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Abstract

In this paper we analyze R&D collaboration networks in industries where firms are competitors
in the product market. Firms’ benefits from collaborations arise by sharing knowledge about
a cost-reducing technology. By forming collaborations, however, firms also change their own
competitive position in the market as well as the overall market structure. We analyze incen-
tives of firms to form R&D collaborations with other firms and the implications of these alliance
decisions for the overall network structure. We provide a general characterization of both equi-
librium networks and endogenous production choices in the form of a Gibbs measure. We find
that there exists a sharp transition from sparse to dense networks, and low and high output lev-
els, respectively, with decreasing linking costs. Moreover, there exists an intermediate range of
the linking cost for which multiple equilibria arise. The equilibrium selection is a path depen-
dent process characterized by hysteresis. We also allow for firms to differ in their technological
characteristics, investigate how this affects their propensity to collaborate and study the result-
ing network structure. We then analyze the efficient network maximizing social welfare, and
find that the efficient graph is either empty, complete or shows a strong core periphery struc-
ture.
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1. Introduction

R&D partnerships have become a widespread phenomenon characterizing technological dy-

namics, especially in industries with rapid technological development such as, for instance, the

pharmaceutical, chemical and computer industries [see e.g. Hagedoorn, 2002; Powell et al., 2005;

Roijakkers and Hagedoorn, 2006]. In these industries firms have become more specialized in

specific domains of a technology and they tend to combine their knowledge with that of other

firms that are specialized in different domains in order to jointly generate innovations that can

help to reduce their production costs [Ahuja, 2000; Powell et al., 1996]. Despite the increasing im-

portance of R&D collaborations there exists only limited research of theoretical models of these

relationships which can be used for policy analysis. This paper provides the first fully tractable

model of strategic R&D network formation with endogenous quantity choice, which takes into
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account the two-way flow of influence from the market structure to the incentives to form R&D

collaborations and, in turn, from the formation of collaborations to the market structure.

We study the incentives of firms to form R&D collaborations with other firms and the im-

plications of these alliance decisions for the overall network structure. We provide a complete

characterization of the stationary states of a dynamic process in which firms can adjust both,

quantities produced (as well as research efforts), and the R&D collaborations between them,

based on a noisy profit maximization rationale [cf. Blume, 2003; Brock and Durlauf, 2001]. Us-

ing a potential function we show that the stationary states of this process are completely char-

acterized by a Gibbs measure [cf. Bisin et al., 2006; Grimmett, 2010]. Further, we find that for

any distribution of output levels, the network can be characterized as an inhomogenous random

graph with a link probability that depends on the firms’ sizes and the linking cost [cf. Bollobás

et al., 2007, 2001; Söderberg, 2002; Van Der Hofstad, 2009]. Moreover, we show that the stochas-

tically stable networks (in the limit of vanishing noise) are “nested split graphs” [cf. König et al.,

2013; König et al., 2011].1 We then characterize the stationary degree distribution and compute

the asymptotic network density. In particular, we find that there exists a sharp transition be-

tween sparse and dense networks with decreasing linking costs. We also compute the stationary

output levels and show that there exists an intermediate range of the linking cost for which mul-

tiple equilibria arise. The equilibrium selection is a path dependent process characterized by

hysteresis [cf. David, 1992, 2005]. Moreover, as in the case of the network density, there exists a

sharp transition from a low output to a high output equilibrium. It is also possible to general-

ize our model by introducing heterogeneous marginal costs as well as heterogeneous spillovers

from collaborations between firms stemming from differences in their technological characteris-

tics. In particular, in the latter case we show that if firms’ technology stocks follow a power-law

distribution then the degree distribution will be power-law distributed as well [cf. Powell et al.,

2005]. We then investigate the efficient network architecture and output structure that maximize

social welfare, and find that the efficient graph is either empty, complete or shows a strong core

periphery structure.

There exist a number of related works on R&D networks in the economics literature. Most

notably, Dawid and Hellmann [2014]; Goyal and Joshi [2003]; Westbrock [2010] study the forma-

tion of R&D networks in which firms can form collaborations to reduce their production costs.

In particular, Dawid and Hellmann [2014] study a perturbed best response dynamic process

as we do here, and analyze the stochastically stable states. However differently to the current

model, the cost reduction from a collaboration in these models is independent of the identity

and the characteristics of the firms involved.2 Our analysis also bears similarities with a number

of other recent contributions in the literature which analyze a similar payoff structure. In the

paper by Ballester et al. [2006] the authors derive equilibrium outcomes in a linear quadratic

game where agents’ efforts are local complements in an exogenously given network. Differently

to Ballester et al. [2006], we make the network as well as effort choices endogenous.3 Our ap-

1A network is a nested split graph if the neighborhood of every node is contained in the neighborhoods of the
nodes with higher degrees [see also Mahadev and Peled, 1995].

2Goyal and Moraga-Gonzalez [2001] present a more general setup which relaxes this assumption but their analysis
is restricted to regular graphs and networks comprising of four firms. In this paper we take into account general
equilibrium structures with an arbitrary number of firms and no ex ante restriction on the collaboration pattern
between them.

3It is straightforward to see that the results obtained in this paper can be generalized to the payoff structure
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proach is further a generalization of the endogenous network formation mechanisms proposed

in Snijders [2001] and Mele [2010]. As in these papers we use a potential function to characterize

the stationary states, but here both, the action choices as well as the linking decisions are fully

endogenized. Similarly, Cabrales et al. [2010] allow the network to be formed endogenously, but

assume that link strengths are proportional to effort levels, while we make the linking decision

depending on marginal payoffs. Finally, in König et al. [2014] a similar market structure is con-

sidered, however, with an exogenous network, and the focus lies on developing optimal R&D

subsidy strategies as well as characterizing key firms whose exit would have the largest impact

on the output of the economy.

2. The Model

We consider a Cournot oligopoly game in which a set N = {1, . . . , n} of firms is competing in

a homogeneous product market.4 We assume that firms are not only competitors in the product

market, but they can also form pairwise collaborative agreements. These pairwise links involve

a commitment to share R&D results and thus lead to lower marginal cost of production of the

collaborating firms. The amount of this cost reduction depends on the effort the firms invest

into R&D. Given the collaboration network G ∈ Gn , where Gn denotes the set of all graphs with

n nodes, each firm sets an R&D effort level unilaterally.5 We assume that firms can only jointly

develop a cost reducing technology. Given the effort levels ei, marginal cost ci of firm i is given

by6,7

ci(e, G) = c̄ − αei − β
n

∑
j=1

aijej, (1)

where aij = 1 if firms i and j set up a collaboration (0 otherwise) and aii = 0. The parameter

α ≥ 0 measures the relative cost reduction due to a firms’ own R&D effort while the parameter

β ≥ 0 measures the relative cost reduction due to the R&D effort of its collaboration partners. In

this model, firms are exposed to business stealing effects if their rivals increase their output via

cost reducing R&D collaborations.8

Moreover, we also assume that firms incur a direct cost γ ≥ 0 for their R&D efforts and a

fixed cost ζ ≥ 0 for each R&D collaboration.9 The profit of firm i, given the R&D network G and

introduced in Ballester et al. [2006]. See in particular the general payoff structure considered in Equation (8).
4Generalizations to Bertrand competition are straight forward [Westbrock, 2010].
5See also Kamien et al. [1992] for a similar model of competitive RJVs in which firms unilaterally choose their

R&D effort levels.
6Note that we have neglected spillovers among non-collaborating firms.
7This generalizes earlier studies such as the one by D’Aspremont and Jacquemin [1988] where spillovers were as-

sumed to take place between all firms in the industry and no distinction between collaborating and non-collaborating
firms was made.

8In order to guarantee non-negative marginal costs we assume that ei ∈ [0, ē] and c̄ ≥ (n − 1)ē. This shows that
c̄ must be of the order of O(n). Throughout the paper we shall assume parameter are constrained such that the
second-order conditions hold and equilibria can be characterized in terms of first-order conditions and are interior.

9Observe that the direct cost ζ of collaboration is incurred by the firm initiating the collaboration. Therefore, it
is the degree di of the firm i that appears in its profit function. We assume that R&D collaborations can only be
formed if both firms agree to its establishment. One can show that marginal profit of a firm j to which firm i proposes
a collaboration is given by πj(q, G + ij) − πj(q, G) = ρqiqj ≥ 0, with a constant ρ ≥ 0. Since marginal profits
are always non-negative, the firm j always accepts the proposed collaboration of i. This is a consequence of the
assumption that firms are myopic and will be further discussed in Section 3.
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the quantities q and efforts e, is then given by

πi(q, e, G) = (pi − ci)qi − γe2
i − ζdi.

Inserting marginal cost from Equation (1) gives

πi(q, e, G) = piqi − c̄qi + αqiei + βqi

n

∑
j=1

aijej − γe2
i − ζdi.

The first-order condition with respect to R&D effort ei is given by ∂πi(q,e,G)
∂ei

= αqi − 2γei = 0.

Solving for ei and taking into account that ei ∈ [0, ē] delivers

ei = min{λqi, ē}, (2)

where we have denoted by λ = α
2γ .10 Equation (2) can be viewed as reflecting learning-by-doing

effects on R&D efforts. Various empirical studies have found that the R&D effort of a firm is

proportional its output or size [Cohen and Klepper, 1996a,b]. We then can write marginal costs

from Equation (1) as follows11

ci(e(q), G) = c̄ − λαqi − λβ
n

∑
j=1

aijqj. (3)

Profits can be written as

πi(q, G) = piqi − c̄qi − λαq2
i + λβqi

n

∑
j=1

aijqj − λ2γq2
i − ζdi . (4)

Next we consider the demand for goods produced by firm i. A representative consumer

maximizes [Singh and Vives, 1984]

U(I, q1, . . . , qn) = I + a
n

∑
i=1

qi −
1

2

n

∑
i=1

q2
i −

b

2

n

∑
i=1

∑
j 6=i

qiqj, (5)

with the budget constraint I +∑
n
i=1 qi ≤ E and endowment E. The parameter a captures the total

size of the market, whereas b ∈ (0, 1], measures the degree of substitutability between products.

In particular, b = 1 depicts a market of perfect substitutable goods, while b → 0 represents the

case of almost independent markets. The constraint is binding and the utility maximization of

the representative consumer gives the inverse demand function for firm i

pi = a − qi − b ∑
j 6=i

qj. (6)

10An interior solution hence requires that qi ≤ q̄ ≡ 2γ
α ē ≤ 2γc̄

α(n−1)
for all i = 1, . . . , n. Since c̄ is O(n) we thus

require that qi is O(1). This means that quantities produced do not grow without bound as the number of firms in
the industry becomes large.

11We assume that firms always implement the optimal R&D effort level. Since the optimal R&D effort decision
only depends on a firm’s own output, a firm does not face any uncertainty when implementing this strategy. In
Section 3 we will, however, introduce noise in the optimal output and collaboration decisions, since these depend on
the decisions of all other firms in the industry and their characteristics, which might be harder to observe.
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Firms face an inverse linear demand as given in Equation (6). Firm i then sets its quantity qi in

order to maximize its profit πi given by Equation (4). We also assume that there is a maximum

production capacity q̄ such that qi ≤ q̄ for all i ∈ N . Inserting marginal cost from Equation (3)

and inverse demand from Equation (6) we can write firm i’s profit as

πi(q, G) = (a − c̄)qi − (1 − λα + λ2γ)q2
i − bqi ∑

j 6=i

qj + λβ
n

∑
j=1

aijqiqj − ζdi. (7)

We assume that a > c̄. Since c̄ must be of the order of O(n) this also implies that a is O(n). In the

following we will denote by η = (a − c̄)/n (which is O(1)), ν = (1 − λα + λ2γ)/n and ρ = λβ,

so that Equation (7) becomes

πi(q, G) = nηqi − nνq2
i

︸ ︷︷ ︸

own concavity

−bqi

n

∑
j 6=i

qj

︸ ︷︷ ︸

global substitutability

+ ρqi

n

∑
j=1

aijqj

︸ ︷︷ ︸

local complementarity

−ζdi. (8)

Firm i ∈ N sets its quantity qi and makes profit πi given by Equation (8). The corresponding

first-order conditions are given by

∂πi(q, G)

∂qi
= nη − 2nνqi − b

n

∑
j 6=i

qj + ρ
n

∑
j=1

aijqj = 0. (9)

The second-order derivatives for j 6= i are given by
∂2πi(q,G)

∂q j∂qi
= ∂2πi

∂qi∂q j
= −b + ρaij , which is

positive if b < ρ and aij = 1, and ∂2πi

∂q2
i

= −2nν ≤ 0, if ν ≥ 0. Hence, the payoff function in

Equation (8) is supermodular for linked firms expressing strategic complementarity, as allied

firms’ output choices are complements to each other [cf. Topkis, 1998]. From Equation (9) we

can write firm i’s best response quantity as

qi = fi(q−i, G) ≡ η

2ν
− b

2nν ∑
j∈N\{i}

qj +
ρ

2nν ∑
j∈Ni

qj =
η

2ν
− b

2nν ∑
j/∈(Ni∪{i})

qj +
ρ − b

2nν ∑
j∈Ni

qj, (10)

with the constraint that 0 ≤ qi ≤ q̄. Equation (10) shows that output of i is decreasing in the

output of the firms j not connected to i. Moreover, if ρ < b, then firm i’s output is also decreasing

in its neighbors’ output. However, if ρ > b, i’s output is increasing in its neighbors’ output.

3. Equilibrium Characterization

In the following we provide a complete equilibrium analysis of the R&D collaboration game.

The profit function introduced in Equation (8) admits a potential game with a corresponding

potential function [cf. Monderer and Shapley, 1996], which not only accounts for quantity ad-

justments but also for the linking strategies.

Proposition 1. Assume that both, quantities and links can be changed according to a myopic profit
maximizing rationale of firms. Then the profit function of Equation (8) admits a potential game with
potential function Φ : R

n
+ × Gn → R given by

Φ(q, G) =
n

∑
i=1

(nηqi − νnq2
i )−

b

2

n

∑
i=1

∑
j 6=i

qiqj +
ρ

2

n

∑
i=1

n

∑
j=1

aijqiqj − ζm = φ(q, G)− ζm. (11)
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where m is the number of links in G.

We allow the network to be formed endogenously, based on the profit maximizing decisions of

firms with whom to collaborate, and share knowledge about a cost reducing technology. The

precise definition of the dynamics of quantity adjustment and network evolution is given in the

following:

Definition 1. The evolution of the population of firms is characterized by a sequence of states (ωt)t∈R+ ,
ωt ∈ Ω, where each state ωt = (qt, Gt) consists of a vector of firms’ output levels qt ∈ Qn and a network
of collaborations Gt ∈ Gn. We assume that firms choose quantities from an arbitrarily fine discretization
Q = {0, ∆, 2∆, . . . , q̄} of the interval [0, q̄] with |Q| = s. In a short time interval [t, t + ∆t), t ∈ R+,
one of the following events happens:

Output adjustment At rate χs > 0 a firm i ∈ N is selected at random and given a revision oppor-
tunity of its current output level qit. When firm i receives such a revision opportunity, it draws a
new output level q′i from the set Q uniformly at random (with probability 1/s) and evaluates its
marginal payoffs from changing its output level from qit to q′i. The computation of marginal payoffs
is perturbed by an additive i.i.d. shock ε it, so that the probability that we observe a switch from
output level qit to q′i is given by

P
(
ωt+∆t = (q′i, q−it, Gt)|ωt = (qit, q−it, Gt)

)

= νP
(
πi(q

′
i, q−it, Gt)− πi(qit, q−it, Gt) + ε it > 0

)
∆t + o(∆t)

= χP
(
Φ(q′i, q−it, Gt)− Φ(qit, q−it, Gt) + ε it > 0

)
∆t + o(∆t).

where ϑ is a scale parameter measuring the extent of noise relative to payoff maximization, and we
have used the fact that πi(q

′
i, q−it, Gt)− πi(qit, q−it, Gt) = Φ(q′i, q−it, Gt)− Φ(qit, q−it, Gt).

Link formation With rate λ > 0 a pair of firms ij which is not already connected receives an opportu-
nity to form a link. The formation of a link depends on the marginal payoff the firms receive from
the link plus an additive pairwise i.i.d. error term ε ij,t. The probability that link ij is created is then
given by

P (ωt+∆t = (qt, Gt + ij)|ωt−1 = (q, Gt)) = λ P
({πi(qt, Gt + ij)− πi(qt, Gt) + ε ij,t > 0}

∩{πj(qt, Gt + ij)− πj(qt, Gt) + ε ij,t > 0}
)

∆t + o(∆t)

= λ P
(
Φ(qt, Gt + ij)− Φ(qt, Gt) + ε ij,t > 0

)
∆t + o(∆t),

where we have used the fact that πi(qt, Gt + ij) − πi(qt, Gt) = πj(qt, Gt + ij) − πj(qt, Gt) =
Φ(qt, Gt + ij)− Φ(qt, Gt).

Link removal With rate ξ > 0 a pair of connected firms ij receives an opportunity to terminate their
connection. The link is removed if at least one firm finds this profitable. The marginal payoffs from
removing the link ij are perturbed by an additive pairwise i.i.d. error term ε ij,t. The probability that
the link ij is removed is then given by

P (ωt+∆t = (qt, Gt − ij)|ωt = (q, Gt)) = ξ P
({πi(qt, Gt − ij)− πi(qt, Gt) + ε ij,t > 0}

∪{πj(qt, Gt − ij)− πj(qt, Gt) + ε ij,t > 0}
)

∆t + o(∆t)

= ξ P
(
Φ(qt, Gt − ij)− Φ(qt, Gt) + ε ij,t > 0

)
∆t + o(∆t),

where we have used the fact that πi(qt, Gt − ij) − πi(qt, Gt) = πj(qt, Gt − ij) − πj(qt, Gt) =
Φ(qt, Gt − ij)− Φ(qt, Gt).

Note that we can numerically implement the stochastic process introduced in Definition 1 us-

ing the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson,
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2012; Gibson and Bruck, 2000]. We will use this method throughout the paper to illustrate our

theoretical predictions for various network statistics.

In the following we make a specific assumption on the distribution of the random shocks.

In particular, we assume that these shocks are independent and identically exponentially dis-

tributed with parameter ϑ ≥ 0. We then can write12

P
(
ωt+∆t = (q′i, q−it, Gt)|ωt = (qi, q−it, Gt)

)
= χ P

(−ε it < Φ(q′i, q−it, Gt)− Φ(qit , q−it, Gt)
)

∆t + o(∆t)

= χ
eϑΦ(q′i,q−i,Gt)

eϑΦ(q′i,q−it,Gt) + eϑΦ(qi,q−it,Gt)
∆t + o(∆t),

and similarly we obtain for the creation of the link ij

P (ωt+∆t = (qt, Gt + ij)|ωt = (qt, Gt)) = λ P
(−ε ij,t < Φ(qt, Gt + ij)− Φ(qt, Gt)

)
∆t + o(∆t)

= λ
eϑΦ(qt,Gt+ij)

eϑΦ(qt,Gt+ij) + eϑΦ(qt,Gt)
∆t + o(∆t), (12)

and the removal of the link ij

P (ωt+∆t = (qt, Gt − ij)|ωt = (qt, Gt)) = ξ P
(
−ε ij,t < Φ(qt, Gt − ij)− Φ(qt, Gt)

)
∆t + o(∆t)

= ξ
eϑΦ(qt,Gt−ij)

eϑΦ(qt,Gt−ij) + eϑΦ(qt,Gt)
∆t + o(∆t).

Let F denote the smallest σ-algebra generated by σ (ωt : t ∈ R+). The filtration is the non-

decreasing family of sub-σ-fields {Ft}t∈R+ on the measure space (Ω,F), with the property that

F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . The probability space is given by the triple (Ω,F , P),

where P : F → [0, 1] is the probability measure satisfying
∫

Ω
P(ω)dµ(ω) = 1. The sequence

of states (ωt)t∈R+ , ωt ∈ Ω induces an irreducible and aperiodic (i.e. ergodic) Markov chain.

The one step transition probability P : Ω2 → [0, 1] from a state ω ∈ Ω to a state ω′ ∈ Ω is

given by P(ωt+∆t = ω
′|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t = ω

′|ωt = ω) = p(ω′|ω)∆,

where p(ω′ |ω) is the transition rate from state ω to state ω
′. Observe that in the continuous

limit when s → ∞ and qt ∈ R
n any function f : Ω → R of the state variables ω ∈ Ω is a

Carathéodory function since f (q, ·) is continuous for each q ∈ [0, q̄]n and f (·, G) is (Gn,BG)

measurable [Aliprantis and Border, 2006].

In vector-matrix notation we can write Φ(q, G) = φ(q, G) − ζ
2 u⊤qu. With the potential

function Φ(q, G) we then can state the following proposition.

Proposition 2. The dynamic process (ωt)t∈R+ induces an irreducible and aperiodic Markov chain with a
unique stationary distribution µϑ : Qn ×Gn → [0, 1] such that limt→∞ P(ωt = (q, G)|ω0 = (q0, G0)) =
µϑ(q, G). The probability measure µϑ is given by

µϑ(q, G) =
eϑ(Φ(q,G)−m ln( ξ

λ ))

∑G′∈Gn ∑q′∈Qn eϑ(Φ(q′,G′)−m′ ln( ξ
λ))

.

12Let z be i.i. logistically distributed with mean 0 and scale parameter ϑ, i.e. Fz(x) =
eϑx

1+eϑx . Consider the random

variable ε = g(z) = −z. Since g is monotonic decreasing, and z is a continuous random variable, the distribution of

ε is given by Fε(y) = 1 − Fz(g−1(y)) = eϑy

1+eϑy .
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In the limit of vanishing noise ϑ → ∞, the (stochastically stable) states in the support of µϑ are

given by [Kandori et al., 1993]

lim
ϑ→∞

µϑ(q, G)







> 0, if Φ(q, G) ≥ Φ(q′, G′), ∀q′ ∈ [0, q̄]n, G′ ∈ Gn,

= 0, otherwise.
(13)

Note that we could also allow quantity adjustments of Definition 1 to follow a noisy directional

learning process as in Anderson et al. [1998, 2002, 2004].13 Quantity adjustments then follow a

logit dynamics such that

P
(
ωt+∆t = (q′i, q−it, Gt)|ωt = (qi, q−it, Gt)

)
= χ

eϑπi(q
′
i,q−it,Gt)

∫

[0,q̄]n eϑπi(q,q−it,Gt)dqn
∆t.

However, this alternative definition would give rise to the same stationary distribution µϑ as in

Proposition 2 in the continuous limit when s → ∞.

In the following we will set λ = ξ. The stationary distribution µϑ(q, G) can then be further

analyzed by computing the partition function 14

Zϑ = ∑
G∈Gn

∑
q∈Qn

eϑΦ(q,G), (14)

so that we can write µϑ(q, G) = eϑΦ(q,G)/Zϑ. This allows us to compute the marginal distribu-

tion as stated in the following proposition.

Proposition 3. The marginal distribution for the firms’ output levels is given by

µϑ(q) =
1

Zϑ
∑

G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

n

∏
i=1

eϑ(ηn−νnqi− b
2 ∑j 6=i q j)qi

n

∏
i<j

(

1 + eϑ(ρqiq j−ζ)
)

.

Moreover, we can compute the probability of observing a network G given a specified output

distribution q.15,16

Proposition 4. The probability of observing a network G ∈ Gn, given an output distribution q ∈ Qn is
determined by conditional distribution

µϑ(G|q) =
n

∏
i<j

eϑaij(ρqiq j−ζ)

1 + eϑ(ρqiq j−ζ)
, (15)

13Mattsson and Weibull [2002] provide a motivation from boundedly rational choices with implementation costs.
14See Park and Newman [2004] for an excellent discussion in the context of exponential random graphs.
15For a discussion of inhomogeneous random graphs see Bollobás et al. [2001]; Van Der Hofstad [2009] and the

“hidden variables” model studied in Boguñá and Pastor-Satorras [2003]. Observe that the complementary problem
of determining the distribution of random variables that depend only on their neighbors in a given network G is
associated with a Markov random field, whose distribution is a Gibbs measure (by the Hammersley-Clifford theorem),
and can be decomposed into a sum over all cliques in G (see Besag [1974] and Kolaczyk [2009, Chap. 8] as well as
Rue and Held [2005]).

16Proposition 4 has important implications. Numerous empirical studies have shown that the distribution of out-
put levels among firms tends to follow a power-law distribution (Zipf’s law) [Axtell, 2001; Gabaix, 1999; Growiec
et al., 2008; Stanley et al., 1996]. If the output levels qi and qj in the link probability of Equation (16) are distributed
according to a power-law, then we obtain the so called fitness model analyzed in Boguñá and Pastor-Satorras [2003];
Caldarelli et al. [2002]. This models also refer to random threshold graphs [Diaconis et al., 2008; Ide and Konno, 2007;
Ide et al., 2010].
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Figure 1: The average degree d̄ as a function of the linking cost ζ for a fixed, homogeneous output distribution qi = 1
for all i = 1, . . . , n with χ = 0, b = 0, ρ = 2 and n = 10. The critical linking cost is ζ∗ = ρq2

0 = 2 is indicated with a
vertical dashed line. Dashed lines indicate the theoretical prediction of Proposition 7.

which is equivalent to the probability of observing an inhomogeneous random graph with link probability

pϑ(qi, qj) =
eϑ(ρqiq j−ζ)

1 + eϑ(ρqiq j−ζ)
. (16)

A special case is one in which all firms produce at fixed output levels qi = q0 ≤ q̄ for all i =

1, . . . , n (letting χ → 0)17 and there are no substitutability effects, b = 0. One can then show that

the stochastically stable network (letting ϑ → ∞) is a nested split graph, which is characterized

by the fact that the neighborhood of every node is contained in the neighborhoods of the nodes

with higher degrees [cf. König et al., 2013; Mahadev and Peled, 1995]:

Proposition 5. Consider the case where there are no substitutability effects, that is, setting b = 0, and
assume that there are no output adjustments, i.e. χ = 0.

(i) If firms produce at the fixed output levels qi ∈ Q for all i = 1, . . . , n, then the stochastically stable
network is given by a nested split graph with adjacency matrix A = (aij)1≤i,j≤n whose aij elements
are given by

aij =

{

1, if ρqiqj > ζ,

0, if ρqiqj < ζ.

(ii) If all firms produce at the same output level given by qi = q0 with q0 ∈ Q for all i = 1, . . . , n, then
the stochastically stable network is given by the complete graph Kn if ρq2

0 > ζ and it is given by the
empty graph Kn if ρq2

0 < ζ.

The transition from the empty to the complete graph that occurs at ζ∗ = ρq2
0 in part (ii) in Propo-

sition 5 is shown in Figure 1 for different values of ϑ and n = 10 nodes. Note that Proposition

5 can be generalized to endogenous quantity levels (when χ > 0), as we can always condition

any outcome on a distribution of quantities q, and then sum over all q ∈ Qn weighted with the

marginal probability measure µϑ(q). Since for any such q the stochastically stable network will

be a nested split graph, the stochastically stable network will be a nested split graph with prob-

ability one. Further note that nested split graphs are paramount examples of core-periphery

17Appendix A provides an equilibrium characterization in the case of an exogenously given network. This corre-
sponds to setting λ = ξ = 0 in Definition 1.
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networks. The core-periphery structure of R&D alliance networks has also been documented

empirically in Kitsak et al. [2010] and Rosenkopf and Schilling [2007]. Our model thus pro-

vides a theoretical explanation for why real-world R&D networks exhibit such a core-periphery

structure.

We next compute the marginal and conditional asymptotic probabilities. Using a Laplace

expansion around the equilibrium values q∗ (i.e. the potential maximizers) we can write for

large ϑ [cf. Wong, 2001]

µϑ(G) =
1

Zϑ
∑

q∈Qn

eϑΦ(G,q) ≈ 1

Zϑ

(
ϑ

2π

) n
2

∣
∣
∣
∣
∣

(
∂2Φ(G, q)

∂qi∂qj

)

q=q∗

∣
∣
∣
∣
∣

− 1
2

eϑΦ(G,q∗),

and the conditional distribution is given by

µϑ(q|G) =
µϑ(G, q)

µϑ(G)
≈
(

ϑ

2π

) n
2

∣
∣
∣
∣
∣

(
∂2Φ(G, q)

∂qi∂qj

)

q=q∗

∣
∣
∣
∣
∣

− 1
2

eϑ(Φ(G,q)−Φ(G,q∗)).

The above expressions allow us to compute the stationary output levels in the limit of vanishing

noise.

Proposition 6. For large ϑ (in the stochastically stable equilibrium), we have that the stationary output
levels are the roots of the equation

(b + 2ν)q − η =
ρ

2

(

1 + tanh

(
ϑ

2

(
ρq2 − ζ

)
))

q, (17)

from which it follows that for ϑ → ∞

q =







η
b+2ν−ρ , if ζ <

ρη2

(b+2ν)2 ,
{

η
b+2ν−ρ ,

η
ρ

}

, if
ρη2

(b+2ν)2 < ζ <
ρη2

(b+2ν−ρ)2 ,

η
b+2ν , if

ρη2

(b+2ν−ρ)2 < ζ.

(18)

Note that the stationary output levels in Proposition 6 are increasing in ρ and η, and decreasing

in ζ and b (cf. Figure 2).

An illustration with the average output level from numerical simulations starting with dif-

ferent initial conditions can be seen in Figure 3. The next proposition determines the expected

number of links in the limit of large n.

Proposition 7. In the limit of large n, the expected number of links is given by

E
ϑ(m) =

n(n − 1)

2

(

1 + tanh

(
ϑ

2

(
ρq2 − ζ

)
))

+O(n),

where q derives from Equation (17) in the proof of Proposition 6 in Appendix C.

Proposition 7 shows that the expected number of links is increasing in ρ, q and η, and decreasing

in ζ and b (by reducing the equilibrium quantity q). The left panel in Figure 4 shows the con-

vergence of the average degree to its stationary value from Proposition 7 for varying values of

ϑ.
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Figure 2: (Top left panel) The right hand side of Equation (17) for different values of ζ1 = 25, ζ2 = 10, ζ3 = 3 and
b = 4, ρ = 2, η = 6.5, ν = 0 and ϑ = 10. (Top right panel) The values of q solving Equation (17) for different values of
ζ with b = 1.48, ρ = 0.45 and ϑ1 = 49.5, ϑ2 = 0.495, ϑ3 = 0.2475. (Bottom left panel) The right hand side of Equation
(17) for different values of η1 = 2.5, η2 = 6.5, η3 = 10 and b = 4, ρ = 2, ζ = 10 and ϑ = 10. (Bottom right panel) The
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Figure 3: (Left panel) The stationary output distribution. The vertical dashed lines indicate the theoretical predictions
from Equation (18). (Right panel) The average output level from numerical simulations with ϑ = 1 starting with
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Figure 4: (Left panel) The time evolution of the average degree d̄ with the dashed horizontal lines indicating the
stationary solution from Proposition 7 for varying values of ϑ ∈ {0, 0.1, 0.2} with λ = ξ = χ = 1, η = 15, ν = 1
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The dashed lines indicate the solution from Proposition 8. The dashed lines indicate a Poisson, the dotted lines a
binomial distribution.

With the partition function Zθ in Equation (52) in the proof of Proposition 6 in Appendix C

we are able to compute the marginal distribution

µϑ(q) = ∑
G∈Gn

µϑ(G, q) =
1

Zθ

n

∏
i=1

eϑ(nη−nνqi− b
2 ∑j 6=i q j)qi

n

∏
i<j

(

1 + eϑ(ρqiq j−ζ)
)

,

and the joint distribution can then be written as µϑ(G, q) = µϑ(G|q)µϑ(q), where the conditional

distribution µϑ(G|q) is given in Equation (15). The marginal distribution is given by

µϑ(q) = ∑
q1∈Q

∑
q2∈Q

· · · ∑
qi−1∈Q

∑
qi+1∈Q

· · · ∑
qn∈Q

µϑ(q), (19)

which is independent of i due to symmetry. The next proposition characterizes the degree dis-

tribution.

Proposition 8. In the limit of large linking costs c, the degree distribution is Poissonian with

P(k) =
1

k! ∑
q∈Qn

µϑ(q)e−d̄(q)d̄(q)k,

where the average degree of a firm with output q is given by d̄(q) = n ∑q′∈Qn µϑ(q′)p(q, q′), while µϑ(q)

is given by Equation (19) and pϑ(q, q′) is given by Equation (16).

When the distribution µϑ is concentrated on the output level q∗ (cf. Proposition 6) then one

can show that the degree distribution is binomial with P(k) = (n
k)pϑ(q∗, q∗)k(1 − pϑ(q∗, q∗))n−k,

where pϑ(q∗, q∗) = 1

1+e−ϑ(ρ(q∗)2−ζ)
. The right panel in Figure 4 shows the degree distribution for

varying values of ϑ.

4. Extensions

The model presented so far can be extended in a number of directions which are described in

Appendix B. First, in Appendix B.1 we allow firms to differ in their technologies, which in turn

affect the spillovers generated from collaborations [cf. Cohen and Levinthal, 1990; Griffith et al.,
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Figure 5: (Left panel) The distribution of the stocks of knowledge following a power-law with exponent γ = 2 across
n = 100 firms. (Right panel) The stationary degree distribution with power-law distributed knowledge stocks with
coefficient γ = 2 for n = 100, η = 15, b = 0.5, ν = 1, and ρ = 1. The dashed line indicates a power-law with the same
exponent.

2003]. One can show that a similar equilibrium characterization using a Gibbs measure as in

the previous section is possible. Moreover, in the special case of firms’ technology stocks being

power-law distributed, and assuming that the spillovers from collaborations exhibit technolog-

ical complementarities, one can show that the degree distribution also follows a power-law,

confirming previous empirical studies of R&D networks [e.g. Gay and Dousset, 2005; Powell

et al., 2005]. The result is stated in the following proposition.18

Proposition 9. Assume that the spillovers from collaboration between firms i and j are proportional to
their knowledge stocks, si, sj, and further assume that the knowledge stocks s are distributed as a power-
law P(s) ∼ s−γ with exponent γ. Then the asymptotic degree distribution is also power-law distributed,

P(k) ∼ k−
γ

γ−1 , with exponent γ
γ−1 .

An example can be seen in Figure 5 in the case of the stocks of knowledge following a power-

law P(s) ∼ s−γ with exponent γ = 2, and the degree distribution being power-law distributed

P(k) ∼ k−
γ

γ−1 with the same exponent γ
γ−1 = 2.

A second extension outlined in Appendix B.2 considers ex ante heterogeneity among firms

in the variable cost c̄i ≥ 0 for i = 1, . . . , n [see also Banerjee and Duflo, 2005], expressing their

different technological and organizational capabilities. Similarly to above, we can characterize

the equilibrium states using a Gibbs measure. Moreover, the equilibrium networks are nested

split graphs in which firms with lower marginal costs are more central.

5. Efficiency

For a given network G, social welfare W(G) is given by the sum of consumer surplus and firms’

profits. When firms compete in a homogeneous product oligopoly then social welfare is given

18For the proof see Appendix B.1.
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G∗ q∗1 q∗2
empty graph q∗1 = q∗2 = 0 q∗1 = q∗2 = 0

dominant group q∗1 > 0 q∗2 = 0
dominant group q∗1 > 0 q∗2 > 0
complete graph q∗1 = q∗2 > 0 q∗1 = q∗2 > 0

Table 1: Summary of efficient networks and quantities. The optimal quantities q∗ = (q∗1 , . . . , q∗2 , . . .)⊤ are given by
Equation (55) subject to 0 ≤ q∗1 , q∗2 ≤ q̄, where the optimal size n1 of the dominant group maximizes Equation (56)
and n2 = n − n1 in the proof of the proposition in Appendix C.

by19

W(q, G) =
1

2

(
n

∑
i=1

qi

)2

+
n

∑
i=1

πi(q, G)

=
1

2

(
n

∑
i=1

qi

)2

+
n

∑
i=1

(

ηnqi − νnq2
i − b ∑

j 6=i

qiqj + ρqi

n

∑
j=1

aijqiqj

)

− 2ζm. (20)

Note that welfare W(q, G) is related to the potential Φ(q, G) as follows

W(q, G) =
1

2

(
n

∑
i=1

qi

)2

−
n

∑
i=1

qin(η − νqi) + 2Φ(q, G). (21)

Hence, the states maximizing the potential Φ(q, G) are not necessarily identical to the ones max-

imizing welfare W(q, G). The latter are determined in the following proposition.20

Proposition 10. The efficient network G∗ maximizing welfare is either (i) the empty network, (ii) the
complete network, or (iii) has the dominant group architecture. The optimal quantities q∗ = (q∗1 , . . . , q∗2, . . .)
are given by Equation (55) in Appendix C subject to 0 ≤ q∗1 , q∗2 ≤ q̄, where the optimal size n1 of the
dominant group maximizes Equation (56) in Appendix C and n2 = n − n1 .

The efficient graphs and quantities are also summarized in Table 1. As we might expect, with

increasing cost, the efficient network becomes more sparse.

6. Future Work

Three important avenues are left for future work. First, it would be interesting to study en-

try and exit dynamics in the current framework. It has been argued that entry and exit play

an important role in shaping the distribution of firm sizes [Acemoglu and Cao, 2010; Luttmer,

2007].21 A promising approach seems to be a union of the model proposed in this paper and

19In the empirical paper by König et al. [2014] this welfare analysis is extended to account for R&D subsidies.
Moreover, the authors characterize the firms that are most critical in terms of their contribution to the aggregate
productivity of the economy.

20Proposition 10 characterizes the the efficient outcome in the first best solution where the social planner can set
both, the production levels as well as the network of collaborations between them. A characterization of the second
best solution, in which the planner chooses the network, but output levels are chosen in a decentralized manner
by profit maximizing firms is studied in König et al. [2014]. Moreover, an equilibrium characterization with an
exogenously given network is provided in Appendix A.

21As Boguñá and Pastor-Satorras [2003] show, entry and exit can be incorporated by introducing a time dependent
firm characteristic (more precisely, inversely related to time) that impacts the connection probability as in Appendix
B.1.
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the one in Garlaschelli et al. [2007]. Second, it would be interesting to analyze the dynamics

of technological change and convergence and their relation with firm and network dynamics

in the current model. Such an extension could shed light on the coevolution of R&D networks

and the knowledge portfolios of firms [cf. König, 2011]. Finally, an empirical application of the

model to real-world R&D networks could help to shed light on the often significant differences

between sectors and, in particular, why the biotech sector has witnessed a steady increase in the

number of collaborations while other sectors have experienced a less sustained development [cf.

Schilling, 2009].
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Appendix

A. Equilibrium Analysis for Exogenous Networks

In this section we consider the case of λ = ξ = 0, when the network is exogenously given. Let us
first assume that ζ = 0, such that firms do not incur a fixed cost for an R&D collaboration. Then
the best response of firm i can be written as follows (see also Equation (10))

qi = min (q̄, max (0, fi(q−i, G))) . (22)

Observe that if fi(q−i, G) < 0, then the business stealing effects become so large, that firm i’s best
response is to leave the market (qi = 0). If ζ > 0 then firm i’s best response is

qi =

{

min (q̄, fi(q−i, G)) , if πi( fi(q−i, G), G) > 0,

0, otherwise.
(23)

The set of networks G for which qi > 0 is starkly reduced if ζ > 0, and if ζ becomes large enough,
no firm will operate at positive quantity.

We now analyze the best response dynamics of quantities in a fixed network G where firms
adjust their output levels optimally, given the output levels of all other firms in the industry
[Corchon and Mas-Colell, 1996; Weibull, 1997]. We also assume that an interior equilibrium
exists. This dynamics is given by

dqi

dt
= fi(q−i, G)− qi =

η

2ν
− b

2nν

n

∑
j 6=i

qj +
ρ

2nν

n

∑
j=1

aijqj − qi, (24)

with some appropriate initial conditions q(0) ≥ 0. The equilibrium quantities for a given net-
work G can be obtained as the fixed points of the best response dynamics. In vector-matrix
notation the dynamics can be written as

dq

dt
=

η

2ν
u − 1

2nν

(

(2nν − b)In + buu⊤ − ρq
)

q. (25)

This is an inhomogeneous linear first-order ordinary differential equation with constant coeffi-
cients. Let us denote by U = uu⊤ and introduce the matrix

Q ≡ In +
b

2nν − b
U − ρ

2nν − b
q. (26)

The solution of Equation (25) is stable if an only if all eigenvalues of Q have a positive real part.
If a stable solution exists and if Q is invertible, then the steady state q∗ = limt→∞ q(t) is given by

q∗ =
nη

2nν − b
Q−1u, (27)

and the solution trajectory is given by

q(t) = q∗ + e−Qt(q(0)− q∗). (28)

If q(0) = 0 then we can write

q(t) =
nη

2nν − b

(

1 − e−Qt
)

Q−1u. (29)

We have that Q = In − ρ
2nν−b q, and λi(Q) = 1 − ρ

2nν−b λi(A). This implies that the stability condi-

tion λmin(Q) < 0 is equivalent to λmax(A) > 2nν−b
ρ .

Observe that the profit function introduced in Equation (8) admits a potential game with a
corresponding potential function [cf. Monderer and Shapley, 1996]. This is stated in the follow-
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ing proposition.

Proposition 11. For a given network G ∈ Gn, the profit function of Equation (8) admits a potential game with
potential function φ(q, G) : R

n
+ × Gn → R given by

φ(q, G) =
n

∑
i=1

n(ηqi − νq2
i )−

b

2

n

∑
i=1

∑
j 6=i

qiqj +
ρ

2

n

∑
i=1

n

∑
j=1

aijqiqj. (30)

The existence of a potential function given in Equation (47) allows us to state a condition for a
Nash equilibrium in a static network. For a given network G and no fixed linking costs, ζ =

0, a Nash equilibrium of our game solves the following constrained optimization problem [cf.
Sandholm, 2010, Sec. 3.1.4]

max
q∈R

n
+

φ(q, G) (31)

s.t. ∀i = 1, . . . , n

∂φ

∂qi
= 0 and qi > 0, or (32)

∂φ

∂qi
≤ 0 and qi = 0. (33)

We can write the potential function φ(q, G) in vector-matrix notation as follows

φ(q, G) = nηu⊤q − 1

2
q⊤ ((2nν − b)In + bU − ρq)
︸ ︷︷ ︸

=(2nν−b)Q

q. (34)

The Hessian of the potential is given by ∆φ(q, G) =
(

∂2φ(q,G)
∂qi∂qj

)

i,j∈N
= −(2ν − b)Q. If 2nν > b and

the matrix Q is positive definite then ∆φ(q, G) < 0 is negative definite.22 The matrix Q is positive
definite if and only if the matrix B = In − ρ

2nν−b A is positive definite. If B is positive definite then
its inverse B−1 exists and is positive definite. B−1 exists if and only if the following eigenvalue
condition is satisfied

ρ

2nν − b
<

1

λmax(A)
, (35)

where λmax(A) is the largest (real) eigenvalue of the (real and symmetric) adjacency matrix A. If
the inequality in (35) is satisfied, then the maximization of φ(q, G) as stated in (33), for a given
G, is a linear-quadratic programming problem [Boyd and Vandenberghe, 2004; Lee et al., 2005],
where φ(q, G) is a concave function of q, and this optimization problem has a unique solution.

In the following we assume that the inequality in (35) is satisfied. Then we can obtain firms’
equilibrium quantities and profits as follows:

Proposition 12. Denote by ϕ = ρ
2nν−b = αβ

2(2−b)γ−α2 and consider a network G ∈ Gn satisfying ϕ < 1/λmax(q).

(i) If ζ = 0, equilibrium output and profit are given by

qi =
nη

2ν + b(‖b(G, ϕ)‖ − 1)
bi(G, ϕ) (36)

and

πi =
νn2η2

(2nν + b(‖b(G, ϕ)− 1‖))2
b2

i (G, ϕ), (37)

for all i = 1, . . . , n.

22The n × n matrix Q is positive definite if and only if for all q ∈ R
n
+ we have that q⊤Qq > 0. If Q is positive

definite, then all its eigenvalues are positive.
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Figure 6: A star network with n = 3, λmax(A) =
√

2 = 1.41 and no linking costs, i.e. ζ = 0. The top left panel shows
the evolution q(t) for ϕ = 1/3 < λmax(A)−1 = 0.70, the top right panel for ϕ = λmax(A)−1 = 0.70, the bottom left
panel for ϕ = 4/3 > λmax(A)−1 = 0.70, and the bottom right panel for ϕ = 3/2 > λmax(A)−1 = 0.70. The dashed
lines indicate the solutions from Equation (36).

(ii) If ζ > 0 and πi > ζdi for all i = 1, . . . , n in Equation (37) then equilibrium quantities are given by Equation
(36) and equilibrium profits are given by Equation (37) less the cost of collaboration ζdi.

Observe that, in the limit ϕ ↑ λ−1
max, the normalized Bonacich centrality converges to the eigen-

vector centrality v, where qv = λmaxv. This implies that

lim
ϕ↑λ−1

max

qi =
nη

b
vi (38)

and

lim
ϕ↑λ−1

max

πi =
n2η2ν

b2
v2

i − ζdi, (39)

for all i = 1, . . . , n.
Note that if the eigenvalue condition (35) is not satisfied, then corner solutions must be con-

sidered.23

In Figure 6 we give an example of the evolution of q(t) for the star network K1,n−1 with
n = 3. The stationary state q∗ for values of ϕ ≤ λmax(q)−1 is correctly described by Equation (36).
Interestingly, this solution is also correct for values of ϕ > λmax(q)−1 (see bottom left panel in
Figure 6), unless the equilibrium quantities from Equation (36) grow without bound (see bottom
right panel in Figure 6), and qi(t) grows to its capacity constraint q̄.

23See Bramoullé et al. [2010] for the case of strategic substitutes and Cabrales et al. [2010] for the case of strategic
complements and linking strengths proportional to socialization effort.
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B. Extensions

B.1. Endogenous Networks with Heterogeneous Spillovers among Firms

In this section we allow for heterogeneity among firms in terms of their technological abilities.
We assume that the knowledge embodied in a firm i ∈ I = {1, . . . , n} can be represented as an
N-dimensional vector hi in the knowledge space HN = {0, 1}N, which consists of all binary se-
quences with elements in {0, 1} of length N. The number of such sequences is 2N. The knowledge
vector hi, with components hik ∈ {0, 1}, indicates whether firm i knows idea k ∈ {1, . . . , N} or not.
We introduce a spillover function f : HN ×HN → R capturing the potential technology transfer
between any pairs of firms. A simple choice for the function f could be f (hi, hj) = a|hi ∩ hj|,
where a ∈ R+ and |hi ∩ hj| = h⊤

i hj = ∑
N
k=1 hikhjk denotes the common knowledge of i and j. Or

a “gravity function” of the form f (hi, hj) = 1{|S(hi)|·|S(h j)|>τ} where |S(hi)| counts the number of

technologies known to i and τ > 0 is a threshold. Alternative specifications for similarity can be
found in Liben-Nowell and Kleinberg [2007] and Bloom et al. [2007]; Jaffe [1989]. Alternatively,
following Berliant and Fujita [2008, 2009], a possible parametric specification for f would be

f (hi, hj) = |hi ∩ hj|κd(hi, hj)
1−κ

2 for some κ ∈ (0, 1). The distance is the product of the total number
of ideas known by agent i but not by j times the total number of ideas known by j but not by
i, i.e. d(hi, hj) = |hi\hj| × |hj\hi| = |hi ∩ hc

j | × |hc
i ∩ hj| = ∑

N
k=1 hik(1 − hjk) ∑

N
k=1(1 − hik)hjk, where

u = (1, . . . , 1)⊤ and hc
i = u − hi.

24

Given the spillover function f (hi, hj), the marginal cost of production of a firm i becomes

ci = c̄ − αei − β
n

∑
j=1

aij f (hi, hj)ej

and profits of firm i are given by

πi = (a − c̄)qi − q2
i − bqi ∑

j 6=i

qj + αqiei + βqi

n

∑
j=1

aij f (hi, hj)ej − γe2
i − ζdi.

The FOC with respect to effort ei is given by

∂πi

∂ei
= αqi − 2γei = 0,

from which it follows that
ei =

α

2γ
qi = λqi.

Inserting into profits yields

πi = (a − c̄)qi − (1 − λα + λ2γ)q2
i − bqi ∑

j 6=i

qj + λβqi

n

∑
j=1

aij f (hi, hj)qj − ζdi

= ηnqi − νnq2
i − bqi ∑

j 6=i

qj + ρqi

n

∑
j=1

aij f (hi, hj)qj − ζdi.

We can then obtain a potential function given by

Φ(q, G, h) =
n

∑
i=1

((a − c̄)qi − νq2
i )−

b

2

n

∑
i=1

qi ∑
j 6=i

qj +
n

∑
i=1

qi

n

∑
j=1

aij f (hi, hj)qj − ζm.

24Other functional forms have been suggested in the literature [see e.g. Baum et al., 2009; Nooteboom et al., 2007],
such as f (hi, hj) = a1|hi ∩ hj| − a2|hi ∩ hj|2, with constants a1, a2 ≥ 0.
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The stationary distribution is given by

µϑ(q, G, h) =
eϑΦ(q,G,h)

∑h′∈HN ∑H∈Gn

∫

[0,q̄]n eϑΦ(s,H,h′)ds
.

The probability of observing a network G ∈ Gn, given an output distribution q ∈ [0, q̄]n and
technology portfolios h ∈ HN is determined by conditional distribution

µϑ(G|q, h) = ∏
i<j

eϑaij(ρ f (hi,h j)qiqj−ζ)

1 + eϑ(ρ f (hi,h j)qiqj−ζ)
, (40)

which is equivalent to the probability of observing an inhomogeneous random graph with link
probability

pij = p(hi, qi, hj, qj) =
eϑ(ρ f (hi,h j)qiqj−ζ)

1 + eϑ(ρ f (hi,h j)qiqj−ζ)
. (41)

Note that an inhomogeneous random graph with a link probability similar to the one in Equation
(41) has been analyzed in Boguñá et al. [2004]. The authors show that if the technology levels
are drawn from a multivariate uniform distribution a number of network characteristics can be
computed which closely reproduce the empirically observed patterns of R&D networks.

Let the degree distribution be given by P(k) for k = 0, . . . , n − 1. Further, let g(k|h, q) be the
conditional probability that a firm with technology vector h and output q has k links. Then the
degree distribution can be written as follows [cf. Boguñá and Pastor-Satorras, 2003; Söderberg,
2002]

P(k) = ∑
h∈HN

∑
q∈Q

g(k|h, q) f (h)µϑ(q),

where f (h) is the probability distribution over firms with technology h ∈ HN . The average
degree of a firm with technology h and output q is then given by

d̄(h, q) =
n−1

∑
k=0

kg(k|h, q),

and the average degree is given by

d̄ =
n−1

∑
k=0

kP(k) = ∑
h∈HN

∑
q∈Q

f (h)µϑ(q)d̄(h, q).

The probability that a firm with degree k has technology h and output q is given by Bayes’ rule
as

g(h, q|k) = f (h)µϑ(q)g(k|h, q)

P(k)
.

Let Xh,h′
q,q′ (ω) count the number of links between firms with technology h and output q, and tech-

nology h′ and output q′ in a state ω ∈ Ω. Then we have that

Xh,h′
q,q′ (ω) =

n

∑
i=1

n

∑
j=i+1

1{qi(ω)=q}1{hi(ω)=h}1{qj(ω)=q′}1{h j(ω)=h′}1{aij(ω)=1}.

If Xh
q counts the number of links of a firm with technology h and output q then we can write

Xh
q = ∑h′∈HN ∑q′∈Q Xh,h′

q,q′ , and we have that P(Xh
q = k) = g(k|h, q). Observe that the random

variables Xh,h′
q,q′ are independent, and binomially distributed with

P(Xh,h′
q,q′ = k) =

(
n(h′, q′)

k

)

p(h, q, h′, q′)k(1 − p(h, q, h′, q′))n(h′,q′)−k,
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where n(h′, q′) = f (h′)µϑ(q′), because the links between firms with technologies h and h′ and
output levels q and q′ are independently drawn with probability p(h, q, h′, q′). The generating

function of the random variable Xh,h′
q,q′ is given by 25

ĝ(z|h, q, h′, q′) = (1 − (1 − z)p(h, q, h′, q′))n(h′,q′).

where p(h, q, h′, q′) is given by Equation (41), and can be written as

p(h, q, h′, q′) =
eϑ(ρ f (h,h′)qq′−ζ)

1 + eϑ(ρ f (h,h′)qq′−ζ)
.

Since the random variable Xh
q is a sum of independent binomial random variables Xh,h′

q,q′ , we have

that the generating function ĝ(z|h, q) of Xh
q is the product of the generating functions ĝ(z|h, q, h′, q′)

of Xh,h′
q,q′ , so that after taking logs we get

ln ĝ(z|h, q) = n ∑
h′∈HN

∑
q′∈Q

f (h′)µϑ(q′) ln
(
1 − (1 − z)p(h, q, h′, q′)

)
. (42)

We then can solve this equation to obtain ĝ(z|h, q), and from inverting the generating function

g(k|h, q) =
1

k!

dk ĝ(0|h, q)

dzk

∣
∣
∣
∣
∣
z=0

,

the degree distribution follows as

P(k) = ∑
h∈HN

∑
q∈Q

f (h)µϑ(q)g(k|h, q).

When the linking cost c is high, and the connection probability p(h, q, h′, q′) is small, we can
expanding Equation (42) as

ĝ(z|h, q) ≈ e
n ∑h′∈HN ∑q′∈Q f (h′)µϑ(q′)p(h,q,h′,q′)(z−1)

.

This is the generating function of a Poisson distribution with mean

d̄(h, q) = n ∑
h′∈HN

∑
q′∈Q

f (h′)µϑ(q′)p(h, q, h′, q′),

which means that

g(k|h, q) =
1

k!
e−d̄(h,q)d̄(h, q)k,

and the degree distribution is given by

P(k) =
1

k! ∑
h∈HN

∑
q∈Q

f (h)µϑ(q)e−d̄(h,q)d̄(h, q)k,

while the average degree of a firm with technology h and output q is given by

d̄(h, q) = n ∑
h′∈HN

∑
q′∈Q

f (h′)µϑ(q′)p(h, q, h′, q′).

In the following we consider a special case in which the link function takes the form f (hi, hj) =

|S(hi)| · |S(hj)|, where |S(hi)| counts the number of technologies known to i. This functional form
expresses complementarity effects between the stocks of knowledge between firms i and j. As-

25The probability generating function of a binomial random variable, with the number of successes in n trials, and
probability p of success in each trial, is given by g(z) = (1 − p(1 − z))n.
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sume that ideas are distributed to firms following a stochastic urn process, where the probability
that a firm i obtains a new idea k is proportional to the number of ideas |S(hi)| it already has.
This process generates a power law distribution over the number of ideas firms possess [Gabaix,
2009; Mitzenmacher, 2004].26 Let s = 0, . . . , denote the stock of knowledge of a firm, and let
f (s) = P(|S(hi)| = s) be the distribution of the knowledge stocks. Then the degree distribution
can be written as

P(k) =
1

k!

∫

ds ∑
q∈Q

f (s)µϑ(q)e−d̄(s,q)d̄(s, q)k,

while the average degree of a firm with knowledge stock s and output q is given by

d̄(s, q) = n
∫

ds′ ∑
q′∈Q

f (s′)µϑ(q′)p(s, q, s′, q′).

Assuming that the knowledge stocks are power-law distributed [cf. e.g. König et al., 2012; Melitz
et al., 2008], f (s) ∼ s−γ, we can write

ln ĝ(z|s, q) = n ∑
q′∈Q

µϑ(q′)
∫

ds′(s′)−γ ln

(

1 − (1 − z)
eϑ(ρss′qq′−ζ)

1 + eϑ(ρss′qq′−ζ)

)

.

In the limit of ϑ → ∞ we have that

lim
ϑ→∞

eϑ(ρss′qq′−ζ)

1 + eϑ(ρss′qq′−ζ)
= 1{ρss′qq′>ζ},

so that we can write

ln ĝ(z|s, q) = n
∫ ∞

ζ
ρsqq∗

dss−γ ln z = n

(
ζ

ρsqq∗

)1−γ

γ − 1
ln z,

and we get

ĝ(z|s, q) = z
n

γ−1

(
ζ

ρsqq∗
)1−γ

.

It then follows that

g(k|s, q) = δ

(

k − n

γ − 1

(
ζ

ρsqq∗

)1−γ
)

.

The degree distribution is then given by

P(k) =
∫

dsg(k|s, q∗)s−γ

=
∫

dsδ

(

k − n

γ − 1

(
ζ

ρs(q∗)2

)1−γ
)

s−γ

= ζ−γργ(q∗)2γ

(
(γ − 1)k

n

) γ
1−γ

∼ k
− γ

γ−1 .

Hence, we obtain a power-law degree distribution with parameter γ
γ−1 , confirming previous

empirical studies [e.g. Powell et al., 2005]. An illustration can be seen in Figure 5 for the case of
γ = 2.

26Alternatively, if each technology category k = 1, . . . , N is drawn independently with probability p ∈ [0, 1], then

|S(hi)| has a Binomial distribution with success probability p, that is, P(|S(hi)| = s) = (N
k )ps(1 − p)N−s.
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B.2. Endogenous Networks with Heterogeneous Marginal Costs

We consider ex ante heterogeneity among firms in the variable cost c̄i ≥ 0 [see also Banerjee
and Duflo, 2005], expressing their different technological and organizational capabilities.27 The
marginal cost of production of firm i ∈ N is then given by

ci(e, G) = c̄i − αei − β
n

∑
j=1

aijej, (43)

where ei ∈ [0, ēi] and α, β ∈ [0, 1]. Requiring that ci ≥ 0 we must have that c̄i ≥ ∑
n
j=1 ej = nē for

all i = 1, . . . , n. Hence, c̄i is O(n). Similarly, as in the previous sections, the first-order conditions
for efforts imply that ei = max{ α

2γ qi, ēi}. The non-negativity of marginal cost in the case of an

interior equilibrium then requires that qi ≤ 2γ
α ēi for all i = 1, . . . , n. We further assume that

a > max1≤i≤n{c̄i}. We denote by λ = α
2γ . Profits of firm i from Equation (7) then become

πi = (a − c̄i)
︸ ︷︷ ︸

nηi

qi − b
n

∑
j 6=i

qiqj + αqiei + β
n

∑
j=1

aijqiej − γe2
i − ζdi. (44)

Using the fact that in the interior equilibrium ei = λqi, we can write firm i’s profit as

πi = nηiqi − nνq2
i − bqi ∑

j 6=i

qj + ρqi

n

∑
j=1

aijqj − ζdi. (45)

We first compute the equilibrium quantities for a given network G. The FOC can be written as

∂πi

∂qi
= nηi − 2nνqi − b ∑

j 6=i

qj + ρ
n

∑
j=1

aijqj = nηi − (2ν − b)qi − b‖q‖+ ρ
n

∑
j=1

aijqj = 0.

Let η ≡ (η1, . . . , ηn)⊤. Then in vector-matrix notation this is

nη = ((2nν − b)In − ρq)q + bu‖q‖.

Denoting by µ ≡ n
2nν−bη, φ ≡ ρ

2nν−b and κ ≡ b
2nν−b this is

q = (I − φq)−1(µ− κ‖q‖)u.

Following Calvó-Armengol et al. [2009] we define the µ-weighted Bonacich centrality as

bµ(G, φ) = (In − φq)−1
µ =

∞

∑
k=0

φkqk
µ, (46)

where suitable conditions have to be imposed on the vector µ, the parameter φ and the eigen-
value λPF(G). The Bonacich centrality is then simply given by b(G, φ) = bu(G, φ). Then we can
write

q = bµ(G, φ)− κ‖q‖bu(G, φ).

Multiplying from the left with u⊤ gives

u⊤q = ‖q‖ = ‖bµ(G, φ)‖ − ν‖q‖‖bu(G, φ)‖.

27Blundell et al. [1995] argued that because the main source of unobserved heterogeneity in models of innovation
lies in the different knowledge stocks with which firms enter a sample, a variable that approximates the build-up of
firm knowledge at the time of entering the sample is a particularly good control for unobserved heterogeneity.
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from which we get

‖q‖ =
‖bµ(G, φ)‖

1 + κ‖bu(G, φ)‖ .

It follows that equilibrium quantity can be written as

q = bµ(G, φ)− κ‖bµ(G, φ)‖
1 + κ‖bu(G, φ)‖bu(G, φ).

Note that the profit function of Equation (45) admits a potential function Φ : R
n
+ × Gn → R

given by

Φ(q, G|η) =
n

∑
i=1

n(ηiqi − νq2
i )−

b

2

n

∑
i=1

∑
j 6=i

qiqj +
ρ

2

n

∑
i=1

n

∑
j=1

aijqiqj − ζm, (47)

where m is the number of links in G. A similar equilibrium characterization using a Gibbs mea-
sure as in the previous sections can thus be obtained. Note further that the Hamiltonian in the
partition function Z

η

ϑ = ∑q∈Qn eϑH (q|η) in the case of heterogeneous marginal costs is given by

H (q|η) =
n

∑
i=1

(

nηiqi − nνq2
i + ∑

j>i

(
1

ϑ
ln
(

1 + eϑ(ρqiqj−ζ)
)

− bqiqj

))

.

When ϑ → ∞ we then can write

lim
ϑ→∞

H (q|η) =
n

∑
i=1

(

nηiqi − nνq2
i + ∑

j>i

(
ρqiqj − ζ

)
1{ρqiqj>ζ} − bqiqj

)

.

From the maximization of this expression we find that if the capacity constraints q̄i are bind-
ing, then the stochastically stable state will be a threshold graph (nested split graph) in which
a link ij is present if and only if q̄(i)q̄(j) >

ζ
ρ and quantities are given by the ordered vector

(q̄(1), q̄(2), . . . , q̄(k), 0, . . . , 0) where k = max{1 ≤ j ≤ n : q̄(1)q̄(j) >
ζ
ρ}. In the case of finite ϑ we obtain

a generalized threshold graph as they have been studied in Boguñá and Pastor-Satorras [2003];
Diaconis et al. [2008]; Ide et al. [2010, 2009]; Söderberg [2002].

C. Proofs

PROOF OF PROPOSITION 1. The potential Φ(q, G) has the property that

Φ(q, G + ij)− Φ(q, G) = ρqiqj − ζ = πi(q, G + ij)− πi(q, G). (48)

From the properties of πi(q, G) it also follows that Φ(q′i, q−i, G)−Φ(qi, q−i, G) = φ(q′i, q−i, G)−φ(qi, q−i, G) =
πi(q

′
i, q−i, G)− πi(qi, q−i, G). ✷

PROOF OF PROPOSITION 2. In the following we show that the stationary distribution µϑ(ω) satisfies the
detailed balance condition

µϑ(ω)p(ω′|ω) = µϑ(ω′)p(ω|ω′) (49)

where p(ω′|ω) denotes the transition rate of the Markov chain from state ω to ω
′. Observe that the

detailed balance condition is trivially satisfied if ω′ and ω differ in more than one link or more than one
quantity level. Hence, we consider only the case of link creation G′ = G + ij (and removal G′ = G − ij)
or an adjustment in quantity q′i 6= qi for some i ∈ N . For the case of link creation with a transition from
ω = (q, G) to ω

′ = (q, G + ij) we can write the detailed balance condition as follows

e
ϑ(Φ(q,G)−m ln

(
ξ
λ

)

) eϑΦ(q,G+ij)

eϑΦ(q,G+ij)+ eϑΦ(q,G)
λ = e

ϑ(Φ(q,G+ij)−(m+1) ln
(

ξ
λ

)

) eϑΦ(q,G)

eϑΦ(q,G)+ eϑΦ(q,G+ij)
ξ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a transition
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from ω = (q, G) to ω = (q, G − ij) where the detailed balance condition reads

e
ϑ(Φ(q,G)−m ln

(
ξ
λ

)

) eϑΦ(q,G−ij)

eϑΦ(q,G−ij)+ eϑΦ(q,G)
ξ = e

ϑ(Φ(q,G+ij)−(m−1) ln
(

ξ
λ

)

) eϑΦ(q,G)

eϑΦ(q,G)+ eϑΦ(q,G−ij)
λ.

For a change in the output level with a transition from ω = (qi, q−i, G) to ω
′ = (q′i, q−i, G) we get for the

detailed balance condition

e
ϑ(Φ(qi,q−i,G)−m ln

(
ξ
λ

)

) eϑΦ(q′i,q−i,G)

eϑΦ(q′i,q−i,G) + eϑΦ(qi,q−i,G)
χ = e

ϑ(Φ(q′i,q−i,G)−(m+1) ln
(

ξ
λ

)

) eϑΦ(qi,q−i,G)

eϑΦ(qi,q−i,G) + eϑΦ(q′i,q−i,G)
χ,

Hence, the probability measure µϑ(ω) satisfies a detailed balance condition and therefore is the stationary
distribution of the Markov chain with transition rates p(ω′|ω). ✷

PROOF OF PROPOSITION 3. Observe that the potential can be written as

Φ(q, G) =
n

∑
i=1

(

nη − nνqi −
b

2 ∑
j 6=i

qj

)

qi

︸ ︷︷ ︸

ψ(q)

+
n

∑
i=1

n

∑
j=i+1

aij (ρqiqj − ζ)
︸ ︷︷ ︸

σij

.

We then have that
eϑΦ(q,G) = eϑψ(q)e

ϑ ∑
n
i<j aijσij.

Observe that only the second factor in the above expression is network dependent. We then can use the
fact that

∑
G∈Gn

e
ϑ ∑

n
i<j aijσij = ∏

i<j

(

1 + eϑσij

)

to obtain

∑
G∈Gn

eϑΦ(q,G) = eϑψ(q) ∏
i<j

(

1 + eϑσij

)

(50)

=
n

∏
i=1

eϑ(nη−nνqi− b
2 ∑j 6=i qj)qi ∏

i<j

(

1 + eϑ(ρqiqj−ζ)
)

. (51)

We can use this expression to compute the marginal distribution

µϑ(q) =
1

Zϑ
∑

G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

n

∏
i=1

eϑ(nη−nνqi− b
2 ∑j 6=i qj)qi ∏

i<j

(

1 + eϑ(ρqiqj−ζ)
)

.

✷

PROOF OF PROPOSITION 4. The conditional distribution is given by

µϑ(G|q) = µϑ(q, G)

µϑ(q)
=

eϑΦ(q,G)

∏
n
i=1 eϑ(a−c̄−νqi− b

2 ∑j 6=i qj)qi ∏i<j

(

1 + eϑ(ρqiqj−ζ)
)

=
e

ϑ ∑
n
i<j aij(ρqiqj−ζ)

∏i<j

(

1 + eϑ(ρqiqj−ζ)
)

= ∏
i<j

eϑaij(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

= ∏
i<j

(

eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)aij
(

1 − eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)1−aij

= ∏
i<j

p
aij

ij

(
1 − pij

)1−aij .

✷
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PROOF OF PROPOSITION 5. We first give a proof of part (ii) of the proposition. When b = 0 then we can
write the potential function as

Φ(q, G) =
n

∑
i=1

(nηqi − νq2
i ) +

ρ

2

n

∑
i=1

n

∑
j=1

aijqiqj − ζm.

Using the fact that the number of links in G can be written as m = 1
2 ∑

n
i=1 di =

1
2 u⊤Au, for q = q0u, we

can write the potential as

Φ(q, G) = n2ηq0 − nνn2q2
0 +

1

2
(ρq2

0 − ζ)m.

From this expression we see that Φ(q, G) is maximized for G = Kn if ρq2
0 > ζ and G = K̄n if ρq2

0 < ζ. The

phase transition from the empty to the complete graph that occurs at ζ∗ = ρq2
0 is shown in Figure 1 for

different values of ϑ for n = 10 nodes.
Next, we prove part (i) of the proposition. Let b = 0 and assume that the output levels are fixed and

given by qi ∈ [0, q̄] for all i = 1, . . . , n. Then we can write the potential as

Φ(q, G) =
n

∑
i=1

n(ηqi − νq2
i ) +

1

2

n

∑
i=1

n

∑
j=1

aij(ρqiqj − ζ).

The second term in the above expression for Φ(q, G) is a sum over positive terms with aij = 1 if ρqiqj > ζ

and negative otherwise. Hence, Φ(q, G) is maximized if aij = 1 for all ρqiqj > ζ and aij = 0 for all
ρqiqj < ζ. ✷

PROOF OF PROPOSITION 6. We first analyze the partition sum Zϑ in more detail. Note that

Zϑ =
∫

[0,q̄]n

n

∏
i=1

eϑ(nη−nνqi− b
2 ∑j 6=i qj)qi ∏

i<j

(

1 + eϑ(ρqiqj−ζ)
)

dq

=
∫

[0,q̄]n
eϑ ∑

n
i=1(nη−nνqi− b

2 ∑j 6=i qj)qi e
∑i<j ln

(

1+e
ϑ(ρqiqj−ζ)

)

dq.

Next, we introduce the Hamiltonian defined by

H (q) ≡
n

∑
i=1

(

nηqi − nνq2
i + ∑

j>i

(
1

ϑ
ln
(

1 + eϑ(ρqiqj−ζ)
)

− bqiqj

))

,

so that ∑G∈Gn
eΦ(q,G) = eH (q) (cf. Equation (51)). Then we can write the partition function as

Zϑ =
∫

[0,q̄]n
eϑH (q)dq.

In the following we make the Laplace approximation [cf. Wong, 2001]

Zϑ ≈
(

2π

ϑ

) n
2

∣
∣
∣
∣
∣
∣

(

∂2H

∂qi∂qj

)

qi=q∗

∣
∣
∣
∣
∣
∣

− 1
2

eH (q∗), (52)

where q∗ = argmaxq∈[0,q̄]n H (q), and the Hessian is given by ∂2H

∂qi∂qj
for 1 ≤ i, j ≤ n. We have that

∂H (q)

∂qi
= nη − 2nνqi + ∑

j 6=i

(
ρ

2

(

1 + tanh

(
ϑ

2

(
ρqiqj − ζ

)
))

− b

)

qj.

The first order conditions imply that

η =
1

n ∑
j 6=i

(

b + 2ν − ρ

2

(

1 + tanh

(
ϑ

2

(
ρqiqj − ζ

)
)))

qj.
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This system of equations has a symmetric solution, qi = q for all i = 1, . . . , n, where

(b + 2ν)q − η =
ρ

2

(

1 + tanh

(
ϑ

2

(

ρq2 − ζ
)))

q.

In the limit of ϑ → ∞ we obtain from the FOC of Equation (17) that

(b + 2ν)q − η =

{
ρq, if ζ < ρq2,
0, if ρq2

< ζ.

This shows that the right hand side of Equation (17) has a point of discontinuity at
√

ζ
ρ (cf. Figure 2). It

then follows that, in the limit of ϑ → ∞ (for the stochastically stable equilibrium), we have

q =







η
b+2ν−ρ , if ζ <

ρη2

(b+2ν)2 ,
{

η
b+2ν−ρ ,

η
ρ

}

, if
ρη2

(b+2ν)2 < ζ <
ρη2

(b+2ν−ρ)2 ,

η
b+2ν , if

ρη2

(b+2ν−ρ)2 < ζ,

(53)

which is increasing in ρ and η, and decreasing in ζ and b (cf. Figure 2). ✷

PROOF OF PROPOSITION 7. For notational simplicity, in the following we set ν = 0. Observe that

∂2H

∂qi∂qj
=







ϑρ2

4 ∑j 6=i

(

1 − tanh
(

ϑ
2

(
ρqiqj − ζ

))2
)

q2
j , if i = j,

ρ
2

(

1 + tanh
(

ϑ
2

(
ρqiqj − ζ

))) (

1 + ϑqiqj
ρ
2 tanh

(
ϑ
2

(
ρqiqj − ζ

)))− b, if i 6= j.

In the symmetric equilibrium qi = q for all i = 1, . . . , n this is

∂2H

∂qi∂qj
=

{
ϑ(n − 1)(bq − η)(η − (b − ρ)q), if i = j,
ϑ(bq − η)(η − (b − ρ)q)− η

q , if i 6= j.

Using the fact that
∣
∣
∣
∣
∣
∣
∣
∣

a b b . . .
b a b . . .
b b a
...

...
. . .

∣
∣
∣
∣
∣
∣
∣
∣

= (a − b)n−1(a + (n − 1)b),

which is a special case of a circulant matrix and the determinant follows from the general formula [Horn
and Johnson, 1990], we obtain

∣
∣
∣
∣
∣
∣

(

∂2H

∂qi∂qj

)

qi=q

∣
∣
∣
∣
∣
∣

=
1

qn
(ϑ(n − 2)(bq − η)(η − (b − ρ)q)q + η)n−1

× (2ϑ(n − 1)(bq − η)(η − (b − ρ)q)q − (n − 1)η) .

In the symmetric case qi = q for all i = 1, . . . , n the Laplace approximation of Equation (52) can be written
as

Zϑ ≈
(

2π

ϑ

) n
2

∣
∣
∣
∣
∣
∣

(

∂2H

∂qi∂qj

)

qi=q∗

∣
∣
∣
∣
∣
∣

− 1
2

eϑnH (q∗),

where

H (q) ≡ nηq + (n − 1)

(
1

ϑ
ln
(

1 + eϑ(ρq2−ζ)
)

− bq2

)

≈ n2

(

ηq +
1

ϑ
ln
(

1 + eϑ(ρq2−ζ)
)

− bq2

)

,

for large n. We also introduce the free energy Fϑ ≡ − ln Zϑ, which allows us to write the expected
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number of links as follows

Eϑ(m) = ∑
G∈Gn

∫

[0,q̄]n
mµϑ(q, G)dq =

1

Zϑ
∑

G∈Gn

∫

[0,q̄]n
meϑΦ(q,G)
︸ ︷︷ ︸

− 1
ϑ

∂
∂ζ eϑΦ(q,G)

dq

= − 1

ϑ

1

Zϑ

∂Zϑ

∂ζ
=

1

ϑ

∂Fϑ

∂ζ
.

From the Laplace approximation of the partition function we find that

∂Fϑ

∂ζ
≈ −ϑ

∂H (q)

∂ζ
+

1

2
tr





(

∂2H

∂qi∂qj

)−1
∂

∂ζ

(

∂2H

∂qi∂qj

)

 .

We further have that
∂H

∂ζ
= −1

2

n

∑
i=1

n

∑
j>i

(

1 + tanh

(
ϑ

2

(
ρqiqj − ζ

)
))

,

and in the symmetric equilibrium this is

(
∂H

∂ζ

)

qi=q

= −n(n − 1)

2

(

1 + tanh

(
ϑ

2

(

ρq2 − ζ
)))

.

Moreover we find that

∂2H

∂q2
i

=
ϑ2ρ2

4

n

∑
j 6=i

tanh

(
ϑ

2

(
ρqiqj − ζ

)
)(

1 − tanh

(
ϑ

2

(
ρqiqj − ζ

)
)2
)

q2
j ,

and
∂2H

∂qi∂qj
=

ϑρ

4

(

1 − tanh

(
ϑ

2

(
ρqiqj − ζ

)
)2
)(

ϑρqiqj tanh

(
ϑ

2

(
ρqiqj − ζ

)
)

− 1

)

.

Assuming symmetry this is

(

∂2H

∂q2
i

)

qi=q

=
ϑ2(n − 1)

ρq
(2(bq − η)− ρq) (bq − η)(η − (b − ρ)q),

and (

∂2H

∂qi∂qj

)

qi=q

=
ϑ

ρq2
(bq − η)(η − (b − ρ)q)

(

2ϑq(bq − η)− ϑρq2 − 1
)

.

After some simplifications we then can write the expected number of links as follows

Eϑ(m) ≈ n(n − 1)
bq − η

ρq
+

n

2
ϑ
(2b − ρ)q − 2η

ρq
=

n(n − 1)

2

(

1 + tanh

(
ϑ

2

(

ρq2 − ζ
)))

+ O(n),

where q derives from Equation (17). Hence, the expected number of links is increasing in ρ, q and η, and
decreasing in ζ and b (by reducing the equilibrium quantity q). Note that the above expression becomes
exact as n becomes large. ✷

PROOF OF PROPOSITION 8. Let the degree distribution be given by P(k) for k = 0, . . . , n − 1. Further,
let g(k|q) be the conditional probability that a firm with output level q has k links. Then the degree
distribution can be written as follows [cf. Boguñá and Pastor-Satorras, 2003; Söderberg, 2002]

P(k) = ∑
q∈Q

µϑ(q)g(k|q),

where µϑ(q) is the marginal probability distribution of firms with output levels q ∈ Q. The average
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degree of a firm with output q is then given by

d̄(q) =
n−1

∑
k=0

kg(k|q),

and the average degree is given by

d̄ =
n−1

∑
k=0

kP(k) = ∑
q∈Q

µϑ(q)d̄(q).

The probability that a firm with degree k has output q is given by Bayes’ rule as

g(q|k) = µϑ(q)g(k|q)
P(k)

.

Let Xq,q′(ω) count the number of links between firms with output q and q′ in a in a state ω ∈ Ω. We have

that

Xq,q′(ω) =
n

∑
i=1

n

∑
j=i+1

1{qi(ω)=q}1{qj(ω)=q′}1{aij(ω)=1}.

If Xq counts the number of links of a firm with output q then we can write Xq = ∑q′∈Q Xq,q′ , and we

have that P(Xq = k) = g(k|q). Observe that the random variables Xq,q′ are independent, and binomially

distributed with

P(Xq,q′ = k) =

(
n(q′)

k

)

p(q, q′)k(1 − p(q, q′))n(q′)−k,

because the links between firms with output levels q and q′ are independently drawn with probability

p(q, q′). The generating function of the random variable Xq,q′ is given by28

ĝ(z|q, q′) = (1 − (1 − z)p(q, q′))n(q′).

where p(q, q′) is given by Equation (41), and can be written as

p(q, q′) =
eϑ(ρqq′−ζ)

1 + eϑ(ρqq′−ζ)
.

Since the random variable Xq is a sum of independent binomial random variables Xq,q′ , we have that the

generating function ĝ(z|q) of Xq is the product of the generating functions ĝ(z|q, q′) of Xq,q′ , so that after

taking logs we get

ln ĝ(z|q) = n ∑
q′∈Q

µϑ(q′) ln
(
1 − (1 − z)p(q, q′)

)
. (54)

We then can solve this equation to obtain ĝ(z|q), and from inverting the generating function

g(k|q) = 1

k!

dk ĝ(0|q)
dzk

∣
∣
∣
∣
∣
z=0

,

the degree distribution follows as

P(k) = ∑
q∈Q

g(k|q)µϑ(q).

When the linking cost c is high, and the connection probability p(q, q′) is small, we can expanding Equa-
tion (54) as

ĝ(z|q) ≈ e
n ∑q′∈Q µϑ(q′)p(q,q′)(z−1)

.

This is the generating function of a Poisson distribution with mean d̄(q) = n ∑q′∈Q µϑ(q′)p(q, q′), which

28The probability generating function of a binomial random variable, with the number of successes in n trials, and
probability p of success in each trial, is given by g(z) = (1 − p(1 − z))n.
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means that

g(k|q) = 1

k!
e−d̄(q)d̄(q)k,

and the degree distribution is given by

P(k) =
1

k! ∑
q∈Q

µϑ(q)e−d̄(q)d̄(q)k,

while the average degree of a firm with output q is given by d̄(q) = n ∑q′∈Q µϑ(q′)p(q, q′). This follows

from

d̄(q) =
dĝ(z|q)

dz

∣
∣
∣
∣
z=1

= e
n ∑q′∈Q µϑ(q′) ln(1−p(q,q′)(1−z))

n ∑
q′′∈Q

µϑ(q′′)
p(q, q′′)

1 − p(q, q′′)(1− z)

∣
∣
∣
∣
∣
∣
z=1

= n ∑
q′∈Q

µϑ(q′)p(q, q′).

Moreover, when the distribution µϑ(q) = δ(q− q∗) is concentrated at an output level q∗ then we can write
the generating function of Equation (54) as

ĝ(z|q) = en ln(1−p(q,q∗)(1−z)) = (1 − p(q, q∗)(1− z))n ,

which is the generating function of a binomially distributed random variable with success probability
p(q, q∗) in n trials. ✷

PROOF OF PROPOSITION 10. The only network dependent part in W(q, G) is the potential function Φ(q, G).
For a given vector of outputs q the network that maximizes the potential is the threshold graph G where
each link ij ∈ G if and only if ρqiqj > ζ. Hence, we can write welfare reduced to this class of networks as
follows

W(q) = η
n

∑
i=1

qi +
1 − 2b

2

(
n

∑
i=1

qi

)2

− (nν − b)
n

∑
i=1

q2
i +

n

∑
i=1

∑
j 6=i

(ρqiqj − ζ)1{ρqiqj>ζ}.

From the form of W(q) we see that we can distinguish two types of firms: those that are connected, and
those that are not. Let N1 denote the set of the first, and N2 the set of the latter. The FOC for i ∈ N1 is
given by

∂W(q)

∂qi
= η + (1 − 2b)(n1q1 + n2q2)− 2(nν − b)q1 + 2ρ(n1 − 1)q1 = 0,

while the FOC for i ∈ N2 is

∂W(q)

∂qi
= η + (1 − 2b)(n1q1 + n2q2)− 2(nν − b)q2 = 0.

The FOCs for all firms in the same set are identical, so their quantities must be identical too. We denote
by q1 the optimal quantity level of the firms in N1 and by q2 the optimal quantity level of the firms in N2.
Moreover, let n1 = |N1| and n2 = |N2| = n − n1. For 0 ≤ q1, q2 ≤ q̄ we then we have that

q1(n1, n2) =
η(b − nν)

(b − nν)(2(nν − b) + n(2b − 1)) + (n1 − 1)(2(nν − b) + (2b − 1)n2)ρ
,

q2(n1, n2) =
η(b − nν + (n1 − 1)ρ)

(b − nν)(2(nν − b) + n(2b − 1)) + (n1 − 1)(2(nν − b) + (2b − 1)n2)ρ
, (55)

and welfare can be written as as a function of 0 ≤ n1 ≤ n (since n2 = n − n1) as follows

W(n1, n2(n1)) = η(n1q1 + n2q2) +
1 − 2b

2
(n1q1 + n2q2)

2

− (nν − b)(n1q2
1 + n2q2

2) + n1(n1 − 1)(ρq2
1 − ζ). (56)
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Figure 7: (Left panel) The optimal size n1 solving Equation (57) when q2 = 0 with ρ = 0.3 and nν = 0.8. (Right panel)

The optimal size n1 for ζ = 0 from Equation (58) with ρ = 0.4, nν = 0.5 and η =
√

10n.

The above discussion can be summarized in the following proposition (see also Table 1).
In the following we discuss two special cases. First, for q2 = 0 we find that

W(q1) = ηn1q1 +
1 − 2b

2
n2

1q2
1 − (nν − b)n2

1q2
1 + n1(n1 − 1)(ρq2

1 − ζ),

and from the FOC
∂W(q1)

∂n1
= 0 we obtain

q1 =
η

(2(nν − ρ)− 1)n1 + 2ρ
.

Inserting into welfare gives

W(n1) =
n1

2

(
η2

2ρ + (2(nν − ρ)− 1)n1
− 2(n1 − 1)ζ

)

.

We take n1 as a continuous variable, so that the FOC of W(n1) with respect to n1 leads us to the condition

η2ρ

(2ρ + (2(nν − ρ)− 1)n1)2
= (n1 − 1)ζ. (57)

The optimal size n1 solving this equality is illustrated in Figure 7. Next, for ζ = 0 we obtain

W(n1) =
η2(((b − nν)n + (n − n1)(n1 − 1)ρ

2(b − nν)(2b(n − 1)− n + 2nν) + 2(n1 − 1)(2b(n − n1 − 1)− n − n1 + 2nν)ρ
.

Note that in this case q2 = 0. From the FOC
∂W(q1)

∂n1
= 0 we get

n1 =
1

ρ

(

ρ + nν − b +
√

(nν − b)(nν − b + ρ)

)

. (58)

The optimal size n1 for ζ = 0 is illustrated in Figure 7. ✷

PROOF OF PROPOSITION 11. The potential φ(q, G) of Equation (47) has the property that for any q′i 6=
qi ∈ [0, q̄] we have that

φ(q′i, q−i, G)− φ(qi, q−i, G) = nη(q′i − qi)− nν(q′2i − q2
i )− b(q′i − qi)∑

j 6=i

qj + ρ(q′i − qi) ∑
j∈Ni

qj

= πi(q
′
i, q−i, G)− πi(qi, q−i, G).

✷
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PROOF OF PROPOSITION 12. Equation (17) can be written as

qi −
ρ

2nν − b

n

∑
j=1

aijqj =
nη

2nν − b
− b

2nν − b
‖q‖

where ‖q‖ = u⊤q. Let us denote by ϕ =
ρ

2nν−b , A =
nη

2nν−b and B = b
2nν−b . Then, in vector-matrix

notation, the above equation can then be written as

(In − ϕq) q = (A − B‖q‖)u.

If ϕ <
1

λmax
(q) then the matrix In − ϕq is invertible, and we obtain

q = (A − B‖q‖) (In − ϕq)−1 u.

Noting that

(In − ϕq)−1 u = b(G, ϕ),

where b(G, ϕ) is the vector of Bonacich centralities with parameter ϕ [Bonacich, 1987], we obtain

q = (A − B‖q‖)b(G, ϕ).

With
‖q‖ = (A − B‖q‖)‖b(G, ϕ)‖

we obtain

‖q‖ =
A‖b(G, ϕ)‖

1 + B‖b(G, ϕ)‖)
and it follows that

q =
A

1 + B‖b(G, ϕ)‖)b(G, ϕ) =
nη

2ν + b(‖b(G, ϕ)‖ − 1)
b(G, ϕ).

Next, we compute equilibrium profits. Let us denote by C = nη
2nν+b(‖b(G,ϕ)‖−1)

, so that qi = Abi(G, ϕ).

Profit of firm i from Equation (8) can then be written as

πi = nηCbi(G, ϕ)− (nν − b)C2bi(G, ϕ)2 − bC2‖b(G, ϕ)‖bi(G, ϕ) + ρC2bi(G, ϕ)
n

∑
j=1

aijbj(G, ϕ)− ζdi.

Using the fact that

bi(G, ϕ) = 1 +
ρ

2nν − b

n

∑
j=1

aijbj(G, ϕ)

we obtain

πi = nηCbi(G, ϕ)− (nν − b)C2bi(G, ϕ)2 − bC2‖b(G, ϕ)‖bi(G, ϕ)

+ ρC2(2nν − b)bi(G, ϕ)(bi(G, ϕ)− 1)− ζdi.

= nνC2bi(G, ϕ)2 − ζdi.

which gives

πi =
n2η2ν

(2nν + b(‖b(G, ϕ)‖ − 1))2
b2

i (G, ϕ)− ζdi.

✷
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