is precisely

2α + 4αz2 − 8αz + 4z − 1

4z

and so if A deviates to c > ĉb, G(c, ĉb) = G2 and A’s profits will decrease. If

A deviates by setting c = ĉb, G(c, ĉb) = G1 and A’s maximal profit is

−(−z3 − 5 z2 − 4 z − 1 + 5α z2 + 4α z + α) z

(2 z + 1) (z + 1)2
≤ 2α + 4αz2 − 8αz + 4z − 1

4z

Team B has no incentive to deviate by setting c ∈ (ĉa, ĉb) because the induced

subgame would still be G3 and its maximal profit does not depend on c. If

B deviates by setting c = ĉa then G(ĉa, c) = G1 and B’s maximal profit is

−2α z2 − α z − α− z2

(2 z + 1) (z + 1)
≤ −−2α + 4αz + 1− 4z

4z

. If B deviates by setting c < ĉa then G(ĉa, c) = G2 and B’s maximal profit is

−1

4

−6zα− 4α2 + 8zα2 + 2z − 2z2α− z2

α + zα− z
≤ −−2α + 4αz + 1− 4z

4z

. Thus there is no beneficial deviation from (ŝ1, ŝ2), which satisfies the equi-

librium requirement.
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