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Abstract

This paper studies intrinsic preferences for how information is revealed. We

enrich the standard dynamic choice model in two dimensions. First, we introduce

a novel choice domain that allows preferences to depend on how information is

revealed. Second, conditional on a given information partition, we allow prefer-

ences over state-contingent outcomes to depart from expected utility axioms. In

particular, we accommodate ambiguity sensitive preferences. We establish that a

dynamically consistent decision maker (DM) is averse to partial information if and

only if her static preferences satisfy a property called Event Complementarity. We

show that Event Complementarity is closely related to ambiguity aversion in popular

families of ambiguity preferences.
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1. Introduction

This paper studies the link between intrinsic preferences for information and ambiguity

preferences, in an environment with subjective uncertainty. To illustrate the problem that

motivates these results, consider the situation two economics Ph.D. students (say Alice

and Bob) on the job market face in December. Both have submitted many job applica-

tions, and are concerned about the possible job offers they might receive the following

March. Their future job outcomes depend not only on their own quality and performance,

but also on uncertain factors like the quality and performance of other candidates as well

as funding and tastes of different employers. Starting in late December and early January,

online forums like the Blu-Wiki and Economics Job Market Rumors post interview and

fly-out schedules for different schools, which provide partial information about the uncer-

tainty. We observe Alice and Bob exhibit very different attitudes regarding this partial

information. Alice checks very frequently for updates, while Bob avoids (with an obvious

effort) ever looking at this partial information.

Standard dynamic subjective expected utility (SEU) theory predicts that Alice and Bob

should be indifferent to the rumor information, as their optimal actions are simply to

maximize their own performance no matter what the rumors are. To accommodate Al-

ice and Bob’s choices, we enrich the standard dynamic choice model in two dimensions.

First, we introduce a novel choice domain that allows for ex-ante preferences over state-

contingent outcomes to be indexed by the intermediate information. Second, conditional

on a given information partition, we allow preferences over state-contingent outcomes to

depart from expected utility axioms. In particular we accommodate ambiguity sensitive

preferences. Under recursivity and additional axioms, we show the equivalence of two

properties: (i) aversion to partial information—that the decision maker (DM), just like

Bob, prefers having uncertainties resolved in one shot to first getting partial information

and then the remaining uncertainties resolved; and (ii) Event Complementarity—that

the DM prefers evaluating the state-contingent outcomes as a whole rather than evalu-

ating them conditional on separate events. We then show that Event Complementarity

and aversion to partial information are closely related to ambiguity attitudes. In famil-

iar classes of ambiguity preferences, we identify conditions that characterize aversion to

partial information.

The connection we establish between ambiguity attitudes and intrinsic preferences for

partial information is important for a number of reasons. From a theoretical perspective,

when ambiguity aversion implies intrinsic preferences for information, then endogenous

learning and information acquisition decisions can be different from those in a standard
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dynamic SEU model. In particular, one criticism regarding the importance of incorporat-

ing ambiguity in the long run steady state is that in a stationary environment, ambiguity

could eventually be learnt away. If learning is endogenous and ambiguity aversion un-

dermines the incentive to collect new information, however, then ambiguity can persist

in the long-run steady state. Of more direct policy relevance, recent work illustrates the

importance of ambiguity in finance and macroeconomics for providing more accurate and

robust dynamic measures of risk in financial positions.1 Our results suggest that the na-

ture and timing of information could be an important additional component to include in

the design of risk measures that account for ambiguity.

To illustrate the connection between ambiguity attitudes and information preferences

more explicitly, consider the classical Ellsberg Urn. The urn has 90 balls. 30 balls are

red, and 60 balls are either green or yellow, with the exact proportion unknown. The

decision maker (DM) places bets on the color of a ball drawn from the urn. In the static

setting, a typical Ellsbergian decision maker strictly prefers betting on red to betting

on green, but strictly prefer betting on the event that the ball is either green or yellow

({G, Y }), to betting on the event that the ball is either red or yellow ({R, Y }).







1 R

0 G

0 Y






≻0







0 R

1 G

0 Y






and







1 R

0 G

1 Y






≺0







0 R

1 G

1 Y







In the classical Ellsberg paradox, the relative attractiveness of betting on red to green is

reversed when yellow is also included as a winning state. One intuition for this reversal is

the complementarity between G and Y : while the probabilities of single events {G} and

{Y } are imprecise (ranging from 0 to 2
3
), the joint event {G, Y } has a precise probability

2
3
. This complementarity is considered indicative of ambiguity (see for example, [10]).

Information can erase this complementarity. To see this, suppose now there are two

periods: at the end of period 1, the DM will learn whether the drawn ball is yellow or

not, and at the end of period 2, the DM will learn the exact color of the drawn ball. The

period-1 partial information can be described by the partition π = {{R,G}, {Y }}. The

top event tree in Figure 1 illustrates the corresponding dynamic information structure.

Suppose when expecting information π, the DM evaluates the dynamic bets by backward

1For applications of ambiguity in finance and macroeconomics, see [14], [24], [4], and [27]. In addition,

[9] survey applications of ambiguity preferences in finance, and [2] survey applications of ambiguity

preferences in macroeconomics. For work on dynamic risk measures under ambiguity, see [37] and [1] and

references therein.
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Figure 1: Event trees. GY is a bet that wins 1 if the drawn ball is either green or yellow and 0

otherwise. RY is a bet that wins 1 if the drawn ball is either red or yellow and 0 otherwise. In the top

tree, the partition π = {{R,G}, {Y }}. In the bottom tree, the partition is the trivial no information

partition π0 = {{R,G, Y }}.

recursion: she first contemplates how she will rank acts at the end of stage 1, conditional on

the realization of either event {R,G} or event {Y }, and then aggregates these conditional

preferences to form the ex-ante preferences expecting π. In this way, acts are evaluated

separately for payoffs on events {R,G} and payoffs on event {Y }, so the complementarity

between G and Y is not taken into account. By partitioning the event {G, Y } into the

subevents {G} and {Y }, information π breaks the complementarity between G and Y .

On the other hand, if the DM is not told anything at the end of stage 1, an information

structure illustrated by the bottom event tree π0 in Figure 1, this complementarity is fully

taken into account. So if a DM is ambiguity averse and values this complementarity, then

she will prefer event tree π0 to event tree π and exhibit an aversion to partial information

in the interim stage.

Formally, we study a two-period model where state-dependent consequences are realized

in the second period, and some partial information π, a partition of the state space S,

is revealed in the first period. In particular, we relax reduction, an assumption that the
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DM is indifferent to the temporal resolution of uncertainty. We do so by considering

preferences on the product space of information partitions and Anscombe-Aumann acts

(Π×F). So in ex-ante period 0, preferences are indexed by the expected period-1 partition

π. In period 1, when an event in the partition π is revealed to contain the true state,

preferences are updated conditional on this event. We consider as primitives the ex-ante

and conditional preferences.

In Section 3, we give axioms under which ex-ante preferences and conditional preferences

have a recursive representation. For a fixed partition π, ex-ante preferences are connected

with conditional preferences through recursivity axioms. Across partitions, we character-

ize an updating rule that ensures all conditional preferences are derived from the same

static unconditional preferences. In this way, ex-ante preferences across partitions are

generated by the same static unconditional preferences and thus reflect consistent beliefs

about events in S.

Under this recursive representation, we establish the equivalence between aversion to par-

tial information in the ex-ante preferences and a property on the static unconditional

preferences called Event Complementarity. We show that Event Complementarity cap-

tures the intuition of complementarity in the Ellsberg example and thus the concept

of ambiguity aversion. In Section 4, we further explore the intersection between Event

Complementarity (and thus preferences for partial information) and popular models of

ambiguity preferences. We find that for maxmin expected utility (MEU) [16] and Cho-

quet expected utility (CEU) [38], there is a tight connection between ambiguity aversion

and aversion to partial information, and ambiguity loving and attraction to partial infor-

mation. For the more general class of variational preferences [33], this connection is more

delicate. For variational preferences, we identify a condition on the cost function that

characterizes aversion to partial information. We also identify joint conditions on the cost

function and acts that characterize local aversion to partial information at a particular

act. Finally, we show that for multiplier preferences [24, 43], ex-ante preferences exhibit

partial information neutrality.

In Section 5, we extend the model to allow for choices from menus after partial information

is revealed, and study the value of information under ambiguity. The value of information

is not monotonic, a natural implication of intrinsic aversion to partial information. We

show that intrinsic aversion to partial information is equivalent to a preference for perfect

information in the extended preferences.2 We also show by a counterexample that the

value of information is not monotone in the degree of ambiguity aversion.

2This is similar to Proposition 2 in [5].
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This paper makes several novel contributions. First, we identify a connection between am-

biguity attitudes and preferences for partial information, which is of both theoretical and

applied interest. Second, this paper introduces a model of dynamic ambiguity preferences

across different information structures, and reconciles the well-known tension between

dynamic consistency and ambiguity preferences through relaxing reduction.3 Third, this

paper makes an independent contribution to the study of updating rules for ambiguity

sensitive preferences. In particular, we provide a behavioral characterization for a simple

updating rule for variational preferences.

One limitation of this work is that the behavioral characterization for updating is only

well-defined for the class of translation invariant preferences. This rules out the second

order belief models [29, 35, 40], another important family of ambiguity preferences. In

section 6, we discuss information preferences for second order belief models.

1.1 Related Literature

This paper belongs to the literature on dynamic decision making under ambiguity. [13]

axiomatize recursive preferences over adapted consumption processes where all conditional

preferences are maxmin expected utility (MEU), and find that dynamic consistency (our

π-Recursivity) implies that the prior belief set has to satisfy a “rectangularity” restriction.

Later work axiomatizes recursive preferences for other static ambiguity preferences and

finds similar restrictions [28, 34].

In fact, [41] shows that within a given filtration, dynamic consistency implies Savage’s

Sure-Thing Principle and Bayesian updating. Together with reduction, dynamic consis-

tency rules out modal Ellsberg preferences and thus ambiguity.4 To allow for ambiguity,

Siniscalchi studies preferences over a richer domain of decision trees, and relaxes dy-

namic consistency by introducing a weaker axiom called Sophistication. Together with

auxiliary axioms, he proposes a general approach where preferences can be dynamically

inconsistent, and the DM addresses these inconsistencies through Strotz-type Consistent

Planning.

In this paper, we start from the observation that the noted tension between dynamic

consistency and ambiguity relies on reduction, that is, on the assumption that the DM

is indifferent to the temporal resolution of uncertainties. However, experimental evidence

3This point is discussed in more detail in the related literature section.
4See also earlier work by [8].
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suggests that reduction is often violated in environments with objective risk.5 For exam-

ple, [21] finds evidence for non-reduction of compound lotteries and ambiguity aversion,

as well as a positive association between the two. In a dynamic portfolio choice experi-

ment, [3] find that when a DM is committed to some ex-ante portfolio, higher frequency

of information feedback leads to lower willingness to invest in risky assets. In this pa-

per, we explore how dynamic consistency and unrestricted ambiguity preferences can be

reconciled by relaxing reduction.

Thus this paper is also related to a rich literature that relaxes reduction and studies in-

trinsic preferences for early or late resolution of uncertainty. This was initially formalized

by [32] by introducing a novel domain of objective temporal lotteries and subsequently

extended by [11, 12] to study asset pricing. [18, 19] link time preferences to intrinsic pref-

erences for information. In a purely subjective domain, [44] shows that even with standard

discounting most models of ambiguity aversion display some preference with regard to the

timing of resolution, with the notable exception of the MEU model. Motivated by exper-

imental evidence,6 recent work studies preferences for one-shot versus gradual resolution

of (objective) uncertainty. In the domain of objective two-stage compound lotteries,7 [5]

identifies a link between preferences for one-shot resolution of uncertainty and Allais-type

behaviors. In their reference-dependent utility model, [30] also find preferences for get-

ting information “clumped together rather than apart.” In contrast, here we identify a

link between ambiguity attitudes and intrinsic preferences for partial information over

subjective uncertainty.

Finally, our work is also related to the literature on consequentialist updating rules for

preferences that violate Savage’s Sure-Thing Principle.8 [36] introduces a coherence prop-

erty that characterizes the prior-by-prior Bayesian updating rule for MEU preferences.

[6] then apply this coherency property to characterize full Bayesian updating for Choquet

expected utility (CEU) preferences. Here we apply this property to general translation in-

variant preferences to connect unconditional and conditional preferences. We then show

that this characterizes a simple updating rule for variational preferences, which nests

previous results for Bayesian updating in the MEU and multiplier preferences cases.

5To my best knowledge, we don’t have direct evidence on violation of reduction in environments

with subjective uncertainty. One potential experimental design to test reduction is the Ellsberg example

illustrated in the introduction.
6For example, [17], [20], and [3].
7[39] was the first to study two-stage compound lotteries without reduction.
8Alternatively, [22, 23] relax consequentialism, and characterize dynamically consistent updating rules

for ambiguity preferences. They use a weaker notion of dynamic consistency than ours.
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2. Set-up

2.1 Preliminaries

Subjective uncertainty is modeled by a finite set S of states of the world, with elements

s ∈ S, describing all contingencies that could possibly happen. Let Σ be the power set

of S. ∆(S) is the set of all probabilities on S. For any E ⊆ S, ∆(E) denotes the set of

probabilities on (S,Σ) such that p(E) = 1.

Z is the set of deterministic consequences. We assume that Z is a separable metric space.

Let X = ∆(Z), the set of all objective lotteries over Z, endowed with the weak topology.

An act f : S → X is a mapping that associates to every state a lottery in X .

Let F be the set of all such acts, endowed with the product topology. An act f is constant

if there is some x ∈ X such that f(s) = x, ∀s; in this case f is identified with x. For

all f, g ∈ F , E ∈ Σ, fEg denotes the act such that (fEg)(s) = f(s) if s ∈ E, and

(fEg)(s) = g(s) if s /∈ E. For any f, g ∈ F , α ∈ (0, 1), αf + (1 − α)g denotes the

pointwise mixture of f and g: (αf + (1− α)g)(s) = αf(s) + (1− α)g(s).

Let B(S) be the space of all real-valued functions on S, endowed with the sup-norm. For

any interval K ⊆ R, B(S,K) denotes the subspace of functions that take values in K.

Partial information is a partition of S. A generic partition is denoted π = {E1, . . . , En},

where the sets Ei are nonempty and pairwise disjoint, Ei ∈ Σ for each i, and ∪n
i=1Ei = S.

Let Π be the set of all such partitions. In particular, π0 = {S} denotes the coarsest

partition, capturing the case when no information is learned in the intermediate stage,

and π∗ = {{s1}, . . . , {s|S|}} denotes the finest partition, capturing the case when all

relevant uncertainties are resolved in the intermediate stage.

Finally, for all π, let Fπ be the subset of π-measurable acts in F .

2.2 Information Acquisition Problem

We consider a two stage information acquisition problem. The DM is endowed with some

compact menu F ⊆ F . At stage 1, the DM acquires some partial information π by paying

a cost c(π), where c : Π → R. At stage 2, she learns which event in π realizes, and chooses

an action from the menu F contingent on that event. Finally, the state s realizes and the

DM receives the consequence of her chosen action.

8



π0 π π∗

s1

s2

s3

S

s1

s2

s3

{s1, s2}

{s3}

s1

s2

s3

s1

s2

s3

Figure 2: Information Partitions of S = {s1, s2, s3}.

For any menu F , the information acquisition decision reflects the standard tradeoff be-

tween the cost and benefit of getting information π. The DM will choose π ∈ Π to

solve

max
π∈Π

V (π, F )− c(π)

where V (π, F ) is the value of the decision problem (π, F ). Because the cost c(π) is

deterministic, we focus on how the value function is affected by ambiguity attitudes.

For any π = {E1, . . . , En}, ∀Ei, let f ∗
i be the optimal act conditional on event Ei. Ex-

ante, if information π is chosen, the DM can expect to get state contingent consequence

of f ∗ = f ∗
1E1f

∗
2E2 · · · f

∗
n−1En−1f

∗
n, and the value of decision problem (π, F ) is given by

V (π, F ) = V (π, f ∗). So the information acquisition problem can be reduced to the study

of V : Π×F → R, the evaluation of singleton menus, expecting intermediate information

π.

3. Intrinsic Preferences for Information

In this section, we show that ambiguity aversion is closely related to intrinsic information

aversion. We first focus on the value of decision problems when menus are singletons,

so the domain of preferences is Π × F . We develop a dynamic model of ambiguity

averse preferences which retains recursivity but relaxes reduction, so information could

potentially affect the evaluation of a single act. The extension to multi-action menus will

be studied in the next section.

Formally, suppose the DM has ex-ante preferences < over Π× F .9 Then (π, f) < (π′, g)

9We endow Π with the discrete topology, and put the product topology on Π×F .
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means that the DM prefers act f (or equivalently, the singleton menu {f}) when antici-

pating information π, to act g when anticipating information π′. For given information π,

upon learning that the state s lies in event E in the intermediate stage, the DM updates

her prior preferences < to E-conditional preferences <E . We assume that the conditional

preferences <E depend only on the event E but not on π, so for each E, conditional

preferences <E are defined on F .10 We also denote by <π the restriction of < to {π}×F ,

interpreted as the DM’s ex-ante preferences over F when expecting information π. Thus

< and {<E} are the primitive preferences of our model.

We look for a dynamic model of preferences over Π×F that satisfies two criteria. First,

within a given partition π = {E1, E2, · · · , En}, <π and {<Ei
}ni=1 satisfy a recursive rela-

tion, in the following sense. For any act f , construct another act f ′ by replacing f on

each Ei by a constant act xi, where xi ∼Ei
f . So f ′(s) = xi if s ∈ Ei, for all i. Recursivity

requires that f ∼π f ′. Second, across two different information partitions π and π′, <π

and <π′ are related by a unifying unconditional preference relation over F . That is, there

exists an unconditional preference relation <0 over F such that all conditional preferences

{<E}E∈Σ are updated from <0. Thus if we observe any difference between <π and <π′ ,

it is due to differences in π and π′ rather than ex-ante beliefs.

3.1 Recursive Model

In this section we impose axioms on {<π}π∈Π and {<E}E∈Σ that characterize the folding

back evaluation procedure.

First we impose common basic technical axioms on <π and <E , for each π ∈ Π and

E ∈ Σ. For convenience we group them together as Axiom 1.

Axiom 1. 1. (Continuity) For all π, E, f , {g ∈ F : g <π f}, {g ∈ F : f <π g},

{g ∈ F : g <E f}, and {g ∈ F : f <E g} are closed.

2. (Monotonicity) For all π, E ∈ Σ, if f(s) <π (<E)g(s), ∀s, then f <π (<E)g.

3. (Non-degeneracy) For all π, f ≻π g for some f, g ∈ F . Similarly, ∀E ∈ Σ, f ≻E g

for some f, g ∈ F .

Axiom 2 (Stable Risk Preferences). For all π, E, <π and <E agree on constant acts.

10In a two period model, there is no further information to expect after some event in π is realized, so

it is reasonable to have conditional preferences defined only on F .
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Lemma 1. Under Continuity and Stable Risk Preferences, < is a continuous preference

relation on Π× F .

Proof. See appendix.

Within a fixed partition π = {E1, · · · , En}, we impose π-recursivity to link prior prefer-

ences <π and conditional preferences {<Ei
}ni=1. This is similar to the Dynamic Consis-

tency axiom in [13] and [34], simplified to two periods.

Axiom 3 (π-Recursivity). For any π, E ∈ π, and f, g, h ∈ F ,

f <E g ⇔ fEh <π gEh

If all <π satisfy π-Recursivity, then all conditional preferences {<E}E∈Σ satisfy Conse-

quentialism, that is, ∀f, g, h, ∀E, fEg ∼E fEh.11 Intuitively, this says that outcomes in

states outside E do not affect E-conditional preferences <E . We will return to this when

discussing learning rules.

If an act f is π-measurable, then in both (π, f) and (π∗, f), all uncertainties about f are

resolved in the first stage. So the additional information in π∗ relative to that in π should

not affect the evaluation of f . This idea is reflected in the following axiom.

Axiom 4 (Indifference to Redundant Information). For all π, f ∈ Fπ, (π, f) ∼ (π∗, f).

The last axiom, Time Neutrality, abstracts information preferences from any effect due

to preferences for early or late resolution of uncertainty, which is orthogonal to the infor-

mation preferences of interest here.

Axiom 5 (Time Neutrality). For all f , (π∗, f) ∼ (π0, f).

Time Neutrality implies that <π∗=<π0
, and both can be viewed as the unconditional

preferences over acts, denoted by <0 in the following text. In the next subsection, we

specify how all conditional preferences are updated from a unifying unconditional <0,

ensuring all <π represent the same ex-ante belief.

11To see this, let fEg = f ′ and fEh = g′. Then f ′Ef = g′Ef = f . For π = {E,Ec}, f ′Ef ∼π g′Ef ,

and by π-Recursivity, f ′ ∼E g′.
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For a fixed π = {E1, · · · , En}, we define the conditional certainty equivalent mapping

c(·|π) : F → Fπ, as follows:

c(f |π) =











c(f |E1) E1

c(f |E2) E2

. . .

c(f |En) En











where for each i, c(f |Ei) ∈ X , and c(f |Ei) ∼Ei
f . That is, c(f |Ei) is the certainty

equivalent of f conditional on Ei. Existence is guaranteed by Continuity and Monotonicity

of each <Ei
, as proved in Lemma 4 in the appendix.

Recall that < is the ex-ante preference over Π×F , while for every π, <π is the restriction

of < to {π} × F . For an interval K ⊆ R, B(S,K) is the space of functions on S with

range K. For any k ∈ K, denote by k̄ the corresponding constant function in B(S) taking

value k. For any ξ and φ in B(S,K), and any event E ∈ Σ, ξEφ denotes the function

such that (ξEφ)(s) = ξ(s) if s ∈ E, and (ξEφ)(s) = φ(s) if s /∈ E. For a functional

I : B(S,K) → R, we say I is monotone if ∀ξ, φ ∈ B(S,K), ξ ≥ φ implies I0(ξ) ≥ I0(φ),

and strongly monotone if in addition ξ > φ implies I0(ξ) > I0(φ). We say I is normalized

if I(k̄) = k for all k ∈ K. Finally, we say I is translation invariant if I(ξ + k̄) = I(ξ) + k

for all ξ ∈ B(S,K) and k ∈ K such that ξ + k̄ ∈ B(S,K).

Lemma 2. For preferences < and {<E}E∈Σ that are continuous and monotone, the fol-

lowing statements are equivalent:

1. {<π}π∈Π and {<E}E∈Σ satisfy π-Recursivity, Independence of Redundant Informa-

tion, and Time Neutrality.

2. There exists a continuous function u : X → R, and a continuous, monotone, and

normalized function I0 : B(Σ, u(X)) → R such that for each π, <π can be repre-

sented by V (π, ·) : F → R, where

V (π, f) = I0(u ◦ c(f |π))

and c(·|π) : F → Fπ is the conditional certainty equivalent mapping.

Using Axioms 1-5, preferences <π and {<E}E∈π satisfy π-Recursivity, under which the

value of an act f expecting information π can be computed by a folding back procedure.

For each event Ei ∈ π, replace f on Ei by its conditional certainty equivalent. The
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constructed act c(f |π) is π-measurable, thus could be evaluated by the unconditional

preferences <0, and

(π, f) < (π′, g) ⇔ c(f |π) <0 c(g|π
′)

Therefore, the ex-ante preferences < are dictated by the conditional preferences {<E}E∈Σ

and unconditional preferences <0.

For any π, let B(π, u(X)) denote all the π-measurable functions in B(S, u(X)).

3.2 Updating Translation Invariant Preferences

In this subsection, we characterize an updating rule that specifies how the conditional

preferences {<E}E∈Σ are derived from unconditional preferences <0. In this way, for two

different information partitions π and π′, <π and<π′ are related by the same unconditional

<0 and thus have the same underlying beliefs about events in S. Thus any difference

between <π and <π′ is due to differences in information partitions π and π′ rather than

ex-ante beliefs. In particular, to accommodate ambiguity sensitive <0, we look for an

updating rule that (i) requires that each <E satisfies Consequentialism, so outcomes on

states outside E does not affect <E ; (ii) does not exclude a preference for hedging in <0.

It does not make sense to discuss conditional preferences <E if event E has “probability

zero”. We call an event E is Savage <0-non-null if it is not the case that fEh ∼0 gEh

for all f, g, h ∈ F . For simplicity, we require that for every event E in Σ is <0-non-null.

For the purpose of updating ambiguity preferences, we need a stronger notion of non-null

events.12 Here we ensure every event is non-null for <0 by imposing a strong monotonicity

axiom on <0.

Axiom 6 (<0-Strong Monotonicity). For all f, g ∈ F , if f(s) <0 g(s) for all s ∈ S, then

f <0 g. If in addition one of the preference rankings is strict, then f ≻0 g.

Bayesian updating is the universal updating rule in Savage’s SEU theory. The uncon-

ditional preference is represented by an expected utility functional with respect to some

subjective belief p, and the conditional preference on E is represented by an expected util-

ity functional with respect to the Bayesian posterior p(·|E). Behaviorally, <E is derived

from <0 by13

f <E g ⇔ fEh <0 gEh for some h

12For a detailed discussion of the relationship between a Savage <0-non-null event and the stronger

condition we need, see Appendix A.2.
13See, for example, [31, chap. 9].
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We refer to this as Bayesian Updating in the rest of the paper. In Savage’s theory, <E is

well-defined because <0 satisfies the Sure-Thing Principle (STP): for all f, g, h, h′,

fEh <0 gEh ⇔ fEh′
<0 gEh′

The Sure-Thing Principle requires that <0 is separable across events, which rules out a

preference for hedging and Ellsberg-type preferences. This condition clearly is too strong

for our purposes. Instead, we consider a weaker condition, called Conditional Certainty

Equivalent Consistency. This condition requires that a constant act x is equivalent to an

act f conditional on E if and only if x is also unconditionally equivalent to fEx, the act

that gives f for states in E, and x for states outside E.

Axiom 7 (Conditional Certainty Equivalent Consistency). ∀f ∈ F , x ∈ X , ∀E ∈ Σ,

f ∼E x ⇔ fEx ∼0 x

Conditional Certainty Equivalent Consistency weakens Bayesisan Updating by restricting

g and h to be a constant act x and considering only indifference relations. In particular,

Bayesian Updating imposes two properties. First, <0 and <E are dynamically consistent:

if f and g agree outside event E, then f is preferred to g conditional on E if and only if f

is preferred to g unconditionally. Second, <E satisfies consequentialism: if f and g agree

on event E, then f is equivalent to g conditional on E. It is straightforward to verify that

under Conditional Certainty Equivalent Consistency, consequentialism is retained but not

dynamic consistency.

Just as Savage’s Bayesian Updating is not well-defined unless <0 satisfies the STP, we also

need to impose some structural assumption on <0 to ensure that Conditional Certainty

Equivalent Consistency is well-defined. The property needed is translation invariance of

the corresponding aggregating functional I0. The behavioral axiom that characterizes

translation invariance is [33]’s Weak Certainty Independence.14

Axiom 8 (Weak Certainty Independence). For all f, g ∈ F , x, y ∈ X , and α ∈ (0, 1),

αf + (1− α)x <0 αg + (1− α)x ⇒ αf + (1− α)y <0 αg + (1− α)y

Intuitively, Weak Certainty Independence of <0, and thus translation invariance of I0, re-

quires that the indifference curves in the space of utility profiles are parallel when moved

14By [33]’s Lemma 28,Weak Certainty Independence, Monotonicity, Continuity, and Non-degeneracy

of <0 is equivalent to <0 can be represented by an affine risk utility u and normalized, monotone, and

translation invariant functional aggregator I0.
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along the certainty line. Ambiguity preferences that satisfy translation invariance include

MEU, CEU, and variational preferences. As mentioned in the discussion of related litera-

ture, Conditional Certainty Equivalence Consistency has been used by [36] to characterize

prior-by-prior updating for MEU, and by [6] to characterize a generalized Bayes rule for

CEU. In section 4, we characterize a simple update rule for variational preferences using

this axiom.

We show that if <0 satisfies Weak Certainty Independence and Strong Monotonicity, then

conditional preferences are well-defined. Thus only knowledge about <0 is needed to cal-

culate the conditional certainty equivalent, and thus pin down the conditional preferences

<E for all E. Moreover, when combined with axioms characterizing recursiveness in the

previous subsection, knowing <0 is sufficient to characterize <π for all π. Below is a

formal definition.

Definition 1. We say < on Π× F and <E on F have a cross-partition recursive repre-

sentation (u, I0) if

1. There exists a continuous, non-constant, and affine u : X → R, and a continuous,

strongly monotone, normalized, and translation invariant I0 : u(X)S → R such that

f <0 g ⇔ I0(u ◦ f) ≥ I0(u ◦ g)

2. For all E ∈ Σ, <E is represented by VE : F → R, where VE(f) is the unique solution

to

k = I0((u ◦ f)Ek̄)

3. < is represented by V : Π×F → R, where

V (π, f) = I0(V0(f |π))

and

V0(f |π) =











VE1
(f) E1

VE2
(f) E2

. . .

VEn
(f) En











In this case, we also say < is recursively generated by <0.

Theorem 1. The following statements are equivalent:
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1. (i) {<π}π∈Π and {<E}E∈Σ are continuous and monotone, satisfy π-Recursivity,

Independence of Redundant Information, Time Neutrality, and Stable Risk

Preferences;

(ii) <0 satisfies Weak Certainty Independence and Strong Monotonicity; <0 and

{<E}E∈Σ satisfy Conditional Certainty Equivalent Consistency.

2. < and <E have a cross-partition recursive representation with (u, I0).

Moreover, if both (u, I0) and (u′, I ′0) represent <0, then there exists a > 0 and b ∈ R such

that u′ = au+ b and I ′0(ξ) = aI0(
ξ−b

a
) + b for all ξ ∈ (u′(X))S.

Proof. See appendix.

3.3 Intrinsic Aversion to Partial Information

In this subsection, we define aversion to partial information as a property of the cross-

partition preference <. Then we show that under our recursive representation, aversion

to partial information is equivalent to a property of <0 called Event Complementarity.

We study the relationship between Event Complementarity and ambiguity aversion. In

the next section, we consider familiar models of ambiguity preferences, and study the

connection among ambiguity aversion, Event Complementarity, and aversion to partial

information.

Definition 2. We say< exhibits aversion to partial information at act f if (π0, f) < (π, f)

for all π. We say < exhibits aversion to partial information if< exhibits aversion to partial

information at all acts.

Attraction to partial information and information neutrality are defined analogously.

This definition of aversion to partial information is similar to Preferences for One-Shot

Resolution of Uncertainty in [5], and preferences to get information “clumped together

rather than apart” as in [30]. Our definition only requires that the DM prefers no infor-

mation π0 to any information π. This is weaker than the notion of information aversion

defined in [18] and [42], which requires that coarser information is always preferred to

finer information.15 If the DM exhibits aversion to partial information at all acts and

obeys Time Neutrality, then (π0, f) ∼ (π∗, f) < (π, f) for all f .

15In [18], finer information corresponds to higher Blackwell’s informativeness ranking.
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In the modal Ellsberg preferences, there is complementarity between the events {G} and

{Y } in eliminating ambiguity. The DM knows that the joint event {G, Y } has a precise

probability 2
3
, while each subevent {G} or {Y } has an imprecise probability ranging from

0 to 2
3
. By partitioning the event {G, Y } into the subevents {G} and {Y }, the information

regarding whether the ball drawn is yellow or not breaks this complementarity and creates

ambiguity. A DM averse to ambiguity might naturally be averse to this information. We

formalize this idea as a condition on <0 below.

Axiom 9 (Event Complementarity). For all E and f , if fEx ∼0 x for some x, then

f <0 xEf .

Intuitively, Event Complementarity captures the following thought experiment. For a

given act f and event E, first calibrate the value of f conditional on E by finding its

conditional certainty equivalent, that is, the constant act x such that fEx ∼0 x(= xEx).

Then replace f on E by x, that is, consider the act xEf , and compare this to the

original act f . By construction, xEf and f are equivalent conditional on E, and they

are identical, and hence trivially equivalent, conditional on Ec. A DM who satisfies the

Sure-Thing Principle would view f and xEf as equivalent. Replacing f by its conditional

certainty equivalent x on E, however, breaks the potential complementarity between the

events E and Ec with respect to the act f . A strict preference f ≻0 xEf reveals a DM

who values such complementarity.

Proposition 1. Suppose <0 is represented by (u, I0) where I0 is translation invariant.

Then <0 satisfies Event Complementarity if and only if for any act f and constant act x

such that fEx ∼0 x,

I0(u ◦ f) ≥ I0(u ◦ (fEx)) + I0(0E(u ◦ f − u ◦ x)) (1)

Proof. Fix f, x, E such that fEx ∼0 x. By translation invariance of I0,

I0(u ◦ (xEf)) = I0(0E(u ◦ f − u ◦ x)) + u(x).

Since fEx ∼0 x, I0(u ◦ (fEx)) = u(x), thus

I0(u ◦ (xEf)) = I0(0E(u ◦ f − u ◦ x)) + I0(u ◦ (fEx))

Thus

I0(u ◦ f) ≥ I0(u ◦ xEf)
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if and only if

I0(u ◦ f) ≥ I0(u ◦ fEx) + I0(0E(u ◦ f − u ◦ x))

So f <0 xEf if and only if (1) holds .

Inequality (1) describes Event Complementarity of <0 in terms of its utility representation

(u, I0). This gives us another way to understand this axiom. Given an act f and a constant

act x such that fEx ∼0 x, notice that the utility profile u ◦ f corresponding to f can be

decomposed as follows:

u ◦ f = u ◦ (fEx) + 0E(u ◦ f − u ◦ x)

Since x is a constant act, u ◦ (fEx) varies only on E, and 0E(u ◦ f − u ◦ x) varies only

on Ec by construction. Thus u ◦ f is decomposed into the sum of two utility profiles,

one capturing the variation of u ◦ f on E and one capturing the variation of u ◦ f on Ec.

Proposition 1 shows that Event Complementarity holds if and only if the value of utility

profile u ◦ f , I0(u ◦ f), is greater than or equal to the sum of the values of these two

pieces, I0(u ◦ fEx) + I0(0E(u ◦ f − u ◦ x)). Notice that if I0 is superadditive, then Event

Complementarity holds. However, the converse is not generally true. This result will be

useful in verifying that Event Complementarity holds in a number of classes of ambiguity

preferences.

Finally, the following proposition shows that in our recursive model, aversion to partial

information is equivalent to Event Complementarity.

Theorem 2. Suppose < is recursively generated by <0. Then the following statements

are equivalent:

1. <0 satisfy Event Complementarity.

2. < exhibits aversion to partial information.

Proof. See appendix.

4. Ambiguity Preferences

In this section, we investigate further the link between ambiguity aversion and aversion

to partial information. In particular, we examine whether partial information aversion is
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implied by ambiguity aversion for four familiar classes of translation invariant ambiguity

preferences: MEU, multiplier preferences, variational preferences, and CEU. Another

popular class of ambiguity preferences, the second order belief model, does not satisfy

translation invariance and thus is not captured by our model. We defer discussion of

second order belief models to Section 6.

We first introduce the ambiguity aversion axiom:16

Axiom 10 (Ambiguity Aversion). For all f, g ∈ F and α ∈ (0, 1),

f ∼0 g ⇒ αf + (1− α)g <0 f

As argued by [16], Ambiguity Aversion captures a preference for state-by-state hedging. If

<0 is represented by (u, I0), and I0 is continuous, monotone, normalized, and translation

invariant, then <0 is ambiguity averse if and only if I0 is concave.

4.1 Maxmin EU

MEU is the most popular model that captures ambiguity aversion. The static MEU model

is axiomatized by [16], and a recursive MEU model is axiomatized by [13].17

We say <0 has an MEU representation (u,P) if it can be represented by a function

V0 : F → R of the form

V0(f) = min
p∈P

∫

S

u(f)dp

where P is a closed and convex subset of ∆(S).

For any convex and closed prior set P and any partition π, we define the π-rectangular

hull of P to be rectπ(P) = {p =
∑k

i=1 p
i(·|Ei)q(Ei)|∀p

i, q ∈ P}. The set rectπ(P) is

the largest set of probabilities that have the same marginal probabilities and conditional

probabilities for events in π as elements of P. By definition, P ⊆ rectπ(P) for any P

and π. The set P is called π-rectangular if rectπ(P) = P. Whether P is π-rectangular is

closely related to whether a DM with belief set P is strictly averse to partial information

π. The next proposition summarizes the link between MEU preferences and aversion to

partial information.

16In the literature, this axiom is usually called Uncertainty Aversion. Strictly speaking, it does not

coincide with the definition of ambiguity aversion as in [15] or [7]. But for the four families of preferences

we study, Axiom 10 implies ambiguity aversion.
17In contrast with our model, [13] assume reduction.
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Proposition 2. Suppose < is recursively generated by <0. Suppose <0 has a MEU

representation (u,P), and <E has a MEU representation (u,PE), for all E ∈ Σ. Then

1. < exhibits aversion to partial information at all acts.

2. For any partition π, there exists some act f such that < is strictly averse to π at

f , i.e., (π0, f) ≻ (π, f), if and only if P is not π-rectangular.

Proof. See appendix.

Remark 1. MEU has an intuitive interpretation as a malevolent Nature playing a zero-

sum game against the DM [34]. In this interpretation, Nature has a constraint set P, and

chooses a probability in order to minimize the DM’s expected utility. In our recursive

model without reduction, the information π turns this into a sequential game. In period

0, Nature chooses a probability from P for events in π. In period 1, Nature chooses a

(possibly different) probability from P over states for every event in π, conditional on that

event. In this way, information π expands Nature’s constraint set from P to rectπ(P).

On the other hand, the DM has committed ex-ante to a fixed act f . So introducing

information π helps Nature and hurts the DM. Part (2) of Proposition 2 shows that if

information strictly expands Nature’s constraint set, that is, if P ( rectπ(P), then Nature

can make the DM strictly worse off at some act.

Remark 2. [13] develop a recursive MEU model in which they maintain reduction. They

show that < is dynamically consistent with respect to π if and only if P is π-rectangular.

Part (2) of Proposition 2 shows that if we instead maintain dynamic consistency but relax

reduction, then information neutrality at π is equivalent to π-rectangularity of P.

Remark 3. When the prior set P is a singleton (so the DM has SEU), or when P = ∆(S),

the DM is intrinsically information neutral.

4.2 Multiplier Preferences

Introduced by [24] to capture concerns about model misspecification, and later axioma-

tized by [43], multiplier preferences have found broad applications in macroeconomics.18

We say <0 has a multiplier preferences representation (u, q, θ) if it can be represented by

a function V0 : F → R of the form

V0(f) = min
p∈∆(S)

[

∫

u(f)dp+ θR(p||q)]

18See [25] and references therein.
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where q ∈ ∆(S) is the reference probability, R(p||q) =
∫

ln p

q
dp is the relative entropy be-

tween p and reference probability q, and θ is a scalar measuring the intensity of ambiguity

aversion.

Proposition 3. Suppose <0 has a multiplier preferences representation (u, q, θ), and <

is recursively generated by <0. Then < exhibits intrinsic information neutrality.

Proof. See appendix.

4.3 Variational Preferences

Variational preferences are introduced and axiomatized by [33, 34]. We say <0 has a

variational representation (u, c) if it can be represented by a function V0 : F → R of the

form

V0(f) = min
p∈∆(S)

∫

u(f)dp+ c(p)

where c : ∆(S) → [0,+∞] is a convex, lower semicontinuous and grounded (there exists

p such that c(p) = 0) function. The function c is interpreted as the cost of choosing

a probability. The MEU model and multiplier preferences model are special cases of

variational preferences.19 Variational preferences are the most general class of ambiguity

averse preferences that satisfy translation invariance.

We let dom(c) = {p : c(p) < +∞} denote the domain of c. If u(X) is unbounded, then

for a given u, c is the unique minimum convex, lower semicontinuous, and grounded cost

function that represents <0.

4.3.1 Updating Variational Preferences

For any non-empty E ∈ Σ, we say <E has a variational representation (uE, cE) if it can

be represented by a function VE : F → R of the form

VE(f) = min
pE∈∆(S)

∫

S

uE(f)dpE + cE(pE)

where cE : ∆(S) → [0,+∞] is a convex, lower-semi-continuous, and grounded conditional

cost function.

19Variational preferences have a MEU representation when c is 0 on a set P and +∞ elsewhere, and a

multiplier preferences representation when c(p) = θR(p||q).
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The next theorem shows that within the variational preferences family, Stable Risk Pref-

erences and Conditional Certainty Equivalent Consistency characterize the following up-

dating rule for conditional cost functions:

cE(pE) = inf
{p∈∆(S):p(·|E)=pE}

c(p)

p(E)
(2)

Taking the infimum over all probabilities with posterior pE controls for any concern for

model mis-specification outside event E, which is irrelevant to<E due to consequentialism;

normalization by 1
p(E)

captures a maximum likelihood intuition: probabilities p assigning a

higher probability on the event that occurred are more likely to be selected and determine

cE . Since we imposed Strong Monotonicity on <0, every event E is <0-non-null. In

particular, p(E) > 0 for all p ∈ dom(c). Then by Lemma 7 in the Appendix, the infimum

in (5) attains at some p.

Theorem 3. Suppose <0 has a variational representation (u, c) and satisfies Strong

Monotonicity. Suppose for any non-empty E ∈ Σ, <E has a variational representation

(uE, cE). Then the following are equivalent:

1. <E and <0 satisfy Stable Risk Preferences and Conditional Certainty Equivalent

Consistency.

2. <E has a variational representation (u, cE) such that

f <E g ⇔ min
pE∈∆(E)

∫

E

u(f)dpE + cE(pE) ≥ min
pE∈∆(E)

∫

E

u(g)dpE + cE(pE)

where

cE(pE) = min
{p∈∆(S):p(·|E)=pE}

c(p)

p(E)

Proof. See Appendix.

This generalizes well-known updating rules for the two important subclasses of variational

preferences: prior-by-prior updating in the MEU class, and Bayesian updating in the

multiplier preferences class.

Corollary 1. Suppose assumptions and Statement 1 in Theorem 3 hold.

1. If <0 also has a MEU representation (u,P), then for any non-empty E, <E has a

MEU representation (u,PE), where PE is the set obtained from P by prior-by-prior

updating, that is

PE = {p(·|E)|p ∈ P}
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2. If <0 also has a multiplier preference representation (u, q, θ), then for any non-

empty E, <E has a multiplier preference representation (u, qE, θ), where qE is the

Bayesian posterior of q.

Proof. See Appendix.

4.3.2 Variational Preferences and Preferences for Partial Information

In general, recursive variational preferences might not exhibit aversion to partial infor-

mation at all acts. This can be explained by the following intuition. Similar to the MEU

model, variational preferences also has the intuitive interpretation of a malevolent Nature

playing a zero-sum game against the DM [34]. With variational preferences, Nature’s con-

straint set is the domain of the cost function c, dom(c). In addition, Nature has to pay a

non-negative cost (or transfer) of c(p) to the DM if it chooses a probability p in dom(c).

Nature seeks to minimize the DM’s expected utility plus the transfer. In our recursive

model without reduction, information π turns this into a sequential game, affecting both

Nature’s constraint set and how often Nature has to pay the DM a transfer. Similar to the

MEU model, in period 0, Nature chooses a probability from dom(c) for events in π. In pe-

riod 1, Nature chooses a (possibly different) probability from dom(c) over states for every

event in π, conditional on that event. So information π expands Nature’s constraint set

from dom(c) to rectπ(dom(c)). On the other hand, with information π, Nature also needs

to pay a non-negative transfer to the DM at every node where it chooses a probability.

The total transfer can be higher or lower than what Nature would have paid in the static

game, depending on the cost function c. If the total transfer is higher, then this helps

the DM. So the overall effect from information π is indeterminate. Below is an example

in which when the transfer effect dominates and the DM strictly prefers information π at

an act f .

Example 1 (Attraction to Partial Information in VP). Suppose S = {s1, s2, s3}. Let

u(x) = x (where X = R). Consider the partition π = {{s1, s2}, {s3}}. Let E = {s1, s2}.

Let p̄ = (1
3
, 1
3
, 1
3
), and P = {p ∈ ∆(S) : p(si) ≥ δ, ∀i = 1, 2, 3}, for some δ ∈ (0, 1

5
].

Let αp̄ = 0. For all p ∈ P\p̄, in the probability simplex illustrated by Figure 3, we connect

p̄ to p by a line segment and extend it to a point p′ on the boundary of P. Let αp be the

ratio of the length of line segment p̄p to the length of line segment p̄p′. Consider the cost

function

c(p) =







αp if p ∈ P,

+∞ otherwise.
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s1 s2

s3

δ
b

b

b

p̄

p

p′

αp

Figure 3: the probability simplex

Note that c is convex, lower semicontinuous, and grounded, so (u, c) characterizes some

VP.

Consider the act f = (0, 3K, 1K), where K is a large number in R+ and Kδ > 10.

Without information, V (π0, f) = 4δK+1. Suppose the DM now gets partial information

π. Then

VE(f) = min
pE∈∆(E)

3KpE(s2) + min
p(·|E)=pE

c(p)

p(E)
=

1

1− δ
(3δK + 1)

V (π, f) = min
p

p(E)
1

1− δ
(3δK + 1) + p(s3)K + c(p) = 3δK + 1 + δK + 1 = 4δK + 2

Then V (π, f) = 4δK + 2 > 4δK + 1 = V (π0, f), so the DM has a strict preference for

partial information π at f .

The following proposition identifies a necessary and sufficient condition on the uncondi-

tional cost function c under which aversion to partial information holds at all acts. In

the zero-sum game against Nature interpretation, this condition ensures that the total

transfer Nature pays under information π does not exceed that in the static game. To

formalize this, we need some additional notation.

For all pE ∈ ∆(E) and p′ ∈ ∆(S), define pE ⊗E p′ by

(pE ⊗E p′)(B) = p′(E)pE(B) + p′(B ∩ Ec), ∀B ∈ Σ

That is, in pE ⊗E p′, we substitute p′(·|E) by pE for probability conditional on E, while

measuring probabilities of events in Ec (including Ec) by p′.

Proposition 4. Suppose <0 has a variational representation (u, c), and < is recursively

generated by <0. Then < exhibits intrinsic aversion to partial information at all f if and

only if for any non-empty E ∈ Σ,

c(p) ≥ inf
qE∈∆(E)

c(qE ⊗E p) + p(E) inf
q∈∆(S)

c(pE ⊗E q)

q(E)
, ∀p, p(E) > 0
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where pE is the Bayesian posterior of p.

It is straightforward to verify that this condition holds for MEU and for multiplier pref-

erences.

The above condition restricts the cost function c so that < exhibits partial information

aversion at all acts. As shown in Example ??, this can be violated by some variational

preferences, where attraction to partial information at some act is possible. So this

condition might be too strong for some purposes.

The next proposition characterizes a joint condition on the cost function c and an act

f under which < exhibits aversion to partial information locally at f . This does not

preclude the possibility that < exhibits attraction to partial information at some other

act g. As we will explain later, this joint condition also has an intuitive interpretation.

Proposition 5. Suppose <0 has a variational representation (u, c), and < is recursively

generated by <0. Then for any act f such that

c−1(0) ∩ argmin
p∈∆

[

∫

S

u(f)dp+ c(p)] 6= ∅ (3)

< exhibits aversion to partial information at f .

Proof. See appendix.

If <0 has MEU representation (u,P), then the cost function is an indicator function where

c(p) = δP(p) =







0 ∀p ∈ P

+∞ otherwise

In this case, for any act f , argminp∈∆[
∫

S
u(f)dp+ c(p)] ⊆ P = c−1(0). So the result that

an MEU DM is averse to partial information at all acts follows as a natural corollary of

Proposition 5.

Condition (3) has an intuitive interpretation in terms of comparative ambiguity. Following

the notion of comparative ambiguity aversion in [15] and [7], given two static preferences

<1 and <2 over F , we say <1 is more ambiguity averse than <2 if for all f ∈ F and

x ∈ X ,

f <1 x ⇒ f <2 x

By [33] Proposition 8, if <1 has a variational representation (u1, c1) and <2 has a vari-

ational representation (u2, c2), then <1 is more ambiguity averse than <2 if and only if

u1 ≈ u2,
20 and c1 ≤ c2 (provided u1 = u2). In the following when discussing comparative

20u1 ≈ u2 if u1 = au2 + b, for some a > 0, b ∈ R.
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ambiguity aversion, we normalize risk utilities so that u1 = u2.
21

We say an act f can be locally approximated by an SEU preference that is less ambi-

guity averse than <0 if there exists a preference relation ≥′ on F that admits an SEU

representation

U ′(f) =

∫

S

u′(f)dq

such that (i) ≥′ is less ambiguity averse than <0 and (ii) V (f) = U ′(f).

Proposition 6. Suppose <0 has a variational representation (u, c). Condition (3) holds

at some act f if and only if f can be locally approximated by an SEU preference that

is less ambiguity averse than <0. In particular, if f can be locally approximated by an

SEU preference that is less ambiguity averse than <0, then < exhibits aversion to partial

information at f .

Proof. Suppose f can be locally approximated by an SEU preference ≥′ that is less

ambiguity averse than <0. Let ≥′ be represented by U ′ with risk utility u′ and belief

q ∈ ∆(S). Since ≥′ is less ambiguity averse than <0, we can normalize u′ so that u = u′.

In addition, q ∈ c−1(0) by [33] Lemma 32. Since V (f) = U ′(f),

V (f) = min
p∈∆

[

∫

S

u(f)dp+ c(p)] = U ′(f) =

∫

S

u(f)dq =

∫

S

u(f)dq + c(q)

The last equality follows from the fact that q ∈ c−1(0). So q ∈ argminp∈∆[
∫

S
u(f)dp+c(p)]

by definition. Together with q ∈ c−1(0), this implies that

c−1(0) ∩ argmin
p∈∆

[

∫

S

u(f)dp+ c(p)] 6= ∅

Thus condition (3) holds at f .

Now suppose there exists some p∗ ∈ c−1(0) ∩ argminp∈∆[
∫

S
u(f)dp+ c(p)]. Define U ′ by

U ′(f) =
∫

S
u(f)dp∗. Then by definition U ′ represents an SEU preference ≥′ that is less

ambiguity averse than <0. Also

V (f) =

∫

S

u(f)dp∗ + c(p∗) =

∫

S

u(f)dp∗ = U ′(f)

So f can be locally approximated by an SEU preference that is less ambiguity averse than

<0.

21In VP, u is unique up to positive affine transformation.
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Proposition 7. Suppose <
1
0 has a variational representation (u1, c1) and f can be locally

approximated by some SEU preference ≥′ that is less ambiguity averse than <1
0. Suppose

<
2
0 also has a variational representation (u2, c2), and let <2 be recursively generated by

<2
0. If <2

0 is less ambiguity averse than <1
0 and more ambiguity averse than ≥′, then <2

exhibits partial information aversion at f .

Proof. By Proposition 6, f can be locally approximated by an SEU preference ≥′ that

is less ambiguity averse than <
1
0 if and only if condition (3) holds. Then there exists

p∗ ∈ c−1
1 (0) ∩ argminp∈∆[

∫

S
u1(f)dp+ c1(p)] such that V1(f) =

∫

S
u1(f)dp

∗ + c1(p
∗), and

c1(p
∗) = 0. By definition, <2

0 is less ambiguity averse than <1
0 if and only if u1 = u2

and c2 ≥ c1. Since <2
0 is more ambiguity averse than ≥′, u2 = u′ and p∗ ∈ c−1

2 (0). Let

u = u1 = u2 = u′. Therefore:
∫

S

u(f)dp∗+c2(p
∗) =

∫

S

u(f)dp∗+c1(p
∗) ≤

∫

S

u(f)dp+c1(p) ≤

∫

S

u(f)dp+c2(p), ∀p ∈ ∆(S)

The first inequality follows from the fact that p∗ ∈ argminp∈∆[
∫

S
u1(f)dp + c1(p)], and

the second from c1 ≤ c2. Thus p
∗ ∈ argminp∈∆[

∫

S
u(f)dp+ c2(p)]. So

argmin
p∈∆

[

∫

S

u(f)dp+ c2(p)] ∩ c−1
2 (0) 6= ∅

and by Proposition 5, <2 exhibits aversion to partial information at f .

4.4 Choquet EU

Finally, we look at the CEU model axiomatized by [38]. The CEU model is of particular

interest because it allows for both ambiguity averse and ambiguity loving preferences, so

this provides a framework for studying the relationship between information preferences

and ambiguity attitudes more generally.

We say <0 has a CEU representation (u, ν) if it can be represented by a function V0 :

F → R of the form

V0(f) =

∫

u(f)dν

where ν : Σ → [0, 1] is a capacity, that is, ν(S) = 1, ν(∅) = 0, and ν(E) ≤ ν(F ) for all

E ⊆ F .

If <0 satisfies Ambiguity Aversion, then ν is a convex capacity.22 In this case, CEU

preferences become a special case of MEU preferences, with the set of priors P being

22A capacity ν is convex if ν(E ∪ F ) + ν(E ∩ F ) ≥ ν(E) + ν(F ) holds for all E,F ∈ Σ.
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the core of the convex capacity ν.23 So for CEU preferences, ambiguity aversion implies

aversion to partial information.

For CEU preferences, we can say a bit more about the connection between ambiguity

attitudes and information preferences. We can also define ambiguity loving.24

Axiom 11 (Ambiguity Loving). For all f, g ∈ F and α ∈ [0, 1],

f ∼0 g ⇒ f <0 αf + (1− α)g

We show that within the CEU model, ambiguity aversion implies partial information

aversion, and ambiguity loving implies partial information loving.

Proposition 8. Suppose <0, {<E}E∈Σ have CEU representations, and < is recursively

generated by <0.

1. If <0 satisfies Ambiguity Aversion, then < exhibits partial information aversion at

all acts.

2. If <0 satisfies Ambiguity Loving, then < exhibits attraction to partial information

at all acts.

Proof. See appendix.

5. Multi-action Menus and Information Acquisition

In this section we study decision problems with general menus. Recall the information

acquisition problem is to choose π ∈ Π to solve:

max
π

V (π, F )− c(π)

For a given menu F , the DM trades off the marginal cost and benefit of getting finer

information to determine the optimal partition.

Let M be the collection of compact subsets of F . We want to extend preferences over

information and singleton menus, < on Π×F , to preferences over information and menus

<
+ over Π×M. This extension is straightforward since < is π-recursive for each π.

23For a convex capacity ν, its core is {p ∈ ∆(S)|p(E) ≥ ν(E) for all E ∈ Σ}.
24This is called “uncertainty appeal” in [38].
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To that end, for every F ∈ M and π = {E1, · · · , En}, define

F π = {f1E1f2E2 · · ·En−1fn : fi ∈ F, ∀i = 1, · · · , n}.

Note F ⊆ F π ⊆ F , and F = F π whenever F is a singleton.

Next, for a menu F and partition π, we define its conditional certainty equivalent as

c(F |π) =











c(F |E1) E1

c(F |E2) E2

· · ·

c(F |En) En











where c(F |Ei) ∈ X and

u(c(F |Ei)) = max
f∈F

V0(f |Ei)

We define the preferences <+ on Π×M as follows:

(π, F ) <+ (π′, G) if and only if ∀g ∈ Gπ′

, ∃f ∈ F π, (π, f) < (π′, g)

In this case we say <+ is extended from <.

Lemma 3. Suppose V : Π×F → R represents <. If <+ is extended from <, then <+ is

represented by Ṽ : Π×M → R where

Ṽ (π, F ) = max
f∈Fπ

V (π, f) = V0(c(F |π))

Since Ṽ and V agree on Π×F , we abuse notation a bit by using V to denote the extended

function Ṽ : Π×M → R. Here V (π, F ) is interpreted as the value of the decision problem

(π, F ).

The following proposition states some comparative statics of V (π, F ).

Proposition 9. 1. If F ⊆ F ′, then V (π, F ) ≤ V (π, F ′).

2. Suppose <
1 and <

2 are recursively generated by variational preferences <1
0 and <

2
0.

If <1
0 is more ambiguity averse than <2

0, then ∀π, F , V 1(π, F ) ≤ V 2(π, F ).

The proof is straightforward and thus omitted.

Part (1) of Proposition 9 says that the DM always weakly prefers bigger menus. This

distinguishes our model from that in [41]. In [41], the DM might prefer a smaller menu
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due to dynamic inconsistency and desire for commitment. This suggests one way to test

the two models.

Part (2) of Proposition 9 says that the more ambiguity averse the DM is, the less she

values any information and menu pair (π, F ). However, this does not say that the value of

information is decreasing in the degree of ambiguity aversion. Example 3 below illustrates

this point.

Furthermore, V (π, F ) is not monotone in information π, so more information can be

strictly worse. Formally, π2 is (strictly) more informative than π1, denoted π2 ≥ (>)π1, if

the partition π2 is (strictly) finer than the partition π1. If<0 displays non-trivial ambiguity

aversion, then we can find a menu F and partitions π2 > π1 such that V (π2, F ) < V (π1, F ).

Below is an example.

Example 2. Suppose S = {s1, s2, s3}, and <0 has a MEU representation (u,P) where

P = {p ∈ ∆3|p(s1) =
1
3
, p(s3) ∈ [1

6
, 1
2
]}. For simplicity assume risk neutrality, so u(x) = x.

Suppose the DM faces menu F = {(0, 1, 1), (0.49, 0.49, 0.49)}. Then V (π0, F ) = 2
3
. Let

π = {{s1, s2}, {s3}} > π0. The informed DM will choose (0.49, 0.49, 0.49) given {s1, s2},

and (0, 1, 1) given {s3}. Therefore V (π, F ) = 0.575 < 2
3
= V (π0, F ).25 Information hurts.

This non-monotonicity is driven by intrinsic aversion to partial. [5] shows that a preference

for one-shot resolution of uncertainty in two-stage compound lotteries is equivalent to a

preference for perfect information in an extended model with intermediate choices. We

show a similar result is also true in our model.

We say that <+ exhibits a preference for perfect information if ∀F ∈ M and π ∈ Π,

(π∗, F ) <+ (π, F ).

Proposition 10. Suppose < is recursively generated by <0, and <+ is extended from <.

Then the following statements are equivalent:

1. <
+ exhibits a preference for perfect information.

2. < exhibits partial information aversion at all acts f ∈ F .

3. <0 satisfies Event Complementarity.

Proof. See appendix.

25P(s2|{s1, s2}) = [ 13 ,
3
5 ], so (0.49, 0.49, 0.49) ≻{s1,s2} (0, 1, 1).
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In the rest of this section, we focus on the value of acquiring information π: ∆V (π, F ) :=

V (π, F ) − V (π0, F ). In appendix A.12, we analyze the marginal value of information,

V (π2, F )− V (π1, F ) for any π2 ≥ π1.

Acquiring information π affects the decision problem in two ways. First, information

provides a way for the DM to fine-tune her strategy: expecting to get π, she conditions

her choice of optimal action on the event realized in π, so her effective menu expands

from F to F π. This captures the instrumental value of information, and is always non-

negative. Second, information directly affects the DM’s utility from acts, thus also has

intrinsic value. The value of information π in decision problem F admits the following

decomposition:

∆V (π, F ) = V (π, F )− V (π0, F )

= [max
f∈Fπ

V (π, F )−max
f∈F

V (π, f)] + [max
f∈F

V (π, f)−max
f∈F

V (π0, f)]

The first bracketed term captures the non-negative instrumental value of information. The

second bracketed term captures the intrinsic value of information. It is zero if the DM is

intrinsically neutral to information, so V (π, f) = V (π0, f) for all f , and non-positive if

the DM is averse to partial information. So a DM’s willingness to pay for information π

is the resulting trade-off of these two components.

Next we look for conditions under which the value of information is non-negative, that is,

the DM is still willing to acquire information π when it is free, regardless of ambiguity.

Let F0 = argmaxf∈F V (π0, f) be the set of uninformed optimal acts.

Proposition 11. For any menu F , if there exists an uninformed optimal act f0 that is

π-measurable, then ∆V (π, F ) ≥ 0.

Corollary 2. Suppose <1
0 has a variational representation (u1, c1), and x ∈ X is an

uninformed optimal act from menu F for DM 1. If DM 2 has a variational representation

(u2, c2) and is more ambiguity averse than DM 1, then ∆V 2(π, F ) ≥ 0.

Proposition 9 says that for variational preferences <0, V (π, F ) is decreasing in the degree

of ambiguity aversion in<0 for all (π, F ). Is the same comparative statics true for the value

of information ∆V (π, F )? The answer is no. The value of information is non-monotone

in the degree of ambiguity aversion. Below is an example.

Example 3. Suppose DM 1 has SEU preferences with belief p ∈ ∆(S). DM 2 has

MEU preferences with non-singleton prior set P ( ∆(S), and P is not rectangular with

respect to some partition π (therefore π > π0). DM 3 has MEU preferences with prior
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set Q = rectπ(P). Assume further that these three DMs have the same risk preferences,

so DM 3 is more ambiguity averse than DM 2, and DM 2 is more ambiguity averse than

DM 1.

Since P ( Q, there exists f ∈ F such that V 2(π0, f) > V 3(π0, f). Also V 2(π, f) =

V 3(π0, f) = V 3(π, f).26 Therefore

V 3(π, f)− V 3(π0, f) > V 2(π, f)− V 2(π0, f).

Increasing ambiguity aversion increases the value of information π in this case.

Alternatively, DM 1 is intrinsically neutral to information, so V 1(π, f) = V 1(π0, f).

Therefore

V 1(π, f)− V 1(π0, f) = 0 > V 2(π, f)− V 2(π0, f).

Increasing ambiguity aversion decreases the value of information π in this case.

Finally, we end this section with an application to portfolio choice problems.

Example 4 (Portfolio Choice). Consider the portfolio choice example in Dow and Wer-

lang (1992). Suppose there is a risk-neutral DM with wealth W . There is a risky asset

with unit price P and present value that is either high, H , or low, L. The DM has MEU

preferences and believes the probability of H belongs to the interval [p, p̄]. For simplicity,

we assume the DM could choose to buy a unit of the risky asset (B), short-sell a unit

of the risky asset (S), or not do anything (N). So F = {B, S,N}. The DM’s optimal

portfolio choice is

f ∗
0 (P ) =



















B if pH + (1− p)L > P ;

N if p̄H + (1− p̄)L ≥ P ≥ πH + (1− p)L;

S if P > p̄H + (1− p̄)L.

We now add an information acquisition stage before the portfolio choice. The DM can

acquire a binary signal, π = {h, l}, which is correlated with the state of the risky asset,

with p(h|H) = p(l|L) = q > 1
2
. We want to know if the DM will collect information π if

it is costless.

Suppose the DM’s uninformed optimal choice is B. Then V (π0, B) = pH + (1− p)L−P ,

and V (π,B) = [pqH+(1−p)(1−q)L+p(1−q)H+(1−p)qL−P ] = V (π0, B). By Lemma 10

in the appendix, π is valuable. The other two cases could be calculated similarly. Without

the need to compute the informed optimal strategies and V (π, F ), we can conclude that

in this portfolio choice problem the DM will want to collect information π if it is costless.

26The argument is similar to that in the proof of Proposition 2.
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6. Discussion: Second Order Belief Models

Another important class of ambiguity preferences is the second order belief model [29, 35,

40]. We say <0 has a second order belief representation if

V (π0, f) =

∫

∆(S)

φ[

∫

S

u(f)dpθ]dµ

where µ ∈ ∆(∆(S)) is a second order belief over the space of distributions ∆(S), and φ is

a non-decreasing function capturing ambiguity attitude. When φ is smooth and concave

(convex), the DM is ambiguity averse (loving).

For the second order belief models, translation invariance fails, and thus Conditional

Certainty Equivalent Consistency cannot provide a well-defined update rule. Instead we

adopt Bayes rule for the second order belief µ as our update rule.

Assumption 1. Suppose <0 has a second order belief representation (u, φ; Θ, µ). Then

for any non-null event E, <E has a second order belief representation (uE, φE; ΘE, µE)

satisfying

1. Risk and ambiguity attitudes are not updated: uE = u, φE = φ.

2. Prior by prior updating of first order belief: ΘE = {pθ(·|E)|pθ ∈ Θ}.

3. Bayes rule for second order belief:

µE(θ) =
µ(θ)pθ(E)

∫

Θ
pθ′(E)dµ(θ′)

(4)

In general, second order belief models exhibit no systematic relation between ambiguity

aversion and information aversion, as the following example illustrates.

Example 5. Consider the standard three color Ellsberg urn. Let S = {R,G, Y } and

Θ = {(1
3
, 2
3
θ, 2

3
(1− θ))|θ = 1

3
, 2
3
}. Suppose the second order prior µ puts equal probability

on p 1

3

= (1
3
, 2
9
, 4
9
), and p 2

3

= (1
3
, 4
9
, 2
9
). Assume the DM is risk neutral with u(x) = x,

and ambiguity averse with φ(y) = log(y). Information is given by the partition π =

{{R,G}, {Y }}. Let E = {R,G}. Suppose the above update rule captures conditional

preferences, so µE(p 1

3

) = 5
12
, and µE(p 2

3

) = 7
12
. By computation we can show that the DM

is strictly averse to π (V (π, f) < V (π0, f)) at acts f = (1, 0, 0) and (0, 1, 1), and strictly

loves π (V (π, f) > V (π0, f)) at acts f = (0, 1, 0) and (1, 0, 1).
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Observe that the partition π′ = {{R}, {G, Y }} contains only events with known proba-

bilities. The two acts (1, 0, 0) and (0, 1, 1), at which the DM is strictly averse to partial

information π, are measurable with respect to π′ and thus unambiguous. This suggests

that a DM with second order belief preferences will be averse to partial information at

acts where she has local ambiguity neutrality. The next proposition formalizes this idea.

Following Definition 4 in [29], we say <0 displays (local) smooth ambiguity neutrality

at act f if V (π0, f) = φ[
∫

∆(S)

∫

S
u(f)dpθdµ]. In second order belief models, ambiguity

aversion only implies partial information aversion at the subclass of locally ambiguity

neutral acts.

Proposition 12. Suppose <0 and {<E}E∈Σ are second order belief preferences, with

update rule satisfying Assumption 1. If <0 is ambiguity averse (loving), then < exhibits

partial information aversion (loving) at all acts where <0 displays (local) smooth ambiguity

neutrality.

Proof. See appendix.

A Appendix: Proofs

A.1 Lemma 2

Proof of Lemma 1. Fix (π, f). We want to show that the sets U = {(π′, g) : (π′, g) <

(π, f)} and L = {(π′, g) : (π, f) < (π′, g)} are closed.

Let {(π′
n, gn)} be a convergent sequence in the set U , with limit (π′, g). We want to show

(π′, g) is also in U . Since π′
n → π′ in the discrete topology on Π, there exists some N such

that for all n > N , π′
n = π′. Continuity of <π ensures there exists a constant act xf , with

(π, f) ∼ (π, xf) ∼ (π′, xf ), where the last statement follows from Stable Risk Preferences.

If (π′, xf ) ∼ (π, f) ≻ (π′, g), then by continuity of <π′ , there exists M(> N) such that for

all n > M , (π′, xf ) ≻ (π′, gn). So (π, f) ≻ (π′
n, gn) for sufficiently large n, a contradiction

to the assumption {(π′
n, gn)} ⊆ U .

The next lemma verifies the existence of certainty equivalents as result of Continuity and

Monotonicity.
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Lemma 4. For any nonempty E ∈ Σ, if <E satisfies Continuity and Monotonicity, then

for every act f we can find an E-conditional certainty equivalent c(f |E) ∈ X such that

c(f |E) ∼E f .

Proof. Let f ∈ F . Since f is finitely ranged, by Monotonicity there exists x∗, x∗ ∈ X

such that x∗
<E f <E x∗. By continuity, U = {α ∈ [0, 1] : αx∗ + (1 − α)x∗ <E f} and

L = {α ∈ [0, 1] : f <E αx∗ + (1 − α)x∗} are closed subsets of [0, 1]. Since U ∪ L = [0, 1],

by connectedness of [0, 1], U ∩L 6= ∅. Thus there exists c(f |E) ∈ U ∩L, and by definition

c(f |E) ∼E f .

Proof of Lemma 2. First we show equivalence of the two statements. (2) ⇒ (1) is a

straightforward verification. We show (1) ⇒ (2).

Since < is a continuous and monotone preference relation, there exists a continuous func-

tion V : Π × F → R that represents <. By Time Neutrality, (π0, f) ∼ (π∗, f), ∀f , so

V (π0, ·) = V (π∗, ·) : F → R represents the restricted preference relations <π0
and <π∗ .

Let V0(·) := V (π0, ·), and let u : X → R be the restriction of V0 to constant acts X , where

u(x) = V0(x). Since V0 is continuous, u is continuous. u(X) is connected and thus an in-

terval in R, since X = ∆(Z) is connected. We define the functional I0 : B(Σ, u(X)) → R

by I0(ξ) = V0(f), where ξ ∈ B(Σ, u(X)), f ∈ F satisfy u ◦ f = ξ. Then I0 is well-defined

and monotone by monotonicity of <0. For any k ∈ u(X), choose the constant act x such

that u(x) = k. Then by definition, I0(k̄) = V0(x) = u(x) = k. So I0 is normalized.

Similarly, for every π, the continuous function Vπ = V (π, ·) : F → R represents <π.

We show the connection between Vπ and (u, I0). Fix π, f , Ei ∈ π. By continuity and

monotonicity of <Ei
, we can find conditional certainty equivalent c(f |Ei) ∼Ei

f . By

π-recursivity, (π, f) ∼ (π, c(f |π)). Then (π, c(f |π)) ∼ (π∗, c(f |π)) ∼ (π0, c(f |π)), where

the first indifference is by Indifference to Redundant Information, and the second by

Time Neutrality. By transitivity of <, (π, f) ∼ (π0, c(f |π)), so Vπ(f) = V0(c(f |π)) =

I0(u ◦ c(f |π)).

A.2 <0-non-null Events

This subsection clarifies the concept of a <0-non-null event for defining conditional pref-

erences.

The literature normally adopts the condition of a non-null event from Savage. An event

E is Savage <0-non-null if there exists f, g, h, such that fEh ≻0 gEh.
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We consider a stronger condition: an event E is <0-non-null if there exist constant acts

x∗, x∗ such that x∗ ≻0 x∗ and x∗Ex∗ ≻0 x∗. An event E is Savage <0-non-null if it is

<0-non-null, but not vice versa. The next lemma compares how these two definitions

differ in the variational preference family.

Lemma 5. Suppose <0 has a variational representation (u, c). An event E is <0-non-null

if and only if p(E) > 0 for all p ∈ c−1(0). An event E is Savage <0-non-null if and only if

there exists some act f and some p ∈ argminp′∈∆(S)

∫

u(f)dp′ + c(p′) such that p(E) > 0.

Proof. For the first claim, we prove E is <0-non-null iff ∃p ∈ c−1(0) such that p(E) = 0.

Choose constant acts x∗, x∗ such that x∗ ≻0 x∗. First, suppose ∃p ∈ c−1(0) such that

p(E) = 0. Then

V0(x
∗Ex∗) = u(x∗)p(E) + u(x∗)p(E

c) + c(p) = u(x∗) = V0(x∗)

The first equality holds because c(p) = 0 and p(E) = 0. Next, suppose instead p(E) > 0

for all p ∈ c−1(0). Then let p∗ ∈ argminp′ u(x
∗)p′(E) + u(x∗)p

′(Ec) + c(p′). Either

p∗ ∈ c−1(0) and p∗(E) > 0, or c(p∗) > 0. In either case,

V0(x
∗Ex∗)u(x

∗)p∗(E) + u(x∗)p
∗(Ec) + c(p∗) > u(x∗)

so x∗Ex∗ ≻0 x
∗.

For the second claim, suppose there exists some act f and some p ∈ argminp′∈∆(S)

∫

u(f)dp′+

c(p′) such that p(E) > 0. Then we can construct an act f ′ such that f ′(s) = f(s) for all

s ∈ Ec, and u(f ′
s) = u(fs)− ǫ for all s ∈ E, and some ǫ > 0. Since p(E) > 0,

V0(f) =

∫

E

u(f)dp+

∫

Ec

u(f)dp+ c(p)

>

∫

E

u(f)dp− ǫp(E) +

∫

Ec

u(f)dp+ c(p)

=

∫

S

u(f ′)dp+ c(p) ≥ V0(f
′)

So f ≻0 f ′. For the converse, suppose there exists f, g, h such that fEh ≻0 gEh. Let

p ∈ argminp′∈∆(S)

∫

u(gEh)dp′ + c(p′). We argue that p(E) > 0. If instead p(E) = 0,

then

V0(gEh) =

∫

E

u(g)dp+

∫

Ec

u(h)dp+ c(p) =

∫

E

u(f)dp+

∫

Ec

u(h)dp+ c(p) ≥ V0(fEh)

This contradicts fEh ≻0 gEh.
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Suppose <0 has an MEU representation (u,P). As a corollary, E is <0-non-null if and

only if p(E) > 0 for all p ∈ P. In contrast, E is Savage <0-non-null if and only if there

exists f and p ∈ argminp∈P

∫

u(f)dp such that p(E) > 0.

For the results about updating, the stronger <0-non-null condition is needed. [36] shows

that if the unconditional preferences <0 have an MEU representation (u,P) and all priors

give positive probability to event E, then Conditional Certainty Equivalence Consistency

is satisfied if and only if <E has an MEU representation (u,PE), where PE is the prior-

by-prior updated posteriors from P. In section 4.3, we show that if the unconditional

preferences <0 have a variational representation (u, c) and p(E) > 0 for all p ∈ c−1(0),

then Conditional Certainty Equivalence Consistency is satisfied if and only if <E has a

variational representation (u, cE), where cE is obtained from c using update rule (5). In

both cases, E has to be <0-non-null instead of Savage <0-non-null.

In the text, we impose Strong Monotonicity on <0 to ensure that updating is always

well-defined. The following lemma follows directly by definition.

Lemma 6. If <0 satisfies Strong Monotonicity, then every event E in Σ is <0-non-null.

A.3 Theorem 1

We first recall a result from [33].

Lemma 28, [33] A binary relation <0 on F satisfies Weak Order, Weak Certainty

Independence, Continuity, Monotonicity, and Non-degeneracy if and only if there exists

a nonconstant affine function u : X → R and a normalized, monotone, and translation

invariant I0 : B(S, u(X)) → R such that

f <0 g ⇔ I0(u(f)) ≥ I0(u(g))

Below we will apply this result to prove our representation Theorem 1.

Proof of Theorem 1. We verify only the direction (1) ⇒ (2). The other direction is

straightforward.

By Lemma 2, (i) implies there exists a continuous function V0 : F → R such that that for

each π, <π can be represented by

V (π, f) = V0(c(f |π))
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where c(·|π) : F → Fπ is the conditional certainty equivalent mapping.

Define u : X → R by u(x) = V0(x). Define I0 : B(Σ, u(X)) → R by I0(ξ) = V0(f),

for ξ ∈ B(Σ, u(X)), f ∈ F such that u ◦ f = ξ. By Lemma 28 in [33], Weak Certainty

Independence, Continuity, Monotonicity, and Non-degeneracy of <0 implies that u is

continuous, nonconstant and affine, and I0 is well-defined, continuous, normalized, and

translation invariant. Moreover, for any ξ, ξ′ ∈ B(S, u(X)) such that ξ > ξ′, there exists

f, g ∈ F such that u ◦ f = ξ and u ◦ g = ξ′, f(s) <0 g(s) for all s, and f(s) ≻0 g(s) for

some s. By Strong Monotonicity of <0, f ≻0 g and thus I0(ξ) > I0(ξ
′). So I0 is strongly

monotone.

Next we show that for all f and nonempty E ∈ Σ, k = I0[(u◦f)Ek̄] has a unique solution

in u(X).

Existence of solution. Fix f and nonempty E. Define G(k) = I0[(u ◦ f)Ek̄] − k =

I0[(u ◦ f − k̄)E0], for all k ∈ u(X). Since f is finite-ranged, we can find x∗, x∗ such

that x∗ ≻0 f(s) ≻0 x∗ for all s. Let k∗ = u(x∗), and k∗ = u(x∗). Then G(k∗) ≥ 0, and

G(k∗) ≤ 0 by monotonicity of I0. Since I0 is continuous, G is a continuous function of k on

u(X). By the intermediate value theorem, there exists k0 ∈ [k∗, k
∗] such that G(k0) = 0.

Uniqueness of solution. Suppose k1 and k2 both solve k = I0[(u ◦ f)Ek̄], and k1 6= k2.

Without loss of generality, let k1 > k2. By translation invariance of I0,

I0[(u ◦ f − k̄1)E0] = I0[u(fEk̄1)]− k1 = 0 = I0[u(fEk̄2)]− k2 = I0[(u ◦ f − k̄2)E0]

Then (u◦f− k̄1)E0 < (u◦f− k̄2)E0, since E is non-empty. Since I0 is strictly monotone,

I0[(u ◦ f − k̄1)E0] < I0[(u ◦ f − k̄2)E0]. A contradiction.

For any π = {E1, E2, · · · , En}, by Conditional Certainty Equivalent Consistency, xi is the

Ei-conditional Certainty Equivalent of f if and only if xi ∼0 fEixi. This implies that

u(xi) solves k = I0[(u ◦ f)Eik̄] and xi ∼0 c(f |Ei). So u(xi) = u(c(f |Ei)), which implies

V0(f |π) = u ◦ c(f |π). As a result, V (π, f) = V0(c(f |π)) = I0(V0(f |π)) by definition of I0.

Finally, suppose both (u, I0) and (u′, I ′0) represent <0. Since both u and u′ are affine

representations of <0 on X , by the Mixture Space Theorem [26], u′ = au + b for some

a > 0 and b ∈ R. For all f , let xf be the constant act that f ∼0 xf . Then

I0(u(f)) = u(xf)

I ′0(u
′(f)) = u′(xf)

Substituting u′ = au+ b, we get

I ′0(u
′(f)) = I ′0(au(f) + b) = au(xf ) + b
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and thus I ′0(au(f)+ b) = aI0(u(f))+ b. Since f is arbitrary, we have for all ξ ∈ (u′(X))S,

I ′0(ξ) = aI0(
ξ−b

a
) + b.

A.4 Theorem 2

Proof. By Conditional Certainty Equivalent Consistency, fEx ∼0 x ⇔ x ∼E f , for all

f, x, E. So it suffices to show that < exhibits partial information aversion if and only if

x ∼E f ⇒ f <0 xEf , for all f, x, E.

Suppose <0 satisfies Event Complementarity. Fix a finite partition π = {E1, · · · , En},

and an act f . For each i = 1, · · · , n, let xi ∈ X be the Ei-conditional certainty

equivalent of f , i.e., xi ∼Ei
f . Let f0 := f , f1 = x1E1f0, f2 = x2E2f1, · · · , fn =

xnEnfn−1 = (x1E1x2E2 · · ·xn−1En−1xn). Note that fn is π-measurable. Also xi ∼Ei

fi−1, ∀i = 1, · · · , n, thus (π0, fi−1) < (π0, fi) by Event Complementarity, and (π, f0) ∼

(π, f1) ∼ · · · ∼ (π, fn) by π-Recursivity. Putting these results together yields:

(π, f) ∼ (π, fn) ∼ (π∗, fn)

∼ (π0, fn) (by Time Neutrality)

4 (π0, fn−1) · · · 4 (π0, f)

Since this is true for an arbitrary act f and partition π, < exhibits aversion to partial

information.

We prove the converse by contradiction. Suppose not, so < exhibits aversion to partial

information but there exists some π, E ∈ π, f , and x such that f ∼E x, but (π0, xEf) ≻

(π0, f). Let n1, · · · , nm be labels for states in Ec, i.e., Ec = {sn1
, · · · , snm

}. Then consider

the finer partition π′ = {E, {sn1
}, · · · , {snm

}}. Thus xEf is π′-measurable, and by Ax-

ioms 4 and 5, (π′, xEf) ∼ (π∗, xEf) ∼ (π0, xEf). By π′-Recursivity, (π′, f) ∼ (π′, xEf).

By transitivity, (π′, f) ∼ (π0, xEf) ≻ (π0, f). This violates partial information aversion,

a contradiction.

A.5 Proposition 2

Proof. For part (1), by Theorem 2, it suffices to show that <0 satisfies Event Comple-

mentarity. Since <0 belongs to the MEU class, by Lemma 3.3 in [16], I0 is superadditive.
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Event Complementarity follows from that.

For part (2), if <0 has an MEU representation (u,P) and < is recursively generated by

<0, then < can be represented by

V (π, f) = min
p∈P

n
∑

i=1

[min
pi∈P

∫

u(f)dpi(·|Ei)]p(Ei)

= min
p∈P

min
pi∈P

n
∑

i=1

[

∫

u(f)dpi(·|Ei)]p(Ei)

= min
p′∈rectπ(P)

∫

u(f)dp′

Suppose P is not π-rectangular, so there exists q ∈ rectπ(P)\P. Since P is convex and

compact, by the strict separating hyperplane theorem, there exists a nonzero, bounded

and measurable map ξ ∈ B(Σ,R) such that

∫

ξdq <

∫

ξdp, ∀p ∈ P

Without loss of generality, let 0 ∈ int(u(X)). There exists f ∈ F such that u(f) = αξ, for

some α > 0. Thus without loss of generality we can replace ξ by u(f) in above inequality.

By compactness of P, minp∈P

∫

u(f)dp attains at some p∗ ∈ P, so using above

V (π, f) = min
q′∈rectπ(P)

∫

u(f)dq′ ≤

∫

u(f)dq <

∫

u(f)dp∗ = V (π0, f)

Thus < is strictly averse to partition π at f .

For the converse, suppose P is π-rectangular, so P = rectπ(P). Then V (π, f) = V (π0, f), ∀f ,

and < is intrinsically neutral to information π.

A.6 Proposition 3

Proof. By Theorem 1 in [43], if <0 has a multiplier representation, then Savage’s Sure-

Thing principle is satisfied. So ∀f ∈ F and x such that fEx ∼0 x, we have f ∼0 xEf .

By step 1 of our proof for Theorem 2, this yields information neutrality.
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A.7 Theorem 3 and Corollary 1

Lemma 7. For the conditional cost function

cE(pE) = inf
{p∈∆(S):p(·|E)=pE}

c(p)

p(E)
(5)

if p(E) > 0 for all p ∈ c−1(0), then the infimum attains at some p ∈ ∆(S), where

p(·|E) = pE.

Proof. Let Q(pE) := {p ∈ ∆(S) : p(·|E) = pE}. Then Q(pE) = Q(pE)∪∆(Ec) is compact

in ∆(S). If c(p) = +∞ for all p ∈ Q(pE), then cE(pE) = +∞ and the infimum attains

at any p ∈ Q(pE). Otherwise, cE(pE) < +∞. By the definition of infimum, we can

find a sequence pn ∈ Q(pE), such that c(pn)
pn(E)

is decreasing and limn
c(pn)
pn(E)

= cE(pE). By

compactness of Q(pE), we can find a subsequence of {pn}, say {pk}, such that pk →k p
∗ ∈

Q(pE). It remains to show that if p(E) > 0 for all p ∈ c−1(0), then p∗ /∈ ∆(Ec).

Suppose not, so p∗ ∈ ∆(Ec). By assumption, c(p∗) > 0, so c(p∗)
p∗(E)

= +∞. Yet by lower

semicontinuity of c, cE(pE) = lim infk
c(pk)
pk(E)

≥ c(p∗)
p∗(E)

= +∞. A contradiction.

From our discussion in Appendix 5, Strong Monotonicity of <0 ensures that all events are

<0-non-null. As a result, the condition that p(E) > 0 for all p ∈ c−1(0) is satisfied for all

E.

We then verify that cE is convex, lower semicontinuous and grounded, so cE can serve as

a cost function.

Lemma 8. The function cE : ∆(E) → [0,∞] defined in (5) is (i) convex, (ii) lower

semicontinuous, and (iii) grounded.

Proof. Convexity. By the lower semicontinuity of c, ∀pE , qE ∈ ∆(E), α ∈ [0, 1], we can

find p∗, q∗ ∈ ∆ such that p∗(·|E) = pE , q
∗(·|E) = qE, and cE(pE) =

c(p∗)
p∗(E)

, cE(qE) =
c(q∗)
q∗(E)

.

Fix α ∈ [0, 1]. Then there exists γ ∈ [0, 1] such that γp∗(E)
γp∗(E)+(1−γ)q∗(E)

= α. Set p′ :=

γp∗ + (1− γ)q∗. Then p′(·|E) = αpE + (1− α)qE. Therefore,

cE(αpE + (1− α)qE) ≤
c(p′)

p′(E)
≤

γc(p∗) + (1− γ)c(q∗)

γp∗(E) + (1− γ)q∗(E)

=
γp∗(E)

γp∗(E) + (1− γ)q∗(E)
cE(pE) +

(1− γ)q∗(E)

γp∗(E) + (1− γ)q∗(E)
cE(qE)

= αcE(pE) + (1− α)cE(qE).
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Lower semicontinuity. We want to show the epigraph epi(cE) is closed. To that end, let

(pnE, rn) ∈ epi(cE), (p
n
E, rn) →n (pE, r). We want to show r ≥ cE(pE). Since p(E) > 0 for

all p ∈ c−1(0), by the previous lemma cE(p
n
E) =

c(pn)
pn(E)

for some pn where pn(·|E) = pnE .

Since ∆(S) is compact, there exists a subsequence {pk} of {pn} such that pk →k p
∗.

If p∗(E) > 0, then p∗(·|E) = limk p
k(·|E) = limk p

k
E = pE . Then lim infk

c(pk)
pk(E)

≥ c(p∗)
p∗(E)

by

lower semicontinuity of c. Since rk → r and rk ≥ cE(p
k
E) = c(pk)

pk(E)
, r ≥ lim infk

c(pk)
pk(E)

≥
c(p∗)
p∗(E)

≥ cE(pE). Then we are done.

If p∗(E) = 0, then there must be a subsequence pk(E) →k 0. Since r+ ǫ ≥ c̃E(p
k
E) =

c(pk)
pk(E)

for ǫ > 0 and sufficiently large k, lim infk c(p
k) = 0 ≥ c(p∗) ≥ 0. Thus p∗(E) = 0 and

c(p∗) = 0, a contradiction.

Groundedness. c is grounded, so there exists p∗ such that c(p∗) = 0. By assumption,

p∗(E) > 0, so cE(p
∗(·|E)) = 0.

Lemma 9. Consider two variational functionals I(φ) = minp∈∆〈φ, p〉+ c(p), and I ′(φ) =

minp∈∆〈φ, p〉 + c′(p). If c(p0) < c′(p0) for some p0, then there exists ξ ∈ B(Σ) such that

I(ξ) < I ′(ξ).

Proof. Consider the epigraph of c′:

epi(c′) = {(p, r) ∈ ∆× R|r ≥ c′(p)}

Since c′ is nonnegative, convex, lower semicontinous, and grounded, epi(c′) is nonempty,

closed and convex. Let r0 = c(p0). Since c(p0) < c′(p0), (p0, r0) /∈ epi(c′). By the strict

separating hyperplane theorem there exists (ξ0, r
∗) ∈ B(Σ)×R, (ξ0, r

∗) 6= 0, that strictly

separates (p0, r0) from the set epi(c′), such that, that is

〈ξ0, p0〉+ r0 · r
∗ < inf

r′≥c′(p′)
〈ξ0, p

′〉+ r′ · r∗

Note that we cannot have r∗ < 0, otherwise we could take r′ = +∞ in the right hand

side and the inequality fails. Also we cannot have r∗ = 0, otherwise we get 〈ξ0, p0〉 <

infp′〈ξ0, p
′〉 ≤ 〈ξ0, p0〉, a contradiction. Thus r∗ > 0, and we can rescale both sides by 1

r∗

(take ξ = 1
r∗
ξ0) to obtain

〈ξ, p0〉+ r0 < inf
r′≥c′(p′)

〈ξ, p′〉+ r′

Then

〈ξ, p0〉+ r0 = 〈ξ, p0〉+ c(p0) ≥ min
p∈∆

〈ξ, p〉+ c(p) = I(ξ)
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and

inf
r′≥c′(p′)

〈ξ, p′〉+ r′ = min
p′∈∆

〈ξ, p′〉+ c′(p′) = I ′(ξ)

Thus I(ξ) ≤ 〈ξ, p0〉+ r0 < infr′≥c′(p′)〈ξ, p
′〉+ r′ = I ′(ξ).

Proof of Theorem 3. (2) ⇒ (1). Suppose (2) holds. It is straightforward to verify Sta-

ble Risk Preferences and Consequentialism. We prove Conditional Certainty Equivalent

Consistency also holds.

Fix f ∈ F and x ∈ X such that x ∼E f . We must prove fEx ∼0 x. Suppose c and cE

satisfy update rule (5). Then

x ∼E f ⇒ u(x) = inf
pE∈∆(E)

∫

E

u(f)dpE + cE(pE)

= inf
pE∈∆(E)

∫

E

u(f)dpE + inf
p∈∆:p(·|E)=pE

c(p)

p(E)

Let p∗ ∈ ∆ achieve the infimum above.27

u(x) = p∗(E)
[

∫

E
u(f)dp∗(·|E) + c(p∗)

p∗(E)

]

+ p∗(Ec)u(x)

=

∫

E

u(f)dp∗ + p∗(Ec)u(x) + c(p∗)

≥ min
p∈∆

∫

E

u(f)dp+ p(Ec)u(x) + c(p) = V0(fEx)

It remains to show that the inequality cannot be strict. If not, then u(x) > V0(fEx). Let

p̃ ∈ argminp∈∆

∫

E
u(fEx)dp+ p(Ec)u(x) + c(p). Then

u(x) > V0(fEx) = min
p∈∆

∫

E

u(f)dp+ p(Ec)u(x) + c(p)

=

∫

E

u(f)dp̃+ p̃(Ec)u(x) + c(p̃)

If p̃(E) = 0, then u(x) > u(x) + c(p̃), which contradicts the non-negativity of c. So

27Let IE : B(ΣE , u(X)) → R be such that IE(ξ) = infpE∈∆(E)

∫

E
ξdpE + cE(pE). Then IE is also a

variational functional. Applying [33] Lemma 26, the infimum attains at some p∗E. In addition, if p(E) > 0

for all p ∈ c−1(0), by the previous lemma there exists p∗ ∈ ∆(S), p∗(·|E) = p∗E, at which the second

infimum attains.
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p̃(E) > 0. Then

u(x) >
1

p̃(E)
[

∫

E

u(f)dp̃+ c(p̃)]

=

∫

E

u(f)dp̃(·|E) +
c(p̃)

p̃(E)

≥ min
pE∈∆(E)

∫

E

u(f)dpE + min
p∈∆:p(·|E)=pE

c(p)

p(E)

= VE(f)

This contradicts the assumption that x ∼E f . So fEx ∼0 x.

For the converse, suppose fEx ∼0 x. Then

u(x) = V0(fEx) = min
p∈∆(S)

∫

E

u(f)dp+ u(x)p(Ec) + c(p)

=

∫

E

u(f)dp∗ + u(x)p∗(Ec) + c(p∗)

where p∗ ∈ argminp

∫

E
u(f)dp+ u(x)p(Ec) + c(p). If p∗(E) = 0, then the equality above

implies c(p∗) = 0, a contradiction to the assumption that p(E) > 0, ∀p ∈ c−1(0). So

p∗(E) > 0, and

p∗(E)u(x) =

∫

E

u(f)dp∗ + c(p∗)

Thus

u(x) =

∫

E

u(f)dp∗(·|E) +
c(p∗)

p∗(E)

≥ min
pE

∫

E

u(f)dpE + inf
p∈∆:p(·|E)=pE

c(p)

p(E)
= VE(f)

So x <E f .

Also, as argued before, we can find q∗ ∈ ∆(S), q∗(E) > 0, such that VE(f) =
∫

E
u(f)dq∗(·|E)+

c(q∗)
q∗(E)

. So

q∗(E)
[

∫

E
u(f)dq∗(·|E) + c(q∗)

q∗(E)

]

+ q∗(Ec)u(x) ≥ V0(fEx) = u(x)

Thus VE(f) ≥ u(x), or f <E x. So x ∼E f .

(1) ⇒ (2). By assumption, <E has a representation of the form

VE(f) = min
p∈∆(S)

∫

S

uE(f)dp+ cE(p)
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By Stable Risk Preferences, <0 and <E agree on constant acts X . We can normalize by

setting uE = u. Next we want to show only p with support on E can achieve the minimum

defining VE. For each f ∈ F , choose p∗ ∈ argminp∈∆(S)

∫

S
u(f)dp+cE(p). Without loss of

generality, we can choose x∗ ∈ X such that f(s) ≻0 x∗ for all s.
28 Since (fEx∗)Ex = fEx

for any x, by Conditional Certainty Equivalent Consistency, fEx∗ ∼E f . Then

VE(f) =

∫

S

u(f)dp∗ + cE(p
∗) = VE(fEx∗) ≤

∫

E

u(f)dp∗ + p∗(Ec)u(x∗) + cE(p
∗)

So
∫

Ec(u(f) − u(x∗))dp
∗ ≤ 0. Since u(f) − u(x∗) is strictly positive on Ec,

∫

Ec(u(f) −

u(x∗))dp
∗ ≥ 0, and this is an equality if and only if p∗(Ec) = 0. So p∗(E) = 1, and p∗ has

a natural imbedding in ∆(E). Therefore ∀f ,

VE(f) = min
p∈∆(E)

∫

E

u(f)dp+ cE(p)

It remains to show that the (unique) conditional cost function cE coincides with c̃E(pE) :=

infp∈∆:p(·|E)=pE
c(p)
p(E)

. Suppose not, so cE 6= c̃E . Thus there exists p∗E such that cE(p
∗
E) 6=

c̃E(p
∗
E). We prove a contradiction for the case cE(p

∗
E) > c̃E(p

∗
E). The case cE(p

∗
E) < c̃E(p

∗
E)

can be proved by replicating the arguments. Applying Lemma 9, we can find ξE ∈ B(ΣE)

such that minpE

∫

E
ξEdpE+ c̃E(pE) < minpE

∫

E
ξEdpE+cE(pE). Since u(X) is unbounded,

B(ΣE) ⊆ B(ΣE , u(X)) + R. Thus there is an act f ∈ F such that (u(f) + k)(s) = ξE(s)

on E for some constant k. So minpE

∫

E
u(f)dpE + c̃E(pE) < minpE

∫

E
u(f)dpE + cE(pE).

By Continuity, we can find x ∈ X that is the E-conditional equivalent of f , x ∼E f , and

u(x) = VE(f) = minpE

∫

E
u(f)dpE + cE(pE).

Then

u(x) = min
pE

∫

E

u(f)dpE + cE(pE)

> min
pE

∫

E

u(f)dpE + c̃E(pE)

= min
pE

∫

E

u(f)dpE + inf
p∈∆:p(·|E)=pE

c(p)

p(E)

= min
pE

inf
p∈∆:p(·|E)=pE

∫

E

u(f)dpE +
c(p)

p(E)

= inf
p∈∆,p(E)>0

1

p(E)

[

∫

E
u(f)dp+ c(p)

]

28If not, then u(X) is bounded below and mins u(f)(s) achieves the lower bound. By translation

invariance p∗ is also a minimizing probability for f ′ such that u(f ′) = u(f)+ ǫ. Then the whole argument

works for f ′.
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As argued before, we can find p ∈ argminp∈∆,p(E)>0
1

p(E)

[

∫

E
u(f)dp+ c(p)

]

. Then multi-

plying both sides of the inequality by p(E) and adding p(Ec)u(x) to both sides yields

u(x) > p(E)
(

1
p(E)

[
∫

E
u(f)dp+ c(p)]

)

+ p(Ec)u(x)

=

∫

E

u(f)dp+ p(Ec)u(x) + c(p)

=

∫

u(fEx)dp+ c(p) > V0(fEx)

So x ≻0 fEx, violating Conditional Certainty Equivalent Consistency.

Proof of Corollary 1. For part (1), suppose <0 has a MEU representation (u,P). So it

has a variational representation (u, c) with cost function c such that c(p) = 0 if p ∈ P

and c(p) = +∞ if p /∈ P. For any nonempty event E, Strong Monotonicity of <0 ensures

that p(E) > 0 for all p ∈ P. Applying updating rule 5,

cE(pE) =







0 if pE ∈ PE = {p(·|E)|p ∈ P}

+∞ otherwise

So <E has MEU representation (u,PE).

For part (2), suppose <0 also has a multiplier preference representation (u, q, θ). So it has

a variational representation (u, c) with cost function c(p) = θ
∫

lnp

q
dp. For any nonempty

event E, Strong Monotonicity of <0 ensures that q(E) > 0. Applying updating rule 5,

cE(pE) = min
p∈∆(S):p(·|E)=pE

θ

p(E)

∫

ln
p

q
dp

= min
p∈∆(S):p(·|E)=pE

θ

p(E)
[(

∫

E

ln
pE
qE

dpE)p(E) + (

∫

Ec

ln
pEc

qEc

dpEc)p(Ec)

+ (p(E)ln
p(E)

q(E)
+ p(Ec) ln

p(Ec)

q(Ec)
)]

= θ

∫

E

ln
pE
qE

dpE

In the last step, we choose p such that p(E) = q(E) and p(·|Ec) = q(·|Ec). So <E has

multiplier representation (u, qE, θ).

A.8 Proposition 4

Proof. By Theorem 2, < exhibits intrinsic information aversion at all acts if and only if ∀f

and x such that fEx ∼0 x, f <0 xEf . By Conditional Certainty Equivalent Consistency,

fEx ∼0 if and only if x ∼E f .
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If x ∼E f , then u(x) = minpE∈∆(E)

∫

E
u(f)dpE + cE(pE). So

V0(xEf) = min
p∈∆

p(E)u(x) +

∫

Ec

u(f)dp+ c(p)

= min
p∈∆

p(E)[ min
pE∈∆(E)

∫

E

u(f)dpE + ĉE(pE)] +

∫

Ec

u(f)dp+ c(p)

= min
p∈∆

min
pE∈∆(E)

p(E)[

∫

E

u(f)dpE + ĉE(pE)] + +

∫

Ec

u(f)dp+ c(p)

= min
q∈∆

min
qE∈∆(E)

∫

u(f)dq + q(E)ĉE(qE) + c(qE ⊗E q)

(change of variable: q = pE ⊗E p, and qE = p(·|E))

= min
q∈∆

∫

u(f)dq + q(E)ĉE(qE) + min
qE∈∆(E)

c(qE ⊗E q)

Also

V0(f) = min
q∈∆

∫

u(f)dq + c(q)

“If” direction. Suppose infqE∈∆(E) c(qE ⊗E p) + p(E) infq∈∆(S)
c(pE⊗q)
q(E)

≤ c(p), ∀p. Then for

all f , q,
∫

u(a)dq + q(E)ĉE(qE) + min
qE∈∆(E)

c(qE ⊗E q) ≤

∫

u(f)dq + c(q),

so V0(xEf) ≤ V0(f). Thus the DM is averse to partial information at all f .

“Only if” direction. For each E ∈ Σ, define

c̃(p) =







infqE∈∆(E) c(qE ⊗E p) + p(E)cE(p(·|E)) if p(E) > 0

+∞ otherwise

Define Ĩ : B(S,R) → R by Ĩ(ξ) = infp∈∆(S)

∫

ξdp + c̃(p). By the calculation above, we

have ∀f ∈ F , x ∼E f , V0(xEf) = Ĩ(u(f)).

If statement (2) fails, then there exists p such that c̃(p) > c(p). By Lemma 9, we can find

ξ ∈ B(S,R) such that Ĩ(ξ) > I(ξ). By unboundedness, B(S,R) ⊆ B(S, u(X)) + R, so

there exists f ∈ F such that u(f) + k = ξ for some constant k. So we can find f ∈ F

such that V0(xEf) = Ĩ(u(f)) > I(u(f)) = V0(f). This contradicts aversion to partial

information.
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A.9 Proposition 5

Proof. Let p∗ ∈ c−1(0) ∩ argminp∈∆[
∫

S
u(f)dp+ c(p)]. Then ∀π = {E1, · · · , En},

V (π, f) = min
p∈∆

∑

p(Ei)
[

minpi∈∆(Ei)

∫

u(f)dpi + cEi
(pi)

]

+ min
{q∈∆(S):q=p on π}

c(q)

≤
∑

p∗(Ei)
[

∫

u(f)dp∗(·|Ei) + cEi
(p∗(·|Ei))

]

+ min
{q∈∆(S):q=p∗ on π}

c(q∗)

=

∫

S

u(f)dp∗

=

∫

S

u(f)dp∗ + c(p∗) = V (π0, f)

The second equality follows from

cEi
(p∗(·|Ei)) = min

p(·|Ei)=p∗(·|Ei)

c(p)

p(Ei)
= 0

and

min
{q∈∆(S):q=p∗ on π}

c(q∗) = 0.

A.10 Proposition 8

Proof. (1) Suppose <0 has a CEU representation (u, ν) and satisfies Uncertainty Aversion.

By the Proposition in [38] the corresponding functional I0 is concave and superadditive.

By Proposition 1, this implies that Event Complementarity holds. By Theorem 2, <

exhibits aversion to partial information.

(2) Suppose <0 has a CEU representation (u, ν) and satisfies Uncertainty Loving. By [38]

Remark 6 the corresponding functional I0 is convex and subadditive. By Proposition 1

and Theorem 2, < exhibits attraction to partial information.

A.11 Lemma 3

Proof. We first show <+ is represented by Ṽ (π, F ) = maxf∈Fπ V (π, f). For all (π, F ) and

(π′, G), (π, F ) <+ (π′, G) if and only if

∀g ∈ Gπ′

, ∃f ∈ F π, (π, f) < (π′, g)

48



Since V : Π× F represents <, this is equivalent to

max
f∈Fπ

V (π, f) ≥ max
g∈Gπ′

V (π′, g)

Thus (π, F ) <+ (π′, G) if and only if Ṽ (π, F ) ≥ Ṽ (π′, G).

Then we show maxf∈Fπ V (π, f) = V0(c(F |π)). By definition, F π = {f1E1f2E2 · · ·En−1fn :

fi ∈ F, ∀i = 1, · · · , n}. So

max
f∈Fπ

V (π, f) = max
f1∈F

. . .max
fn∈F

V (π, f1E1 · · ·En−1fn)

= max
f1∈F

. . .max
fn∈F

V (π, [c(fi|Ei), Ei]
n
1 ) by π-Recursivity

= max
f1∈F

. . .max
fn∈F

V0([c(fi|Ei), Ei]
n
1 )

= V0([c(F |Ei), Ei]
n
1 ) by π0-monotonicity

where the second to last equality is due to Independence from Redundant Information

and Time Neutrality.

A.12 Proposition 10 and 11

Proof of Proposition 10. (2) ⇔ (3) is due to Theorem 2.

To show (1) ⇒ (2), take any singleton menu F = {f}. A preference for perfect information

implies (π∗, f) < (π, f), ∀π. By Time Neutrality, (π∗, f) ∼ (π0, f), so (π0, f) < (π, f).

To show (2) ⇒ (1). Let π ∈ Π and F ∈ M. Then

V (π∗, F )− V (π, F ) = [ max
f∈Fπ∗

V (π∗, f)−max
f∈Fπ

V (π∗, f)] + [max
f∈Fπ

V (π∗, f)−max
f∈Fπ

V (π, f)]

The first term is non-negative since F π ⊆ F π∗

. By (2) and Time Neutrality, V (π∗, f) =

V (π0, f) ≥ V (π, f), for all π, f . So

maxf∈FπV (π, f) = V (π, f ∗) ≤ V (π∗, f ∗) ≤ max
f∈Fπ

V (π∗, f)

where f ∗ ∈ F π is the act that maximizes V (π, ·). So the second term is also non-negative.

Thus V (π∗, F ) ≥ V (π, F ) and the DM has preferences for perfect information.
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Next we prove Proposition 11. We first prove a lemma. Let F0 = argmaxf∈F V (π0, f)

be the set of uninformed optimal acts. By our decomposition, as long as the DM is not

strictly averse to information π at some f0 ∈ F0, then information is valuable.

Let F ∗
i = argmaxf∈F VEi

(f) be the set of optimal acts in F conditional on learning about

Ei. Consider F
∗ = {f ∗

1E1f
∗
2E2 · · ·En−1f

∗
n : f ∗

i ∈ F ∗
i , ∀i} ⊆ F π. The instrumental value of

information is zero if and only if F ∗ ∩ F 6= ∅. We collect these observations below.

Lemma 10. 1. If there exists an unconditional optimal act f0 ∈ F0 such that V (π, f0) ≥

V (π0, f0) at f0, then V (π, F )− V (π0, F ) ≥ 0.

2. If there exists a conditional optimal strategy f ∗ ∈ F ∗ such that f ∗ ∈ F and V (π, f ∗) ≤

(<)V (π0, f
∗), then V (π, F )− V (π0, F ) ≤ (<)0.

Proof. By definition V (π0, f0) = maxf∈F V (π0, f). If V (π, f0) ≥ V (π0, f0), then the

intrinsic value of information π at menu F is non-negative:

max
f∈F

V (π, f)−max
f∈F

V (π0, f) ≥ V (π, f0)− V (π0, f0) ≥ 0.

As the instrumental value of information is always non-negative, V (π, F )− V (π0, F ) ≥ 0

and π is valuable.

If there exists f ∗ ∈ F ∩F ∗, then the instrumental value of π, V (π, f ∗)−maxf∈F V (π, f) =

0. In addition maxf∈F V (π, f) = V (π, f ∗) ≤ V (π0, f
∗) ≤ maxf∈F V (π0, f), so the intrinsic

value of π is non-positive.

Remark 4. The first condition is helpful, as it requires only calculation of an optimal act in

the uninformed case. This could simplify checking whether ambiguity aversion generates

information aversion or not. In MEU models, this is equivalent to V (π, f0) = V (π0, f0),

when the intrinsic value of information π for menu F vanishes.

Proof of Proposition 11. If there exists an uninformed optimal act f0 that is π-measurable,

then V (π, f0) = V (π∗, f0) = V (π0, f0). By the above lemma, ∆V (π, F ) ≥ 0 .

Proof of Corollary 2. Let x be the uninformed optimal act for DM 1. So V 1(π0, x) ≥

V 1(π0, f), for all f in menu F . Since DM 2 is more ambiguity averse than DM 1, u2 = u1

and c2 ≤ c1. So for all f ∈ F ,

V 2(π0, f) = min
p∈∆(S)

∫

S

u(f)dp+ c2(p) ≤ min
p∈∆(S)

∫

S

u(f)dp+ c1(p) = V 1(π0, f)

and V 1(π0, x) = u(x) = V 2(π0, x). Thus V 2(π0, x) ≥ V 2(π0, f) for all f ∈ F . Since x is

π-measurable, by Proposition 11 we have ∆V 2(π, F ) ≥ 0.
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Marginal Value of Information

For any menu F , consider two partitions π2 ≥ π1. The marginal value of getting the finer

information π2 is:

V (π2, F )− V (π1, F ) = [max
f∈Fπ2

V (π2, f)− max
f∈Fπ1

V (π2, f)] + [max
f∈Fπ1

V (π2, f)− max
f∈Fπ1

V (π1, f)]

The first term captures the instrumental value of getting finer information π2 relative to

π1, and since F π1 ⊆ F π2 this term is non-negative. The second part captures the intrinsic

value of information π2 relative to π1.

Lemma 10 can be generalized as follows.

Lemma 11. 1. If there exists an optimal strategy f ∗1 for decision problem (π1, F ) such

that V (π1, f
∗1) ≤ V (π2, f

∗1), then V (π2, F )− V (π1, F ) ≥ 0.

2. If there exists an optimal strategy f ∗2 for decision problem (π2, F ) such that f ∗2 ∈

F π1 and V (π1, f
∗2) ≥ V (π2, f

∗2), then V (π2, F )− V (π1, F ) ≤ 0.

The proof is similar to the proof of Lemma 10 and hence omitted.

A.13 Proposition 12

Proof. Fix π = {E1, · · · , En}. Suppose<0 has second order belief representation (u, φ; Θ, µ)

and <0 is ambiguity averse. Then by [29] Proposition 1, φ is concave. Let f be an act
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where <0 displays local ambiguity neutrality. Then

V (π, f) =

∫

Θ

φ[

n
∑

i=1

pθ′(Ei)φ
−1[

∫

Θ

φ(

∫

u(f)dpθi(·|Ei))dµEi
(θi)]]dµ(θ

′)

≤

∫

Θ

φ[

n
∑

i=1

pθ′(Ei)[

∫

Θ

∫

u(f)dpθi(·|Ei)dµEi
(θi)]]dµ(θ

′)

=

∫

Θ

φ[
n

∑

i=1

pθ′(Ei)(

∫

Θ

∫

Ei

u(f)dpθi
dµ(θi)

∫

pθ′′(Ei)dµ(θ′′)
]dµ(θ′)

=

∫

Θ

φ[

n
∑

i=1

(

∫

Θ

∫

Ei

u(f)dpθidµ(θi)
pθ′(Ei)

∫

pθ′′(Ei)dµ(θ′′)
dµ(θ′)]

≤ φ

∫

Θ

[
n

∑

i=1

(

∫

Θ

∫

Ei

u(f)dpθidµ(θi)
pθ′(Ei)

∫

pθ′′(Ei)dµ(θ′′)
dµ(θ′)]

= φ[(

n
∑

i=1

∫

Θ

∫

Ei

u(f)dpθidµ(θi)(

∫

Θ

pθ′(Ei)
∫

pθ′′(Ei)dµ(θ′′)
dµ(θ′))]

= φ(

∫

Θ

∫

S

u(f)dpθdµ) = V (π0, f)

The two inequalities follow from the concavity of φ. The last equality holds because <0

displays local ambiguity neutrality at f .

The case for ambiguity loving <0 can be proved analogously.
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