
Stability of Networks under Limited

Farsightedness

P. Jean-Jacques Herings∗ Ana Mauleon†

Vincent Vannetelbosch‡

April 8, 2014

Abstract

We provide a tractable concept that can be used to study the influence of

the degree of farsightedness on network stability. A set of networks GK is a

level-K farsightedly stable set if three conditions are satisfied. First, external

deviations should be deterred. Second, from any network outside of GK there

is a a sequence of farsighted improving paths of length smaller than or equal

to K leading to some network in GK . Third, there is no proper subset of GK

satisfying the first two conditions.

We show that a level-K farsightedly stable set always exists and we provide

a suffi cient condition for the uniqueness of a level-K farsightedly stable set.

There is a unique level-1 farsightedly stable set G1 consisting of all networks

that belong to closed cycles. Level-K farsighted stability leads to a refinement

of G1 for generic allocation rules. We then provide easy to verify conditions

for a set to be level-K farsightedly stable and we consider the relationship

between limited farsighted stability and effi ciency of networks.
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1 Introduction

Networks of relationships help determine the careers that people choose, the jobs

they obtain, the products they buy, and how they vote. The many aspects of our

lives that are governed by social networks make it critical to understand how they

impact behavior and which network structures are likely to emerge in a society. A

simple way to analyze the networks that one might expect to emerge in the long

run is to examine the requirement that individuals do not benefit from altering

the structure of the network. A prominent example of such a condition is the

pairwise stability notion defined by Jackson and Wolinsky (1996).1 A network is

pairwise stable if no individual benefits from deleting a link and no two individuals

benefit from adding a link between them, with at least one benefiting strictly. While

pairwise stability is natural, easy to work with and a very important tool in network

analysis,2 it assumes that individuals are myopic, and not farsighted, in the sense

that they do not forecast how others might react to their actions. Indeed, the adding

or deleting of one link might lead to subsequent addition or deletion of another link.

For instance, individuals might not add a link that appears valuable to them given

the current network, as this might induce the formation of other links, ultimately

leading to lower payoffs for them.

Herings, Mauleon and Vannetelbosch (2009) introduce the notion of pairwise

farsighted stability. A set of networks is pairwise farsightedly stable (i) if all possible

farsighted pairwise deviations from any network within the set to a network outside

the set are deterred by the threat of ending worse off or equally well off, (ii) if there

exists a farsighted improving path from any network outside the set leading to some

network in the set, and (iii) if there is no proper subset satisfying conditions (i) and

(ii).3 Pairwise farsighted stability makes sense if players have very good information

1An alternative way to model network stability is to explicitly model a game by which links form

and then to solve that game using the concept of Nash equilibrium or one of its refinements. See

Aumann and Myerson (1988), Myerson (1991) and Dutta and Mutuswami (1997) among others.
2Krishnan and Sciubba (2009) find that pairwise stability leads to testable predictions for the

network architectures generated by labour-sharing groups in village economies of rural Ethiopia.

In addition, their empirical results confirm strongly that the architecture of a social network and

not just number of links, has an important role to play in understanding network formation, and

the role of social networks on economic performance.
3Other approaches to farsightedness in network formation are suggested by the work of Chwe

(1994), Xue (1998), Herings, Mauleon and Vannetelbosch (2004), Mauleon and Vannetelbosch
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about how others might react to changes in the network. But in general, especially

when the set of players becomes large, it requires too much foresight on behalf of

the players.4

Our aim is to provide a tractable concept that can be used to study the influence

of the degree of farsightedness on network stability. We define the notion of a level-

K farsightedly stable set. A set of networks GK is a level-K farsightedly stable

set if three conditions are satisfied. First, external deviations should be deterred.

That is, adding a link ij to a network g ∈ GK that leads to a network outside of

GK , is deterred by the threat of ending in g′. Here g′ is such that either there is a

farsighted improving path of length smaller than or equal to K − 2 from g + ij to

g′ and g′ belongs to GK or there is a farsighted improving path of length equal to

K−1 from g+ ij to g′ and there is no farsighted improving path from g+ ij to g′ of

smaller length. A similar requirement is imposed for the case where a link is severed.

Second, external stability is required or, in other words, the networks within the set

should be robust to perturbations. That is, from any network outside of GK there

is a a sequence of farsighted improving paths of length smaller than or equal to K

leading to some network in GK . Third, a minimality condition is required. That is,

there is no proper subset of GK satisfying the first two conditions.

We show that a level-K farsightedly stable set always exists and we provide

a suffi cient condition for the uniqueness of a level-K farsightedly stable set. We

find that there is a unique level-1 farsightedly stable set G1. It is given by the

set consisting of all networks that belong to closed cycles (pairwise stable networks

included). Level-K farsighted stability leads to a refinement of myopic stability for

generic allocation rules: for any K ≥ 1, the myopically stable set G1 contains a

level-K farsightedly stable set GK . Thus, an analysis based on myopic behavior

may not rule out some networks that are not stable when players are suffi ciently

farsighted. At the same time, a myopic analysis is compatible with farsightedness,

and for any value of K there is always a level-K farsightedly stable set that consists

exclusively of networks that belong to closed cycles. But, some networks that are

(2004), Dutta, Ghosal and Ray (2005), Page, Wooders and Kamat (2005), Page and Wooders

(2009), Mauleon, Vannetelbosch and Vergote (2011), and Ray and Vohra (2013).
4Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2013) design a simple network formation

experiment to test between pairwise stability and farsighted stability, but find evidence against both

of them. Their experimental evidence suggests that subjects are consistent with an intermediate

rule of behavior, which can be interpreted as a form of limited farsightedness.
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not part of any closed cycle may become stable under limited farsightedness.

We then provide easy to verify conditions for a set to be level-K farsightedly

stable and we consider the relationship between limited farsighted stability and ef-

ficiency of networks. We show that if there is a network that Pareto dominates

all other networks, then that network is the unique prediction of level-K farsighted

stability if K is greater than the maximum number of links in a network. In addi-

tion, we introduce a property on the allocation rule under which level-K farsighted

stability singles out the complete network. Finally, we illustrate the tractability of

our new concept by analyzing the criminal network model of Calvo-Armengol and

Zenou (2004). We find that in criminal networks with n players, the set consisting

of the complete network (where all criminals are linked to each other) is the unique

level-(n− 1) farsightedly stable set.

Recent experimental and empirical studies suggest that players’s initial choices in

games often deviate systematically from equilibrium, that structural nonequilibrium

level-k (Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes, Crawford and Broseta,

2001) or cognitive hierarchy (Camerer, Ho and Chong, 2004) models often out-

predict equilibrium,5 and that players only look a finite number of steps ahead

when making choices.6 We assume that players are limited farsighted, but we do not

require that players choose best responses to some beliefs on opponents’strategies.

In our concept, players cannot even think about a strategy since they are not able

to reason about what takes place after a certain horizon.

Recently, Morbitzer, Buskens and Rosenkranz (2011) develop a model of network

formation where players look a finite number of steps ahead when anticipating the

reaction of other players to their change. The decision to initiate a change to the

network is based on some ad hoc rules that weight improving paths that might

follow their change, but which are not necessarily improving paths for the players

5Level-k theory and the closely-related cognitive hierarchy theory distinguish types of players

according to the level at which they reason. Assumptions about level-0 behavior provide an anchor

for beliefs and strategies at higher levels. At each higher level, players are assumed to know the

probability distributions of strategies at lower levels. Level-1 players choose best responses to

level-0 choices, while level-2 players choose best responses to level-1 choices (level-k theory) or to

some probability distribution over level-0 and level-1 strategies (cognitive hierarchy theory). See

Crawford, Costa-Gomes and Iriberri (2013) for a review of the literature.
6Players who are motivated by substantial incentives often violate backward induction even in

simple sequential games such as the centipede game. See McKelvey and Palfrey (1992) among

others.
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who made the initial change. Using computer simulations they show that, in the

co-author model of Jackson and Wolinsky (1996), limitedly farsighted players can

overcome the tension between stability and effi ciency only if the number of players is

small. However, their concept is a refinement of the set of pairwise stable networks,

and so fails to exist even more often.

The paper is organized as follows. In Section 2 we introduce some notations and

basic properties and definitions for networks. In Section 3 we define the notions of

improving paths and level-K pairwise stability and we show that level-K pairwise

stability often fails to exist. In Section 4 we define the notion of a level-K farsightedly

stable set and we characterize it. In Section 5 we study the relationship to pairwise

stability. In Section 6 we provide easy to verify suffi cient conditions for a set to be

level-K farsightedly stable. We look at the relationship between limited farsighted

stability and effi ciency of networks in Section 7. In Section 8 we analyze Calvo-

Armengol and Zenou (2004) model of criminal networks when players have limited

farsightedness. Finally, in Section 10 we conclude.

2 Networks

Let N = {1, . . . , n} be the finite set of players who are connected in some net-
work relationship. The network relationships are reciprocal and the network is thus

modeled as a non-directed graph. Individuals are the nodes in the graph and links

indicate bilateral relationships between individuals. Thus, a network g is simply

a list of which pairs of individuals are linked to each other. We write ij ∈ g to

indicate that i and j are linked under the network g. The complete network on the

set of players S ⊆ N is denoted gS and is equal to the set of all subsets of S of size

2.7 It follows in particular that the empty network is denoted by g∅. The set of all

possible networks or graphs on N is denoted by G and consists of all subsets of gN .
The cardinality of G is denoted by n′ = 2n(n−1)/2.

The network obtained by adding link ij to an existing network g is denoted by

g+ ij and the network that results from deleting link ij from an existing network g

by g − ij. Let

g|S = {ij ∈ g | i, j ∈ S}.
7Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion.

Finally, # will refer to the notion of cardinality.
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Thus, g|S is the network found by deleting all links except those that are between

players in S. For any network g, let N(g) = {i ∈ N | ∃j ∈ N such that ij ∈ g} be
the set of players who have at least one link in the network g.

A path in a network g ∈ G between players i and j of length K ≥ 1 is a

finite sequence of players i0, . . . , iK with i0 = i and iK = j such that for any

k ∈ {0, . . . , K − 1}, ikik+1 ∈ g, and such that each player in the sequence i0, . . . , iK
is distinct. A network g is connected if for each pair of players i and j such that

i 6= j there exists a path between i and j in g. A non-empty network h ⊆ g is a

component of g if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists a path in h
connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. The
set of components of g is denoted by C(g). Using the components of a network, we

can partition the players into maximal groups within which players are connected.

Let P (g) denote the partition of N induced by the network g. That is, S ∈ P (g) if

and only if either there exists h ∈ C(g) such that S = N(h) or there exists i /∈ N(g)

such that S = {i}.
An allocation rule is a function Y : G → RN which gives for every player i and

network g a payoff Yi(g).

3 Improving Paths

A farsighted improving path of length K ≥ 0 from a network g to a network g′ 6= g

is a finite sequence of networks g0, . . . , gK with g0 = g and gK = g′ such that for any

k ∈ {0, . . . , K − 1} either (i) gk+1 = gk − ij for some ij such that Yi(gK) > Yi(gk)

or Yj(gK) > Yj(gk), or (ii) gk+1 = gk + ij for some ij such that Yi(gK) > Yi(gk) and

Yj(gK) ≥ Yj(gk). Since the set {0, . . . , K − 1} is empty for K = 0, this definition

implies that there is a farsighted improving path of length 0 from each network g to

itself, but clearly there are no farsighted improving paths of length 0 from g to any

other network. If there exists a farsighted improving path of length K from g to g′,

then we write g →K g′.

For a given network g and some K ′ ≥ 0, let fK′(g) be the set of networks that

can be reached from g by a farsighted improving path of length K ≤ K ′. That is,

fK′(g) = {g′ ∈ G | ∃K ≤ K ′ such that g →K g′}.

This defines fK′ as a correspondence on the set G. The set of networks that can be
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reached from g by some farsighted improving path is denoted by f∞(g), so

f∞(g) = {g′ ∈ G | ∃K ∈ N such that g →K g′}.

The following lemma follows almost immediately and is presented without proof.

Lemma 1. For K ≥ 0, for every g ∈ G, it holds that fK(g) ⊆ fK+1(g). For

K ≥ n′ − 1, for every g ∈ G, it holds that fK(g) = fK+1(g) = f∞(g).

For K ≥ 0, we define the relation f̃K on G as f̃K(g) = fK(g) \ {g}, g ∈ G, so
the network g is dropped from fK(g) and the set f̃K(g) corresponds to the networks

different from g that can be reached from g by a farsighted improving path of length

at least one and at most K. Similarly, we define f̃∞ by f̃∞(g) = f∞(g) \ {g} for
every g ∈ G.
An important concept in the analysis of networks is the one of pairwise stability

as introduced in Jackson and Wolinsky (1996).

Definition 1. A network g ∈ G is pairwise stable if

1. for every ij ∈ g, Yi(g) ≥ Yi(g − ij) and Yj(g) ≥ Yj(g − ij),

2. for every ij /∈ g, if Yi(g) < Yi(g + ij), then Yj(g) > Yj(g + ij).

We say that a network g′ is adjacent to g if g′ = g+ ij or g′ = g− ij for some ij.
A network g′ defeats g if either g′ = g− ij and Yi(g′) > Yi(g) or Yj(g′) > Yj(g), or if

g′ = g+ ij with (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)).8 A network is pairwise stable if and

only if it is not defeated by another network.9 It is also easy to see that g′ ∈ f̃1(g) if

and only if g′ defeats g. We can therefore characterize the pairwise stable networks

as those g ∈ G for which f̃1(g) = ∅, or, alternatively, f1(g) = {g}. This formulation
readily suggests the following stability notion when players are less myopic.

Definition 2. ForK ≥ 1, a network g ∈ G is level-K pairwise stable if fK(g) = {g}.
The set of level-K pairwise stable networks is denoted by PK .

8We use the notation (Yi(g′), Yj(g′)) > (Yi(g), Yj(g)) for Yi(g′) ≥ Yi(g) and Yj(g′) ≥ Yj(g)

with at least one inequality holding strictly, (Yi(g′), Yj(g′)) ≥ (Yi(g), Yj(g)) for Yi(g′) ≥ Yi(g) and
Yj(g

′) ≥ Yj(g), and (Yi(g′), Yj(g′))� (Yi(g), Yj(g)) for Yi(g′) > Yi(g) and Yj(g′) > Yj(g).
9Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005) introduce the

notion of strong stability, where stability of the network against deviations by arbitrary coalitions

is required. In the same spirit, our theory of limited farsightedness can easily be modified to study

coalitional moves rather than pairwise moves.
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We may replace the condition fK(g) = {g} for level-K pairwise stability by the

equivalent condition f̃K(g) = ∅. The set PK of level-K pairwise stable networks

might be worth studying in its own right. However, similar to the case of myopic

players, there is no guarantee that this set is non-empty. It follows from Lemma 1

that PK ⊇ PK+1, so emptiness is more likely to become a problem for higher values

of K.10 In the next section we present a stability notion that does not suffer from

this emptiness problem.

The set f 2K(g) = fK(fK(g)) = {g′′ ∈ G | ∃g′ ∈ fK(g) such that g′′ ∈ fK(g′)}
consists of those networks that can be reached by a composition of two farsighted

improving paths of length at most K from g. We extend this definition and, for

m ∈ N, we define fmK (g) as those networks that can be reached from g by means

of m compositions of farsighted improving paths of length at most K. Since there

are n′ networks in G, it follows that fmK is the same for all values of m greater than

or equal to n′ − 1. The resulting correspondence for such values of m is called the

transitive closure of fK and is denoted by f∞K .
11

Lemma 1 extends to compositions of fK and in particular to the transitive closure

f∞K of fK as is shown in the following lemma, which is presented without proof.

Lemma 2. For K ≥ 0, for every g ∈ G, it holds that f∞K (g) ⊆ f∞K+1(g). For

K ≥ n′ − 1, for every g ∈ G, it holds that f∞K (g) = f∞K+1(g) = f∞∞ (g).

Jackson and Watts (2002) have defined the notion of a closed cycle. A set of

networks C is a cycle if for any g′ ∈ C and g ∈ C \ {g′}, there exists a sequence
of improving paths of length 1 connecting g to g′, i.e. g′ ∈ f∞1 (g). A cycle C is a

maximal cycle if it is not a proper subset of a cycle. A cycle C is a closed cycle if

f∞1 (C) = C, so there is no sequence of improving paths of length 1 starting at some

network in C and leading to a network that is not in C. A closed cycle is necessarily

a maximal cycle. For every network g ∈ P1, the set {g} is a closed cycle. The set of
networks belonging to a closed cycle is non-empty.

10Jackson (2008) defines a network to be farsightedly pairwise stable if there is no farsighted

improving path emanating from it. This concept reverts to P∞ and refines the set of pairwise

stable. A drawback of the definition is that it does not require that a farsighted improving path

ends at a network that is stable itself. The set P∞ is similar to the farsighted core when only one

link at a time can be deleted or added.
11Page and Wooders (2009) use the path dominance relation to define the notion of path domi-

nance core. A network g path dominates g′ if g ∈ f̃m∞(g′). The path dominance core contains all
networks that are not path dominated, but it often fails to exist.
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Figure 1: The 3-player investment networks.

We next present an example of an investment game as an example to illustrate

the notion of farsighted improving paths and to point out some of its subtleties.

Example 1. The investment game - myopic analysis. Every player can have a link

with another player at a cost of 1. Every player receives a benefit of n if all players

have formed a link with all other players, but benefits are zero if at least one link

is missing. Let di(g) denote the number of links player i has in g. Then it holds

that Yi(g) = −di(g) if g is not the complete network, and Yi(gN) = n− di(gN) = 1.

Figure 1 presents the resulting payoffs for the case with 3 players.

We compute the farsighted improving paths of lengthK = 1 from a given network

g to find the pairwise stable networks. It can easily be verified that

f1(g) = {g′ ∈ G | g′ ⊆ g, #(g \ g′) ≤ 1}, #g ≤ n(n− 1)/2− 2,

f1(g) = {g′ ∈ G | g′ ⊆ g, #(g \ g′) ≤ 1} ∪ {gN}, #g = n(n− 1)/2− 1,

f1(g
N) = {gN}.

In an investment game with three or more players, it holds that both the empty

network and the complete network are pairwise stable, whereas there are no other

pairwise stable networks.

Next we consider the transitive closure of f1 to compute the closed cycles in the

investment game. It can easily be computed that

f∞1 (g) = {g′ ∈ G | g′ ⊆ g}, #g ≤ n(n− 1)/2− 2,

f∞1 (g) = {g′ ∈ G | g′ ⊆ g} ∪ {gN}, #g = n(n− 1)/2− 1,

f∞1 (gN) = {gN}.
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The empty network g∅ belongs to f∞1 (g) for every g that is not complete. Now it

is not hard to verify that the closed cycles in the investment example coincide with

the pairwise stable sets, so are given by the empty and the complete network. �

It is a priori reasonable that the complete network is stable. However, this

is less clear for the empty network and the question when the empty network is

stable or not should be intimately linked to the number of players and their degree

of farsightedness. We continue the example by studying the farsighted improving

paths of length K ≥ 2.

Example 2. The investment game - farsighted analysis. When we consider far-

sighted improving paths of length K = 2 or 3, the complete network belongs to

fK(g) if and only if #(gN \ g) ≤ K, so the network gN can be obtained from g

by adding K links. When the network g is not complete, fK(g) also includes those

networks that are obtained by deleting less than or equal to K links from g, and no

other networks.

The picture changes slightly when we consider farsighted paths of length 4 or

higher. Although it is generally the case that gN ∈ fK(g) if and only if #(gN \ g) ≤
K, and a subset g′ of g 6= gN belongs to fK(g) if and only if #(g \ g′) ≤ K,

new possibilities arise. For instance, in a 4-player investment game it holds that

{14, 23} ∈ f4({12, 13, 23, 24}), so the link 14, which did not exist in the starting
network, is added. Indeed, starting from the network g = {12, 13, 23, 24}, first
Players 1 and 4 form a link, next Player 1 severs his links with Players 2 and 3, and

finally Player 2 cuts his link with Player 4. This constitutes a farsighted improving

path since none of the networks involved in the path is complete, the degree of

Player 1 in the network {12, 13, 23, 24} is one higher than in the network {14, 23}
and the degree of Player 4 is the same, so the addition of the link 14 in the beginning

is feasible. From then on, only links are deleted, which improves the payoffs of the

players involved and does not affect the other players. �

Despite the subtleties for higher values of K, it is straightforward to verify that

the set PK of level-K pairwise stable sets consists of g∅ and gN when n(n−1)/2 > K

and is equal to {gN} otherwise. When the level of farsightedness of players is greater
than or equal to n(n − 1)/2, the number of links needed to go from the empty

network to the complete network, the complete network emerges as the unique level-

K pairwise stable set. In many examples, however, the set PK will be empty.
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4 Limited Farsighted Stability

To analyze the influence of the degree of farsightedness on the stability of networks,

we define the notion of a level-K farsightedly stable set. In the next definition, we

use the notational convention that f−1(g) = ∅ for every g ∈ G.

Definition 3. For K ≥ 1, a set of networks GK ⊆ G is a level-K farsightedly stable

set with respect to Y if

(i) ∀ g ∈ GK ,

(ia) ∀ ij /∈ g such that g + ij /∈ GK ,
∃g′ ∈ [fK−2(g + ij) ∩GK ] ∪ [fK−1(g + ij) \ fK−2(g + ij)] such that

(Yi(g
′), Yj(g

′)) = (Yi(g), Yj(g)) or Yi(g′) < Yi(g) or Yj(g′) < Yj(g),

(ib) ∀ ij ∈ g such that g − ij /∈ GK ,
∃g′, g′′ ∈ [fK−2(g − ij) ∩GK ] ∪ [fK−1(g − ij) \ fK−2(g − ij)] such that
Yi(g

′) ≤ Yi(g) and Yj(g′′) ≤ Yj(g).

(ii) ∀g′ ∈ G \GK , f∞K (g′) ∩GK 6= ∅.

(iii) ∀G′K  GK , at least one of the Conditions (ia), (ib), and (ii) is violated by

G′K .

The move from a network g to an adjacent network is called a deviation. Condi-

tion (i) in Definition 3 requires the deterrence of external deviations. Condition (ia)

captures that adding a link ij to a network g ∈ GK that leads to a network outside
of GK , is deterred by the threat of ending in g′. Here g′ is such that either there is

a farsighted improving path of length smaller than or equal to K − 2 from g + ij

to g′ and g′ belongs to GK or there is a farsighted improving path of length equal

to K − 1 from g + ij to g′ and there is no farsighted improving path from g + ij to

g′ of smaller length. Condition (ib) is a similar requirement, but then for the case

where a link is severed.12

Since level-K farsightedness models a reasoning horizon of the players of length

K, we have to distinguish farsighted improving paths of length less than or equal to

12Chwe (1994) defines the notion of largest consistent set. A set G is a consistent set if both

external and internal deviations with respect to f̃∞ are deterred. The largest consistent is the set

that contains any consistent set.
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K − 2 after a deviation from g to g + ij and farsighted improving paths of length

equal to K − 1. In the former case, the reasoning capacity of the players is not yet

reached, and the threat of ending in g′ is only credible if it belongs to the farsightedly

stable set GK . In the latter case, the only way to reach g′ from g requires K steps

or even more; one step in the deviation to g+ ij and at least K − 1 additional steps

in any farsighted improving path from g+ ij to g′. Since this exhausts the reasoning

capacity of the players, the threat of ending in g′ is credible, irrespective of whether

it belongs to GK or not.

Condition (ii) in Definition 3 requires external stability and implies that the

networks within the set are robust to perturbations. From any network outside of

GK there is a a sequence of farsighted improving paths of length smaller than or

equal to K leading to some network in GK .13 Condition (ii) implies that if a set

of networks is level-K farsightedly stable, it is non-empty. Condition (iii) is the

minimality condition.

Condition (i) in Definition 3 guarantees that networks inside the set are stable

for players whose reasoning horizon is of length K. Hence, fK is used for deterring

deviations from networks inside the set. Condition (ii) in Definition 3 deals with the

robustness to perturbations of the networks inside the set. Perturbations may be

due to exogenous forces acting on the network, or simply errors on the part of some

players. After some perturbation, players make linking decisions inside their horizon

and move according to some level-K farsighted improving path without being able

to anticipate that other linking decisions might be taken afterwards. Hence, f∞K is

used to capture what could happen after some perturbation occurs. Condition (ii)

together with Condition (i) simply imply that if we allow limited farsighted players

to successively create or delete links, they will come back to the set GK without

moving away from it.

Theorem 1. A level-K farsightedly stable set of networks exists.

Proof. Notice that G trivially satisfies Conditions (i) and (ii). Let us proceed by

contradiction. Assume that there does not exist any set of networks GK ⊆ G
13Chwe (1994) defines the notion of von Neumann-Morgenstern farsightedly stable set. A set

G is a von Neumann-Morgenstern farsightedly stable set if both external and internal stability

with respect to f̃∞ are satisfied. Pages and Wooders (2009) extends this notion by requiring both

external and internal stability with respect to f̃m∞.
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that is level-K farsightedly stable. This means that for any G0K ⊆ G that satisfies
Conditions (i) and (ii) in Definition 3, we can find a proper subset G1K that satisfies

Conditions (i) and (ii). Iterating this reasoning we can construct an infinite sequence

{GkK}k≥0 of subsets of G satisfying Conditions (i) and (ii) with the property that

GkK ( Gk−1K . But since G has finite cardinality n′, this is not possible.

For the special case where K is equal to 1, we can use the fact that f−1(g) = ∅
and f0(g) = {g}, so Definition 3 simplifies as follows.

Theorem 2. A set of networks G1 ⊆ G is a level-1 farsightedly stable set with

respect to Y if

(i) ∀ g ∈ G1,

(ia) ∀ ij /∈ g such that g′ = g + ij /∈ G1 it holds that (Yi(g
′), Yj(g

′)) =

(Yi(g), Yj(g)) or Yi(g′) < Yi(g) or Yj(g′) < Yj(g),

(ib) ∀ ij ∈ g such that g′ = g − ij /∈ G1 it holds that Yi(g′) ≤ Yi(g) and

Yj(g
′) ≤ Yj(g).

(ii) ∀g′ ∈ G \G1, f∞1 (g′) ∩G1 6= ∅.

(iii) ∀G′1  G1, at least one of the Conditions (ia), (ib), and (ii) is violated by G′1.

Theorem 2 shows that a level-1 farsightedly stable set is identical to a myopi-

cally stable set as defined in Herings, Mauleon and Vannetelbosch (2009). Herings,

Mauleon and Vannetelbosch (2009) have shown that there is a unique myopically

stable set. It is equal to the set of networks consisting of all networks that belong

to a closed cycle. Theorem 3 below follows.

Theorem 3. There is a unique level-1 farsightedly stable set. It is given by the set

consisting of all networks that belong to a closed cycle.

Since a farsightedly stable set cannot be empty, it follows from Theorem 3 that

there is at least one closed cycle. Level-1 farsightedly stable sets are unique. This

result does not carry over to higher levels of K.

Also for K = 2, the definition of a level-K farsightedly stable set simplifies

somewhat, since if a network g+ ij belongs to G \G2 for some set G2, it holds that
f0(g + ij) ∩G2 = {g + ij} ∩G2 = ∅.

12



Theorem 4. A set of networks G2 ⊆ G is a level-2 farsightedly stable set with

respect to Y if

(i) ∀ g ∈ G2,

(ia) ∀ ij /∈ g such that g+ ij /∈ G2, ∃g′ ∈ f̃1(g+ ij) such that (Yi(g
′), Yj(g

′)) =

(Yi(g), Yj(g)) or Yi(g′) < Yi(g) or Yj(g′) < Yj(g),

(ib) ∀ ij ∈ g such that g−ij /∈ G2, ∃g′, g′′ ∈ f̃1(g−ij) such that Yi(g′) ≤ Yi(g)

and Yj(g′′) ≤ Yj(g).

(ii) ∀g′ ∈ G \G2, f∞2 (g′) ∩G2 6= ∅.

(iii) ∀G′2  G2, at least one of the Conditions (ia), (ib), and (ii) is violated by G′2.

Theorem 4 is useful when computing level-2 farsightedly stable sets in examples.

At the other extreme, when K is greater than or equal to n′ + 1, it follows from

Lemma 1 that fK−2(g) = fK−1(g) for every g ∈ G, and from Lemma 2 that f∞K (g) =

f∞n′−1(g) for every g ∈ G. We therefore have the following result.

Theorem 5. For K ≥ n′ + 1, a set of networks GK ⊆ G is a level-K farsightedly

stable set with respect to Y if

(i) ∀ g ∈ GK,

(ia) ∀ ij /∈ g such that g + ij /∈ GK, ∃g′ ∈ fn′−1(g + ij) ∩ GK such that

(Yi(g
′), Yj(g

′)) = (Yi(g), Yj(g)) or Yi(g′) < Yi(g) or Yj(g′) < Yj(g),

(ib) ∀ ij ∈ g such that g − ij /∈ GK, ∃g′, g′′ ∈ fn′−1(g − ij) ∩ GK such that

Yi(g
′) ≤ Yi(g) and Yj(g′′) ≤ Yj(g).

(ii) ∀g′ ∈ G \GK, f∞n′−1(g′) ∩GK 6= ∅.

(iii) ∀G′K  GK, at least one of the Conditions (ia), (ib), and (ii) is violated by

G′K.

It follows immediately from Theorem 5 that the collection of K-farsightedly

stable sets is independent of K when K ≥ n′ + 1.
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Herings, Mauleon and Vannetelbosch (2009) define a farsightedly stable set as

a set G∞ of networks satisfying Conditions (i) and (iii) of Theorem 5, but with

Condition (ii) replaced by the requirement that

∀g′ ∈ G \G∞, f∞(g′) ∩G∞ 6= ∅,

so the correspondence f∞n′−1 is replaced by f∞ = fn′−1, and one could interpret the

Herings, Mauleon and Vannetelbosch (2009) concept as level-∞ farsighted stability.

In many applications, the correspondence f∞ is transitive, in which case it coincides

with f∞n′−1, and level-∞ farsighted stable sets are identical to level-(n′ + 1) farsight-

edly stable sets, but in general it only holds that f∞(g) ⊆ f∞n′−1(g) for g ∈ G. We
can therefore conclude that for every level-∞ farsightedly stable set G∞ there is a

set G′ ⊆ G∞ such that G′ is level-(n′ + 1) farsightedly stable.

Example 3. Investment game - farsightedly stable sets. We now analyze the con-

cept of a level-K farsightedly stable set for the investment game of Example 1. For

level-1 farsightedly stable sets, we can use Theorem 3 and have to identify all the

closed cycles. Using the analysis in Example 1, we find that the unique farsightedly

stable set consists of the empty and the complete network whenever there are at

least three players.

We will argue next that with n ≥ 3 players, a reasoning horizon of lengthK equal

to n(n−1)/2 or higher is needed to obtain the complete network as the unique level-

K farsightedly stable set. For K < n(n − 1)/2, we show that the unique level-K

farsightedly stable set consists of the empty and the complete network.

We argue first that {gN} is the unique level-K farsightedly stable set when

K ≥ n(n − 1)/2 ≥ 3. The analysis in Example 1 reveals that gN ∈ f1(ḡ) for all

networks ḡ that are adjacent to gN , so by Lemma 1 we have gN ∈ fK−2(ḡ) for all

networks ḡ that are adjacent to gN , and Condition (i) of Definition 3 is satisfied

since a deviation from gN to an adjacent network ḡ is deterred by the return to g.

We have argued in Example 2 that gN ∈ fK(g′) if and only if #(gN \ g′) ≤ K.

So gN ∈ fK(g′) for every g′ 6= gN , since #(gN \ g′) ≤ n(n − 1)/2 ≤ K for every

g′ 6= gN . Since fK(g) ⊆ f∞K (g), we have for every g′ ∈ G \ {gN}, f∞K (g′) ∩ {gN} 6= ∅
and Condition (ii) of Definition 3 is satisfied. Obviously, {gN} satisfies minimality
as expressed in Condition (iii) of Definition 3, so gN is a level-K farsightedly stable

set.

Since Y (gN) � Y (g) for every g ∈ G \ {gN}, it holds that fK(gN) = {gN} for
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every value of K ≥ 1, and so f∞K (gN) = {gN}. By Condition (ii) of Definition 3,
it follows that gN ∈ GK for every level-K farsightedly stable set GK . Minimality

as expressed by Condition (iii) of Definition 3 now implies that {gN} is the unique
level-K farsightedly stable set when K ≥ n(n− 1)/2.

Consider next the case K < n(n − 1)/2. It holds that gN /∈ fK(g∅), since one

needs to form n(n − 1)/2 links to go from the empty to the complete network.

Since Y (g∅) ≥ Y (g) for every g ∈ G \ {gN}, it follows that fK(g∅) = {g∅}. By
Condition (ii) of Definition 3, it follows that g∅ ∈ GK for every level-K farsightedly

stable set GK . The previous paragraph argued that gN ∈ GK . The analysis in

Example 2 reveals that f∞K (g′) ∩ {g∅, gN} 6= ∅ for every g′ ∈ G \ {g∅, gN}. Together
with Condition (iii) of Definition 3, we now find that {g∅, gN} is the unique level-K
farsightedly stable set when K < n(n− 1)/2. �

5 The Relation to Pairwise Stability

In this section, we discuss how limited farsightedly stable sets are related to notions

based on pairwise stability such as the set of pairwise stable networks P1, the set of

closed cycles G1, and the set of level-K pairwise stable networks PK .

Theorem 3 implies that any pairwise stable network belongs to G1. The following

theorem shows that this result carries over to higher values of K.

Theorem 6. For K ≥ 1, the set PK of level-K pairwise stable networks is a subset

of any level-K farsightedly stable set GK.

Proof. SupposeGK is level-K farsightedly stable, but does not contain some g ∈ PK .
By Definition 2, we have fK(g) = {g}.We find that f∞K (g) = {g}, so f∞K (g)∩GK = ∅.
By Condition (ii) of Definition 3, it holds that f∞K (g)∩GK 6= ∅, a contradiction.

Theorem 6 shows that any network g from which there are no farsighted improv-

ing paths of length smaller than or equal to K to networks different from g belongs

to GK . Level-K pairwise stability is quite demanding for higher levels of K, since

even pairwise stable networks may fail to exist. Indeed, since fK(g) ⊆ fK+1(g), we

have that PK ⊇ PK+1.

Theorem 6 yields an easy suffi cient condition for the uniqueness of a level-K far-

sightedly stable set as a corollary, where we make use of the minimality requirement

as expressed in Condition (iii) of Definition 3.
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Corollary 1. For K ≥ 1, if PK is a level-K farsightedly stable set, then it is

uniquely so.

An allocation rule is said to be generic if for every g, g′ ∈ G such that g and g′

are adjacent it holds that either g ∈ f1(g′) or g′ ∈ f1(g). If an allocation rule is not

generic, then some arbitrarily small perturbation of it will be, and genericity can

therefore be thought of as a weak requirement on allocation rules. The next result

shows that level-K farsighted stability leads to a refinement of myopic stability for

generic allocation rules.

Theorem 7. Let the allocation rule be generic. For every K ≥ 1, the myopically

stable set G1 contains a level-K farsightedly stable set GK.

Proof. The statement is trivial for K = 1, so we consider K ≥ 2.

We show first that the set G1 satisfies Condition (i) of Definition 3. Consider

some g ∈ G1 and a deviation to g′ ∈ G \G1.
Suppose that g′ ∈ f1(g). Since G1 contains all networks in a closed cycle by

Theorem 3, it follows that g′ ∈ G1, a contradiction to g′ ∈ G \G1. Consequently, it
holds that g′ /∈ f1(g).

Since the allocation rule is generic, we find that g ∈ f1(g
′). We have that

g ∈ f1(g
′) \ {g′}, so for K = 2 the deviation from g to g′ is deterred by g. For

K ≥ 3, we have by Lemma 1 that g ∈ f1(g
′) ∩ G1 ⊆ fK−2(g

′) ∩ G1, so again the
deviation from g to g′ is deterred by g.

We show next that the set G1 satisfies Condition (ii) of Definition 3. Since G1 is

level-1 farsightedly stable, it holds for every g′ ∈ G \ G1 that f∞1 (g′) ∩ G1 6= ∅. By
Lemma 2 it holds that f∞1 (g′) ⊆ f∞K (g′), so f∞K (g′) ∩G1 6= ∅, and it follows that G1
satisfies Condition (ii).

Either the set G1 is a minimal set satisfying Conditions (i) and (ii) of Definition 3

and is therefore level-K farsightedly stable, or it has a proper subset GK which is a

minimal set satisfying Conditions (i) and (ii), so GK is level-K farsightedly stable.

In both cases, the statement of the theorem holds.

Theorem 3 asserts that there is a unique level-1 farsightedly stable set G1, given

by the union of all closed cycles. Theorem 7 shows that higher levels of farsightedness

lead to a refinement of the networks that belong to closed cycles. For any value of

K, there is always a subset of G1 that is level-K farsightedly stable. Theorem 7

shows that an analysis based on myopic behavior may not rule out some networks
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Figure 2: Networks outside closed cycles can be farsightedly stable in Example 4.

that are not stable when players are suffi ciently farsighted. At the same time, a

myopic analysis is compatible with farsightedness, and for any value of K there is

always a farsightedly stable set that consists exclusively of networks that belong to

closed cycles.

Theorem 7 does not claim that farsightedly stable sets are always subsets of

networks in G1. The following example shows that networks that are not part of

any closed cycle may become stable under limited farsightedness.

Example 4. Consider the situation where three players can form and sever links

and where the payoffs are given as in Figure 3. The farsighted improving paths of

various lengths are presented in Table 1.

In this example there is a unique pairwise stable network, g3. By inspecting f̃1
as presented in Table 1, it is easily verified that there are no other closed cycles in

this example. So, G1 = {g3}. By Theorem 7, and the fact that each farsightedly

stable set contains at least one element, it holds that {g3} is a level-K farsightedly

stable set for any value of K. At the same time, the payoffs resulting from the

network g3 are Pareto dominated by those of g1. The problem with network g1 is

that Player 1 has myopic incentives to cut his link with Player 2 to obtain a payoff

of 5 from the network g0 instead of 4 from the network g1. Once at g0, Players 2 and

3 have myopic incentives to form a link and form the pairwise stable network g3.

The question is whether the network g1 is stable when the players are less myopic.

We first show that {g1} is a level-2 farsightedly stable set by verifying that {g1}
satisfies the three conditions in Theorem 4. There are three possible deviations from
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g f̃1(g) f̃2(g) f̃3(g) f̃K(g), K ≥ 4

g0 g3 g3 g1, g3 g1, g3, g4

g1 g0 g0 g0 g0

g2 g0, g4, g6 g0, g1, g3, g4, g6 g0, g1, g3, g4, g6 g0, g1, g3, g4, g6

g3 g1 g1, g4 g1, g4

g4 g1 g0, g1 g0, g1, g3 g0, g1, g3

g5 g1, g3 g1, g3, g4, g6 g1, g3, g4, g6 g0, g1, g3, g4, g6

g6 g3 g3, g4 g1, g3, g4 g1, g3, g4

g7 g4, g5, g6 g1, g3, g4, g5, g6 g0, g1, g3, g4, g5, g6 g0, g1, g3, g4, g5, g6

Table 1: The elements of fK(g) in Example 4.

g1. Players 1 and 2 can cut their link and move to g0, Players 1 and 3 can form a

link to arrive at g4, and Players 2 and 3 can form a link to go to g5. From Table 1 it

follows immediately that g3 ∈ f̃1(g0), g1 ∈ f̃1(g4), and g1 ∈ f̃1(g5). Since Players 1
and 2 both have lower payoffs at g3 than at g1, the first deviation is deterred. The

other two deviations are deterred by the possible return to g1. We conclude that

Condition (i) of Theorem 4 holds.

One degree of farsightedness is needed to move from g4 or g5 to g1, and two

such degrees are needed to move from g2, g3, or g7 to g1. Since g0 →1 g
3 →2 g

1

and g6 →1 g
3 →2 g

1, we have shown that for every g′ ∈ G \ {g1}, g1 ∈ f∞2 (g′), so

Condition (ii) of Theorem 4 holds. Condition (iii) of Theorem 4 is trivially satisfied

by {g1}. �

We conclude this section by observing that farsightedly stable sets may depend

in a non-monotonic way on the degree of farsightedness by showing that {g1} is not
a level-3 farsightedly stable set in Example 4.

Example 5. Consider the same network situation as in Example 4, so {g1} is a
level-2 farsightedly stable set. We argue by contradiction, so suppose that {g1} is a
level-3 farsightedly stable set and consider a deviation by Player 1, who cuts the link

with Player 2 to arrive at the network g0. When Player 1 has only two degrees of

farsightedness, he might fear a further move to g3, which would deter the deviation.

With three degrees of farsightedness, Player 1 realizes that the threat of ending in

g3 is not credible, since g3 does not belong to the level-3 farsightedly stable set {g1}.
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Since the set f2(g0) \ f1(g0) = ∅, the deviation by Player 1 to g0 is not deterred
according to Definition 3.

However, when players are suffi ciently farsighted, {g1} reemerges as a level-K
farsightedly stable set. We consider some K ≥ n′ + 1 and verify that {g1} satisfies
the conditions of Theorem 5. As before, the only deviations from g1 are to g0, g4,

and g5. Since fn′−1(g0), fn′−1(g4), and fn′−1(g5) all contain g1, such deviations are

deterred, and Condition (i) of Theorem 3 is satisfied. Since g1 ∈ fn′−1(g′) ⊆ f∞n′−1(g
′)

for all g′ ∈ G \ {g1}, we know that Condition (ii) of Theorem 3 is satisfied by {g1}.
Condition (iii) of Theorem 4 is trivially satisfied. It follows that {g1} is a level-K
farsightedly stable set for every K ≥ n′ + 1. �

6 Suffi cient Conditions for Limited Farsighted Sta-

bility

In this section, we present two sets of suffi cient conditions for a set to be level-K

farsightedly stable. In many examples, these conditions are easy to verify.

A refinement of pairwise stability is obtained when we require the network g to

defeat every other adjacent network, so g ∈ f1(g′) for every network g′ adjacent to
g. We call such a network g pairwise dominant. The following definition generalizes

this idea and allows for farsighted improving paths of any length K.

Definition 4. For K ≥ 1, a network g is level-K pairwise dominant if for every

g′ adjacent to g it holds that g ∈ fK(g′). The set of level-K pairwise dominant

networks is denoted by DK .

It follows immediately from the definition that D1 ⊆ P1. For generic allocation

rules, the concepts of pairwise stability and pairwise dominance coincide, D1 = P1.

This coincidence does not hold for values of K greater than or equal to 2. By

Lemma 1 it follows that DK ⊆ DK+1, whereas PK ⊇ PK+1.

The first set of suffi cient conditions applies to the case where K = 1.

Theorem 8. If g ∈ P1 and for every g′ ∈ G\{g} it holds that g ∈ f∞1 (g′), then {g}
is the unique level-1 farsightedly stable set.

Proof. We show that {g} is a level-1 farsightedly stable set by applying Theorem 2.
The uniqueness then follows from Theorem 3. Since g ∈ P1 it holds that f1(g) = {g},
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so for a deviation from g to g′ = g + ij it holds that (Yi(g
′), Yj(g

′)) = (Yi(g), Yj(g))

or Yi(g′) < Yi(g) or Yj(g′) < Yj(g) and for a deviation from g to g′ = g − ij it holds
that Yi(g′) ≤ Yi(g) and Yj(g′) ≤ Yj(g), so Condition (i) of Theorem 2 is satisfied.

Conditions (ii) and (iii) of Theorem 2 are trivially satisfied.

The next result applies when K ≥ 2.

Theorem 9. Consider some K ≥ 2. If g ∈ DJ for some J < K and for every

g′ ∈ G \ {g} it holds that g ∈ f∞K (g′), then {g} is a level-K farsightedly stable set.

If, moreover, g ∈ PK, then {g} is the unique level-K farsightedly stable set.

Proof. We show first that {g} is a level-K farsightedly stable set.

We first considerK = 2 and apply Theorem 4. IfK = 2, then the only possibility

is that J = 1, so g ∈ D1, or equivalently g ∈ f̃1(ḡ) for every ḡ adjacent to g.

Condition (i) of Theorem 4 is satisfied since a deviation from g to ḡ is deterred by

the return to g ∈ f̃1(ḡ). Conditions (ii) and (iii) of Theorem 4 are trivially satisfied.

We next consider K ≥ 3 and apply Definition 3. Since g ∈ DJ for some J < K,

it holds that g ∈ fJ(ḡ) ⊆ fK−1(ḡ) for every ḡ adjacent to g, where the inclusion uses

Lemma 1. It holds that either g ∈ fK−2(ḡ), so g ∈ fK−2(ḡ) ∩ {g}, or g /∈ fK−2(ḡ),

so g ∈ fK−1(ḡ) \ fK−2(ḡ). Condition (i) of Definition 3 is satisfied since a deviation

from g to ḡ is deterred by the return to g ∈ [fK−2(ḡ) ∩ {g}] ∪ [fK−1(ḡ) \ fK−2(ḡ)].

Conditions (ii) and (iii) of Definition 3 are trivially satisfied.

We complete the proof by showing that {g} is the unique level-K farsightedly

stable set if in addition g ∈ PK . Since g ∈ f∞K (g′) for every g′ ∈ G \ {g} and
g ∈ PK , we have that PK = {g}, and therefore PK is a level-K farsightedly stable

set. Corollary 1 yields the desired result.

The conditions of Theorems 8 and 9 are usually easy to verify. To show that

g ∈ P1 requires that f1(g) does not contain networks different from g. To show that

g ∈ f∞1 (g′) for all g′ 6= g, we have to find a sequence of farsighted improving paths

of length one that connect g′ to g. In Theorem 9 the requirement of Theorem 8

that g ∈ P1 is replaced by the requirement that g ∈ DJ for some J < K, so we

have to show that g ∈ fJ(g′) for all g′ adjacent to g. The higher J , the weaker is

this requirement, so we could replace the requirement g ∈ DJ for some J < K by

g ∈ DK−1. To show that g ∈ f∞K (g′) for all g′ 6= g, we have to find a sequence of

farsighted improving paths of length at most K that connect g′ to g. Very often

the analysis of farsighted improving paths of small lengths is already suffi cient. The
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higherK, the easier it is to satisfy the conditions of Theorem 9 and to find a singleton

level-K farsightedly stable set. Finally, to show that g ∈ PK requires that fK(g)

does not contain networks different from g. This requirement is more diffi cult to

satisfy for increasing values of K.

In Example 4 it holds that g3 ∈ P1 and for every g ∈ G \ {g3}, g3 ∈ f∞1 (g). We

can then apply Theorem 8 to conclude that {g3} is the unique level-1 farsightedly
stable set.

In Example 4 it also holds that g3 ∈ D1. Since for every g ∈ G\{g3}, g3 ∈ f∞1 (g),

we have by Lemma 2 that g3 ∈ f∞K (g) for everyK ≥ 2. We can then apply Theorem 9

to conclude that {g3} is a level-K farsightedly stable set for any value of K ≥ 2.14

We have illustrated in Example 4 that there are other farsightedly stable sets for

higher values of K, in particular {g1} can be sustained as a farsightedly stable set
for higher values of K. Indeed, for K ≥ 2, fK(g3) contains networks different from

g3, so the condition g3 ∈ PK in Theorem 9, which is suffi cient for uniqueness of {g3}
as a level-K farsightedly stable set, does not hold.

In Example 4, {g1} has been shown to be a level-2 farsightedly stable set. In
Example 5 we have argued that g1 is not a level-3 farsightedly stable set. We show

next that Theorem 9 can be used to show that {g1} is a level-K farsightedly stable

set for any K ≥ 4. The adjacent networks of g1 are g0, g4, and g5. It follows from

Table 1 that f3(g0), f3(g4), and f3(g5) all contain g1, so g1 ∈ D3. We have already

argued in Example 4 that for every g′ ∈ G \ {g1} it holds that g1 ∈ f∞2 (g′) so, by

Lemma 2, we have that g1 ∈ f∞K (g′) for all K ≥ 2. Combining the conclusions in

the previous two sentences and applying Theorem 9 proves that {g1} is a level-K
farsightedly stable set for any K ≥ 4.

7 Effi ciency and Stability

We now turn to the question of the relationship between limited farsighted stabil-

ity and effi ciency of networks. A network g is strongly effi cient if
∑

i∈N Yi(g) >∑
i∈N Yi(g

′) for all g′ 6= g. Assume that there is a network g̃ that strictly Pareto

dominates all other networks. That is, Yi(g̃) > Yi(g) for all i ∈ N and for all

g ∈ G \ {g̃}. Hence, g̃ is both Pareto effi cient and strongly effi cient.
14Alternatively, since the allocation rule in Example 4 is generic and G1 = {g3}, applying

Theorem 7, we have that {g3} is a level-K farsightedly stable set for any K ≥ 2.
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Theorem 10. Suppose that there is some network g̃ strictly Pareto dominating all

other networks g ∈ G \ {g̃}. Then, {g̃} is the unique level-K farsightedly stable set

for all K ≥ n(n− 1)/2.

Proof. First, we show that g̃ ∈ D1. Since g̃ is such that Yi(g̃) > Yi(g) for all i ∈ N
and for all g ∈ G \ {g̃}, we have that g̃ ∈ f1(g) for any network g adjacent to g̃,

and then we have g̃ ∈ D1. Moreover, we have that g̃ ∈ fK(g) for all g ∈ G \ {g̃}
for K ≥ n(n− 1)/2. Indeed, all players like to move from ant network g to g̃ given

that Yi(g̃) > Yi(g) for all i ∈ N and for all g ∈ G \ {g̃}, and the maximum number

of links that one needs to cut and/or to form from any other network g in order to

form g̃ is equal to the number of links in the complete network, n(n− 1)/2. Hence,

g̃ ∈ f∞K (g) for all g ∈ G \ {g̃}. Finally, since g̃ strictly Pareto dominates all other
networks, we have that fK(g̃) = {g̃} for all K ≥ 1. Thus, g̃ ∈ PK for all K ≥ 1.

Thus, by Theorem 9 we have that {g̃} is the unique level-K farsightedly stable set

for all K ≥ n(n− 1)/2.

In the investment game of Example 1, the complete network gN strictly Pareto

dominates all other networks. Hence, from Theorem 10 we have that {gN} is the
unique level-K farsightedly stable set for all K ≥ n(n − 1)/2. In fact, the most

demanding case in terms of level of farsightedness is when g̃ is either the complete

network or the empty network in Theorem 10. So, Theorem 10 holds for levels of

farsightedness relatively small compared to the number of possible networks.

There are many situations where a Pareto dominating network does not exist.

Two properties imposed on allocation rules will play a role in selecting the complete

network for players having some suffi cient level of farsightedness. An allocation rule

Y displays no externalities across components (NEC) if for any g ∈ G and h ∈ C(g),

we have Yi(g) = Yi(h) for all i ∈ N(h). That is, an allocation rule satisfies NEC if

the allocation of every player belonging to a given component of a network does not

depend on the structure of other components.

Let C+(g) = {h ∈ C(g) such that
∑

i∈N(h) Yi(h) ≥ 0}. An allocation rule Y
satisfies increasing returns to link creation15 (IRL) if:

15Dutta, Ghosal and Ray (2005) defines the property of increasing returns to link creation for a

value function. A value function satisfies this property if there is a threshold network for which the

value is nonnegative, and each time a new link is added to this treshold network, both aggregate

payoffs and payoffs of players who are adding a link to the network increase. Here, we translate

the main idea behind this property for an allocation rule.
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(i) Y displays NEC, Yi(g∅) = 0 for all i ∈ N and
∑

i∈N Yi(g
N) ≥ 0;

(ii) If h ∈ C+(g), then
∑

i∈N(h′) Yi(h
′) ≥ 0 for every h′ ) h;

(iii) If #h = n(n− 1)/2− 1 or h ∈ C+(g), i ∈ N(h), ij /∈ g, then Yl(g+ ij) ≥ Yl(g)

for l = i, j with at least one inequality holding strictly;

(iv) There exists a critical network g 6= g∅ such that for all g  g, for all i ∈ N(g),

we have Yi(g) < Yi(g).

An allocation rule with NEC satisfies increasing returns to link creation (IRL)

if along every nested chain of increasingly connected networks, there is a threshold

network g for which the payoff of all players having at least one link turns to be

positive and greater than the payoffs they could obtain in any network g  g, and

both aggregate payoffs as well as the payoffs of the players who form extra links

increase as the network becomes even larger. Notice that even for networks in

between the threshold and the complete network, some players may have negative

payoffs. The investment game in Example 1 satisfies IRL as well as a generalization

of the investment game where

Yi(g) =

{
−di(g)c if dj(g) < d for some j who is connected to i in g

(1 + di(g))− di(g)c if dj(g) ≥ d for all j who are connected to i in g
,

with each link ij resulting in a cost c to both i and j. The case c = 1 and d = n− 1

corresponds to the investment game in Example 1. Another model that satisfies

IRL is the symmetric connections model of Jackson and Wolinsky (1996) when the

cost for maintaining a link is small, c < δ(1− δ).
We now show that if the allocation rule satisfies IRL, then there exists a value

of K ′ such that, for all K ≥ K ′, {gN} is a level-K farsightedly stable set. Given

any allocation rule Y satisfying IRL, let K̃ = {#g | #g ≥ #g′ for any two critical

networks g, g′} be the number of links in the critical network with the highest number
of links, and letK be the number of links in the network that has the highest number

of links among the networks that do not contain any critical network.

Theorem 11. Suppose the allocation rule satisfies IRL. Then,
{
gN
}
is a level-K

farsightedly stable set for all K ≥ max{K̃,K}.

Proof. First, we show that gN ∈ D1. Since the allocation rule satisfies IRL, we have

that Yl(gN) ≥ Yl(g
N − ij) for l = i, j with at least one inequality holding strictly.
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So, gN ∈ f1(g) for any network g such that #g = n(n− 1)/2− 1, and then we have

gN ∈ D1. Hence, gN ∈ fK(gN − ij) for K ≥ 1 and the deviation from gN to gN − ij
is deterred.

To apply Theorem 9, we need to show that gN ∈ f∞K (g) for every g 6= gN . That

is, from any network g 6= gN there is a sequence of farsighted improving paths of

length smaller than or equal to K leading to the complete network gN (external

stability). Notice that NEC implies that in any critical network all players having

a link are connected to each other.

(a) First, consider any network g′ * g such that
∑

i∈N Yi(g
′) < 0. Since Y

satisfies IRL, for any g ⊆ g′ (g 6= g∅), there is some player i ∈ N(g) who has

a negative payoff, Yi (g) < 0, and so, i has incentives to cut a link foreseeing the

empty network where Yi(g∅) = 0. Then, either we are at g∅ or we are at g′′ ( g′ with∑
i∈N Yi(g

′′) < 0 and we can repeat the process until we reach the empty network

g∅. So, g∅ ∈ fK(g′) for K ≥ K, where K is the number of links in the network that

has the highest number of links among the networks that do not contain any critical

network. From Condition (iv), we have Yi(g) > Yi(g
∅) for all i ∈ N(g) and players

in N(g) have incentives to form sequentially the missing links in g∅ foreseeing g. The

number of links to be added is equal to #g. Hence, g ∈ f#g(g∅). From g, Condition

(iii) implies that there is a sequence of improving paths of length 1 from g to gN

where missing links are sequentially added until gN is formed.

(b) Second, consider any network g′ 6= g∅ such that
∑

i∈N Yi(g
′) ≥ 0. From g′,

condition (iii) implies that there is a sequence of improving paths of length 1 from

g′ to gN where missing links are sequentially added until gN is formed.

(c) Third, consider any network g′ ( g. From Condition (iv), we have Yi(g) >

Yi(g
′) for all i ∈ N(g) and players inN(g) have incentives to form the missing links in

g′ foreseeing g. The number of links to be added is equal to#g−#g′ ≤ K̃−#g∅ = K̃,

where K̃ = {#g | #g ≥ #g′ for any two critical networks g, g′} is the number of
links in the critical network with the highest number of links. As in (a), there is

a sequence of improving paths of length 1 from g to gN where missing links are

sequentially added until gN is formed. So, gN ∈ f∞K (g′) for K ≥ K̃.

From (a), (b) and (c), we have that, for any g 6= gN , either gN ∈ f∞K (g) for

K ≥ K > K̃ or gN ∈ f∞K (g) for K ≥ K̃ > K. Theorem 9 implies that
{
gN
}
is a

level-K farsightedly stable set for all K ≥ max{K̃,K}.

In the generalized investment game, the set {gN} is the unique level-K farsight-
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edly stable set for all K ≥ nd/2 for N even, and K ≥ nd/2 + 1/2 for N odd.

However, in the symmetric connections model, there is a sequence of improving

paths of length 1 from any g 6= gN to gN when c < δ(1− δ). Hence, if c < δ(1− δ),
then gN ∈ f∞K (g) for any g 6= gN and for any K ≥ 1, and {gN} is the unique level-
K farsightedly stable set for all K ≥ 1. In both models, the complete network is

strongly effi cient. However, notice that IRL does not prevent the complete network

of being strongly ineffi cient.

8 Criminal Networks

There is empirical evidence suggesting that peer effects and the structure of social

interactions matter strongly in explaining an individual’s own criminal or delinquent

behavior.16 Calvo-Armengol and Zenou (2004) provide a network analysis of criminal

behavior. They develop a model where criminals compete with each other in criminal

activities but benefit from being friends with other criminals by improving their

knowledge of the crime business. Individuals decide first to work or to become a

criminal and then they choose the crime effort to exert if criminals.17 Here, we

present a simplified version of their model, which puts emphasis on the formation

of links and keeps the level of criminal activities of the players fixed.18

Consider some criminal network g with n ≥ 3 players. The players in the network

are referred to as criminals and a maximally connected set of players as a criminal

group.

Each criminal group S has a positive probability pS(g) of winning the loot B >

0. It is assumed that the bigger the criminal group, the higher its probability

of getting the loot. This assumption captures the idea that delinquents learn from

other criminals belonging to the same group how to commit crime in a more effi cient

way by sharing the know-how about the technology of crime. We assume that the

probability of winning the loot is given by pS(g) = #S/n.

16See Patacchini and Zenou (2008) among others.
17Calvo-Armengol and Zenou (2004) mostly focus on the case where the network is exogenously

given. They show that multiple equilibria with different members of active criminals and levels of

involvement in crime business may coexist.
18For simplicity, we also keep the wage on the labour market small enough in Calvo-Armengol

and Zenou’s model so that all individuals prefer to become a criminal whatever the social network

connecting the criminals.
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The network architecture determines how the loot is shared among the criminals

in the group. Consider some Player i ∈ N and let S ∈ P (g) be the criminal group i

belongs to. We define ci(g) = maxj∈S dj(g) as the maximum degree in this criminal

group. A criminal i who is part of a group S ∈ P (g) expects a share αi(g) of the

loot given by

αi(g) =

{
1

#{j∈S|dj(g)=cj(g)} , if di(g) = ci(g),

0, otherwise.

That is, within each criminal group, the criminal that has the highest number of

links gets the loot. If two or more criminals have the highest number of links, then

they share the loot equally among them.

Criminal i has a probability qi(g) of being caught, in which case his rewards

are punished at a rate φ > 0. It is assumed that the higher the number of links a

criminal has, the lower his individual probability of being caught. We assume that

the probability of being caught is simply given by

qi(g) =
n− 1− di(g)

n
.

The total payoffs of criminal i belonging to criminal group S ∈ P (g) are therefore

equal to

Yi(g) = pS(g)αi(g)(1− qi(g)φ)B

=

{
#S
n

1
#{j∈S|dj(g)=ci(g)}(1−

n−1−di(g)
n

φ)B, if di(g) = ci(g),

0, otherwise.

We require φ < n/(n − 1) to guarantee that payoffs are non-negative and positive

for a player with the highest degree in his group.

Figure 2 presents the payoffs for 3-player criminal networks with B = 9 and

φ = 1. Table 2 shows the farsighted improving paths for the different possible

values of K. It can be verified that the farsighted improving paths for the 3-player

case do not depend on the specific choices for B and φ.

For the three player case, we use Theorem 3 to compute the closed cycles and

conclude thatG1 = P1 = {g1, g2, g3, g7} is the myopically stable set, soG1 consists of
all pairwise stable networks. There are many networks that are stable when players

are myopic.

For K ≥ 2, we apply Theorem 9 to show that GK = {g7} is the unique level-K
farsightedly stable set. It holds that g7 ∈ D1 and g7 ∈ f∞2 (g) for every g 6= g7, so
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Figure 3: The 3-player criminal networks.

g f̃1(g) f̃2(g) f̃K(g), K ≥ 3

g0 g1, g2, g3 g1, g2, g3 g1, g2, g3, g7

g1, g2, g3 g7 g7

g4 g1, g2, g7 g1, g2, g7 g1, g2, g3, g7

g5 g1, g3, g7 g1, g3, g7 g1, g2, g3, g7

g6 g2, g3, g7 g2, g3, g7 g1, g2, g3, g7

g7

Table 2: The elements of f̃K(g) for 3-player criminal networks with B = 9 and

φ = 1.

{g7} is a level-K farsightedly stable set. Since g7 ∈ PK , it follows from Theorem 9

that {g7} is the unique farsightedly stable set. If criminals behave myopically, they
may not go beyond forming a single link in the three player case. But with a degree

of farsightedness of at least 2, the complete criminal network emerges as the unique

prediction.

The remainder of this section is devoted to the analysis of the n-criminal case.

As in the 3-criminal case, there are many networks that are pairwise stable in the

n-person case. The complete network is easily verified to be pairwise stable. The

generalization of the networks g1, g2, and g3 for the 3-criminal case to the n-criminal

case would be any network consisting of complete components, where no two com-

ponents have the same degree. But also any network with a single component where
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all players have a degree at least equal to two and one player has a degree that is

at least two times higher than the degree of any other player is pairwise stable.

We will argue next that {gN} is a level-K farsightedly stable set whenever K ≥
n− 1.

We show first that the complete network is pairwise dominant.

Lemma 3. For criminal networks it holds that gN ∈ D1.

Proof. Consider the network gN − ij for some ij. It holds that

di(g
N − ij) = dj(g

N − ij) < ci(g
N − ij) = cj(g

N − ij),

so

Yi(g
N − ij) = Yj(g

N − ij) = 0 < Yi(g
N) = Yj(g

N),

and gN ∈ f1(gN − ij). We have shown that gN ∈ D1.

We show next that the complete network can be reached from any starting

network by repeated application of at most n− 1 degrees of farsightedness.

Lemma 4. For criminal networks, it holds for every g ∈ G that gN ∈ f∞n−1(g).

Proof. Step 1. If g has a component which is not complete, then there is g′ ∈ fn−1(g)

such that g ( g′.

Let S ∈ P (g) be a criminal group such that some internal links are missing, g|S 6= gS.

If for every i ∈ S it holds that di(g) = ci(g), so all players in S have the same

degree, then any two players i and j in S create a link to form the network g + ij

and improve their payoffs since the increase in their degree increases the share in the

loot and lowers the probability of being caught for both players, αi(g + ij) > αi(g),

αj(g + ij) > αj(g), qi(g + ij) < qi(g), and qj(g + ij) < qj(g), so Yi(g + ij) > Yi(g)

and Yj(g + ij) > Yj(g). We have that g →1 g + ij, so clearly g + ij ∈ fn−1(g).

If the players in S do not all have the same degree, let i ∈ S be a player with
di(g) < ci(g), so αi(g) = 0 and therefore Yi(g) = 0.

If ci(g) = #S−1, then Player i consecutively links to all players j ∈ S such that
ij /∈ g, thereby forming a network g′ where he has degree #S − 1. The payoffs of

Player i are equal to Yi(g) = 0 in every step until the final one, where his payoffs

increase to Yi(g′) > 0. Every player j that i links to has degree below #S − 1 and

therefore payoffs equal to 0 ≤ Yj(g
′). We have that g′ ∈ f#S−2(g) ⊆ fn−1(g).
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If ci(g) < #S − 1, then let j ∈ S be a player with dj(g) = ci(g). Player i links

with Player j to form the network g + ij. It holds that Yi(g + ij) = Yi(g) = 0 and

Yj(g + ij) > Yj(g) > 0, since αj(g + ij) ≥ αj(g) and qj(g + ij) < qj(g). In this case

we have that g →1 g + ij, so clearly g + ij ∈ fn−1(g).

Step 2. If all components of g are complete and g 6= gN , then there is g′ ∈ fn−1(g)

such that g ( g′.

Let S1 and S2 be two criminal groups in P (g).

If #S1 = #S2, then form a link between a Player i ∈ S1 and a Player j ∈ S2.
Since qi(g) > qi(g + ij), we have that

Yi(g) = 1
n
(1− qi(g)φ)B < #S1

n
(1− qi(g + ij)φ)B = Yi(g + ij).

By the same calculation, it follows that Yj(g) < Yj(g + ij), so g →1 g + ij, and

therefore g + ij ∈ fn−1(g).

Otherwise, it holds without loss of generality that #S1 < #S2. Select some

player i ∈ S1 and a set J consisting of #S2 + 1 − #S1 players in S2, who are

linked consecutively to Player i to form network g′. The resulting finite sequence of

networks is denoted g0, . . . , gK with g0 = g and gK = g′. Notice that K ≤ n−1. We

show next that for every k ∈ {0, . . . , K − 1}, (Yi(gk), Yjk(gk)) < (Yi(gK), Yjk(gK)),

where jk ∈ J is such that gk+1 = gk + ijk, thereby proving that (g0, . . . , gK) is a

farsighted improving path and completing the proof of Step 2.

For every player j ∈ J we have

dj(gK) = di(gK) = ci(gK),

and for all other players the degree is strictly less than ci(gK), so

Yj(gK) = Yi(gK) =
#S1 + #S2

n

1

#S2 + 2−#S1
(1− qi(gK)φ)B.

For k = 0, we have

Yi(g0) =
1

n
(1− qi(g)φ)B < Yi(gK),

Yj0(g0) =
1

n
(1− qj0(g)φ)B < Yj0(gK),

where we use qi(g0) > qi(gK) and qj0(g0) > qj0(gK) to get the strict inequalities.

For k = 1, . . . , K−1, it holds that Player i is connected to Player j0, so di(gk) <

dj0(gk) = ci(gk), so αi(gk) = 0 and 0 = Yi(gk) < Yi(gK). Similarly, it holds that

Player jk is connected to Player j0, so djk(gk) < dj0(gk) = cjk(gk), so αjk(gk) = 0
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and 0 = Yjk(gk) < Yjk(gK).

Step 3. For every g ∈ G, it holds that gN ∈ f∞n−1(g).

It is obviously true that gN ∈ f∞n−1(g
N). By combining the results of Step 1 and

Step 2, we have that for every g ∈ G \ {gN}, there is g′ ∈ fn−1(g) with strictly

more links than g. Since the complete network gN has n(n−1)/2 links, we find that

gN ∈ fn(n−1)/2n−1 (g) ⊆ f∞n−1(g).

Using Theorem 9 we prove now that, the complete network {gN} is level-K
farsightedly stable set for every K ≥ n− 1.19 Notice that the level of farsightedness

needed to sustain the complete network {gN} is relatively small compared to the
number of potential networks and the maximum lenghth of paths.

Theorem 12. For criminal networks it holds that {gN} is a level-K farsightedly

stable set for every K ≥ n− 1.

Proof. By Lemma 3 we have that gN ∈ D1. By Lemma 4 we have that for every

g′ ∈ G\{gN} it holds that gN ∈ f∞n−1(g′) ⊆ f∞K (g′), where the inclusion follows from

Lemma 2. We are now in a position to apply Theorem 9 and conclude that {gN} is
a level-K farsightedly stable set.

How about the uniqueness of {gN} as a level-K farsightedly stable set? It is

tempting to use the approach of Theorem 9 and show such a result by proving that

gN ∈ PK . However, consider the case with 6 players and let g′ = gN−16−26−35−45.

For any value of B and φ,20 we claim that g′ ∈ f12(g
N), so gN /∈ P12. Since the

network g′ is connected, d1(g′) = d2(g
′) = d3(g

′) = d4(g
′) = 4, and d5(g′) = d6(g

′) =

3, it holds for any i ∈ {1, 2, 3, 4} that Yi(g′) = (1/4 − φ/24)B > B/6 = Yi(g
N)

and for any j ∈ {5, 6} that Yj(g′) = 0 < B/6 = Yj(g
N). The construction of the

farsighted improving path is, however, more subtle than simply deleting the links

16, 26, 35, and 45 in some order. Indeed, after the deletion of three such links,

there are exactly two players with the maximum degree and they would get strictly

lower payoffs by cutting their link, and would be unwilling to do so. The way to

avoid this problem requires more farsightedness and involves players in {1, 2, 3, 4}
19Once the network connecting delinquents is endogenous, Calvo-Armengol and Zenou (2004)

find that all complete networks (where.each player in the pool of criminals are linked to each other)

are pairwise stable. Notice that the size of the pool of criminals depends on the wage on the labour

market.
20We maintain the assumption that φ < n/(n− 1).
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first cutting two of their mutual links, before severing the links with players 5 and

6, and finally restoring their mutual links. One explicit farsighted improving path

results from gN − 12− 23− 34− 41− 16− 26− 35− 45 + 12 + 23 + 34 + 41 and takes

12 steps. We have denoted the player with an incentive to cut a link first, so −16

for instance means that Player 1 cuts his link with Player 6, whereas −61 would

mean that Player 6 cuts his link with Player 1. It can be verified that each step in

this farsighted improving path is feasible indeed.

We conclude this section by showing that if players are not too farsighted, then

gN ∈ PK , so {gN} is then the unique level-K farsightedly stable set. More precisely,

we will from now on considerK = n−1. We show first that any network in fn−1(gN)

has a single component.

Lemma 5. For criminal networks it holds that every g′ ∈ fn−1(g
N) has a single

component.

Proof. Consider the criminal group S of Player 1 in g′. We show that it contains

all players. Suppose it contains only s ≤ n − 1 players. Then those s players have

to cut all their links with all other players in N \ S. This involves at least s(n− s)
steps. For fixed n, the concavity of s(n − s) in s implies that it is minimized at

s = 1 or s = n − 1. Substitution of these values of s shows the minimum to be

equal to n− 1 at both s = 1 and s = n− 1. When the s players cut all their links

with all other players in N \ S, all the players in N are strictly worse off, since the

probability of being caught has strictly increased and the probability of winning the

loot has decreased, contradicting g′ ∈ fn−1(gN).

We show next that the complete network gN is level-(n− 1) pairwise stable.

Lemma 6. For criminal networks it holds that gN ∈ Pn−1.

Proof. Suppose g′ is an element of f̃n−1(gN). Let g0, . . . , gK with g0 = gN and

gK = g′ be a farsighted improving path of length K ≤ n − 1. Since g′ consists of

a single component, ci(g′) is independent from i and is simply denoted by c. Let

M ⊆ N be such that i ∈M if and only if di(g′) = c and denote the cardinality ofM

by m. It cannot be that m = n, since then all players have lower payoffs in g′ than

in gN (because the probability of being caught is higher in g′ than in gN). Since g′

is connected, it follows that Yi(g′) = 0 for all i ∈ N \M . A player j ∈ N \M will
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therefore never sever a link starting at gN . It follows that∑
i∈M

di(g
′) ≤

∑
j∈N\M

dj(g
′).

Since di(g′) > dj(g
′) whenever i ∈M and j ∈ N \M , we have that m > n/2.

Since at least one link ij with i ∈ M and j ∈ N is missing in g′, it follows that

the maximum degree in g′ satisfies c ≤ n− 2.

A lower bound on K is provided by the number of times a link ij is severed with

i ∈M and j ∈ N \M plus the number of times a link ij is cut with i, j ∈M . Since
all players in N \M experienced the severance of at least two links, and any such

link is cut by a player in M , a lower bound for the first number is 2(n−m).

For k = 0, . . . , K, let L(gk) = {i ∈ N | di(gk) = n − 1} be the set of players
with degree n − 1 and let `(gk) = #L(gk) be its cardinality. Clearly, it holds that

`(gN) = n and `(g′) = 0. Let k′ be the lowest value of k such that `(gk) ≤ m for all

k ≥ k′. Since `(gk) − `(gk+1) ≤ 2, we find that `(gk′) = m or `(gk′) = m − 1. The

sum of the cardinality of L(gk′) and the cardinality of M is at least 2m − 1. Since

there are only n players, it follows that #(L(gk′) ∩M), the cardinality of the set of

players in L(gk′) that belong to M , is at least 2m− n− 1.

For all k ≥ k′, for all i ∈ L(gk), it holds that Yi(gk) > Yi(g
′), since the loot

has to be shared with less or the same number of criminals and the probability of

being caught is strictly less when comparing gk to g′. Such a player i will therefore

never choose to sever a link himself, so whenever a link involving player i ∈ L(gk) is

severed when going from gk to gk+1, it must be by a player in M \ L(gk). It follows

that `(gk) − `(gk+1) ≤ 1. Since #(L(gk′) ∩M) ≥ 2m − n − 1, we find that going

from gk′ to g′ involves the deletion of at least 2m− n− 1 links ij with i, j ∈M .
We have proved that K ≥ 2(n−m) + 2m− n− 1 = n− 1.

Using Theorem 9 we prove now that, the complete network {gN} is the unique
level-(n− 1) farsightedly stable set.21

Theorem 13. For criminal networks it holds that {gN} is the unique level-(n− 1)

farsightedly stable set.

Proof. By Lemma 3 we have that gN ∈ D1. By Lemma 4 we have that for every

g′ ∈ G \ {gN} it holds that gN ∈ f∞n−1(g′). By Lemma 6 it holds that gN ∈ Pn−1.
21Herings, Mauleon and Vannetelbosch (2009) show that in the example of criminal networks

with n players, the complete network {gN} is a pairwise farsightedly stable set.
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We are now in a position to apply Theorem 9 and conclude that {gN} is the unique
level-(n− 1) farsightedly stable set.

Structural properties of criminal networks must be taken into account to better

understand the impact of peer influence on delinquent behavior and to address

adequate and novel delinquency-reducing policies. Hence, it is important to acquire

knowledge about the level of farsightedness of criminals to determine which criminal

networks are likely to emerge in the long run.22

9 Conclusion

We study the stability of social and economic networks when players are limitedly

farsighted. Pairwise stability is a very important tool in network analysis. One

shortcoming of pairwise stability is the lack of farsightedness. Players do not antic-

ipate that other players may react to their changes. However, farsighted stability

requires too much foresight on behalf of the players. Hence, we propose a tractable

concept, namely level-K farsighted stability, that can be used to study the influence

of the degree of farsightedness on network stability.
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10 Material that might be useful.

Lemma 7. For criminal networks it holds that every g′ ∈ fn−2(g
{1,...,n−1}) has at

least two components.

Proof. Consider the networks g′ in fn−2(g{1,...,n−1}). Assume g′ has one component.

Then Player n has at least one link, dn(g′) ≥ 1. Since Player n should have at least

the same payoff in g′ as in g{1,...,n−1}, sine otherwise Player n does not join in making

a link, Player n should have the highest number of links in g′, dn(g′) = cn(g′). We

denote this degree by k. To move from g{1,...,n−1} to g′, the following holds true.

Player n makes at least k links to k distinct players, taking k steps. Since ceteris

paribus this gives those k players a degree equal to n − 1, they should all reduce

their degree by at least n− k − 1 to ensure Player n has the highest degree, which

in total takes at least k(n− k − 1)/2 steps. The other n− k − 1 players should all

reduce their degree by at least n− k − 2 to ensure Player n has the highest degree,

which in total takes at least (n − k − 1)(n − k − 2)/2 steps. The total number of

steps involved in moving from g{1,...,n−1} to g′ is therefore greater than or equal to

k +
k(n− k − 1)

2
+

(n− k − 1)(n− k − 2)

2
=
n2 − (k + 2)n+ 4k + 1

2
.

In case n = 2, it holds that k = 1, so the expression above is equal to 1. In case

n = 3, it holds that k = 2, so the expression above is equal to 2. In both cases, it

holds that it takes at least n− 1 steps to go from network g{1,...,n−1} to network g′.

Consider the case n ≥ 4. The expression above is minimized by taking k = n − 1,

the largest value possible for k. Substituting k = n − 1 and simplifying shows that

the expression above is equal to n−1. So, in all cases, at least n−1 steps are needed

to go from g{1,...,n−1} to g′, showing that there is no network g′ in fn−2(g{1,...,n−1})

with a single component.

Lemma 8. For criminal networks it holds for every g′ ∈ fn−2(g
{1,...,n−1}) that

P (g′) = {{1, . . . , n− 1}, {n}}.

Proof. Consider the criminal group of Player 1 in g′. We show that it contains all

players, with the exception of Player n. Suppose it contains only k ≤ n− 2 players

from the set {1, . . . , n−1}. Then those k players have to cut their all their links with
all other players in {1, . . . , n−1}. This involves at least k(n−1−k) steps. For fixed

n, the concavity of k(n−1−k) in k implies that it is minimized at k = 1 or k = n−2

37



at both k = 1 and k = n− 2. Substitution of these values of k shows the minimum

to be equal to n − 2. When the k players cut all their links with all other players

in {1, . . . , n − 1}, all the players in {1, . . . , n − 1} are strictly worse off, since the
probability of being caught has strictly increased, contradicting g′ ∈ fn−2(g{1,...,n−1}).
Consequently, the criminal group of Player 1 in any g′ ∈ fn−2(g{1,...,n−1}) contains
all players in {1, . . . , n− 1}. Lemma 7 now implies it does not contain Player n.

Lemma 9. For criminal networks it holds for every g′ ∈ fn−2(g{1,...,n−1}) that (n−
1)/2 < #{i ∈ {1, . . . , n− 1} | di(g′) = ci(g

′)} ≤ n− 2.

Proof. Consider some g′ ∈ fn−2(g{1,...,n−1}).We know that the players in {1, . . . , n−
1} are connected and Player n is a singleton. Let k be the number of players in g′

with di(g′) = ci(g
′). It holds that k ≤ n−2, since otherwise the Yi(g′) ≤ Yi(g

{1,...,n−1})

for all i ∈ N due to the increased probability of being caught. So there are players

in {1, . . . , n − 1} who get payoff 0 in g′. These players are never willing to destroy

a link. They should be outnumbered by the players with maximum degree, to

ensure that they all have degree strictly below the maximum degree. It follows that

k > (n− 1)/2.

Surprisingly, for n suffi ciently high, f̃n−2(g{1,...,n−1}) 6= ∅. For instance, let n = 300

and φ < 14850/199 ≈ 74.62. Notice that d1(g{1,...,n−1}) = · · · = d299(g
{1,...,n−1}) =

298 and d300(g
{1,...,n−1}) = 0. The network g′ will be such that d1(g′) = · · · =

d200(g
′) = 297, d201(g

′) = · · · = d299(g
′) = 296, and d300(g

′) = 0. Compared to

g{1,...,n−1} it is such that the link 100,200 is missing, as well as all the links i, i+ 200

and i+ 100, i+ 200 where i = 1, . . . , 99. For Players 1, . . . , 200, it holds that

Yi(g
′) =

299

300

1

200
(1− 2

300
φ)B > Yi(g

{1,...,n−1}) =
299

300

1

299
(1− 1

300
φ)B,

whereas Yi(g′) = 0 for Players i = 201, . . . , 299. It holds that Y300(g′) = Y300(g
{1,...,n−1}) >

0. The farsighted improving path is constructed by first adding the link 100, 300 to

g{1,...,n−1}, resulting in g1 = g{1,...,n−1} + 100, 300. Since Y100(g′) > Y100(g
{1,...,n−1})

and Y300(g′) = Y300(g
{1,...,n−1}), this step is feasible. Since d100(g1) = 299 > di(g1)

for all i 6= 100, it holds that Yi(g1) = 0 for all i 6= 100. Players 1, . . . , 99 and Players

101, 199 get strictly higher payoff in g′ than in g1, so are willing to delete any link.

Form networks g2, . . . , g199 by having Player i delete his link with Player i+200, and

Player i + 100 delete his link with Player i + 200, where i = 1, . . . , 99. Notice that

the payoffs of all players, except Player 100, in the networks g2, . . . , g199 are equal
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to 0. It holds that d1(g199) = · · · = d99(g199) = d101(g199) = · · · = d199(g199) = 297,

d100(g199) = 299, d200(g199) = 298, and d300(g199) = 1. Next, player 200 cuts his

link with Player 100, resulting in g200 = g199 − 100, 200. Finally, Player 300 cuts

his link with Player 100, resulting in g201 = g200 − 100, 300 = g′. We have that

g′ ∈ f201(g
{1,...,n−1}), so 201 degrees of farsightedness are needed, much less than

n− 2 = 298.

It also follows that for low values of the fine, less than n− 1 degrees of farsight-

edness may suffi ce to form the complete network.
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