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The price which a man whose available fund is n pounds may prudently pay for a share
in a speculation... (Whitworth 1870, p.217)

1 Introduction

Foster and Hart (2009) introduce a concept that relates the riskiness of a given gamble to
a critical wealth level above which it is ‘safe’ to enter that gamble. Entering gambles below
these critical wealth levels is not safe in the sense that this risks bankruptcy in finite time.
Conversely, the power of the Foster-Hart measure of riskiness is that safe gambles (a.s.)
guarantee no-bankruptcy. An important feature of the Foster-Hart measure of riskiness as
a wealth level is that it is a law-invariant; i.e. it depends only on the underlying distribution
and not on the risk attitude of the investor. It is in this sense that Foster and Hart (2009)
refer to it as ‘operational’.

When the gamble is scalable, then the Foster-Hart measure can be re-interpreted as
a bound on the fraction/ ‘share’ of one’s wealth that is safe to invest. The (a.s.) no-
bankruptcy guarantee carries over to this setting. The importance of the non-bankruptcy
criterion in this sense is illustrated by the fact that Whitworth (1870) proves an analogous
result for buying a ‘share’ of a ‘speculation’ as early as 1870 (pp. 216-219).1 In this note,
we focus on the ‘shares’ interpretation of Foster and Hart (2009)’s risk measure. In fact,
where appropriate, we use Riedel and Hellmann (2014)’s generalization of Foster and Hart
(2009) to continuous random variables.

To know what an investment in the spirit of the Foster-Hart bound means in practice
seems of high practical importance as it promises answers to questions regarding how much
of one’s wealth one can invest in the stock market without risking bankruptcy. Obviously,
the answer is not straightforward, because the pig in the poke regarding such real-world
investment decisions is the underlying probability distribution, which typically is unknown
not only to the decision-maker but also to us as scientists. One may use the word ‘spec-
ulation’ instead of ‘gamble’ to stress this feature (as in the above citation by Whitworth
1870). In the rare real-world situations where the return distribution is indeed known to
the decision-maker and to the scientist, such as with roulette in the casino, the Foster-Hart
bound would often commend not to invest at all.

The aim of our work is to translate the Foster-Hart bound (FH bound) from abstract
gambles to applied finance. In turn, this means we have to translate the underlying financial
‘speculation’ back into a ‘gamble’ with a well-defined distribution. The question we shall
seek out to address is what investment behavior is considered safe in financial investment
practice. The main challenge for this approach is to get an estimate of the underlying
return distribution. We approach this by analysis of risk-neutral densities (RNDs) that
are nonparametrically estimated from S&P 500 call and put options prices. We favor this
approach over other alternatives such as historical return distributions as this information

1See the above citation.
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is in fact available to the decision-maker at the time of decision. The motivating assumption
is that the investor considers how much of his (unleveraged) wealth to invest in one single
index stock, in our case one that is tied to the S&P 500, based on information about the
associated options market. We analyze and assess the option-implied FH bound in light
of well-known risk measures including value at risk, expected shortfall and risk-neutral
volatility.

Our work builds on risk-neutral density estimation techniques that we shall discuss in
detail in subsequent sections where we introduce them. Our work is also related to that
of Bali et al. (2011) whose generalized measure of riskiness nests those of Aumann and
Serrano (2008) and Foster and Hart (2009). However, quite differently to theirs, ours
is an attempt to return to the operationality feature of the FH bound in terms of its
independence from risk aversion. We achieve this by making a somewhat ‘brutal’ (because
direct) move from the physical probability measure (P) to the option-implied risk-neutral
measure (Q). While this is inappropriate for most financial analyses where alternative
approaches are preferred (e.g. Bliss and Panigirtzoglou 2004), the direct P-Q move is both
theoretically and empirically validated in our setting as it results in a ‘bound for the FH
bound’; i.e. more sophisticated option-implied risk-neutral density estimations that take
into account agents’ risk-aversion would only lead to higher and thus riskier FH bounds. It
is in this sense that our approach is closer in spirit to the original ‘satisficing’ approach of
Foster and Hart (2009) (as opposed to an ‘optimizing’ approach as in, for example, Kelly
1956), and in that way also independent of risk aversion/ ‘operational’ (as opposed to, for
example, the closely related measures by Aumann and Serrano 2008 or Bali et al. 2011).

The main contribution of this paper is the translation of the operational measure pro-
posed by Foster and Hart (2009) to applied finance. In particular, we analyze FH bounds
on real-world financial investments (in our case into the S&P 500 stock index) using as
the underlying probability distribution, which is unknown to us and to the investor, an
estimator based on options data. Moreover, we analyze and assess the option-implied FH
bounds in light of three well-known risk measures; value at risk, expected shortfall and
risk-neutral volatility. The two main findings are as follows. First, the FH bound cor-
relates less strongly with the other three risk measures than they all correlate with each
other. Supposing that the FH bound has informative content by itself, an investor there-
fore potentially gains additional information from looking also at the FH bound than from
looking only at the known risk measures. Second, the informativeness of the FH bound is
empirically validated as the FH bound is shown to be a significant predictor of large return
draw-downs.

The remainder of this document is structured as follows. Next, we formally introduce
and discuss the Foster-Hart measure of riskiness in section two, and turn to the estimation
of risk-neutral densities in section three. Section four contains the analysis. Section five
concludes.
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2 The Foster-Hart measure of riskiness

2.1 No-bankruptcy in the “shares” setup

When applying the Foster-Hart measure of riskiness to finance, it will prove useful to work
within the setup where the decision maker is allowed to take any proportion of the offered
gamble (Foster and Hart, 2009). In our case the gamble g consists of buying some multiple
of the risky asset at price S0, holding it over a period T > 0 and finally selling it at price
ST . Including dividends, we may define g as the absolute return g := ST +Y −S0, where Y
is the monetary amount of dividends being paid over the period. This allows us to define
the Foster & Hart bound (FH bound) αFH ∈ (0, 1) for a gamble with positive expectation
as the zero of the equation

E [log (1 + αFH r)] = 0, (1)

with r := g/S0 = (ST + Y − S0)/S0 being the relative return. Since in reality any risky
asset exhibits a positive probability of default, αFH is bounded from above by 1. Riedel
and Hellmann (2014) show that there exist gambles for which equation (1) has no solution
αFH ∈ (0, 1), even if the expected return is positive. In this case we may consistently set
the FH bound to one, αFH = 1.

The FH bound connects to the original definition of Foster and Hart’s operational mea-
sure of riskiness R simply as αFH = S0/R (Foster and Hart, 2009, p. 791). Varying between
0 and 1, one may interpret it as the fraction of wealth at which it becomes risky to invest in
the asset. Formally this may be expressed via a no-bankruptcy criterion. Following Foster
and Hart (2009), we define no-bankruptcy as a vanishing probability for ending up with
zero wealth when confronted with a sequence of gambles

P
[

lim
t→∞

Wt = 0
]

= 0. (2)

Foster and Hart (2009) (theorem 2) show that no-bankruptcy is guaranteed if and only if
the fraction of wealth invested in the risky asset is always smaller than the FH bound, that
is,

α = S0/W < αFH. (3)

In this case the wealth even diverges; limt→∞Wt →∞ (a.s.).

2.2 Positive and maximal growth rate

The FH bound can be interpreted as the limit between the positive and negative geometric
means of the gamble outcomes. A simple example may provide some intuition. Assume
that a risky asset at price S0 = $300 will, with equal probability, increase to ST = $420 or
decrease to ST = $200. Solving equation (1) reads as

(
1 + α2

5

) (
1− α1

3

)
= 1. The solution
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αFH = 0.5 is exactly the quantity that balances the potential gain and loss to an expected
geometric mean of 1. By contrast, investing a higher (lower) fraction of wealth will result
in a negative (positive) expected geometric mean. Thus αFH separates the regimes of ex-
pected negative and positive growth rates of wealth. For an infinite sequence of gambles
only investments in the latter avoid bankruptcy.

A natural question is why the FH bound (equation 1) sets the expected growth rate to
zero instead of maximizing it. Indeed, there is an extensive literature on a correspond-
ing maximal growth rate criterion, often referred to as the ‘Kelly criterion’ (Kelly, 1956;
Samuelson, 1979). Foster and Hart succinctly comment on this relation as follows Foster
and Hart (2009):

“While the log function appears there too, our approach is different. We do
not ask who will win and get more than everyone else [...], but rather who will
not go bankrupt and will get good returns. It is like the difference between
‘optimizing’ and ‘satisficing’.”

In our eyes, and more importantly for our purposes, the main difference between the
Kelly criterion and FH bound lies in their respective applications. While the first is an
investment strategy explicitly stating how to allocate one’s portfolio, the latter is a risk
measure indicating the set of mathematically problematic portfolio allocations in the sense
of bankruptcy. For us, the goal is to identify risky investment decisions, which is why we
prefer the latter interpretation.

2.3 A more conservative bound

While the FH bound (equation 1) is defined under the physical probability measure P,
we will evaluate it under the option-implied risk-neutral measure Q. Although Cox et al.
(1985) argue from a theoretical model that the risk-neutral density will converge to the
physical probability density as the aggregate wealth of an economy rises, more recent econo-
metric work questions this hypothesis (e.g. Brown and Jackwerth 2001). Since Bliss and
Panigirtzoglou (2004) find remarkable consistency in the deviation of the two measures
across markets, utility functions and time horizons, we shall address in this section what
our direct move between these measures means for the validity of the option-implied FH
bound in our analysis.

Intuitively, given a risk-averse representative investor, the FH bound will be lower under
Q than under P. Hence, our thus derived FH bound as a ‘bound on the bound’ is justified.
To see this, we follow Bliss and Panigirtzoglou (2004) to reconstruct the subjective density
function p from the risk-neutral density q assuming, as an example, a power utility function;

p(ST ) =
q(ST )/U ′(ST )∫
q(x)/U ′(x)dx

=
q(ST )SγT∫
q(x)xγdx

, (4)
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where ST is the price of the underlying at maturity and U(ST ) = (S1−γ
T − 1)/(1− γ). For

a positive relative risk aversion coefficient γ > 0 it is clear that this transformation shifts
probability mass from lower towards higher prices.2 Be S1 > S0 > 0, then

p(S1)/p(S0)

q(S1)/q(S0)
=

(
S1
S0

)γ
> 1. (5)

Technically, p first-order stochastically dominates q and the FH bound increases as the
gamble becomes more attractive (Foster and Hart, 2009). This means that the option-
implied FH bound will be a more conservative risk measure and importantly the no-
bankruptcy property persists given direct move between physical and option-implied mea-
sure. Throughout the literature one finds positive coefficients of relative risk aversion, al-
beit of various magnitude (e.g. Arrow 1971; Friend and Blume 1975; Hansen and Singleton
1982, 1984; Epstein and Zin 1991; Normandin and St-Amour 1998). In the spirit of Foster
and Hart (2009) we restrain from making assumptions on the utility of a representative
agent and pursue with option-implied quantities.

3 Estimating risk-neutral densities

3.1 Theory

The fundamental theorem of asset pricing, stating that in a complete market the current
price of a derivative may be determined as the discounted expected value of the future
payoff under the unique risk-neutral measure (e.g. Delbaen and Schachermayer, 1994),
guides the way of inferring information from financial options. The price C0 of a standard
European call option with exercise price K on a stock with price S is thus given as

C0(K) = e−rfT EQ
0 [max(ST −K, 0)] = e−rfT

∫ ∞
K

(ST −K)f(ST )dST , (6)

where Q and f are the risk-neutral measure and corresponding risk-neutral density, re-
spectively. Since option prices as well as the risk-free rate rf and time to maturity T are
observable, we may hope to invert equation (6) for the risk-neutral density.3

Several methods for inverting have been proposed, of which Jackwerth (2004) provides an
excellent review. Besides parametric approaches where one assumes a specific form for the
risk-neutral density with parameters that minimize the pricing error, a ‘trick’ by Breeden
and Litzenberger (1978) opens another route: if strikes are distributed continuously on the

2Note that the same argument applies to exponential utilities with U(ST ) = −(e−γSt)/γ, i.e. to the other
type of utility function discussed by Bliss and Panigirtzoglou (2004).

3One may at least proxy the true risk-free rate with, say, yields on 13-week Treasury bills or the rate of
interbank lending Libor.
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positive real line, we can simply differentiate equation (6) with respect to K to obtain the
risk-neutral distribution F and density f as

F (ST ) = erfT
∂

∂K
C0(K) + 1, f(ST ) = erfT

∂2

∂K2
C0(K). (7)

Again various methods exist to overcome the numerical problems associated with the fact
that options are only traded at discrete and unevenly spaced strikes.

3.2 A nonparametric approach

For our purposes the relatively new approach by Figlewski (2010) is most suited. It com-
bines a 4th-order polynomial interpolation of data points in implied volatility space with
appended generalized extreme value (GEV) tails beyond the range of observed strikes. We
shall briefly present this method here.

We start from bid and ask quotes for puts and calls with a given maturity and trans-
form the mid-prices to implied-volatility space via the Black-Scholes equation (Black and
Scholes, 1973). Note that we do not assume the Black-Scholes model to price options
correctly, but only use the equation as a mathematical tool. The implied volatilities of
puts and calls are blended together such that only the more liquid and thus informative
out of the money and at the money data points are considered while ensuring a smooth
transition from puts to calls. The resulting famous ‘volatility smirk’ is interpolated with
a 4th-order polynomial weighted by open interest, thus, giving higher importance to data
points which contain more market information.4 After a retransformation of the fit values
to price space, we numerically evaluate the empirical part of the risk neutral distribution
and density according to equation (7).

As the range of strikes is finite, we have to choose a functional form of the tails. Instead
of the often-used log-normal function, Figlewski (2010) employs the family of generalized
extreme value (GEV) distributions (Embrechts et al., 2005, p. 265). The Fisher-Tippett
theorem (Embrechts et al., 2005, p. 266) supports this choice, stating that under weak reg-
ularity conditions and after rescaling, the maximum of any i.i.d. random variable sample
converges in distribution to a GEV distribution. The GEV family contains many relevant
distributions, in particular also those with heavy tails.5 A distribution of GEV type is

4Since our data set admits open interest weighting, we deviate in this point from the original approach by
Figlewski, who weights such that fits outside the bid-ask spread are penalized.

5The conceptually correct choice of extreme value family is the generalized Pareto distribution (GPD),
since the risk-neutral tails correspond rather to the peaks-over-threshold method than the block-maxima
method (Embrechts et al., 2005, pp. 264-291). Mathematically this translates into applying the
Pickands-Balkema-de Haan theorem instead of Fisher-Tippett. However, because of their asymptotic
equivalence and quantitative similarity we may use either and refer to Embrechts et al. (2005, 1997);
Birru and Figlewski (2012) for a more detailed discussion.
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characterized by three parameters: location, scale and shape. We determine them by im-
posing the following three connection conditions for the left and right tail separately: the
GEV density should match the empirical one at two specified quantile points and conserve
the probability mass in the tail.

Joining the empirical part with the tails eventually gives the full option-implied risk
neutral density. While there exist many approaches to estimate risk-neutral densities, we
argue that Figlewski’s method, as a combination of a model-free empirical part and flexible
extreme value tails, belongs to the most unbiased ones. Allowing for non-standard features
such as bimodality and fat tails will be of advantage for analyzing the highly different
regimes around the Global Financial Crisis of 2008. We refer the interested reader to a
supplementary paper to ours (Leiss et al., 2014) in which we discuss in detail the properties
of the RNDs during and around the Financial Crisis (see also Figlewski 2010; Birru and
Figlewski 2012).

3.3 Data

In this study we employ end-of-day data for standard European call and put options on
the Standard & Poor’s 500 stock market index. Our data is provided by Stricknet and
covers the period from January 1st, 2003, to October 23rd, 2013. The data consists of
bid and ask quotes as well as open interest across various maturities, but we focus only
on the extremely liquid quarterly options with expiration in March, June, September and
December, respectively. Daily values for index level, its dividend yield and the yield of the
Three-Month Treasury bill as a proxy of the risk-free rate are taken from the Thomson
Reuters Datastream.

We follow Figlewski (2010) in filtering the raw data, ignoring quotes with bids below $0.50
and those that are more than $20.00 in the money, as such bids come with high ambiguity
due to large spreads. Moreover, we also discard data points with midprices violating static
no-arbitrage conditions. Finally, to ensure well-behaved densities, we restrict our analysis
to dates with time to expiration of at least two weeks.6

4 Empirical results

4.1 Relation to value at risk, expected shortfall and risk-neutral volatility

A pioneering work on option-implied risk measures is Aı̈t-Sahalia and Lo (2000), who sug-
gest that value at risk (VaR) evaluated under the risk-neutral measure may capture aspects

6(i) As the range of relevant strikes shrinks on the way towards maturity, the densities show a strong
peaking. (ii) Figlewski (2010) also notes that another reason may be price effects from rollovers of
hedge positions into later maturities around contract expirations.
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of market risk that VaR under the physical measure does not. Aı̈t-Sahalia and Lo (2000)
argue that “risk management is a complex process that is unlikely to be driven by any
single risk measure”, and conclude that the option-implied measure should rather be seen
as a compliment than substitute. In a similar fashion, Bali et al. (2011) set out to assess
the added value of their ‘generalized risk measure’, a measure that is related to ours (as
discussed previously), against traditional ones such as VaR and expected shortfall (ES),
and also against the risk-neutral measure of skewness QSKEW (Xing et al., 2010). (Fama
and MacBeth, 1973) use a Fama-MacBeth regression (Fama and MacBeth, 1973) to show
that their option-implied ‘generalized risk measure’ successfully explains the cross section
of 1-, 3-, 6- and 12-month-ahead risk-adjusted stock returns, indicating that, controlling
for the other measures, the option-implied measure adds value.7

So let us take a step back and ask what the FH bound may add when evaluating all
measures under the risk-neutral measure?8 In this we depart crucially from previous work,
who compared option-implied risk measures against physical measures. To make that
comparison, we calculate VaR and ES for option-implied log-returns at the 5% level,

VaRα = inf{x ∈ R : Fr(x) ≤ α}, ESα = EQ [x ∈ R : x ≤ VaRα] , (8)

where Fr is the implied distribution of log-returns.9 The risk-neutral volatility is defined as
the second moment of the (rescaled) risk-neutral density f(ST /S0). Figure 1 displays and
compares the resulting quantities. All measures exhibit signatures of the Global Financial
Crisis of 2008 as well as the Greek and European sovereign debt crises in 2010 and late
2011, respectively. Yet, it appears from figure 1 that the FH bound’s behavior is distinctly
different. A correlation table provides some first quantification of the relation between the
various measures (see table 1). While the tail measures VaR and ES, as well as risk-neutral
volatility, are respectively highly correlated amongst each other (with 98% and 87%), the
FH bound only exhibits a linear correlation of 38% to 48% to the others. Indeed, it seems
that the FH bound captures different information than VaR, ES or risk-neutral volatility.

4.2 Drops of ahead-returns

Bali et al. (2011) systematically assess the performance of their generalized risk measure
vis-a-vis other measure through regression of ahead-returns on the various risk measures.
We shall not follow this approach here. The reason is that we cannot expect a satisfying

7Note, however, that the asset allocation implications are limited: across all investment horizons the time-
varying investment choice of an investor with a relative risk aversion of three over the whole sample
period of 1996–2008 ranges only over a few percentage points (Bali et al., 2011).

8Indeed, Bali et al. (2011) compare the option-implied Bali measure to historical VaR and ES. Evaluating
all risk measures under the same information set represents a somewhat more level playing field.

9One can easily go from annualized log-returns to prices as r = log(ST /S0)/T . The risk-neutral density
expressed in log-returns is fr(r) = TST fS(S).
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Figure 1: Various risk measures evaluated under the option-implied risk-neutral measure
(weekly rolling mean). Although determined on the same information set, the
FH bound (a) clearly shows a different behavior from expected shortfall (b), risk-
neutral volatility (c) and value at risk (d). Expected shortfall and value at risk
are evaluated on the log-return density and for readability flipped to positive
values (i.e. expressed in losses).
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FH.bound VaR ES

FH.bound
VaR 0.38***

ES 0.42*** 0.98***
RN.Vol -0.48*** -0.87*** -0.87***

Table 1: Linear correlation coefficients between FH bound, value at risk, expected shortfall
and risk-neutral volatility, all evaluated under the risk-neutral measure.

performance of the FH bound, because the FH bound is defined as the quantity with an
expected return of zero. Indeed, over the whole period of 2003 to 2013, a portfolio alloca-
tion implied by the FH bound results in a Sharpe ratio that does not significantly differ
from zero, which is exactly expressive of this fact.

More intuition concerning the FH bound’s added value can be gained from inspection
of its definition in equation (1). Due to the logarithm as a highly concave function, the
FH bound may be particularly sensitive to left-tail risks, i.e. extreme losses. We test this
hypothesis using a dummy variable ∆rρt that is one whenever the S&P 500 ahead-return
until maturity of the option , rt→T := log(ST /S0), significantly reduces by more than a
value ρ as compared to the day before and zero otherwise. Value at risk VaRt and expected
shortfall ESt as left-tail measures are the natural quantities to compare the FH bound FHt

with, yet to avoid a multicollinearity problem do to their high correlation we only control
for one of them at once. That means we run the following regressions:

∆rρt = a0,t + a1,t FHt + a2,t VaRt, ∆rρt = a0,t + a1,t FHt + a2,t ESt. (9)

Results for ρ = −100% and ρ = −200% are reported in Table 2 and are robust with
respect to the choice of the threshold ρ over a wide range of numerical values. Note, that
we are dealing with logarithmic returns where a ρ = −100% and ρ = −200%, respectively,
mean that the asset value at maturity ST drops to e−100% = 37% and e−200% = 14% of its
previous value S0. All estimated slope coefficients are negative, most of them significantly,
indicating that a drop of the ahead-return may be explained by both FH bound, VaR
and ES. When controlling for a left-tail measure the FH bound loses explanatory power,
however remains significant in half of the cases. One reason for the better performance of
traditional left-tail measures might be due to the no-bankruptcy property: figure 1a shows
that even during the seemingly safe period of 2005 to 2008 the FH bound cannot exceed
the upper limit of one, the signal becomes essentially flat and loses information relative to
the unbounded VaR and ES. For drawdowns of intermediate size, however, the FH bound
keeps explanatory power even when controlling for left-tail measures.
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5 Conclusion

The main contribution of this paper has been the translation of the objective risk measure
by Foster and Hart (2009) to applied finance. This was done by extracting the underlying
risk-neutral densities from option prices and deriving the option-implied FH bound. Rather
than optimal estimates, we chose an approach which could be described as deriving a
conservative bound on these. This bound has been shown to have additional information
compared to known risk measures. It had interesting macroscopic patterns in that it
indicates a rather extreme regime shift in the dawn of the financial crisis. The bound also
has been shown to have microscopic interest in that it is a significant predictor of large
return draw-downs. It is a challenge for future work in similar spirit to consider investment
strategies that are not restricted to one asset and / or allow leverage.
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Regression of ∆r−100%t on FH bound, VaR and ES

(Intercept) 0.17∗∗∗ 0.04∗∗∗ 0.06∗∗∗ 0.03∗∗ 0.05∗∗∗

(0.01) (0.01) (0.02) (0.01) (0.02)
FH bound −0.08∗∗∗ −0.03∗ −0.03∗

(0.02) (0.02) (0.02)
VaR −0.08∗∗∗ −0.08∗∗∗

(0.01) (0.01)
ES −0.06∗∗∗ −0.05∗∗∗

(0.01) (0.01)

Regression of ∆r−200%t on FH bound, VaR and ES

(Intercept) 0.06∗∗∗ −0.04∗∗∗ −0.03∗∗∗ −0.04∗∗∗ −0.03∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
FH bound −0.05∗∗∗ −0.01 −0.01

(0.01) (0.01) (0.01)
VaR −0.06∗∗∗ −0.06∗∗∗

(0.01) (0.01)
ES −0.04∗∗∗ −0.04∗∗∗

(0.00) (0.00)
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: This table reports the intercept and slope coefficients of the regression of drops
in logarithmic return between successive days of more than 100% (upper part) or
200% (lower part) on FH bound, value at risk and expected shortfall. Logarith-
mic returns of −100% and −200% mean that the asset value at maturity drops
to e−100% = 37% and e−200% = 14% of its base value, respectively. Standard
deviations are given in brackets, significance according to p-values is indicated by
stars. All estimated slope coefficients are negative, most of them significantly.
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