Low Risk-free Rates, Competition, and Bank Lending Booms

Yan Liu

Stony Brook University Macro Workshop

April 2, 2014

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 1/19

Motivation

• AN ON-GOING DEBATE

Was the low risk-free rate environment during 2002–2006 an important reason for the credit boom leading up to the subprime crisis? Generally, is the risk-taking channel of monetary policy important?

- Recent empirical work show the importance of such a channel.
 - Maddaloni & Peydro (2011), Ioannidou et al. (2009), Altunbas et al. (2010), Jimenez et al. (2014).
- One particular mechanism of the risk-taking channel: Lower risk-free rate ⇒ banks compete more ⇒ take more risk.
- QUESTION

How to understand such a competition mechanism in theory?

Motivation

• AN ON-GOING DEBATE

Was the low risk-free rate environment during 2002–2006 an important reason for the credit boom leading up to the subprime crisis? Generally, is the risk-taking channel of monetary policy important?

- Recent empirical work show the importance of such a channel.
 - Maddaloni & Peydro (2011), Ioannidou et al. (2009), Altunbas et al. (2010), Jimenez et al. (2014).
- One particular mechanism of the risk-taking channel: Lower risk-free rate ⇒ banks compete more ⇒ take more risk.

QUESTION

How to understand such a competition mechanism in theory?

Motivation

• AN ON-GOING DEBATE

Was the low risk-free rate environment during 2002–2006 an important reason for the credit boom leading up to the subprime crisis? Generally, is the risk-taking channel of monetary policy important?

- Recent empirical work show the importance of such a channel.
 - Maddaloni & Peydro (2011), Ioannidou et al. (2009), Altunbas et al. (2010), Jimenez et al. (2014).
- One particular mechanism of the risk-taking channel:
 Lower risk-free rate ⇒ banks compete more ⇒ take more risk.

QUESTION

How to understand such a competition mechanism in theory?

Motivation

• AN ON-GOING DEBATE

Was the low risk-free rate environment during 2002–2006 an important reason for the credit boom leading up to the subprime crisis? Generally, is the risk-taking channel of monetary policy important?

- Recent empirical work show the importance of such a channel.
 - Maddaloni & Peydro (2011), Ioannidou et al. (2009), Altunbas et al. (2010), Jimenez et al. (2014).
- One particular mechanism of the risk-taking channel:
 Lower risk-free rate ⇒ banks compete more ⇒ take more risk.
- QUESTION

How to understand such a competition mechanism in theory?

3/3/14 2/19

Overview of this paper

- Based on my work (Liu, 2014), I study the implications of time-varying risk-free rate on the dynamics of bank lending and competition.
- I model bank's risk-taking behavior through endogenously chosen lending standards.
 - In most works on risk-taking, banks choose risk *level* directly.
- MAIN RESULTS
 - An inverse U relationship between risk-taking and risk-free rate
 ⇒ very low risk-free rate leads to high risk via low lending standards.
 - Commitment to low risk-free rate over an extended period leads to more risk-taking over time.

Overview of this paper

- Based on my work (Liu, 2014), I study the implications of time-varying risk-free rate on the dynamics of bank lending and competition.
- I model bank's risk-taking behavior through endogenously chosen lending standards.
 - In most works on risk-taking, banks choose risk *level* directly.
- MAIN RESULTS
 - An inverse U relationship between risk-taking and risk-free rate
 ⇒ very low risk-free rate leads to high risk via low lending standards.
 - Commitment to low risk-free rate over an extended period leads to more risk-taking over time.

Overview of this paper

- Based on my work (Liu, 2014), I study the implications of time-varying risk-free rate on the dynamics of bank lending and competition.
- I model bank's risk-taking behavior through endogenously chosen lending standards.
 - In most works on risk-taking, banks choose risk *level* directly.
- MAIN RESULTS
 - An inverse U relationship between risk-taking and risk-free rate
 ⇒ very low risk-free rate leads to high risk via low lending standards.
 - Commitment to low risk-free rate over an extended period leads to more risk-taking over time.

3/3/14 3/19

My interpretation of changes in competition

Let π be the realized profit rate of a bank in a market where a (small) number of banks compete with each other

3/3/14 4/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- TIME: discrete, infinite horizon.
- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• TIME: discrete, infinite horizon.

- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ◆ ○ へ ○

- TIME: discrete, infinite horizon.
- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

- TIME: discrete, infinite horizon.
- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

- TIME: discrete, infinite horizon.
- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

- TIME: discrete, infinite horizon.
- AGENTS: unit-mass borrowers; N identical banks, i = 1, ..., N.
- TECHNOLOGY: borrowers invest by borrowing from banks; banks screen "bad" borrowers from "good" ones.
- PREFERENCES: both agents are risk-neutral, maximizing discount value of payoffs in each period.
- AGGREGATE SHOCK: (gross) risk-free rate shock $r_{f,t} \sim$ Markovian.

Borrower's investment opportunity

• In every period, each borrower draws an idiosyncratic shock $\theta \in \{\theta^g, \theta^b\} \equiv \{g, b\}$ with $\theta^g > \theta^b$, iid over time and borrowers.

• θ is a borrower's private information.

• Each θ borrower has a 1-period investment opportunity:

$$z \xrightarrow{\theta} zx \text{ when succeed}$$
with $x > 1 > c$.

$$z \xrightarrow{1-\theta} zc \text{ when fail}$$
with $x > 1 > c$.
Per unit NPV ^{θ} $\equiv \frac{\theta x + (1-\theta)c - r_f}{r_f} = \frac{\theta x + (1-\theta)c}{r_f} - 1$.
Assume NPV^g > 0 > NPV^b, $\forall r_f$.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 6/19

Borrower's investment opportunity

- In every period, each borrower draws an idiosyncratic shock $\theta \in \{\theta^g, \theta^b\} \equiv \{g, b\}$ with $\theta^g > \theta^b$, iid over time and borrowers.
- θ is a borrower's private information.
- Each θ borrower has a 1-period investment opportunity:

Yan Liu (SBU)

3/3/14 6/19

Borrower's investment opportunity

- In every period, each borrower draws an idiosyncratic shock $\theta \in \{\theta^g, \theta^b\} \equiv \{g, b\}$ with $\theta^g > \theta^b$, iid over time and borrowers.
- θ is a borrower's private information.
- Each θ borrower has a 1-period investment opportunity:

• Per unit NPV^{$$\theta$$} = $\frac{\theta x + (1 - \theta)c - r_f}{r_f} = \frac{\theta x + (1 - \theta)c}{r_f} - 1.$
Assume NPV ^{g} > 0 > NPV ^{b} , $\forall r_f$.

• Borrowers have limited liability, but no resource for investment.

- Each bank publicly offers a loan contract l = (r, q).
 r: gross interest rate; q: screening intensity.
- Each borrower applies for a loan of a given size *z* from one bank.
- If lending to a θ borrower at $r \ge 1$, bank's unit (expected) payoff:

$$\eta^{\theta}(r, r_f) = \frac{\theta r + (1 - \theta)c}{r_f} - 1.$$

And borrower's unit (expected) payoff: $\theta(x - r)/r_f$.

Low Risk-free Rates and Banking Booms

3/3/14 7/19

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

- Borrowers have limited liability, but no resource for investment.
- Each bank publicly offers a loan contract l = (r, q).
 r: gross interest rate; q: screening intensity.
- Each borrower applies for a loan of a given size *z* from one bank.
- If lending to a θ borrower at $r \ge 1$, bank's unit (expected) payoff:

$$\eta^{\theta}(r, r_f) = \frac{\theta r + (1 - \theta)c}{r_f} - 1.$$

And borrower's unit (expected) payoff: $\theta(x-r)/r_f$.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 7/19

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

- Borrowers have limited liability, but no resource for investment.
- Each bank publicly offers a loan contract l = (r, q).
 r: gross interest rate; q: screening intensity.
- Each borrower applies for a loan of a given size *z* from one bank.
- If lending to a θ borrower at $r \ge 1$, bank's unit (expected) payoff:

$$\eta^{\theta}(r, r_f) = \frac{\theta r + (1 - \theta)c}{r_f} - 1.$$

And borrower's unit (expected) payoff: $\theta(x-r)/r_f$.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 7/19

- Borrowers have limited liability, but no resource for investment.
- Each bank publicly offers a loan contract l = (r, q).
 r: gross interest rate; q: screening intensity.
- Each borrower applies for a loan of a given size *z* from one bank.
- If lending to a θ borrower at $r \ge 1$, bank's unit (expected) payoff:

$$\eta^{\theta}(r, r_f) = \frac{\theta r + (1 - \theta)c}{r_f} - 1.$$

And borrower's unit (expected) payoff: $\theta(x - r)/r_f$.

3/3/14 7/19

• As NPV^b < 0, lending to bad borrowers is never profitable.

- Banks distinguish good borrowers from bad ones by screening.
- At intensity q, screening generates a signal $\phi \in \{G, B\}$ satisfying

$$\Pr(\phi = G | \theta = g) = \Pr(\phi = B | \theta = b) = q \in \left[\frac{1}{2}, 1\right].$$

q determines posterior probability $Pr(g|\phi,q)$ via Bayes law.

Banks pay a cost zC(q) for screening a borrower at intensity q.
 C(q) is convex in q.

- As $NPV^b < 0$, lending to bad borrowers is never profitable.
- Banks distinguish good borrowers from bad ones by screening.
- At intensity q, screening generates a signal $\phi \in \{G, B\}$ satisfying

$$\Pr(\phi = G | \theta = g) = \Pr(\phi = B | \theta = b) = q \in \left[\frac{1}{2}, 1\right].$$

q determines posterior probability $Pr(g|\phi, q)$ via Bayes law.

Banks pay a cost zC(q) for screening a borrower at intensity q.
 C(q) is convex in q.

- As $NPV^b < 0$, lending to bad borrowers is never profitable.
- Banks distinguish good borrowers from bad ones by screening.
- At intensity q, screening generates a signal $\phi \in \{G, B\}$ satisfying

$$\Pr(\phi = G | \theta = g) = \Pr(\phi = B | \theta = b) = q \in \left[\frac{1}{2}, 1\right].$$

q determines posterior probability $Pr(g|\phi, q)$ via Bayes law.

Banks pay a cost zC(q) for screening a borrower at intensity q.
 C(q) is convex in q.

3/3/14 8/19

- As $NPV^b < 0$, lending to bad borrowers is never profitable.
- Banks distinguish good borrowers from bad ones by screening.
- At intensity q, screening generates a signal $\phi \in \{G, B\}$ satisfying

$$\Pr(\phi = G | \theta = g) = \Pr(\phi = B | \theta = b) = q \in \left[\frac{1}{2}, 1\right].$$

q determines posterior probability $Pr(g|\phi, q)$ via Bayes law.

Banks pay a cost zC(q) for screening a borrower at intensity q.
 C(q) is convex in q.

t				

Low Risk-free Rates and Banking Booms

3/3/14 9/19

r_f, θ re	alized				
t					

Low Risk-free Rates and Banking Booms

3/3/14 9/19

r_f, θ realized		
t		
Bank loans p $\ell = (\ell^{1})^{1}$	s post Bank <i>i</i> publicly: borrow $,, \ell^N$) and ma decisi	

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Model Setup

Timing within a period

r_f, θ realized		Each borrower		If approved, to	the	
		applies for a loan		borrower gets a	Ioan	
		$\ell = (r, q)$ from		with r ; if den	ied,	
		some $i \in N$		wait until $t +$	- 1	
-+t					<i>t</i> + 1 →	
	Banks post Banl		Bank <i>i</i> s	Bank <i>i</i> screens the		
	loans publicly: bor		borrowe	borrower with q		
	$\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ and		and mak	nd makes lending		
	de		decisio	decisions A/D		

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Model Setup

Timing within a period

r_f, θ realized		Each borrower applies for a loan $\ell = (r, q)$ from some $i \in N$		If approved, the borrower gets a loan with r ; if denied, wait until $t + 1$			
-+t					<u>_</u>		t+1
	Banks loans p $\boldsymbol{\ell} = (\ell^1, \ell^2)$	Banks post loans publicly: borrow $\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ and main decision		creens the or with q es lending ons A/D		Pay distri	offs buted

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Model Setup

Timing within a period

r_f, θ realized		Each borrower applies for a loan $\ell = (r, q)$ from some $i \in N$		If approved, the borrower gets a loan with r ; if denied, wait until $t + 1$		
t						$ \xrightarrow{t+1} $
	Banks post loans publicly: $\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ and a definition of the second s		Bank <i>i</i> so borrowe and make decisio	creens the r with q es lending ns A/D		Payoffs distributed

Low Risk-free Rates and Banking Booms

3/3/14 9/19

Formulating the lending game

- A θ borrower's strategy: choose which ℓ^i to apply for given $\boldsymbol{\ell}$.
- A θ borrower's unit payoff of choosing $t^i = (r^i, q^i)$:

$$\frac{\theta(x-r^i)}{r_f} p^{\theta}(\ell^i), \quad p^{\theta}(\ell): \text{ approval probability.}$$

• Bank *i*'s strategy: first choose what ℓ^i to post, then choose whether to approve or deny the loan when a borrower applies for ℓ^i .

Formulating the lending game

- A θ borrower's strategy: choose which ℓ^i to apply for given $\boldsymbol{\ell}$.
- A θ borrower's unit payoff of choosing $\ell^i = (r^i, q^i)$:

$$\frac{\theta(x-r^{i})}{r_{f}}p^{\theta}(\ell^{i}), \quad p^{\theta}(\ell): \text{ approval probability.}$$

• Bank *i*'s strategy: first choose what ℓ^i to post, then choose whether to approve or deny the loan when a borrower applies for ℓ^i .

Formulating the lending game

- A θ borrower's strategy: choose which ℓ^i to apply for given $\boldsymbol{\ell}$.
- A θ borrower's unit payoff of choosing $\ell^i = (r^i, q^i)$:

$$\frac{\theta(x-r^i)}{r_f} p^{\theta}(\ell^i), \quad p^{\theta}(\ell): \text{ approval probability.}$$

• Bank *i*'s strategy: first choose what ℓ^i to post, then choose whether to approve or deny the loan when a borrower applies for ℓ^i .

• Recall that
$$\eta^g(r, r_f) = [\theta^g r + (1 - \theta)c]/r_f - 1$$
; also $\eta^b(r, r_f)$.

• Bank's unit payoff from lending to a ϕ borrower at $\ell = (r, q)$:

$$\eta^{\phi}(\ell, r_f) = \Pr(g|\phi, q)\eta^g(r, r_f) + \Pr(b|\phi, q)\eta^b(r, r_f).$$

• Bank *i*'s net unit payoff if borrowers apply for ℓ^i :

$$\eta(\ell^i, r_f) - C(q^i) \quad \text{where}$$

$$\eta(\ell^i, r_f) = \Pr(G) \max\{\eta^G(\ell^i, r_f), 0\} + \Pr(B) \max\{\eta^B(\ell^i, r_f), 0\}.$$

This lending game is repeated over time.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 11/19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Recall that
$$\eta^g(r, r_f) = [\theta^g r + (1 - \theta)c]/r_f - 1$$
; also $\eta^b(r, r_f)$.

• Bank's unit payoff from lending to a ϕ borrower at $\ell = (r, q)$:

$$\eta^{\phi}(\ell, r_f) = \Pr(g|\phi, q)\eta^g(r, r_f) + \Pr(b|\phi, q)\eta^b(r, r_f).$$

• Bank *i*'s net unit payoff if borrowers apply for ℓ^i :

 $\eta(\ell^i, r_f) - C(q^i) \quad \text{where}$ $\eta(\ell^i, r_f) = \Pr(G) \max\{\eta^G(\ell^i, r_f), 0\} + \Pr(B) \max\{\eta^B(\ell^i, r_f), 0\}.$

• This lending game is repeated over time.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 11/19

• Recall that
$$\eta^g(r, r_f) = [\theta^g r + (1 - \theta)c]/r_f - 1$$
; also $\eta^b(r, r_f)$.

• Bank's unit payoff from lending to a ϕ borrower at $\ell = (r, q)$:

$$\eta^{\phi}(\ell, r_f) = \Pr(g|\phi, q)\eta^g(r, r_f) + \Pr(b|\phi, q)\eta^b(r, r_f).$$

• Bank *i*'s net unit payoff if borrowers apply for ℓ^i :

$$\eta(\ell^i, r_f) - C(q^i) \quad \text{where}$$

$$\eta(\ell^i, r_f) = \Pr(G) \max\{\eta^G(\ell^i, r_f), 0\} + \Pr(B) \max\{\eta^B(\ell^i, r_f), 0\}.$$

• This lending game is repeated over time.

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 11/19

• Recall that
$$\eta^g(r, r_f) = [\theta^g r + (1 - \theta)c]/r_f - 1$$
; also $\eta^b(r, r_f)$.

• Bank's unit payoff from lending to a ϕ borrower at $\ell = (r, q)$:

$$\eta^{\phi}(\ell, r_f) = \Pr(g|\phi, q)\eta^g(r, r_f) + \Pr(b|\phi, q)\eta^b(r, r_f).$$

• Bank *i*'s net unit payoff if borrowers apply for ℓ^i :

$$\eta(\ell^i, r_f) - C(q^i) \quad \text{where}$$

$$\eta(\ell^i, r_f) = \Pr(G) \max\{\eta^G(\ell^i, r_f), 0\} + \Pr(B) \max\{\eta^B(\ell^i, r_f), 0\}.$$

• This lending game is repeated over time.

3/3/14 11/19

Determination of lending standard

- Under mild parametric assumptions, banks always choose an efficient q^e such that all *B* borrowers are denied credit.
- Moreover, given r, such q^e solves

$$\max_{q} \eta(\ell, r_f) - C(q) = \eta(r, q, r_f) - C(q),$$

and $q^e(r, r_f)$ is increasing in r and decreasing in r_f .

• If borrowers choose $\ell = (r, q^e(r, r_f))$, the profit rate function is

$$\pi(\ell, r_f) = \eta(r, q^e(r, r_f), r_f) - C(q^e(r, r_f)),$$

which is increasing in r and decreasing in r_f .

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 12/19

Determination of lending standard

- Under mild parametric assumptions, banks always choose an efficient q^e such that all *B* borrowers are denied credit.
- Moreover, given r, such q^e solves

$$\max_{q} \eta(\ell, r_f) - C(q) = \eta(r, q, r_f) - C(q),$$

and $q^e(r, r_f)$ is increasing in r and decreasing in r_f .

• If borrowers choose $\ell = (r, q^e(r, r_f))$, the profit rate function is

$$\pi(\ell, r_f) = \eta(r, q^e(r, r_f), r_f) - C(q^e(r, r_f)),$$

which is increasing in r and decreasing in r_f .

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 12/19

Determination of lending standard

- Under mild parametric assumptions, banks always choose an efficient q^e such that all *B* borrowers are denied credit.
- Moreover, given r, such q^e solves

$$\max_{q} \eta(\ell, r_f) - C(q) = \eta(r, q, r_f) - C(q),$$

and $q^e(r, r_f)$ is increasing in r and decreasing in r_f .

• If borrowers choose $\ell = (r, q^e(r, r_f))$, the profit rate function is

$$\pi(\ell, r_f) = \eta(r, q^e(r, r_f), r_f) - C(q^e(r, r_f)),$$

which is increasing in r and decreasing in r_f .

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 12/19

Bank's profit function

• Given $\ell = (r, q^e(r, r_f))$, payoffs to good and bad borrowers are

$$[\theta^{g}(x-r)/r_{f}]q^{e}(r,r_{f})$$
 and $[\theta^{b}(x-r)/r_{f}](1-q^{e}(r)).$

Moreover, both types of borrowers prefer a loan with a lower r.

- Let $\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ where $\ell^i = (r^i, q^e(r^i, r_f))$, and let ℓ_{\min} be the contract with minimum r.
- Bank's *i*'s profit function:

$$\Pi^{i}(\boldsymbol{\ell}, r_{f}) = \begin{cases} \frac{1}{N_{\min}} \pi(\ell_{\min}, r_{f}), & \text{if } \ell^{i} = \ell_{\min}; \\ 0, & \text{otherwise.} \end{cases}$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 13/19

Bank's profit function

• Given $\ell = (r, q^e(r, r_f))$, payoffs to good and bad borrowers are

$$[\theta^{g}(x-r)/r_{f}]q^{e}(r,r_{f})$$
 and $[\theta^{b}(x-r)/r_{f}](1-q^{e}(r))$.

Moreover, both types of borrowers prefer a loan with a lower r.

- Let $\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ where $\ell^i = (r^i, q^e(r^i, r_f))$, and let ℓ_{\min} be the contract with minimum r.
- Bank's *i*'s profit function:

$$\Pi^{i}(\boldsymbol{\ell}, r_{f}) = \begin{cases} \frac{1}{N_{\min}} \pi(\ell_{\min}, r_{f}), & \text{if } \ell^{i} = \ell_{\min}; \\ 0, & \text{otherwise.} \end{cases}$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 13/19

Bank's profit function

• Given $\ell = (r, q^e(r, r_f))$, payoffs to good and bad borrowers are

$$[\theta^{g}(x-r)/r_{f}]q^{e}(r,r_{f})$$
 and $[\theta^{b}(x-r)/r_{f}](1-q^{e}(r)).$

Moreover, both types of borrowers prefer a loan with a lower r.

- Let $\boldsymbol{\ell} = (\ell^1, \dots, \ell^N)$ where $\ell^i = (r^i, q^e(r^i, r_f))$, and let ℓ_{\min} be the contract with minimum r.
- Bank's *i*'s profit function:

$$\Pi^{i}(\boldsymbol{\ell}, r_{f}) = \begin{cases} \frac{1}{N_{\min}} \pi(\ell_{\min}, r_{f}), & \text{if } \ell^{i} = \ell_{\min}; \\ 0, & \text{otherwise.} \end{cases}$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 13/19

- The repeated lending game can be solved as a repeated game among N banks with profit function $\Pi^i(\boldsymbol{\ell}, r_f)$.
- I focus on the optimal symmetric subgame-perfect equilibrium (SSPE).
- I use standard results in the repeated game literature to solve the model. In particular, it is sufficient to consider grim trigger strategy.
- Let $0 < \delta < 1$ denote the common discount factor for all banks.

- The repeated lending game can be solved as a repeated game among N banks with profit function $\Pi^i(\boldsymbol{\ell}, r_f)$.
- I focus on the optimal symmetric subgame-perfect equilibrium (SSPE).
- I use standard results in the repeated game literature to solve the model. In particular, it is sufficient to consider grim trigger strategy.
- Let $0 < \delta < 1$ denote the common discount factor for all banks.

- The repeated lending game can be solved as a repeated game among N banks with profit function $\Pi^i(\boldsymbol{\ell}, r_f)$.
- I focus on the optimal symmetric subgame-perfect equilibrium (SSPE).
- I use standard results in the repeated game literature to solve the model. In particular, it is sufficient to consider grim trigger strategy.
- Let $0 < \delta < 1$ denote the common discount factor for all banks.

- The repeated lending game can be solved as a repeated game among N banks with profit function $\Pi^i(\boldsymbol{\ell}, r_f)$.
- I focus on the optimal symmetric subgame-perfect equilibrium (SSPE).
- I use standard results in the repeated game literature to solve the model. In particular, it is sufficient to consider grim trigger strategy.
- Let $0 < \delta < 1$ denote the common discount factor for all banks.

Equilibrium dynamics: iid $\{r_{f,t}\}$

Suppose $r_f \in [1, R] \sim F(r_f)$

Proposition

There exists $\overline{\delta}$ such that if $1 - \frac{1}{N} \leq \delta < \overline{\delta}$, such that in the optimal SSPE

- $r^*(r_f)$ is decreasing in r_f ;
- $q^*(r_f) = q^e(r^*(r_f), r_f)$ is first increasing then decreasing in r_f ;
- $\pi^*(r_f)/\pi^m(r_f)$ is increasing in r_f , where $\pi^*(r_f) = \pi(r^*(r_f), q^*(r_f), r_f)$ and $\pi^m(r_f)$ is the monopoly profit rate.

• With iid shock, the equilibrium incentive constraints are

$$N\pi(\ell, r_f) \le \pi(\ell, r_f) + \frac{\delta}{1-\delta} \mathbb{E}\pi(\ell, r_f), \quad \forall r_f$$

• Low r_f causes deviation incentive to be high \Rightarrow monopoly profit rate can no be sustained for small r_f .

- Banks compete away this extra profit (relative to π^m) by lowering r.
- However, as $\partial_1 q^e(r, r_f) > 0 > \partial_2 q^e(r, r_f)$, only for very small r_f

$$\frac{\mathrm{d}q^*(r_f)}{\mathrm{d}r_f} = \frac{\mathrm{d}}{\mathrm{d}r_f}q^e(r^*(r_f), r_f) > 0.$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 16/19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• With iid shock, the equilibrium incentive constraints are

$$N\pi(\ell, r_f) \le \pi(\ell, r_f) + \frac{\delta}{1-\delta} \mathbb{E}\pi(\ell, r_f), \quad \forall r_f$$

- Low r_f causes deviation incentive to be high
 ⇒ monopoly profit rate can no be sustained for small r_f.
- Banks compete away this extra profit (relative to π^m) by lowering r.
- However, as $\partial_1 q^e(r, r_f) > 0 > \partial_2 q^e(r, r_f)$, only for very small r_f

$$\frac{\mathrm{d}q^*(r_f)}{\mathrm{d}r_f} = \frac{\mathrm{d}}{\mathrm{d}r_f}q^e(r^*(r_f), r_f) > 0.$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 16/19

• With iid shock, the equilibrium incentive constraints are

$$N\pi(\ell, r_f) \le \pi(\ell, r_f) + \frac{\delta}{1-\delta} \mathbb{E}\pi(\ell, r_f), \quad \forall r_f$$

- Low r_f causes deviation incentive to be high
 ⇒ monopoly profit rate can no be sustained for small r_f.
- Banks compete away this extra profit (relative to π^m) by lowering r.
- However, as $\partial_1 q^e(r, r_f) > 0 > \partial_2 q^e(r, r_f)$, only for very small r_f

$$\frac{\mathrm{d}q^*(r_f)}{\mathrm{d}r_f} = \frac{\mathrm{d}}{\mathrm{d}r_f}q^e(r^*(r_f), r_f) > 0.$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 16/19

• With iid shock, the equilibrium incentive constraints are

$$N\pi(\ell, r_f) \le \pi(\ell, r_f) + \frac{\delta}{1-\delta} \mathbb{E}\pi(\ell, r_f), \quad \forall r_f$$

- Low r_f causes deviation incentive to be high
 ⇒ monopoly profit rate can no be sustained for small r_f.
- Banks compete away this extra profit (relative to π^m) by lowering r.
- However, as $\partial_1 q^e(r, r_f) > 0 > \partial_2 q^e(r, r_f)$, only for very small r_f

$$\frac{\mathrm{d}q^*(r_f)}{\mathrm{d}r_f} = \frac{\mathrm{d}}{\mathrm{d}r_f}q^e(r^*(r_f), r_f) > 0.$$

Yan Liu (SBU)

Low Risk-free Rates and Banking Booms

3/3/14 16/19

An extension to persistent shock

Suppose
$$r_{f,t+1} = (1-\rho)\overline{r}_f + \rho r_{f,t} + \epsilon_{t+1}$$
.

Proposition

There exists $\overline{\delta}$ such that if $1 - \frac{1}{N} \leq \delta < \overline{\delta}$, such that in the optimal SSPE

- $r^*(r_f)$ is decreasing in r_f ;
- $q^*(r_f) = q^e(r^*(r_f), r_f)$ is first increasing then decreasing in r_f ;
- $\pi^*(r_f)/\pi^m(r_f)$ is increasing in r_f .

Commitment to low r_f

Suppose the central bank commits to low risk-free rate over a period:

$$r_{f,t} \begin{cases} = 1, & t = 0, \dots, T \\ \sim F(\cdot), & t = T + 1, \dots, \infty \end{cases}$$

Proposition

For δ such that $1 - \frac{1}{N} \leq \delta < \overline{\delta}$, the optimal SSPE is characterized by

$$r_0^{**} > r_1^{**} > \dots > r_T^{**} = r^*(1), \quad q_0^{**} > q_1^{**} > \dots > q_T^{**} = q^*(1)$$

in the first T + 1 periods, and $r^*(r_f)$, $q^*(r_f)$ since T + 1.

Yan Liu (SBU)

3/3/14 18/19

Concluding remarks

To sum up

- An inverse U relationship between risk-taking and risk-free rate
 ⇒ very low risk-free rate leads to high risk via low lending standards.
- Commitment to low risk-free rate over an extended period leads to more risk-taking over time within the commitment period.

Repeated game: strategy and equilibrium **Game**

- History $-h^t = (s_t, \ell_{t-1}, s_{t-1}, \dots, \ell_0, s_0), \{s_t\}$ Markov.
- Strategy $-\sigma_t^i : h^t \mapsto \ell^i \in \mathscr{C}^e(s_t), \sigma_t = (\sigma_t^i)_{i \in \mathbb{N}}, \sigma = \{\sigma_t\}_{t=0}^{\infty}.$
- Common discount factor $0 < \delta < 1$, discount value under $\sigma | h^t$

$$V^{i}(\sigma|h^{t}) = \mathbb{E}^{\sigma} \left[\sum_{\tau=0}^{\infty} \delta^{\tau} \Pi^{i}(\boldsymbol{\ell}_{t+\tau}; s_{t+\tau}) \middle| h^{t} \right].$$

• Equilibrium: optimal symmetric subgame-perfect equilibrium (SSPE). — collusive equilibrium.

Optimal SSPE and grim trigger strategy

- Following standard results in the repeated game literature.
- Suffice to use symmetric grim trigger strategy:
 - $-\ell^*(s) = (R^*(s), q^*(s)) \text{ along the optimal equilibrium path.}$ - revert to $\ell^0(s)$ from *t* onwards if any deviation occurs at t - 1, $\Rightarrow 0$ continuation value, i.e., optimal punishment.
- $\Pi^*(s) \equiv \Pi(\ell^*(s); s) = z(s)\pi(\ell^*(s); s)/N$ and the optimal value $\mathbb{E}V^*(s) = \mathbb{E}\Pi^*(s)/(1-\delta) = \mathbb{E}z(s)\pi(\ell^*(s); s)/[N(1-\delta)].$

Associated maximization problem

• Optimal SSPE $\{\ell^*(s)\}$ solves $\max_{\ell^e(s)\in\mathscr{C}^e(s)} \mathbb{E}\Pi(s)$

subject to the intertemporal incentive constraint (IIC):

$$N\Pi(s) \le \Pi(s) + \delta \mathbb{E}_s V(\ell(\cdot)|s'), \quad \forall s.$$

- Deviation incentive: $N\Pi(s) = z\pi(\ell(s))$ infinitesimal undercutting.
- After deviation, 0 continuation value.
- Resemble to Rotemberg & Saloner '86 when s_t iid.