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1. Introduction 
 

There is an increasing interest in the computational aspects of stochastic 

games. Recent years have seen various algorithms for solving different types of 

stochastic games as well as complexity theoretic results. In this paper, we provide a 

brief survey of some of these results including our recent results and we discuss 

some new results as well. We also mention some interesting and relevant open 

problems.  

 

Solving a stochastic game involves computing its optimal value in the zero-

sum case (Nash equilibrium payoffs in the non-zero-sum case) as well as optimal 

strategies (Nash equilibrium strategies) of the players. We start off with simple 

examples to illustrate how to solve a -discounted stochastic game using Shapley’s 

theorem (1953). We then discuss “The Big Match” with limiting time average 

(undiscounted) payoffs (Gillette, 1957; Blackwell and Ferguson, 1968) where one 

of the players does not have optimal strategies even if we allow behavioural 

strategies (strategies that depend on the history). On the other hand, discounted 

stochastic games always have stationary optimal strategies (Nash equilibrium 

strategies). (Stationary strategies depend only on the current state).  

 

In the following sections, we discuss algorithms and complexity of solving 

stochastic games. We discuss our results on mixtures of stochastic games 

(Krishnamurthy, Parthasarathy and Ravindran, 2010) and make a few algorithmic 

observations which follow from this paper. We propose polynomial time algorithms 

for  subclasses of  Simple Stochastic Games (SSG), Perfect  Information Stochastic  
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Games (PI) and Switching Control (SC) Stochastic Games (Krishnamurthy, 

Parthasarathy  and  Ravindran, 2012).  Further,  we discuss  solving  subclasses of 

multiplayer stochastic games via Linear Complementarity Problem (LCP) 

formulations (Krishnamurthy, Parthasarathy and Ravindran, 2011). We also discuss 

communication complexity of stochastic games where the players are at different 

nodes in a network and need to communicate in order to solve the game. We 

summarize results on the communication complexity of finding a pure equilibrium 

point (if one exists) for some classes of stochastic games (Krishnamurthy, 

Parthasarathy and Ravindran, 2009) and we solve a problem which was left open in 

that paper.  

 

2. Algorithms and Complexity of Stochastic Games of Complete 

Information 

 

We briefly outline a Newton-Raphson type iterative algorithm due to 

Pollatschek and Avi-Itzhak (1969) to solve two-person zero-sum discounted 

stochastic games. In general, we can use this algorithm only to find approximate 

optima as there is no guarantee on the number of steps such iterative algorithms 

take to converge. In fact, there are stochastic games (even in the discounted zero-

sum case) for which no (finite arithmetic-step) exact algorithms exist. This is 

because such games have irrational optimal values though the inputs (payoffs, 

transition probabilities and the discount factor  in case of discounted games) are 

rational. We provide examples to illustrate this fact.  

 

This motivates us to look for classes of stochastic games with rational inputs 

that are always guaranteed to have rational outputs (optimal value and a pair of 

optimal strategies of the players in the case of zero-sum games; a pair of Nash 

equilibrium payoffs and corresponding strategies in the case of non-zero-sum 

games). Such games are said to possess the orderfield property. To solve these 

games, there is hope of finding an exact algorithm. SSG (Simple Stochastic 

Games), One Player Control Stochastic Games, PI (Perfect Information Stochastic 

Games), SC (Switching Control Stochastic Games), SER-SIT (Separable Reward – 

State  Independent  Transition  Stochastic  Games) and ARAT (Additive  Reward  
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Additive Transition Stochastic Games are some such classes with the orderfield 

property. We define these classes in the full version of the paper.  

 

Algorithms are known for many of these classes where as, the problem 

remains open for some classes (even in the two-person case). We discuss some of 

these algorithms in the full version of the paper. Some of these algorithms reduce 

these stochastic games to a Linear Program, some of them reduce them to matrix or 

bimatrix games, some of them use policy-improvement techniques similar to those 

for MDPs (Markov Decision Processes) and others use Linear Complementarity 

Problems (LCP). For some classes of stochastic games, though algorithms for 

solving them are known, search is on for efficient algorithms to solve them. For 

example, there is no efficient algorithm (yet) to solve switching control stochastic 

games. 

 

In many of these cases where algorithms have been proposed, nothing has 

been said about their complexity, though interesting complexity theoretic 

observations are just waiting to be mentioned. For example, two-person non-zero-

sum SER-SIT games is in the complexity class PPAD (in both the discounted as 

well as the undiscounted case), two-person non-zero-sum one player control 

stochastic games is in PPAD (in the discounted case and in the undiscounted case 

when the transition matrix induced by any pair of pure strategies is irreducible), 

zero-sum SER-SIT as well as one player control games are in P, etc. Hardness 

results for many of these games remains open.  

 

Known results for algorithms and complexity that we discuss include the 

results due to Filar (1981), Vrieze (1981), Parthasarathy and Raghavan (1981), 

Parthasarathy, Tijs and Vrieze (1984), Condon (1992, 1993), Nowak and Raghavan 

(1993), Conitzer and Sandholm (2003), Gartner and Rust (2005), Dieckelmann 

(2007), Gimbert and Horn (2009), Ganzfried and Sandholm (2009) etc. For a class 

of multi-player stochastic games, we discuss an algorithm by Mohan et al. (1997). 

Algorithms have also been proposed for mixtures of classes of stochastic games. 

For example, Neogy et al. (2008) propose an algorithm to solve a mixture of SC 

and ARAT states. Krishnamurthy, Parthasarathy and Ravindran (2010) discuss new 

sufficient conditions for mixtures of classes of stochastic games to possess the 

orderfield property. We discuss these in detail in the full version of the paper.  
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3. Polynomial Time Algorithms for Some Classes of Stochastic 

Games 

 

Krishnamurthy, Parthasarathy and Ravindran (2012) propose polynomial 

time algorithms for subclasses of Simple Stochastic Games (SSG), Perfect 

Information (PI) Stochastic Games and Switching Control (SC) Stochastic Games 

with discounted as well as undiscounted payoffs. 

 

We reproduce the following for the sake of completeness. Note that, as 

shown in Krishnamurthy, Parthasarathy and Ravindran (2012), though the 

algorithm seems to be simple backward induction, it does not work for mixtures of 

some classes of stochastic games and hence requires proof for classes where it 

works.  

 

Polynomial Algorithm for Subclasses of SC: 
 

Theorem: Let  = (S, A1, A2, r, q, ) be a finite zero-sum discounted switching 

control (SC) stochastic game with rational inputs and let G = (V, E) be the 

dependency graph of  where V = S. Let C1, C2, …, Ck be the strongly connected 

components of G with sets of vertices (states) V1 (S1), V2 (S2), …, Vk (Sk) 

respectively. That is, S = S1  S2    Sk, (Sk1
  Sk2

 = , k1 ≠ k2, 1 ≤ k1, k2 ≤ k) 

such that the subsets S1, S2, , Sk are cycle-free. Assume that Sk is a sink and that 

there are no transitions from Sk2
 to Sk1

 whenever k2 > k1. That is,  

1),,|(∑
∈

jissq k

Ss kk    

for all s  Sk, i  A1, j  A2,  

and q(sk1
 | sk2

, i, j) = 0 for all sk1
 Sk1

, sk2
 Sk2

, (k2 > k1),  i  A1, j  A2. 
 

Furthermore, assume that each Sh (1 ≤ h ≤ k) satisfies one of the following: 

 

(i) Sh is player 1 controlled or  

 

(ii) Sh is player 2 controlled or  
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(iii) Sh consists of both player 1 and player 2 controlled states but all states in Sh 

are those of perfect information. Furthermore  

(a) one of the players has O(log N) states with constant number of actions 

and a constant number of states with a non-constant number of actions 

or   

(b) states in Sh resemble an SSG such that if Sh has all 3 types of states 

(namely, player 1, player 2 and random states), then Sh has either O(log 

N) player 1 states or O(log N) player 2 states or a constant number of 

random vertices. (By “resemble an SSG” we mean the following. When 

player 1 or player 2 has 2 or more actions in a state, the probabilities of 

transition from that state are 0/ 1).  

 

Then  can be solved in polynomial time.  

 

[Note:  

(1) We do not require the game to already be partitioned into S1, S2, …, Sk. 

(2) We need to show that, unlike the SER-SIT case, we can recursively plug in 

values here without altering the overall structural properties. 

Krishnamurthy, Parthasarathy and Ravindran (2010) show that such games 

have the orderfield property. Here, we require that the structure is not 

altered and further, that the resulting game is solvable in polynomial time]. 
 

Proof: We prove the theorem by induction on k, the number of subsets.  

 

We shall prove the theorem when each subset Sh (1 ≤ h ≤ k) is player 1 controlled 

(assumption (i) in the theorem) or player 2 controlled (assumption (ii) in the 

theorem). Using polynomial time algorithms for subclasses of PI and SSG that we 

shall be proving in subsequent sections, using the fact that SSG  PI  SC and 

using techniques similar to those in the proof below, we can prove the theorem by 

allowing assumptions (iii) (a) and (iii) (b) as well.  

 

We briefly outline the proof for assumptions (i) and (ii) below.  

 

For k = 2, S = S1  S2, S1  S2 = , such that  
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1),,|( 2

∈

∑
22

jissq
Ss

for all s  S2, i  A1, j  A2.  

 

In this case, it follows that q(s1 | s2, i, j) = 0 for all s1 S1, s2 S2, i  A1, j  A2.  

 

If both S1 and S2 are controlled by the same player, then  is a one-player 

control game and can be reduced to a matrix game or equivalently an LP 

(Parthasarathy and Raghavan, 1981).  

 

Now, without loss of generality, let S1 be controlled by player 1 and S2 by player 

2. That is,  

            q ( s| s1, i, j) = q ( s| s1, i), for all s1S1, sS, iA1, jA2,  

            q ( s| s2, i, j) = q ( s| s2, j), for all s2S2, sS, iA1, jA2.  

 

As there are no transitions from S2 to S1, | S2 is a one player controlled game, 

possesses the orderfield property and can be solved by reduction to LP. Let (f2
*
, g2

*
) 

be a pair of optimal strategies of the players in the sub-game | S2. Using 

Shapley’s theorem, value of the stochastic game | S2 starting at state s2  S2 is  

.)())(,|())(),(,()( 2
*
22

∈

2
*
22

*
222

'

2

svsgssqsgsfsrsv

Ss


 

   
 

Now, define a new game  = (S = S  {s
*
}, A1, A2, r, q', ) where s

*
 is a new 

absorbing state such that 

 

r'(s
*
, i, j) = 0 ,  i  A1,  j  A2.  

 

21122

∈

∈,∀,),(),|(),,(),,(
22

AjAiSssvissqjisrjisr
Ss

  

 

r'(s, i, j) = r(s, i, j),  s  S2,  i  A1,  j  A2.  
 

.,),,|(1),|(' 111

∈

*

11

AiSsissqissq
Ss

   

q'(s1 | s, i) = q (s1 | s, i ),  s  S1,  s1  S1,  i  A1.  
 

q'(s2 | s, i) = 0,  s  S1,  s2  S2,  i  A1.  
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q'(s2 | s, i, j) = q (s2 | s, i, j), s, s2S2, iA1, jA2.  
 

q'(s
*
 | s

*
, i, j) = 1,  i  A1,  j  A2.  

 

This new game  consists of two independent sub-games, | S1 and | S2. 

| S2 is the same player 2 controlled game as | S2, and hence their optimal 

values are equal and (f2
*
, g2

*
) is a pair of optimal strategies for the players in | S2 

as well.  

 

| S1  {s
*
} is also a one player control game (controlled by player 1) with 

rational entries (r is rational as v (s2) is rational for all s2  S2 and as r is rational, 

q is rational by definition of q as q is rational and β is already given to be rational). 

Hence this sub-game can be solved in polynomial time by reducing it to a matrix 

game (or LP). (Note that it is important that the inputs to | S1 are rational and it is 

also important that the resulting game | S1 is controlled by the player who 

controls S1, otherwise our claim does not hold).  

 

Now, we show that the optimal value and optimal strategies coincide for all s  

S1 as well. For all s  S1, Shapley equations for | S1 are 

))('),|(),,('()(' 11

∈ 11

svissqjisrvalsv
Ss

   

and Shapley equations for the game  are, 

 ).)'(),|'(),,(()(
∈'

svissqjisrvalsv
Ss

   

Plugging in the values of r from above equation, namely  

21122

∈

∈∀,,),(),|(),,(),,(
22

AjAiSssvissqjisrjisr
Ss

  

 

it is easy to see that v(s) = v(s) for all s  S1.  

 

We formally describe the algorithm (algorithm 2) below and it is easy to see that it 

runs in polynomial time.          
 

 

Algorithm 1 below is a pre-processor, that accepts a stochastic game , 

constructs its dependency graph G, finds the strongly connected components of G,  
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topologically sorts these components and checks that the conditions of the above 

theorem hold. All these are linear time operations. Algorithm 2 solves  (given 

that the conditions of the above theorem hold) by reducing  to  (which is a 

linear time operation) and solves  (in polynomial time). We can solve subclasses 

of undiscounted SC games using similar techniques and using the reduction to LP 

by Vrieze (1981).  

 

 

 

 

 

 

 
 

 

 

 

 

 

Algorithm 1: To partition a stochastic game into strongly connected components  

and check if conditions of the above theorem are satisfied.  

 

 

 

 

 

 

 

 

 
 

 

 

Algorithm 2: To solve subclasses of SC 

 

Refer to Krishnamurthy, Parthasarathy and Ravindran (2012) for polynomial time 

algorithm for subclasses of PI and SSG.  

 

 

 

 

Input: 2-Player Zero-Sum Discounted Stochastic game  = (S, A1, A2, r, q, ).  

 

Output: Outputs “yes” if the conditions of the above theorem are satisfied, “no” 

otherwise.  

 

(1) Construct the dependency graph G of . 

(2) Find the strongly connected components of G. Let them be C1, C2, …, Ck 

corresponding to subsets of states S1, S2, …, Sk respectively. 

(3) Topologically sort these components.  

(4) If each component satisfies the conditions of the theorem 2, return “yes”. 

Otherwise “no”. 

Input: 2-Player Zero-Sum Discounted Switching Control Stochastic game  = (S, 

A1, A2, r, q, ) that satisfies the conditions (i) or (ii) of theorem 2.  

 

Output: Optimal value vector of  and a pair of optimal stationary strategies (f
*
, g

*
) 

of players 1 & 2.  

  

(1) Solve the sub-games corresponding to sinks via reduction to LP. 

(2) Plug-in these values in their predecessor classes and solve recursively using 

backward induction. (Plug-in as discussed in the proof of theorem).    
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4. Solving Polystochastic Games via Linear Complementarity 

Problem (LCP) Formulations 

 

Krishnamurthy, Parthasarathy and Ravindran (2011) prove that certain new 

subclasses and mixtures of multi-player (or n-person) stochastic games can be 

solved via LCP formulations. Mohan, Neogy and Parthasarathy (1997) proposed an 

LCP formulation of β-discounted (multi-player) polystochastic games where the 

transitions are controlled by one player, and proved that this LCP is processible by 

Lemke’s algorithm. Using this formulation repeatedly, we prove that we can solve a 

subclass of β-discounted switching control polystochastic games. As our proof is 

constructive, we have an algorithm for solving this subclass. This algorithm only 

involves iteratively solving different LCPs and hence, it follows that this subclass 

has the orderfield property, a question left open in the paper on orderfield property 

of mixtures of stochastic games by Krishnamurthy, Parthasarathy and Ravindran 

(2010). Furthermore, we use results from Krishnamurthy, Parthasarathy and 

Ravindran (2010) to solve some mixture classes using LCP (or VLCP) 

formulations. We also propose two different VLCP formulations for β-discounted 

zero-sum perfect information stochastic games, the underlying matrices of both 

formulations being R0. As a result, we also have an alternative proof of the 

orderfield property of such games. 

 

5. Communication Complexity of Stochastic Games 

 

Krishnamurthy, Parthasarathy and Ravindran (2009) study the problem of 

determining the existence of pure Nash equilibria when each player knows only his 

or her payoffs and not that of the opponent. The aim of the players is to 

communicate with each other according to some pre-defined protocol and find 

whether the game has a pure strategy Nash equilibrium or not. The paper discusses 

finding the communication complexity for SER-SIT games and single controller 

stochastic games. We summarize these results and we extend these results to 

undiscounted SER-SIT games, a case left open in the paper.  
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