
Technology Cycles in Dynamic R&D Networks✩

Michael D. Königa

aDepartment of Economics, University of Zurich, Schönberggasse 1, CH 8001 Zurich, Switzerland.

Abstract

In this paper we study the coevolutionary dynamics of knowledge creation, diffusion and the for-
mation of R&D collaboration networks. Differently to previous works, knowledge is not treated as
an abstract scalar variable but represented by a portfolio of ideas that changes over time through
innovations and knowledge spillovers between collaborating firms. The collaborations between firms,
in turn, are dynamically adjusted based on the firms’ expectations of learning a new technology from
their collaboration partners. We analyze the behavior of this dynamic process and its convergence
to a stationary state, in relation to the rates at which innovations and costly R&D collaboration
opportunities arrive, and the rate of creative destruction leading to the obsolescence of existing tech-
nologies. We quantify the innovation gains from collaborations, and show that there exists a critical
level for the technology learning success probability in collaborations below which an economy with
weak in-house R&D capabilities does not innovate even in the presence of R&D collaborations. More-
over, we show that the interplay between knowledge diffusion and network formation can give rise to
a cyclical pattern in the collaboration intensity, which can be described as a damped oscillation. We
confirm this novel observation using an empirical sample of a large R&D collaboration network over
the years 1985 to 2011. We then study the efficient network structure, compare it to the decentralized
equilibrium structures generated, and design an optimal network policy to maximize welfare in the
economy. Our efficiency analysis further allows us to study the effect of competition on innovation
in R&D intensive industries where R&D collaborations between firms are commonly observed.
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1. Introduction

R&D collaborations play an important role in the creation and diffusion of new technologies. Con-
versely, new technological opportunities impact the formation of R&D collaborations. In this paper
we study the two-way influence of innovation, technology diffusion and R&D network formation.

This paper develops the first tractable model to study endogenously the coevolution of network
formation, knowledge creation and diffusion, in which knowledge is not treated as an abstract scalar
variable but considered a diverse portfolio of heterogenous technologies. The technology portfolios
change over time through innovation and knowledge spillovers from imitation and learning across
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collaborating firms. The growth of knowledge is thus an interactive process between innovation and
imitation [cf. Jovanovic and Rob, 1989; König et al., 2012]. Moreover, some technologies can become
obsolete [cf. Adams, 1990; Klette and Kortum, 2004], while R&D collaborations have a finite lifetime,
are costly and their profitability is plagued with uncertainty [Harrigan, 1988; Kelly et al., 2002].

A key finding of the model is the existence of a threshold for the learning and imitation success
probability between collaborating firms below which an economy with weak in-house R&D capa-
bilities does not innovate even in the presence of R&D collaborations.1 This indicates that R&D
collaborations can only benefit an economy if firms have developed sufficient “absorptive capacities”
to learn and incorporate other firms’ technologies [cf. Cohen and Levinthal, 1990; Griffith et al.,
2003]. We further analyze changes of the threshold with respect to various parameters of the model,
and, in particular, find that competition lowers the threshold. Moreover, we show that the threshold
is increasing with the knowledge obsolescence rate [i.e. the “intensity of creative destruction”; see
Klette and Kortum, 2004] and the linking cost, while it is decreasing with the productivity of the
firms and the alliance duration. Moreover, the change in the threshold with the uncertainty in the
profitability of R&D collaborations is non-monotonic. We further study the knowledge gains from
R&D collaborations. Our results show that these are higher in the presence of competition. More-
over, we find that the gains are increasing with increasing in-house R&D capabilities, but only if these
are below a threshold that depends on the knowledge obsolescence rate, and decreasing otherwise.

We then test some of the implications of the model using a large firm-level panel dataset on R&D
collaborations over several decades and various sectors matched (partially) with patent data. To
motivate the model we provide micro-level evidence illustrating the dynamic interaction between the
technology (patent) portfolios of firms and the R&D collaboration network, and we show that neither
of them can be studied in isolation. In particular, the existence of technological opportunities through
complementary knowledge between firms generates incentives to collaborate, while the existence of
collaborations fosters the diffusion of technologies across firms [cf. Jovanovic and MacDonald, 1994;
Jovanovic and Rob, 1989].

Moreover, we identify a novel empirical observation, namely, that the R&D collaboration intensity
follows a cyclical pattern that can be described as a “damped oscillation”.2 A key contribution of this
paper is to explain this phenomenon from the existence of technology cycles, in a tractable framework
that is also amenable to policy analysis. Our theoretical results further indicate that the cyclicality
in the data is a competition effect. In the early stages after a new technology is discovered, there
is a large market for this technology and firms have strong incentives to form collaborations which
allow them to get access to the technology. However, once the technology has sufficiently diffused
trough the network, the market size shrinks, and so do the incentives to collaborate. As a result, the
economy experiences periods of high collaborative activity followed by periods of low collaborative
activity [cf. Matsuyama, 1999]. This has important policy implications. If policy makers want to
increase welfare in the economy by strengthening competition then our model suggests that a natural
side effect is an increased volatility in the network, akin to the Schumpeterian waves of “creative
destruction” [cf. Jovanovic and MacDonald, 1994; Jovanovic and Rob, 1990; Schumpeter, 1934].

We then investigate the efficient network structure, and compare it to the decentralized equilib-
rium [cf. e.g. König et al., 2014; Westbrock, 2010]. Our analysis indicates that equilibrium networks
tend to be less centralized than the efficient structure, and in the empirical application of our model
we quantify the welfare loss (by providing a lower bound) incurred by a suboptimal network struc-
ture. Moreover, we find that in the absence of competition the efficient network has a core periphery
structure and can be characterized as a “nested split graphs” [cf. König et al., 2011; König et al.,

1Similarly, Kelly [2001, 2009] finds a threshold in a static spatial environment.

2This is an oscillation of the average number of collaborations in which the amplitude of the oscillating average is
decreasing with time (cf. Figure 2 in Section 2).
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2013].3 Our analysis further allows us to investigate the impact of competition on social welfare. We
find that competition is welfare increasing. This is due to the fact that competition leads to realloca-
tion and the replacement of less productive firms with more productive ones, which are characterized
by a more central network position. Our paper thus provides a novel contribution to the discussion
of whether competition has a conducive or detrimental effect on innovation [cf. Aghion et al., 2013;
Kretschmer et al., 2012; Schmutzler, 2010], by focussing on R&D intensive industries where R&D
collaborations between firms are commonly observed.

Relation to the literature. There exists a growing number of empirical studies of R&D networks
that document their increasing importance [see e.g. Hagedoorn, 2002]. However, only recently it has
been recognized that the R&D network structure is highly unstable. Networks tend to become more
dense and increasingly centralized [Hanaki et al., 2010]. Other empirical studies have shown that the
propensity to form new alliances by central firms in the network follows a non-monotonic pattern
over time [Gay and Dousset, 2005; Hagedoorn and van Kranenburg, 2003]. Gulati et al. [2010] find
a rise and fall of “small worlds” in the R&D alliance network over time.4 A possible explanation for
this phenomenon might be that in the pursue of complementary knowledge firms form small worlds
initially but the excessive formation of these ties makes the information they gather redundant and
ultimately leads to the decline of the small world [Hagedoorn and Frankort, 2008; Powell et al.,
2005]. As Jovanovic and Rob [1989] put it “...spillovers of knowledge depend not only on how hard
people are trying, but also on the differences in what they know: if all of us know the same thing,
we cannot learn from each other.” Various empirical studies have also documented the convergence
of firms’ knowledge bases in sectors like electronics and the biotechnology industries [see e.g. Fai and
Von Tunzelmann, 2001; Gambardella and Torrisi, 1998; Nesta and Dibiaggio, 2003; Patel and Pavitt,
1997]. In order to explain this phenomenon, in this paper we develop a tractable model in which
firms experience decreasing returns from collaboration the more similar their technology portfolios
are [cf. Jovanovic and Rob, 1989]. We further show that we can fully replicate the cyclical pattern
observed in the data if we also take into account the competition of firms across different sectors [cf.
Matsuyama, 1999].5

There exists a different strand of literature, seemingly unrelated to R&D networks, in which
cyclical patterns of technological change (“innovation waves”) have a long history [e.g. Aghion et al.,
2013; Anderson and Tushman, 1990; Geroski and Walters, 1995; Goodwin, 1946; Jovanovic and Rob,
1990; Kuznets, 1940; Schumpeter, 1934].6 For example, Andersen [1999] investigates the growth of
different technological classes and identifies an S-shaped (Sigmoid curved) pattern over time [see also
Griliches, 1957]. Technology cycles have been found in the income of patents as a function of age
(see e.g. Giummo [2010] and Jovanovic [2009]) and the diffusion of chip technologies (Jovanovic and
MacDonald [1994]). Cycles have also been found in firm R&D expenditures [Barlevy, 2007]. Franke
[2001] studies oscillations in the growth rates of average productivity. Klepper [1996] shows that the

3A network is a nested split graph if the neighborhood of every node is contained in the neighborhoods of the nodes
with higher degrees [see also Mahadev and Peled, 1995].

4A small world network is characterized by high clustering and a short average path length between the nodes in
the network [Watts and Strogatz, 1998]. It has been argued that such small worlds are advantageous in generating and
diffusing innovations in networks [cf. Cowan and Jonard, 2004].

5In particular, a purely technology based explanation as e.g. conjectured in Hagedoorn and Frankort [2008] for
these cycles ignoring market and competition effects does not seem to be sufficient.

6Business cycles are another prominent instance for the unstable and periodic patterns that can be observed in
economic activity [Desai and Ormerod, 1998; Goodwin, 1951; Kaldor, 1940], and technological change has been one
of the explanations for their occurrence [Gaĺı, 1999; Holly and Petrella, 2012]. Here we find, both empirically and
theoretically, that technological development in R&D networks can follow a cyclical pattern. These cycles could be one
of the mechanisms that trigger business cycles.
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number of firms and the rate and diversity of product innovation eventually decline along a product
life cycle. Cyclical patterns have further been observed empirically in mergers and acquisitions [Golbe
and White, 1993], and joint ventures [Gomes-Casseres, 2002]. However, a comprehensive theoretical
and empirical study (by showing their existence and providing a theoretical explanation) of cycles
in R&D networks is missing so far.

The theoretical analysis of R&D collaborations has attracted some attention in the literature [e.g.
Amir et al., 2003; Amir and Wooders, 2000; Bloch, 1995, 1997; D’Aspremont and Jacquemin, 1988].
For example, Dawid and Hellmann [2014]; Goyal and Joshi [2003] have investigated the formation
of networks of R&D collaborating firms in which firms can share knowledge of a cost reducing
technology. König et al. [2011]; König et al. [2011] study the evolution of R&D networks in which
firms form collaborations to maximize their knowledge growth rate through knowledge spillovers
from other firms. These works, however, abstract from the process of innovation and do not study
how such technologies are discovered in the first place. Moreover, in all these works knowledge is
treated as an abstract scalar variable instead of a portfolio of different technologies held by a firm.
A key consequence is that in these models larger firms have lower incentives to form collaborations
than smaller firms. However, this contradicts the fact that many collaborations formed, for example,
in the biotech sector are between large and small firms, where the small firm possess knowledge of
a key technology that is particularly valuable to the larger firm [cf. Powell et al., 2005]. Here we
propose a model in which even large firms have incentives to collaborate with smaller ones when
these hold some technologies of interest.

Another strand of literature has studied the process of knowledge diffusion in an exogenously
given communication or social network. In the mathematics, epidemiology, computer science and
physics literature the spread of epidemics on networks has been extensively studied [see e.g. Acemoglu
et al., 2011; Anderson et al., 1992; Berger et al., 2005; Chatterjee and Durrett, 2009; Pastor-Satorras
and Vespignani, 2001; Van Mieghem et al., 2009; Wang et al., 2003].7 ,8 In the economics literature,
Morris [2000] provided topological conditions on the network structure under which the adoption of
a new technology (in a coordination game played on a fixed network) becomes epidemic. Jackson
and Rogers [2007] have analyzed the effect of different, exogenously given network topologies on the
spread of innovations and welfare. Meagher and Rogers [2004] and Andergassen et al. [2006] study the
process of innovation and knowledge diffusion on an exogenous network structure. Further examples
include Lopez-Pintado [2008] and Montanari and Saberi [2010]. In particular, Montanari and Saberi
[2010] investigate the speed of diffusion of innovations in a network in relation to certain topological
characteristics of the network. These works, however, do not explain the network structure but take
it as exogenously given. We improve on them, by analyzing the endogenous formation of networks
in which innovation and knowledge diffusion takes place. While the above mentioned literature finds
that it is typically the largest eigenvalue of the (adjacency matrix associated with the) network which
determines a threshold below which epidemics do not spread [see e.g. Newman, 2010], here we show
that when networks are formed endogenously, this threshold can be reduced to a function of the
rates at which neighboring nodes become infected and the infected nodes recover.

There exist only few epidemic spreading models with an endogenously formed network. Notable
examples are Gross et al. [2006] and, more recently, Fosco et al. [2010] and Blume et al. [2011].
However, these papers do not take into account the incentives of agents to form links. For example,
Gross et al. [2006] assume that links are rewired at random. Similarly, in Blume et al. [2011] an
agent receives a constant payoff from forming a link, linking decisions are not fully endogenized, and

7See also Chapter 17 in Newman [2010] for an overview and introduction.

8The model analyzed in this literature is the “susceptible-infective-susceptible” (SIS) model for epidemics spreading
on a network. This model corresponds to the one we study in Section 3 for the specific parameter choice of α = γ = 0
and N = 1 with an exogenously given network.
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the network is formed according to a specific random process. Similarly, Fosco et al. [2010] study an
endogenously formed network where agents show either good or bad behavior, bad behavior spills
over between linked agents, and links involving agents with bad behavior vanish at a higher rate
than others. As in Blume et al. [2011] and Gross et al. [2006], the link creation and removal process
is mechanistic, and does not depend on the marginal payoffs agents receive from forming or severing
links. In our model link formation is based on a standard profit maximizing rationale. We further
improve on these models by allowing agents in a network to be characterized by an arbitrary number
of characteristics instead of a single one.9 Moreover, none of these papers is applied to the current
context of R&D collaborations, nor has an empirical application.

Only few studies analyze the interplay between knowledge creation, diffusion and network evo-
lution. Most notably, Baum et al. [2010]; Berliant and Fujita [2008, 2009, 2011]; Cowan and Jonard
[2004, 2008] have taken into account the existence of ideas in an abstract “technology space” and
how collaboration decisions are influenced and are influencing the innovation process. However, these
studies either abstract away from the network structure of collaborations, or they are based on nu-
merical simulation studies and do not provide an analytic framework for the study of innovation and
technology diffusion in networks. Moreover, they do not provide an empirical application, and also
do not explain the non-monotonic behavior of the collaboration activities of firms over time that we
find in the empirical data.

Outline of the paper. The paper is organized as follows. In Section 2 we provide an empirical
motivation for our analysis by investigating the interaction between the patent portfolios of firms and
the formation of R&D collaborations, and the average number of collaborations in a panel of a real
world R&D network. In Section 3 we introduce the model, Section 4 describes the innovation process,
and Section 5 the formation of the network. Section 6 describes the coevolution of the technology
portfolios and the network, while Section 7 investigates the coevolution of the knowledge stocks and
the network. The equilibrium analysis is given in Section 8, while Section 9 analyzes efficiency. An
empirical application and a calibration of the model’s parameters is provided in Section 10. Section
11 concludes. All proofs are relegated to Appendix B.

2. Empirical R&D Networks

Data. To motivate our model we consider a sample of R&D alliances ranging over the years 1985
to 2011. The data stems from the Thomson SDC alliance database.10 Similar to Garćıa-Canal et al.
[2008] we take into account three types of alliances reported in the SDC database: (i) alliances that
imply the transmission of an existing technology from one partner to another or to the alliance;
(ii) alliances that imply the cross-transfer of existing technologies between two or more partners or
between these and the alliance, and (iii) alliances that include the undertaking of R&D activities.
This gives us a total of 21, 478 firms in our sample. We construct the R&D alliance network by
assuming that an alliance lasts for 5 years similar to e.g. Rosenkopf and Padula [2008].11

9In the language of statistical mechanics our generalization of e.g. Gross et al. [2006] is similar to the generalization
of the n-vector model over the classic Ising model [cf. e.g. Grimmett, 2010; Stanley, 1968].

10For an overview and comparison of different types of R&D alliance data sets see Schilling [2009].

11Rosenkopf and Padula [2008] use a five-year moving window assuming that alliances have a five-year life span, and
state that the choice of a five-year window is consistent with extant alliance studies [e.g. Gulati and Gargiulo, 1999;
Stuart, 2000] and conforms to Kogut [1988] finding that the normal life span of most alliances is no more than five
years. Moreover, Harrigan [1988] studies 895 alliances from 1924 to 1985 and concludes that the average life-span of
the alliance is relatively short, 3.5 years, with a standard deviation of 5.8 years and 85 % of these alliances last less
than 10 years. Park and Russo [1996] focus on 204 joint ventures among firms in the electronic industry for the period
1979–1988. They show that less than half of these firms remain active beyond a period of five years and for those that
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From our sample of 21, 478 firms we could further obtain patent information for 4, 223 of them
(19.66%) from the European Patent Office (EPO). We matched the firms in our alliance data with the
assignees in the EPO Worldwide Patent Statistical Database (PATSTAT). We classified the patents
according to the USPTO 3-digit classification system as of 2008 [see also Hall et al., 2001]. This
allowed us to construct the technology portfolios for the subset of the firms for which patent data
was available, and we obtained 261 unique patent classes for the matched firms.

Micro-level evidence. With the patent data and the R&D collaboration data we can illustrate
the two-way influence of patent portfolios and R&D collaborations at the firm level. Let hik,t ∈
{0, 1}, i = 1, . . . , n, k = 1, . . . , N be the indicator variable of firm i indicating whether it possesses
the technology k at time t, and let hit denote the vector of technologies of firm i describing the
patent portfolio of firm i. Let the support of hit be given by S(hit) and its cardinality given by
|S(hit)| = 〈hit,u〉, where u is a vector of ones and 〈·, ·〉 is the usual scalar product in R

N . In
other words, |S(hit)| counts the number of technologies known to i. Moreover, the technologies j
possesses but i does not, can be written as 〈hc

it,hjt〉, while the technologies i possesses but j does
not, is 〈hc

jt,hit〉. Further, let aij,t ∈ {0, 1} be the indicator for whether firms i and j have an R&D
collaboration at time t.

On the one hand, R&D collaborations facilitate the diffusion of technologies across firms. On
the other hand, technological opportunities through learning and imitation from other firms’ patent
portfolios determine the creation of R&D collaborations. To illustrate the first effect, i.e. the impact
of R&D collaborations on the technology portfolios, we estimate the following non-linear regression
model12

− ln (1− P(hik,t = 1)) = α0|S(hit)|+ α1

n∑

j=1

aij,thjk,t, (1)

to obtain the estimates α̂0 = 0.0042∗∗∗ (0.0001) and α̂1 = 0.0557∗∗∗ (0.0013) with standard errors
reported in parenthesis for the year t = 2010. In particular, we find that the estimate for the spillover
coefficient, α̂1, is highly significant. This illustrates the importance of R&D collaborations for the
diffusion of ideas across firms [cf. Jovanovic and MacDonald, 1994].

In order to illustrate the second effect, i.e. the impact of the technology portfolios on R&D
collaborations, we estimate the following the nonlinear regression model

P (aij,t = 1) =
eβ0+β1〈hc

it,hjt〉

1 + eβ0+β1〈hc
it,hjt〉

eβ0+β1〈hc
jt,hit〉

1 + eβ0+β1〈hc
jt,hit〉

, (2)

to obtain the estimates β̂0 = −4.7240∗∗∗ (0.0200) and β̂1 = 0.0123∗∗∗ (0.0009) with bootstrapped
standard errors in parenthesis for the year t = 2010. That is, we obtain a positive and significant
coefficient β̂1 for the effect of the ideas j possesses but i does not, 〈hc

it,hjt〉, and i possesses but j
does not, 〈hc

jt,hit〉, on their propensity to form a collaboration. This indicates the importance of
complementarity in the technology portfolios for the creation of R&D collaborations [cf. Jovanovic
and Rob, 1989]. The above exploratory empirical results will serve as a motivation for our general
model introduced in Sections 4 and 5.

last less than 10 years (2/3 of the total), the average lifetime turns out to be 3.9 years.

12Let Yik,t ∈ N denote the count variable for the number of patents of firm i in technology class k at time t.
Moreover, let hik,t = 1{Yik,t>0} be the indicator variable whether firm i has a patent in technology class k at time t.

If Yik,t ∼ Pois(λ) with rate λ then P(hik,t = 1) = 1− e−λ. Conversely, it follows that λ = − ln (1− P(hik,t = 1)).
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Table 1: Estimated coefficients with their standard devi-
ations, t-statistics and p-values for the regression model
of Equation (3).

θ θ̂ σ̂θ tθ̂ pθ̂

a0 0.4885∗∗∗ 0.0084 58.4100 0.0000
a1 −0.4085∗∗∗ 0.0118 −34.5350 0.0000
b1 −0.0286∗∗ 0.0118 −2.4190 0.0247
a2 0.1648∗∗∗ 0.0118 13.9340 0.0000
b2 −0.2587∗∗∗ 0.0118 −21.8760 0.0000
a3 −0.0433∗∗∗ 0.0118 −3.6634 0.0014
b3 0.0513∗∗∗ 0.0118 4.3366 0.0003

The number of observations is T = 28, the error
degrees of freedom is 21. The root mean squared
error is given by 0.0443. R2 is 0.989, adjusted R2 is
0.986. F-statistic vs. constant model is 317, and the
p-value is approximately zero.
*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Macro-level evidence. Exemplary networks for the years 1985, 1990, 1995, 2000, 2005 and 2010
can be seen in Figure 1. The figure demonstrates that the evolution of the network is highly non-
stationary. The average number of collaborations, d̄t, per year t is shown in Figure 2. The figure
demonstrates that the evolution of the network is highly non-stationary, and the varying network
density indicates a periodic rise and decline of the R&D network structure.

In order to investigate the non-stationary (oscillatory) pattern in the network data at the aggre-
gate level, we perform an estimation procedure similar to Golbe and White [1993] to test whether
the R&D collaboration intensity, as measured by the average number of collaborations d̄t in a given
year t, shows a cyclical trend. For this purpose we estimate a regression model of the form13

yt =
1

2
a0 +

3∑

j=1

(aj cos (ωjt) + bj sin (ωjt)) , t ∈ [0, T ], (3)

with the parameters a0, aj , bj , j = 1, . . . , 3 (Fourier coefficients), where the angular frequency is
given by ωj ≡ 2π

T j, and yt is periodic with period T . The results of this regression can be seen in
Table 2. The table shows that all coefficients are statistically significant. Following Golbe and White
[1993] we take this as an indicator for the presence of a cyclical pattern in the data.14 From the fact
that the amplitude of the cycle is decreasing over time we conclude that the average degree follows
a “damped oscillation”. In the next section we develop a model that can generate such a cyclical
pattern in the R&D collaboration activities of the firms.

13Equation (3) is a Fourier series representation of the time series {yt}t∈[0,T ]. See e.g. Hamilton [1994, Chapter 6.2]
for further details.

14Note that Hagedoorn and van Kranenburg [2003] investigate the presence of cycles in a different, smaller data
set, over the years 1960–1998. They find evidence for the non-stationary nature of the collaboration intensity but no
conclusive evidence for an oscillatory pattern. Despite the different way in which their data was collected we suspect
that this is due to the fact that they do not explicitly look at the average degree of firms in the R&D network, their
data set covers a shorter period of observation than ours, is much smaller and therefore potentially more noisy.
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Figure 2: The average degree d̄ over the years 1985 to 2012. The circles indicate the empirical observations while the
curve indicates the function in Equation (3) with the parameter estimates from Table 2.

3. The Model

We consider a Schumpeterian model of monopolistic competition as in e.g. Acemoglu et al. [2006];
Aghion and Howitt [2009]; König et al. [2012]. A unique final good, denoted by Y , is produced by a
representative competitive firm using labor and a set of intermediate goods xi, i ∈ N = {1, . . . , n},
according to the production function

Y =
1

α
L1−α

n∑

i=1

A1−α
i xαi , α ∈ (0, 1),

where xi is the economy’s input of intermediate good i and Ai is the productivity of the firm in sector
i. We further normalize the labor force to unity, L = 1. The final good Y is used for consumption,
as an input to R&D and also as an input to the production of intermediate goods. The profit
maximization program yields the following inverse demand function for intermediate goods,

pi =

(
Ai

xi

)1−α

,

where the price of the final good is set to be the numeraire. Each intermediate good i is produced
by a firm i with constant marginal cost φ, where 1 < φ ≤ 1/α. The firm sets the price equal to the

unit cost, pi = φ, and sells at that price the equilibrium quantity xi = φ−
1

1−αAi. The gross profit
earned by a firm i in an intermediate sector i, not taking into account any R&D collaboration costs,
will then be a linear function of its productivity

π̃i = (pi − 1) xi = ψAi, (4)

where ψ = φ−1
α φ−

1
1−α which is monotonically increasing in α and decreasing in φ. In equilibrium,

output is proportional to aggregate productivity as follows Y = 1
αφ

− α
1−α

∑n
i=1Ai =

1
αφ

− α
1−αA, where

aggregate productivity is A =
∑n

i=1Ai,
Next, we consider the same economic environment as above, but now assume that a firm can
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produce more than one intermediate good by introducing multiproduct firms [cf. Bernard et al.,
2011]. In this setup firms can produce new varieties in different sectors by applying their technological
knowledge in all sectors, similar to variety expanding models [cf. Jones, 1995, 2005]. More precisely,
we assume that the probability that a firm i becomes the supplier in sector j by winning a production
contract in that sector, and to produce the intermediate good j, is given by the contest success
function [Corchón, 2007; Fullerton and McAfee, 1999; Meland and Straume, 2007; Tullock, 1980]:15

P(firm i produces in sector j) =
Ai

∑n
k=1Ak

. (5)

If firm i becomes the producer, it earns a gross profit of π̃i = ψAi. The contests in each sector are
assumed to be independent. Firm i’s expected gross profit from all n sectors is then given by16

π̃i = ψAin
Ai

∑n
j=1Aj

= ψ
A2

i
1
n

∑n
j=1Aj

. (6)

πi = π̃ − cdi = θAi + (1− θ)
A2

i
1
n

∑n
j=1Aj

− cdi, (7)

where θ ∈ {0, 1} is a (zero/one) competition parameter,17 we have normalized ψ = 1, c ∈ R+ is a
fixed R &D collaboration cost, di is the degree (i.e. the number of links/collaborations) of i in the
network G ∈ Gn and Gn denotes the set of graphs of size n.18

We assume that the productivity Ai of firm i is a linear function of the number of technologies
(size of the technology portfolio) owned by the firm [cf. Klette and Kortum, 2004]. Let hi denote
the knowledge vector (technology portfolio) of firm i, with hi ∈ HN = {0, 1}N and N ∈ N denoting
the number of different technologies. Then we assume that

Ai = a+ b|S(hi)|, a, b ∈ R+,

where the support of h is S(h) and its cardinality is given by |S(h)| = 〈h,u〉, counting the number
of nonzero entries in h. Here u is a vector of ones and 〈·, ·〉 is the usual scalar product in R

N .

15Alternatively, we could assume that a firm can win a patent in a patent race that allows it to produce the
intermediate good variety [cf. Futia, 1980; Reinganum, 1985], with a duration of one unit of time, and that the good
becomes obsolete after the expiration of the patent.

16Let pi =
Ai

∑

n
k=1

Ak
denote the probability that firm i becomes the producer in sector j. Then the expected number

of sectors in which firm i is producing is given by
∑n

j=1

(

n

j

)

pji (1− pi)
n−j = npi.

17Note that θ is a measure for monopoly power: θ = 1 indicates local monopolists in each sector, while θ = 0
indicates competition across different sectors. An alternative interpretation – which we do not emphasize here – is
that θ measures the scope and generality of the technologies used by the firms, i.e. the extent to which firms are using
general purpose technologies (GPT) [cf. Aghion et al., 2013; Jovanovic and Rousseau, 2005].

18As in Berliant and Fujita [2008]; Dawid and Hellmann [2014]; König et al. [2011]; König et al. [2011]; Roketskiy
[2011]; Westbrock [2010] we do not explicitly incorporate the firm’s R&D expenditure decision in the productivity, and
consequently firms’ profits in Equation (8). Instead we focus on the strategic choice of a firm’s collaboration partners.
We can thus view Equation (8) as a reduced form that allows us to study the coevolution of the network and knowledge
portfolios emanating from the firms’ strategic linking decisions. Moreover, as in the models analyzed in König et al.
[2012]; Lucas and Moll [2011]; Perla and Tonetti [2012] firms can choose between in-house R&D and copying another
firm’s technology by forming (or not) an R&D collaboration. In particular, in our model firms which do not participate
in R&D collaborations innovate through in-house R&D instead.
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Normalizing also a = 1, the profit function from Equation (7) then becomes

πi(h) = θ(1 + b|S(hi)|) + (1− θ)
1 + 2b|S(hi)|+ b2|S(hi)|2

1 + b 1n
∑n

j=1 |S(hj)|
− cdi, θ ∈ {0, 1}, (8)

with h ∈ Hn×N = {0, 1}n×N denoting the matrix of stacked vectors hi for all i ∈ N .
In the following sections we consider a dynamic environment, where in every period an existing

final good is replaced with a new one. In the non-competitive case (θ = 1) the final good uses inputs
from the same intermediate goods producing firms at every period. In contrast, in the competitive
case (θ = 0), the firms supplying the intermediate goods are redrawn every period according to the
contest success function in Equation (5).19 The probability with which a firm becomes the producer
of a variety depends on its productivity relative to the aggregate productivity of all other firms in
the economy, and these productivities change over time through innovation or learning other firms’s
technologies in R&D collaborations.

4. Innovation, Spillovers and Marginal Profits from Collaboration

The knowledge vectors hit ∈ HN of the firms i ∈ N change over continuous time t ∈ R+. New
knowledge arrives as a Poisson process with an innovation rate that depends on the stock of knowledge
of the firm [cf. Dasgupta and Stiglitz, 1980, 1981; Klette and Kortum, 2004; Loury, 1979]. We also
allow for spillovers between collaborating firms such that the rate with which a firm i makes an
innovation in the knowledge category k increases with the number of collaborating firms that know
k [cf. Jackson and Rogers, 2007; Jovanovic and Rob, 1989]. In particular, we assume that a firm i
discovers idea k, if it does not know it already, at a rate20

νik,t = γ + α

N∑

l=1

hil,t

︸ ︷︷ ︸

innovation

+β

n∑

j=1

aij,thjk,t

︸ ︷︷ ︸

imitation

. (9)

With rate λ, each knowledge category can also become obsolete [cf. e.g. Adams, 1990; Andergassen
et al., 2006; Caballero and Jaffe, 1993; Klette and Kortum, 2004].21

In the following we assume that collaborative R&D agreements between firms have only a finite
lifetime. The fact that collaborations do not last forever is a quite natural feature of real-world
networks. Ehrhardt et al. [2008] put forward inter-firm alliances and scientific collaborations as
examples of networks in a volatile environment. For inter-firm alliances, Hagedoorn [2002] for research
partnerships, Kogut et al. [2007] for joint ventures, Harrigan [1988] for alliances and Park and Russo
[1996] for (equity-based) joint ventures provide empirical evidence on this phenomenon. For example,
Harrigan [1988] studies 895 alliances from 1924 to 1985 and concludes that the average life-span of

19The competitive case builds on Futia [1980], where a discrete time model in which firms engage in an R&D race
for a patent in each period is considered (see also the discussion in Section IV in Reinganum [1985]). In this model the
probability of a firm i to succeed with innovating in period t is given by P(firm i succeeds at time t) = Ait

∑

n
j=1 Ajt

, where

Ait is the productivity of firm i at time t. This functional form is also known as a Tullock contest success function [cf.
Baye and Hoppe, 2003; Tullock, 1980]. For a stochastic derivation see Jia [2008].

20In models such as the one by Klette and Kortum [2004], where the firm’s R&D expenditure choice is explicitly
considered, one finds that a firm scales up its R&D expenditure (and its innovation probability) in proportion to its
knowledge capital. Hence, we can view Equation (9) as a reduced form where the innovation rate increases with the
stock of knowledge of the firm and spillovers from collaborating firms.

21Klette and Kortum [2004] call this rate the “intensity of creative destruction”.
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the alliance is relatively short, 3.5 years, with a standard deviation of 5.8 years and 85 % of these
alliances last less than 10 years. Park and Russo [1996] focus on 204 joint ventures among firms in
the electronic industry for the period 1979–1988. They show that less than half of these firms remain
active beyond a period of five years and for those that last less than 10 years (2/3 of the total), the
average lifetime turns out to be 3.9 years.

Let τ > 0 denote the expected duration of a collaborative R&D agreement. When evaluating a
potential collaboration, a firm i computes its discounted profit at time t + τ ,22 taking the current
network Gt as given [cf. Jackson and Watts, 2002],23 while discounting future profits at a rate
δ ≡ 1

1+r > 0. The firm i’s present discounted profit at time t is then given by

Vi(ht, Gt) = πi(ht) +
1

1 + r
Et (πi(ht+τ )|ht, Gt) .

In the following we assume that the time τ of a collaboration is short compared to the dynamics of
the generation and diffusion of knowledge in the entire industry.24 Then we can derive the change
in the present discounted profits of a firm from forming a collaboration as follows.

Proposition 1. The change in the present discounted profit of the firm i from forming the link ij
for θ ∈ {0, 1} can be written as

Vi(ht, Gt + ij) − Vi(ht, Gt) = βτδ

(

θb+ (1− θ)
2b(1 + b|S(hi,t)|)
1 + bh̄t(ht, Gt)

)

〈hc
it,hjt〉 − δc+O

( τ

n

)

,

where h̄t ≡ 1
n

∑n
i=1 |S(hi,t)| denotes the average stock of knowledge at time t.

In the following we denoted by

gθ,τ (h̄t) ≡ τδb

(

θ + 2
1− θ

1 + bh̄t

)

. (10)

Note that gθ,τ (h̄t) is decreasing with the average knowledge stock h̄t. Dropping the remainder term
O
(
τ
n

)
in Proposition 1 we then get

Vi(ht, Gt + ij)− Vi(ht, Gt)

δ
≈ βgθ,τ (h̄t)(1 + b|S(hi,t)|)1−θ〈hc

it,hjt〉 − c. (11)

From the above expression we find that marginal profits for firm i from forming a link ij are increasing

22Related to our setup, Sannikov and Skrzypacz [2010] consider a dynamic game of strategic interaction where players
learn information continuously over time, but take actions only at discrete points in time.

23This assumption is reminiscent of myopic behavior and is common in the complex strategic environment that
networks represent. For example, Jackson and Watts [2002] state that “...in larger networks and networks where
players’ information might be local and limited, or in networks where players significantly discount the future, myopic
behavior is a more natural assumption”. Taking into account the strong uncertainty involved in R&D projects and
R&D cooperations we think that this assumption is not too restrictive.

24This assumption also guarantees that firms need only limited information about the knowledge portfolios of other
firms. In particular a firm needs only to know the knowledge portfolios of its alliance partners (but not of any other
firm), and the total average portfolio size (e.g. from some statistic of the aggregate innovativeness of the economy),
in order to compute its present discounted profit. Any higher order corrections would require information about the
knowledge possessed by the neighbors’ neighbors, their neighbors, and so on. Since this information is hard to obtain
(firms typically do not make their R&D programs public), this would be a strong assumption. Moreover, there exists
empirical evidence that agents in a network use only information limited to their immediate neighborhood when deciding
about their actions [e.g. Friedkin, 1983]. Related theoretical models of networked agents with limited information sets
are DeMarzo et al. [2003]; Golub and Jackson [2012]; Jackson and Golub [2010], Montanari and Saberi [2010] and König
[2011].
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in the number of ideas that firm j has but firm i does not have, 〈hc
it,hjt〉, and - in the competitive case

- the total stock of knowledge possessed by firm i, |S(hi,t)|, relative to the average stock of knowledge
h̄t. In the first case (without competition, θ = 1), as in Jovanovic and Rob [1989], marginal profits
from collaboration incorporate the fact that “...spillovers of knowledge depend not only on how hard
people are trying, but also on the differences in what they know: if all of us know the same thing, we
cannot learn from each other.” The latter case (with competition, θ = 0) shows that relatively more
competitive firms are better in reaping the gains from getting access to complementary knowledge
than less competitive ones (indicating economies of scale and scope). For the remaining sections we
will assume that firms evaluate the marginal value of a collaboration on the basis of the change in
the present discounted profits of Equation (11).

5. Innovation and R&D Network Formation

In the following we introduce more formally the knowledge creation, diffusion and R&D network
formation process.

Definition 1. Consider a population of firms N = {1, . . . , n}. Each firm i ∈ N is equipped with
a knowledge vector hit ∈ HN = {0, 1}N , in a network Gt = (N , Et) ∈ Gn, Et ∈ N × N , at time
t ∈ R+. Denote by ht the n×N matrix with rows equal to hit for each i = 1, . . . , n. We consider the
continuous time Markov process (ht, Gt)t∈R+ , in which the following events happen in a small time
interval [t, t+∆t), ∆t ≥ 0:

Innovation: Each firm i ∈ N discovers knowledge category k = 1, . . . , N at a rate

νik,t = γ + α

N∑

l=1

hil,t + β

n∑

j=1

aij,thjk,t,

and the probability that firm i discovers idea j in the time interval [t, t+∆t) is given by

P(hik,t+∆t = 1|hik,t = 0,ht, Gt) = 1− e−νik,t∆t = νik,t∆t+ o(∆t). (12)

Knowledge Obsolescence: At rate λ ≥ 0, each idea k = 1 . . . , N becomes obsolescent. That is,
the probability that idea j becomes obsolescent in the time interval [t, t+∆t) is given by

P(hik,t+∆t = 0|hik,t = 1,ht, Gt) = 1− e−λ∆t = λ∆t+ o(∆t). (13)

Link Creation: Each (unordered) pair of firms i, j ∈ N ×N receives an opportunity to create the
link ij with rate ρ ≥ 0. If the pair i, j receives such an opportunity, then the link ij is created,
if it is not present, with probability25

P(Gt+∆t = Gt + ij|ht, Gt)

= ρP({Vi(ht, Gt + ij) + εit > Vi(ht, Gt)} ∩ {Vj(ht, Gt + ij) + εjt > Vj(ht, Gt)})

= ρ
eη(βgθ,τ (h̄t)(1+b| S(hi,t)|)1−θ〈hc

it,hjt〉−c)

1 + eη(βgθ,τ (h̄t)(1+b| S(hi,t)|)1−θ〈hc
it,hjt〉−c)

eη(βgθ,τ (h̄t)(1+b| S(hj,t)|)1−θ〈hc
jt,hit〉−c)

1 + eη(βgθ,τ (h̄t)(1+b| S(hj,t)|)1−θ〈hc
jt,hit〉−c)

∆t+o(∆t),

(14)

25The probability that firms i and j form an R&D collaboration depends on both finding a collaboration profitable,
that is, it must hold that both Vi(ht, Gt + ij) + εit > Vi(ht, Gt) and Vj(ht, Gt + ij) + εjt > Vj(ht, Gt).
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Figure 3: Illustration of the network formation and innovation process outlined in Definition 1.

where we have assumed that profits from forming a link are perturbed by identically and inde-
pendently logistically distributed error terms εit, εjt with parameter η/δ.

Link Removal: An existing link ij is removed when the collaboration between i and j expires. This
happens at a rate ρ = ρ0 + 1/τ , so that

P(Gt+∆t = Gt − ij|ht, Gt) = ρ∆t+ o(∆t). (15)

In the following we assume that the link creation and link removal rates are identical and given
by ρ. This entails no loss of generality but helps us to simplify our notation. An illustration
of the stochastic process introduced in Definition 1 is shown in Figure 3. Further note that the
introduction of noise in marginal profits from collaboration leading to Equation (14) is quite natural,
as the establishment of an R&D collaboration is fraught with ambiguity and uncertainty [cf. Kelly
et al., 2002]. Moreover, Podolny and Page [1998] document that many collaborations fail and are
terminated early. We allow for this possibility by including the term ρ0 in the rate ρ adding to the
inverse of the expected duration τ of a collaboration.

Note that without knowledge obsolescence (i.e. when we set λ = 0) the firms’ technology portfo-
lios eventually become complete, and there would be no incentives to form collaborations any more
so that the network would be empty. Moreover, without link removal (i.e. when we set ρ = 0) the
network would eventually become complete.26 Both of these extreme cases are at odds with the
R&D network structures that we observe in the data.

In the next section we analyze the evolution of the number of firms with different technology
portfolios and the number of links between them.

26Observe that when ρ = 0 then the network does not change and when also α = γ = 0 and N = 1 we are within
the framework of the well known SIS model for epidemics spreading on a static network.
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6. Coevolution of Knowledge Portfolios and the Network

From Definition 1 describing the dynamic process of network formation and knowledge diffusion it is
possible to obtain a coupled system of ordinary differential equations that completely describes the
evolution of the average number of firms with a certain knowledge portfolio and the probability of a
link between any pair of firms with given knowledge portfolios over time from any initial condition
as the number of firms becomes large. This is shown in the next theorem.

Theorem 1. Let the probability that a firm with technology vector h is connected to a firm with
technology vector h′ be denoted by ξt(h,h

′) ≡ P(aij,t = 1|hit = h,hjt = h′), and let the fraction of
firms with knowledge vector h be xt(h) ≡ P(hit = h). Introduce the rescaled parameters β → β/n,
c→ c/n, η → ηn,27 and denote by

g(h,h′) ≡ eη(βgθ,τ (h̄t)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (xt)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (h̄t)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (xt)(1+b| S(h′)|)1−θ〈h′c,h〉−c)
. (16)

Then, in the limit of large n, xt(h) converges in probability to the solution of the system of ODEs

dxt(h)

dt
= (γ + α(|S(h)| − 1))

∑

k∈S(h)

xt(h− ek) + λ
∑

k∈S(hc)

xt(h+ ek)

− (λ|S(h)|+ γ|S(hc)|+ α|S(h)||S(hc)|) xt(h)
+ β

∑

k∈S(h)

∑

h′∈HN :h′
k
=1

ξt(h− ek,h
′)xt(h− ek)xt(h

′)

− β
∑

k∈S(hc)

∑

h′∈HN :h′
k
=1

ξt(h,h
′)xt(h)xt(h

′), (17)

where ek is the k-th unit basis vector in HN , 〈·, ·〉 is the usual scalar product in R
N , S(h) is the

support of h,28 and ξt(h,h
′) converges in probability to the solution of the system of ODEs

dξt(h,h
′)

dt
= ρ g(h,h′)− ρ

(
1 + g(h,h′)

)
ξt(h,h

′) + o(ρ). (18)

With the dynamics of xt(h) and ξt(h,h
′) known from Theorem 1, the current period average

stock of knowledge is given by h̄t =
∑

h∈HN |S(h)|xt(h), and the current period average degree
is d̄t = n

∑

h,h′∈HN ξt(h,h
′)xt(h)xt(h

′). Since the average stock of knowledge h̄t is completely

determined by xt(h) we will write gθ,τ (h̄t) as gθ,τ (xt).
When we do not make the assumption that ρ is large, then we need to take into account the

remainder term which is of the order of o(ρ) in Equation (18). The differential equations governing
the dynamics of the expected number of links becomes considerably more involved, and can only
be derived by making a pair approximation:29 Let nt(h) denote the expected number of firms with
technology h, mt(h,h

′) the expected number of links between firms with technologies h and h′.
Moreover, let τt(h,h

′,h′′) denote the expected number of triplets with a firm with technology h being

27The assumption of the technology spillover parameter being given by β/n ensures that the contribution to the total
spillovers from a single firm in a dense network is O(1) [see e.g. Levin et al., 2009, Chap. 15.2].

28The support of h is S(h) and its cardinality is |S(h)| = 〈h,u〉, counting the number of nonzero entries in h, with
u being a vector of ones.

29See e.g. Newman [2010, Chap. 17].
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connected to a firm with technology h′ and this firm being connected to a firm with technology h′′.
Then we make the following pair approximation30

τt(h,h
′,h′′) ≈ mt(h,h

′)mt(h
′,h′′)

nt(h′)
. (19)

Appendix A provides a complete derivation of the dynamics for an arbitrary number N of technology
categories using the approximation in Equation (19). However, in the next sections we will be mostly
concerned with the exact case in the limit of ρ→ ∞, as this also simplifies our analysis considerably.

7. Coevolution of Knowledge Stocks and the Network

The description of the dynamics of our system reduces drastically if we consider the dynamics of the
stocks of knowledge and the probability of a link between firms with given knowledge stocks. More
formally, let the fraction of firms with a stock of knowledge of s, 0 ≤ s ≤ N , be given by

(N
s

)
x̄t(s),

where we have denoted by

x̄t(s) ≡
1
(
N
s

)

∑

h∈HN :|S(h)|=s

xt(h), (20)

x̄t(s) being the solution of Equation (17) and let the probability of a link between a firm with
knowledge stock s and a firm with s′, with 0 ≤ s, s′ ≤ N , be given by

(N
s

)(N
s′
)
ξ̄t(s, s

′), where we have
introduced

ξ̄t(s, s
′) ≡ 1

(N
s

)
1
(N
s′
)

∑

h∈HN :|S(h)|=s

h
′∈HN :|S(h)|=s′

ξt(h,h
′). (21)

and ξt(h,h
′) being the solution of Equation (18). Further, define the symmetric matrix, ḡ(s, s′) =

ḡ(s′, s) for all 0 ≤ s, s′ ≤ N , given by

ḡ(s, s′) ≡ 1
(N
s

)
1
(N
s′
)

∑

h∈HN :|S(h)|=s
h′∈HN :|S(h′)|=s′

g(h,h′), (22)

with g(h,h′) as in Equation (16) in Theorem 1. Then the dynamics for the fraction x̄t(s) of firms
with knowledge stock s, and the probability ξ̄t(s, s

′) of a link between firms with knowledge stocks
s and s′, respectively, are given by the following proposition.

Proposition 2. Let the fraction of firms with a stock of knowledge of s be denoted by x̄t(s) and let
the probability of a link between a firm with knowledge stock s and a firm with s′ be ξ̄t(s, s

′) for any
0 ≤ s, s′ ≤ N defined as in Equations (20) and (21). Then x̄t(s) is the solution of the system of
ODEs

dx̄t(s)

dt
= (γs + α(s− 1)s)x̄t(s− 1) + λ(N − s)x̄t(s+ 1)− (λs+ γ(N − s) + αs(N − s))x̄t(s)

+ β

N∑

s′=1

(
N − 1

s′ − 1

)
(
sξ̄t(s− 1, s′)x̄t(s− 1)x̄t(s

′)− (N − s)ξ̄t(s, s
′)x̄t(s)x̄t(s

′)
)
, (23)

30The rationale for Equation (19) is that the expected number of links between firms with technology h and technology
h
′ is given by mt(h,h

′), and the expected number of links to firms with technology h
′′ involving a firm h

′ is given by
mt(h

′,h′′)
nt(h′)

. A more detailed discussion can be found e.g. in Do and Gross [2009]; Gross et al. [2006]; Keeling and Eames

[2005]. The pair approximation becomes exact for “locally tree-like” networks [cf. Dembo and Montanari, 2010].
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and ξ̄t(s, s
′) is the solution of the system of ODEs

dξ̄t(s, s
′)

dt
= ρ ḡ(s, s′)− ρ (1 + ḡ(s, s′))ξ̄t(s, s

′) + o(ρ). (24)

The stationary solution of the above dynamics for the special case of β = 0 is particularly simple
and given in the next corollary.

Corollary 1. Let the expected number of firms with knowledge stock s be denoted by

x̃t(s) ≡
∑

h∈HN :|S(h)|=s

xt(h), 0 ≤ s ≤ N,

then in the case of β = 0 the stationary distribution of x̃(s) = limt→∞ x̃t(s) is given by

x̃(s) =

(
N∑

k=0

∏k−1
j=1(N − j)(γ + αj)

∏k
j=1 λj

)−1 ∏s−1
k=1(N − k)(γ + αk)

∏s
k=1 λk

. (25)

If we also set α = 0 then we obtain a binomial distribution with success probability γ
λ+γ so that

x̃(s) =

(
N

s

)(
γ

λ+ γ

)s( λ

λ+ γ

)N−s

. (26)

Equation (26) corresponds to a simple birth-death process with birth rate γ and death rate λ
[Grimmett and Stirzaker, 2001]. Note that we can further simplify Equation (22) to

ḡ(s, s′) =
1
(N
s

)
1
(N
s′
)

min{N−s,s′}
∑

k=max{0,s′−s}

(
N − s

k

)(
s

s′ − k

)(
N

N − s

)

× eη(βgθ,τ (xt)(1+bs)θk−c)

1 + eη(βgθ,τ (xt)(1+bs)θk−c)

eη(βgθ,τ (xt)(1+bs′)θ(s−s′+k)−c)

1 + eη(βgθ,τ (xt)(1+bs′)θ(s−s′+k)−c)
. (27)

Moreover, note that the average stock of knowledge is given by h̄t =
∑N

s=1 s
(
N
s

)
x̄t(s), while the

average degree can be computed from d̄t =
2mt

n = n
∑

h,h′∈HN zt(h,h
′) = n

∑N
s,s′=0

(N
s

)(N
s′
)
z̄t(s, s

′) =

n
∑N

s,s′=0

(N
s

)(N
s′
)
x̄t(s)x̄t(s

′)ξ̄t(s, s
′), where mt denotes the number of links at time t. In the following

section we study the stationary states of the dynamics introduced in Proposition 2 and their stability
properties.

8. Equilibrium Characterization

In this section we first identify a threshold βc such that the economy does not innovate if the
technology spillover parameter β is below βc. We then preform a comparative statics analysis of the
threshold βc, and, in particular, show that the threshold is increasing with the knowledge obsolescence
rate λ and the linking cost c, while it is decreasing with the productivity function parameter b and
the alliance duration τ . Moreover, the change with the uncertainty of R&D collaborations η is non-
monotonic. For small spillover effects β (or alternatively, for a small number of technology categories)
we further characterize the innovation gains (in terms of the average stock of knowledge) due to the
presence of R&D collaborations. These gains are decreasing with the in-house R&D success rate, the
linking cost and the collaboration uncertainty, while the the effect of the knowledge obsolescence rate
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is non-monotonic, and there exists a critical value λc as a function of the in-house R&D success rate
γ such that the gains from collaboration are increasing with λ if λ < λc, and decreasing, otherwise.

The characterization of the equilibrium solution for an arbitrary parameter choice and arbitrary
N is rather involved. However, further insights can be obtained by restricting our analysis to the
case of independent markets, θ = 1, when ḡ(s.s′) does not depend on x̄(s), and letting ρ→ ∞. The
following lemma provides an explicit solution to the (conditional) linking probability of firms with
different knowledge stocks, and a recursive characterization of the asymptotic stocks of knowledge.

Lemma 1. Consider the limit ρ→ ∞ and independent markets with θ = 1 in Proposition 2. Then
the fixed points for ξ̄(s, s′) of Equation (24) are given by

ξ̄(s, s′) =
ḡ(s, s′)

1 + ḡ(s, s′)
,

while the fixed points of Equation (23) satisfy

x̄(s+ 1) =
x̄(0)

λs+1

s∏

k=0

(

γ + kα+ β

N∑

s′=1

(
N − 1

s′ − 1

)
ḡ(k, s′)

1 + ḡ(k, s′)
x̄(s′)

)

.

Lemma 1 shows that x̄(s) is higher for all s > 0 when β > 0. Hence, the presence of R&D
collaborations leads to a higher average knowledge stock in the economy. Moreover, from Lemma
1 we find that for γ, α → 0 a stationary solution is always given by x̄(s) = δs,0, where firms have
empty technology portfolios and thus vanishing stock of knowledge. However, this trivial stationary
state is not the only stationary state if β exceeds a threshold. Moreover, the trivial stationary state
becomes unstable if β is higher than this threshold.

Proposition 3. Consider the limit of ρ → ∞, θ = 1 and γ, α → 0 in Proposition 2. Then the
unique, asymptotically stable stationary state is x̄(s) = δs,0 if β < βc, with

βc = λbητ (ecη + 2) +
W
(
λbητ (ecη + 1) eη(c−bτ(ecη+2)λ)

)

bητ
, (28)

where W (x) is the Lambert W function (or product-log), which is implicitly defined by W (x)eW (x) =
x.

Proposition 3 illustrates that if the in-house R&D capabilities of firms are weak (γ, α→ 0), then
the presence of R&D collaborations can only lead to an economy with non-vanishing innovation
activities (i.e. a significant fraction of firms has non-empty technology portfolios, x̄(0) < 1) if the
spillover parameter β exceeds a threshold βc. Proposition 3 further states that when β > βc then
the trivial stationary state becomes unstable and there exists non-trivial stable stationary state.
Moreover, one can show that (see the proof of Proposition 3 in Appendix B)

∂βc

∂λ
> 0,

∂βc

∂c
> 0,

∂βc

∂b
< 0,

∂βc

∂τ
< 0, (29)

while βc is a convex function of η as indicated in Figure 5 for different values of the linking cost c. The
existence of a threshold for the learning success probability between collaborating firms below which
an economy with weak in-house R&D capabilities does not innovate even in the presence of R&D
collaborations is a key finding of our model. In particular, it indicates that R&D collaborations
can only benefit an economy if firms have developed sufficient absorptive capacities to learn and
incorporated other firms’ technologies [cf. Cohen and Levinthal, 1990; Griffith et al., 2003].

In contrast, in the absence of technology spillovers, when β = 0, the following corollary follows
immediately from Lemma 1.
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Figure 4: Examples of the stationary expected fraction of links ξ̄(s, s′), 0 ≤ s, s′ ≤ N with c = 1, θ = 1, βτb = 1, for
η = 1, 2, 3 (rows) and N = 2, 5, 10 (columns) (where higher values are black and lower values are white). We observe
that with increasing values of η (and c > 0) the number of links is highest along the diagonal with firms having similar
portfolio sizes, except for the upper left and lower right corners. This indicates assortative matching. That is, firms
with similar portfolio sizes tend to be connected, however, their portfolios need to be composed of different technologies.
Assortativity has been observed in empirical studies of R&D collaboration networks.
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Figure 5: The threshold level β as a function of η for b = 10, τ = 0.01, λ = 1, and c ∈ {1, 1.25, 1.5}.
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Corollary 2. Consider ρ→ ∞ and let β = 0, θ = 1 in Proposition 2, then the stationary stocks of
knowledge are given by

x̄(s) =

(
N∑

k=0

(
N

k

) k−1∏

l=0

γ + αl

λ

)−1 s−1∏

k=0

γ + αk

λ
. (30)

The next proposition characterizes the stationary state in the limit small β/γ, that is, when the
in-house R&D capabilities are much higher than the spillovers from collaboration.

Proposition 4. Consider the limit ρ → ∞ and independent markets with θ = 1 in Proposition 2.
Then for β/γ → 0, the stationary stocks of knowledge are given by

x̄(s) = x̄0(s) +
β

γ

b

a2

(
bs
b
− x̄0(s)

)

+O

(
β

γ

)2

, (31)

where x̄0(s) ≡ x̄(s)|β=0 is given in Equation (30),

bs =

s−1∑

k=0

s−1∏

l 6=k

γ + αl

λ

N∑

s′=1

(
N − 1

s′ − 1

)
ḡ(k, s′)

1 + ḡ(k, s′)

s′−1∏

k′′=0

γ + αk′′

λ
,

b =
∑N

s′=0

(N
s′
)
bs′ and a =

∑N
k=0

(N
k

)∏k−1
l=0

γ+αl
λ for all s = 0, . . . , N . Moreover, the eigenvalues of

the Jacobian J corresponding to the dynamical system in Equations (23) and (24) are all real, and
consequently their solution trajectories do not show oscillatory behavior.

The average stock of knowledge is given by

h̄ =
N∑

s=1

s

(
N

s

)

x̄(s) = h̄0 +
β

γ

b

a2

(∑N
s=1 s

(
N
s

)
bs

b
− h̄0

)

+O(β2),

where h̄0 =
1
a

∑N
s=1 s

(N
s

)
as. The stationary average stock of knowledge h̄ can be seen in Figure 6 for

varying values of γ and λ. The gains from R&D collaborations are given by

∆h̄ ≡ h̄− h̄0 =
β

γ

b

a2

(∑N
s=1 s

(N
s

)
bs

b
− h̄0

)

+O(β2).

The relative gains from R&D collaborations, ∆h̄/h̄0, are illustrated in the right panels in Figure 6.
As we have assumed that β is small the figure tends to underestimate the increase in the average stock
of knowledge due to collaborations. We also find that the relative gains decrease with the in-house
R&D success rate γ. However, the effect of the knowledge obsolescence rate λ is non-monotonic. We
will identify an explicit critical value λc for λ as a function of γ in the next section focussing on the
case of N = 1 for which ∆h̄/h̄0 is increasing with λ if λ < λc, or decreasing, otherwise.

Proposition 4 also shows that at least when spillover effects are not too strong, a non-competitive
economy cannot generate the oscillatory time evolution of the average degree that we have doc-
umented in Section 2. However, as we are going to demonstrate in the following sections, such
oscillations can be obtained in a competitive environment. In order to demonstrate this, and to
obtain more general results beyond the case of small spillover effects, in the following two sections
we will confine our analysis to the case of at most two competing technologies, with N ∈ {1, 2},31

31This simplifying restriction is shared with various other works in a similar context such as Lazear [2004]; Montanari
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Figure 6: (Top left panel) The stationary average stock of knowledge h̄ over different values of γ ∈ [1, 50] for varying
values of λ ∈ {10, 25, 50, 75, 100}. (Top right panel) The relative percentage gain in the average stock of knowledge,
∆h̄/h̄0, for the same parameters. (Bottom left panel) The stationary average stock of knowledge h̄ over different values
of λ ∈ [1, 50] for varying values of γ ∈ {10, 25, 50, 75, 100}. (Bottom right panel) The relative percentage gain in the
average stock of knowledge, ∆h̄/h̄0, for the same parameters. The parameters are θ = 1, N = 5, c = 0.1, η = 1, α = 0,
τ = 0.01, b = 1 and β = 1.

considering both, absence of competition, θ = 1, and a competitive environment setting θ = 0.

8.1. The Case of N = 1

In the case of N = 1 where s ∈ {0, 1} we obtain from Equation (23)

dx̄t(1)

dt
= γx̄t(0) − λx̄t(1) + βξ̄t(0, 1)x̄t(0)x̄t(1),

dx̄t(0)

dt
= λx̄t(1)− γx̄t(0)− βξ̄t(0, 1)x̄t(0)x̄t(1), (32)

and from Equation (24) we get

dξ̄t(0, 1)

dt
= ρḡ(0, 1) − ρ(1 + ḡ(0, 1))ξ̄t(0, 1) + o(ρ), (33)

with

ḡ(0, 1) =







eη(βg1,τ−c)

1+eη(βg1,τ−c)
e−ηc

1+e−ηc = eη(βbτ−2c)

(1+eη(βbτ−c))(1+e−ηc)
if θ = 1,

eη(βg0,τ (x)−c)

1+eη(βg0,τ (x)−c)
e−ηc

1+e−ηc = e
η(

2βτb

1+bh̄t(x)
−c)

1+e
η(

2βτb

1+bh̄t(x)
−c)

e−ηc

1+e−ηc if θ = 0,
(34)

and Saberi [2010]; Young [2002], and it is also at the center of the analysis of two competing technologies in Jovanovic
and MacDonald [1994].
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where the average stock of knowledge is given by h̄t(x) = x̄t(1). Observe that in the case of N = 1 the
parameter α does not affect the dynamics. Also note that limη→∞ ḡ(0, 1) = 0 and limη→0 ḡ(0, 1) =

1
4 .

We then can state the following proposition, characterizing the stationary states and their stability
properties.

Proposition 5. Consider the limit ρ→ ∞, N = 1 in Proposition 2 and denote by x = limt→∞ x̄t(1)
and z = limt→∞ ξ̄t(0, 1).

(i) Threshold: We have that x = 0 is an asymptotically stable fixed point in the limit of γ → 0 if
β < βc where

βc = λ (ecη + 2) +
W
(
(2− θ)λbητ (ecη + 1) eη(c−(2−θ)bτ(ecη+2)λ)

)

(2− θ)bητ
, θ ∈ {0, 1}, (35)

andW (x) is the Lambert W function (or product-log), which is implicitly defined byW (x)eW (x) =
x.

(ii) No competition: Let θ = 1, then the stationary state of the dynamic system in Equations
(32) and (33) is asymptotically stable and given by

x =
gβ − γ − gγ − λ− gλ+

√

4g(1 + g)βγ + (γ + λ+ g(γ + λ− β))2

2gβ
,

z =
g

1 + g
, (36)

where g ≡ ḡ(0, 1) is given in Equation (34) and x̄t(0) = 1 − x̄t(1). The Jacobian has only
negative, real eigenvalues, so that the solution trajectories for x̄t(0), x̄t(1) and ξ̄t(0, 1) do not
exhibit oscillatory behavior. Moreover, in the limit of γ → 0 the non-trivial solution is given by

x = 1− λ(2 + eη(c−bβτ)
(
ebβητ + ecη + 1

)
)

β
. (37)

(iii) Competition: Let θ = 0, γ = 0 and consider small τ such that terms of the order O(τ2) can
be neglected. Then the non-trivial stationary state of the dynamic system in Equations (32)
and (33) is given

x =
1

2Abβn

(
βn
(
e2cη(−2βbητ + b− 1)− 2ecη(b(βητ − 1) + 1) + 2(b− 1)

)
−A2bλ

+
(
A4b2λ2 + 2A2bβλn

(
2ecη(βbητ − b− 1) + e2cη(2βbητ − b− 1)− 2(b+ 1)

)

+β2n2
(
2ecη(βbητ + b+ 1) + e2cη(2βbητ + b+ 1) + 2(b + 1)

)2
) 1

2

)

, (38)

and

z =
1

A

(

1 +
2bβητecη (ecη + 1)

A(bx+ 1)

)

, (39)

where we have denoted by A = 2 + 2ecη + e2cη.

(iv) Large shocks: In the case of η → 0 and θ ∈ {0, 1} the asymptotically stable stationary state
is given by

x =
−5(γ + λ) +

√

(βn− 5(γ + λ))2 + 20βγn + βn

2βn
, (40)

and

z =
1

5
,
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Figure 7: (Left panel) Stationary average knowledge stock h̄ as a function of β. The dashed line indicates the threshold
βc from Equation (35). (Right panel) The stationary average knowledge stock h̄ as a function of η for θ ∈ {0, 1}, λ = 1,
β = 30, b = 1, τ = 0.01, c = 0.1 and γ = 0. The dashed line indicates the solution from Equation (40). The average
knowledge stock in the competitive case (θ = 0) is always higher than in the non-competitive case (θ = 1).

and the Jacobian has only real eigenvalues, so that the solution trajectories for x̄t(0), x̄t(1) and
ξ̄t(0, 1) do not exhibit oscillatory behavior.

(vi) Small shocks: When η → ∞, θ ∈ {0, 1} and c > 0 then the asymptotically stable stationary
state is given by limt→∞ x̄t(1) = γ

λ+γ and limt→∞ ξ̄t(0, 1) = 0 and the Jacobian has only real
eigenvalues.

The left panel in Figure 7 also illustrates the stationary fraction h̄ as a function of β together
with the threshold βc from Equation (35). A significant fraction of firms has on average knowledge
of the technology once the spillover parameter β exceeds the critical value βc. The same comparative
statics as in Equation (29) hold for the critical level βc. Further, from Equation (35) we find that the
threshold βc is lower in the competitive case (θ = 0) than in the non-competitive case (θ = 1). Hence,
introducing competition lowers the threshold above which innovation can take off in the economy.
Moreover, from Equation (37) in Proposition 5 we find that the asymptotic stocks of knowledge
h̄ ≡ limt→∞ x̄t(1) satisfy (see also the proof of Proposition 5 in Appendix B)

∂h̄

∂λ
< 0,

∂h̄

∂c
< 0,

∂h̄

∂β
> 0,

∂h̄

∂b
> 0,

∂h̄

∂τ
> 0.

The change in h̄ with η is non-monotonic, and h̄ being a concave function of η, where ∂h̄
∂η > 0 if

c
(
ebβητ + 2ecη + 1

)
< bβτ (ecη + 1) and ∂h̄

∂η < 0 otherwise. This is shown in the right panel of Figure
7. As Figure 7 illustrates, we find that the average knowledge stock in the competitive case (θ = 0)

is higher than in the non-competitive case (θ = 1). From Equation (40) we also find that ∂h̄
∂γ > 0 (see

also the proof of Proposition 5 in Appendix B). Further, from Equation (36) for the case of θ = 1 in
the limit of small β we can write

h̄ =
γ

γ + λ
+ β

γλ

(2ecη + e2cη + 2) (γ + λ)3
+O

(
β2
)
,

which is what we would get from Equation (31) in the case of N = 1. We then find for ∆h̄ that (see
also the proof of Proposition 5 in Appendix B)

∂∆h̄

∂c
< 0,

∂∆h̄

∂η
< 0,
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while
∂∆h̄

∂γ

{

> 0 if γ < λ
2 ,

< 0 otherwise.

Similarly, we find that

∂∆h̄

∂λ

{

> 0 if λ < γ
2 ,

< 0 otherwise.

Increasing linking costs c or a reduction in the noise η unanimously reduce the innovation gains
∆h̄ from collaboration, while the effect of the in-house R&D innovation rate γ and the knowledge
obsolescence rate λ are ambiguous, and increase ∆h̄ only if they are below a threshold level.

When we do not make the assumption that ρ is large, then we need to take into account the
remainder term of the order of o(ρ) in Equation (33). Using the pair approximation of Equation (19)
we can state the following proposition:32

Proposition 6. Let N = 1, θ = 1 in Proposition 2 and denote by x = limt→∞ x̄t(1), z1 =
limt→∞ ξ̄t(0, 1), z2 = limt→∞ ξ̄t(0, 0) and z3 = limt→∞ ξ̄t(1, 1). Assume that the pair approxima-
tion in Equation (19) holds.

(i) The stationary state is given by

x =
z1β − γ − λ+A(z1)

2z1β

z2 =
2xz1λ+ g2ρ− g2xρ

2xλ− (1 + g2)(−1 + x)ρ

z3 =
2(−1 + x)z1(xz1β + γ)− g3xρ

2(−1 + x)(xz1β + γ)− (1 + g3)xρ
, (41)

where z1 is the root of

2g1 − 2(1 + g1)z1 =
2(g3(−1 + z1) + z1)λ (z1β − γ − λ+A(z1))

(z1β + γ + λ−A(z1)) (2λ+ ρ+ g3ρ)

+
(g2(−1 + z1) + z1) (z1β + γ + λ−A(z1))

2 (z1β + γ − λ+A(z1))

(z1β − γ − λ+A(z1)) (z1β(2λ+ ρ+ g2ρ) + (−γ − λ+A(z1)) (2λ− (1 + g2)ρ))
,

and A(z1) ≡
√

4z1βγ + (−z1β + γ + λ)2.

(ii) In the case of γ = 0 the Jacobian has only real eigenvalues, trajectories do not oscillate, in first
order of large ρ the non-trivial asymptotically stable solution is characterized by

z1 =
1

2β(g2 + 1)(g3 + 1)

×
(√

(g2 + 1) (4β(g3 + 1)(g1(g2 + 1)(g3 + 1)ρ+ λ(g2 − g3)) + (g2 + 1)(βg3 − (g1 + 1)(g3 + 1)ρ)2)

−(g1 + 1)g2(g3 + 1)ρ− g1g3ρ− g1ρ+ βg2g3 + βg3 − ρ(1 + g3)) , (42)

and

x = 1− λ

βz1
,

32Appendix A provides a complete derivation of the dynamics for an arbitrary number N of technology categories
in terms of a system of ODEs.
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while the threshold level for β is given by

βc =
λ
(
2ecη + e2cη + 2

) (
(λ+ 2ρ)ebβητ + (λ+ ρ)eη(bβτ+c) + ecη(λ+ ρ) + e2cη(λ+ ρ)

)

λ (ecη + 1) (ebβητ + ecη) + ρ (2ecη + e2cη + 2) ebβητ
.

In the case of γ = 0 we find from Proposition 6 that (see the proof of Proposition 6 in Appendix
B)

∂βc

∂ρ
< 0,

∂h̄

∂ρ
> 0.

Hence, a more adaptive network (higher ρ) implies a lower threshold βc and a higher average stock of
knowledge h̄. Moreover, we note that in the non-competitive case of θ = 1 for all the cases analyzed,
the trajectories did not exhibit any oscillatory behavior (as indicated by the Jacobian having only
real eigenvalues). However, this does not hold for the competitive case with θ = 0, where such
oscillations could be observed.

8.2. The Case of N = 2

When N = 2 with s ∈ {0, 1, 2} we obtain from Equation (23)

dx̄t(0)

dt
= 2

(
λx̄t(1)− γx̄t(0)− β(ξ̄t(0, 1)x̄t(0)x̄t(1) + ξ̄t(0, 2)x̄t(0)x̄t(2))

)

dx̄t(1)

dt
= γx̄t(0) + λx̄t(2)− (λ+ γ + α)x̄t(1) + β

(
ξ̄t(0, 1)x̄t(0)x̄t(1) − ξ̄t(1, 1)x̄t(1)

2

+ξ̄t(0, 2)x̄t(0)x̄t(2) − ξ̄t(1, 2)x̄t(1)x̄t(2)
)

dx̄t(2)

dt
= 2

(
(γ + α)x̄t(1) − λx̄t(2) + β

(
ξ̄t(1, 1)x̄t(1)

2 + ξ̄t(1, 2)x̄t(1)x̄t(2)
))
, (43)

and from Equation (24) we obtain

dξ̄t(0, 1)

dt
=

1

2
ρg̃(0, 1) − ρ

(

1 +
1

2
g̃(0, 1)

)

ξ̄t(0, 1) + o(ρ)

dξ̄t(0, 2)

dt
= ρg̃(0, 2) − ρ (1 + g̃(0, 2)) ξ̄t(0, 2) + o(ρ)

dξ̄t(1, 1)

dt
=

1

4
ρg̃(1, 1) − ρ

(

1 +
1

4
g̃(1, 1)

)

ξ̄t(1, 1) + o(ρ)

dz̄t(1, 2)

dt
=

1

2
ρg̃(1, 2) − ρ

(

1 +
1

2
g̃(1, 2)

)

ξ̄t(1, 2) + o(ρ). (44)

We next identify the stationary states of the stochastic process and their stability properties.

Proposition 7. Consider the limit ρ→ ∞, N = 2 in Proposition 2 and denote by x1 ≡ limt→∞ x̄t(1), x2 ≡
limt→∞ x̄t(2) and z1 ≡ limt→∞ ξ̄t(0, 1), z2 ≡ limt→∞ ξ̄t(0, 2), z3 ≡ limt→∞ ξ̄t(1, 1), z4 ≡ limt→∞ ξ̄t(1, 2).

(i) Threshold: There exists a threshold such that x1 = x2 = 0 is a stable fixed point in the limit
of γ, α→ 0 if β < βc, where the threshold value βc is given by Equation (35).

(ii) No competition: Assume that α = γ = 0 and consider θ = 1, then in the limit of τ → 0 the
non-trivial stationary state of Equation (43) is given by

x2 =
βx21z1

λ− βx1z1
,
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and

x1 =
1

3 3
√
Aβ2z21(4β(3βz1(z1 − z2) + 2z1 − z2) + 1)

× (−A2/3 + 2
3
√
Aβz1(λ+ β(βz21(6β(z1 − z2) + 1) + λ(12βz1(z1 − z2) + 9z1 − 2z2)))

− 4β6z61(6β(z1 − z2) + 1)2 + 4β4λz41(β(12(3β
2z1(z1 − z2)(2z1 + z2)

+ β(4z21 − 2z1z2 + z22) + z1)− 5z2) + 1)− β2λ2z21(4β(144β
3z21(z1 − z2)

2

+ 48β2z1(3z
2
1 − 4z1z2 + z22) + β(48z21 − 27z1z2 + 4z22) + 6z1 − z2) + 1))),

where A is a function of β, η and c (provided in the proof of the proposition in the appendix),
while the stationary state of Equation (44) is given by

z1 = z3 = z4 =
1

2ecη + e2cη + 2
+
bβητecη (ecη + 1)

(2ecη + e2cη + 2)2
+O

(
τ2
)
,

z2 =
1

2ecη + e2cη + 2
+

2bβητecη (ecη + 1)

(2ecη + e2cη + 2)2
+O

(
τ2
)
.

If we also set c = 0 then the nontrivial stationary state of Equation (43) simplifies to x1 =
5λ(β−5λ)

β2 and x2 = (β−5λ)2

β2 with z1 = z2 = z3 = z4 = 1
5 . If also α < λ

2 then the Jacobian has

only real eigenvalues, so that the solution trajectories for x̄t(s) and ξ̄t(s, s
′), s, s′ ∈ {0, 1, 2}, do

not exhibit oscillatory behavior.

(iii) Large shocks: Assume that γ = 0 and that x̄0(0) < 1. In the limit of η → 0 the stationary
state of the dynamic system in Equation (43) is given by x1 = x2 = 0, or

x2 =
2α(A− 5α) + λ(−25α+A− β)

2αβ
,

and

x1 =
1

6αβ

[
15α2 + 45αλ − 2A(2α + λ)

+α
(
100αλ3 + λ2

(
−175α2 + 2β(β −A) + 10αβ

)
+ α2

(
25α2 + β(4A+ 5β) + 10αβ

)

+2αλ
(
(β − 5α)2 −Aβ

)) 1
2 + α2β + 2αβλ

]

,

where we have denoted by A ≡
√

100αλ + (5α + β)2, while the stationary state of Equation (44)
is given by z1 = z2 = z3 = z4 = 1

5 . If also α < λ
2 , then the Jacobian has only real eigenvalues,

so that the solution trajectories for x̄t(s) and ξ̄t(s, s
′), s, s′ ∈ {0, 1, 2}, do not exhibit oscillatory

behavior.

(iv) Small shocks: Assume that βbτ > c in the case of θ = 1 and 2b(b+1)βτ
4b+1 > c in the case of

θ = 0. In the limit of η → ∞ starting from an empty graph K̄n the stationary state of the
dynamic system in Equation (43) is given by

x1 =
−3αγ − 3(γ + λ)2 +A

2βγ
,

and

x2 =
1

12βγ2λ

(
3αγ + 3γ2 − 6γλ− 3λ2 +A

) (

−3αγ − 3 (γ + λ)2 +A
)

,
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Figure 8: (Left panel) The asymptotic average stock of knowledge limt→∞ h̄t = limt→∞ 2(x̄t(1) + x̄t(2)) for η = 0,
γ = 0.01, b = 1, ρ = 10, n = 500, λ = 500 as a function of β with the threshold βc indicated with a dashed line
from Equation (35). (Right panel) Trajectories of the average stock of knowledge h̄t, and the average degree d̄t in the
competitive case where θ = 0 for α = 0, β = 700, b = 69, c = 2900, γ = 1, η = 0.01, λ = 400, n = 500, ρ = 1/τ + 300
and τ = 0.01. The initial condition is x0(0) = 0.75, x̄0(1) = 0.125, x̄0(2) = 0 and an empty network.

where we have denoted by A =
√

12βγ2λ+ 9 (αγ + (γ + λ)2)2, while the stationary state of

Equation (44) is given by z1 = z2 = z4 = 0 and z3 = 1
3 . If also γ = 0 then the unique

stationary state is limt→∞ x̄t(0) = 1. If βbτ < c in the case of θ = 1 and 2b(b+1)βτ
4b+1 < c in

the case of θ = 0 then the stationary state is given by z1 = z2 = z3 = z4 = 0 and x1, x2 are
determined by Equation (30). In the case of θ = 1 the Jacobian has only real eigenvalues, so
that the solution trajectories for x̄t(s) and ξ̄t(s, s

′), s, s′ ∈ {0, 1, 2}, do not exhibit oscillatory

behavior. In the case of θ = 0 this holds if 2b(b+1)βτ
4b+1 < c and λ > γ

3 .

This threshold βc in part (i) of Proposition 7 is indicated with a dashed line in the right panel
in Figure 8. A significant fraction of firms has on average a positive technology portfolio size once
the spillover parameter β exceeds the critical value βc. In contrast to the case of N = 1 where the
parameter α did not play any role, here we find in both cases, small and large shocks, that

∂h̄

∂α
> 0.

Note also that, differently to the case of N = 1, the links between firms do not cease to exist in the
limit of small shocks as η → ∞. Hence, increased in-house R&D capabilities lead to higher average
stocks of knowledge, irrespective of the uncertainty involved in R&D collaborations.

The left panel in Figure 8 shows the asymptotic average stock of knowledge limt→∞ h̄t = limt→∞ 2(x̄t(1)+
x̄t(2)) for η = 0, γ = 0.01, b = 1, ρ = 10, n = 500, λ = 500 as a function of β with the threshold
βc indicated with a dashed line from Equation (35). The right panel in Figure 8 shows solution
trajectories for general levels of ρ (instead of taking the limit of large ρ) using a pair approximation
of Equation (19). The figure illustrates that in the competitive case (θ = 0) the average stock of
knowledge and the average degree can oscillate and spiral towards their stationary state. We will
discuss this more in relation to empirically observed networks in Section 10.

We find that for all cases for which we could obtain an analytic characterization, cyclical behavior
did not occur when we assumed that there is no competition (θ = 1). In contrast, we observed cyclical
patterns in our numerical integration of the governing differential equations when competition was
allowed (θ = 1), as for example in Figure 8. This is a first indication that competition increases the
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variably of the network density over time, and is a necessary ingredient to explain the pattern with
have observed in Section 2.

9. Efficiency

In this section we define welfare from a social planners perspective and show that it is increasing
with competition, and we find that this effect is stronger the higher is the variance in the stocks of
knowledge relative to the average stock of knowledge. We then provide explicit welfare characteriza-
tions for a given network structure, and show that more centralized structures increase welfare. We
then derive the welfare gains from competition, and compare different levels of uncertainty in R&D
collaborations.

The social welfare function is given by aggregate profits

Wθ(h, G) =

n∑

i=1

πi(h, G) =

n∑

i=1

(

θ + (1− θ)
Ai(hi)

1
n

∑n
j=1Aj(hj)

)

Ai(hi)− 2mc, (45)

where m is the number of links in the network. In the case of independent markets (θ = 1) we obtain

W1(h, G) =

n∑

i=1

Ai(hi)− 2mc,

In this case social welfare is increasing with the total productivity A(h) =
∑n

i=1Ai(hi) in the economy
and decreasing with the number of links m in the network. Using the fact that Ai(hi) = a+ b|S(hi)|
and setting a = 1 we obtain

W1(h, G) = n+ b
n∑

i=1

|S(hi)| − 2mc

= n

(

1 + b
1

n

n∑

i=1

|S(hi)| −
2m

n
c

)

= n(1 + bh̄− cd̄), (46)

where h̄ is the average stock of knowledge and d̄ the average degree. In contrast, in the case of
competitive markets (θ = 0) social welfare can be written as

W0(h, G) =

∑n
i=1Ai(hi)

2

1
n

∑n
i=1Ai(hi)

− 2mc.

Gross social welfare is proportional to the ratio of the second to the first sample moment of the
productivity distribution, and net welfare decreasing with the number of links m in the network.
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Similarly, for Ai(hi) = a+ b|S(hi)| with a = 1 we get

W0(h, G) =
n+ 2b

∑n
i=1 |S(hi)|+ b2

∑n
i=1 |S(hi)|2

1 + 1
n

∑n
i=1 |S(hi)|

− 2mc

= n

(

1 + 2b 1n
∑n

i=1 |S(hi)|+ b2 1
n

∑n
i=1 |S(hi)|2

1 + b 1n
∑n

i=1 |S(hi)|
− 2m

n
c

)

= n

(

1 +
bh̄+ b2σ2h + b2h̄2

1 + bh̄
− cd̄

)

= n

(

1 + bh̄+
b2σ2h
1 + bh̄

− cd̄

)

, (47)

where σ2h is the variance in the stocks of knowledge. With welfare in the case of independent markets
from Equation (46) we then can write

W0(h, G)−W1(h, G) =
nb2σ2h
1 + bh̄

. (48)

It follows that, when the stocks of knowledge are exogenously given, welfare in the competitive case
is higher than in the case of independent markets, and this effect is stronger the higher is the variance
in the stocks of knowledge relative to the average stock of knowledge (cf. the coefficient of variation
cv = σh/h̄).

We next take into account that the knowledge stocks are endogenous. The social planner’s goal
is to maximize welfare Wθ(h, G) by choosing the network G ∈ Gn and knowing that the dynamics of
knowledge depend on the network structure G of collaborating firms. Hence, we can write the social
planner’s problem as follows

maxG∈GnVθ,r(G) = maxG∈Gn

∫ ∞

t=0
e−rt

E(Wθ(ht, G)|G)dt (49)

subject to Equation (74). We denote by G∗ the efficient network solving the above optimization
problem.

9.1. The Non-Competitive Case

When θ = 1 we obtain

V1,r(G) =

∫ ∞

0
e−rt

E(W1(ht, G)|G)dt =
n

r
+ nb

∫ ∞

0
e−rt

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

dt− 2mc

r
.

We now analyze the dynamics of the stock of knowledge of a firm when α = 0, assuming that
pair-correlations of the form Cov(hik,t, hjk,t) can be neglected.33 When α = 0, the dynamics of
the individual knowledge categories k = 1, . . . , N become independent. Then consider the time
dependent random variable Xi(t) = 1{hik,t=1}, where we have dropped the index k. Given the
current state Xi(t), if hik,t = 1 then Xi(t) can change from 1 to 0 at a rate λ. If hik,t = 0 then Xi(t)
can change from 0 to 1 at a rate γ + β

∑n
j=1 aijXj(t). The expected change in hik,t for a sufficiently

33We assume that E(Xi(t)Xj(t)|G) = E(Xi(t)|G)E(Xj(t)|G).
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small time interval [t, t+∆t), conditional on the current state Xi(t) and G, is then given by

E(Xi(t+∆t)|Xi(t), G) −Xi(t) =



γ + β

n∑

j=1

aijXj(t)



 (1−Xi(t))∆t− λXi(t)∆t+ o(∆t).

Taking the expectation on both sides, dividing by ∆t and denoting by yi(t) ≡ E(Xi(t)|G), where
yi(t+∆t) = E(E(Xi(t+∆t)|Xi(t), G)|G) by the law of iterated expectation, we obtain

yi(t+∆t)− yi(t)

∆t
= γ − (λ+ γ)yi(t) + β

n∑

j=1

aijyj(t)− β

n∑

j=1

aijE(Xi(t)Xj(t)|G) + o(1).

Observe that the last term can be written as follows

E(Xi(t)Xj(t)|G) = E(1{hik,t=1}1{hjk,t=1}|G)
= P(hik,t = 1, hjk,t = 1|G)
= P(hjk,t = 1|hik,t = 1, G)P(hik,t = 1|G)
= P(hjk,t = 1|hik,t = 1, G)E(1{hik,t=1}|G)
= P(hjk,t = 1|hik,t = 1, G)yi(t).

Hence, in the limit of ∆t ↓ 0 we obtain

dyi(t)

dt
= γ − (λ+ γ)yi(t) + β

n∑

j=1

aijyj(t)− β

n∑

j=1

aijP(hjk,t = 1|hik,t = 1, G)yi(t).

In the following we make the pairwise independence assumption P(hjk,t = 1, hik,t = 1|G) = P(hik,t =
1|G)P(hjk,t = 1|G), so that P(hjk,t = 1|hik,t = 1, G) = P(hjk,t = 1|G), and we obtain the following
system of ODEs

dyi(t)

dt
= γ − (λ+ γ)yi(t) + β

n∑

j=1

aijyj(t)− β
n∑

j=1

aijyi(t)yj(t). (50)

The following lemma describes the evolution of the stocks of knowledge according to Equation (50)
at early times starting from the initial condition hik,0 = 0 for all i = 1, . . . , n and k = 1, . . . , N .

Lemma 2. Consider a given network G and let α = 0, hik,0 = 0 for all i = 1, . . . , n and k = 1, . . . , N ,
and assume that pair-correlations can be neglected, i.e. Cov(hik,t, hjk,t|G) = 0, then in the limit of
small t the expected stock of knowledge is given by

E ( |S(hi,t)||G) = N

n∑

j=1

γ〈u,vj〉2
γ + λ− βµj

(

1− e−(γ+λ−βµj )t
)

,

where vj is the eigenvector associated with the j-th eigenvalue µj of A, i.e. Avj = µjvj and
〈vi,vj〉 = δij for all k = 1, . . . , N and i, j = 1, . . . , n.

From the above lemma we see that the assumption of weak correlations implies a solution for the
stock of knowledge of the firm that is bounded only if βµ1 < γ + λ. This means that there exists a
critical value given by the inverse of the largest eigenvalue 1/µ1 such that if β/(λ + γ) > 1/µ1 then
there is a rapid diffusion of knowledge such that all firms quickly attain hik,t = 1 for all i = 1, . . . , n
and k = 1, . . . , N . In contrast, if β/(λ+ γ) < 1/µ1, the average size of the knowledge portfolios will
be much smaller and given by N

∑n
j=1 γ〈u,vj〉2/(γ + λ− βµj) which is determined by the spectral
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decomposition of A.
The objective function of the social planner for θ = 1 can then be written as follows

V1,r(G) =

∫ ∞

0
e−rt

E(W1(ht, G)|G)dt =
n

r
+ nbNγ

n∑

j=1

γ〈u,vj〉2
γ + λ− βµj

(
1

r
− 1

r + γ + λ− βµj

)

− 2mc

r
.

A discussion for the derivation without the assumption that Cov(hik,t, hjk,t|G) = 0 using a moment
closure method at the level of two variables averages can be found in Newman [2010, Chap. 17.10.1],
and its interpretation of a mean field approximation is given in Van Mieghem et al. [2009].

In the limit of weak discounting for small values of r we can write34

Vθ,r(G) =

∫ ∞

0
e−rt

E(Wθ(ht, G)|G)dt = O(1) +O

(
1

r

)

lim
t→∞

E(Wθ(ht, G)|G).

In the case of θ = 1 we then obtain

V1,r(G) =

∫ ∞

0
e−rt

E(W1(ht, G)|G)dt = O(1) +O

(
1

r

)(

n+ b lim
t→∞

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

− 2mc

)

.

The next proposition derives the asymptotic knowledge stocks in the case of α = 0.

Proposition 8. Consider a given network G, let α = 0, assume that asymptotically pair-correlations
can be neglected, i.e. limt→∞Cov(hik,t, hjk,t|G) = 0 for all i = 1, . . . , n and k = 1, . . . , N . Then

(i) the stationary stocks of knowledge can be computed from the continued fraction expansion

lim
t→∞

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

= N







1−

λ
λ+γ

1 + β
λ+γ di −

βλ
(λ+γ)2

∑n
j=1

aij

1+ β
λ+γ

dj−
...







, (51)

(ii) we have the bounds

0 ≤ lim
t→∞

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

≤ N

(

1−
λ

λ+γ

1 + β
λ+γdi

)

,

(iii) and asymptotically, we have that

lim
t→∞

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

=







Nn, if β ≫ λ,
γN
λ+γ

〈

u,b
(

G, β
λ+γ

)〉

if β ≪ λ,
Nnγ
λ+γ if β → 0,

where b
(

G, β
λ+γ

)

is the Bonacich centrality vector defined as b
(

G, β
λ+γ

)

≡
(

In − β
λ+γA

)−1
u.

For example, a third-order continued fraction approximation to the stationary knowledge stocks

34Related works such as Aghion et al. [2005, Sec. III.C ff.] assume that the discounting rate r equals zero for all of
their analytic results.
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is given by

lim
t→∞

E

(
n∑

i=1

|S(hi,t)|
∣
∣
∣
∣
∣
G

)

≈ N






1−

λ
γ+λ

1 + β
γ+λ

∑n
j=1 aij

(

1−
λ

γ+λ

1+ β
γ+λ

∑n
k=1 ajk

(

1−
λ

γ+λ

1+ β
γ+λ

dk

))







(52)
Note that the importance of the Bonacich centrality in relation to equilibria and aggregate outcome
in network games has been prominently studied in Ballester et al. [2006]. We then can write the
value function as follows

V1,r(G) =

∫ ∞

0
e−rt

E(W1(ht, G)|G)dt = O(1) +O
(n

r

)







1 + bN − cd̄, if β ≫ λ,

1 + γbN
λ+γ

1
n

∥
∥
∥b
(

G, β
λ+γ

)∥
∥
∥
1
− cd̄, if β ≪ λ,

1 + bNγ
λ+γ − cd̄, if β → 0.

From the above analysis we find that when θ = 1 the efficient graph G∗ is characterized by having
a large largest eigenvalue µ1 while minimizing on the number of links m. We then can give the
following proposition.

Proposition 9. Let α = 0, and hik,0 = 0 for all i = 1, . . . , n and k = 1, . . . , N . Moreover, let
G(n,m) denote the class of graphs with n nodes and m links. Then the graph maximizing the value
function limr→0 V1,r is the graph with the largest eigenvalue in G(n,m), and hence a nested split
graph.

Nested split graphs are also known as threshold graphs [cf. Diaconis et al., 2008; Mahadev and
Peled, 1995]. From Proposition 9 it follows that the efficient graph in the class of graphs G(n) with
n nodes must be a nested split graph. A candidate for such a graph is the star K1,n−1, which has
been studied in Durrett [2007, Lemma 4.8.2],35 or the nested star architecture Fn,d studied in König
et al. [2011] maximizes welfare.

In the following we provide two examples for which we explicitly compute the asymptotic knowl-
edge stocks. First, we consider a k-regular graph.36

Corollary 3. Assume that α = 0, β > 0 and that pair-correlations can be neglected, i.e. limt→∞Cov(hik,t, hjk,t|G
0 for all i = 1, . . . , n and k = 1, . . . , N . Then in the k-regular graph the asymptotic knowledge stocks
are given by

lim
t→∞

E ( |S(hi,t)|| k–reg. G) = N

√

2λ(γ − βk) + (γ + βk)2 + λ2 − 1 + βk(γ + λ)

2βk
.

Next, we consider the star K1,n−1 in the following corollary.

Corollary 4. Assume that α = 0 and that pair-correlations can be neglected, i.e. limt→∞Cov(hik,t, hjk,t|G) =
0 for all i = 1, . . . , n and k = 1, . . . , N . Then in the star network K1,n−1 the asymptotic knowledge

35See also Berger et al. [2005]; Cator and Van Mieghem [2012].

36A discussion of the approximation with vanishing correlations and the exact analysis for the star and the complete
graph considered here can be found in Cator and Van Mieghem [2013].
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Figure 9: (Top left panel) The asymptotic knowledge stock of the firms in the complete graph Kn for varying values of
β with γ = 0.001, λ = 10, N = 2 and n = 10. The critical value for the spillover parameter β is βc = γ+λ

µ1(Kn)
= γ+λ

n−1
.

(Top right panel) The asymptotic knowledge stock of the firms in the star K1,n−1 for varying values of β with γ = 0.001,
λ = 10, N = 2 and n = 10. The critical value for the spillover parameter β is βc = γ+λ

µ1(K1,n−1)
= γ+λ√

n−1
. (Bottom left

panel) Asymptotic welfare for the complete graph Kn (blue) and the star K1,n−1 (red) as a function of β for different
values of the linking cost c = 0.01, 0.02, 0.03 when θ = 1. (Bottom right panel) Asymptotic welfare for the complete
graph Kn (blue) and the star K1,n−1 (red) as a function of β for different values of the linking cost c ∈ {0.01, 0.02, 0.03}
when θ = 0.

stocks are given by

lim
t→∞

E ( |S(h1,t)||G) =
N(γ + λ)2

2β(γ + λ+ β(n − 1))

(

A+
β(β(n − 1)− γ(n− 2))

(γ + λ)2
− 1

)

lim
t→∞

E ( |S(hj 6=1,t)||G) =
N(γ + λ)2

2β(n − 1)(β + γ + λ)

(

A+
β(β(n − 1) + γ(n− 2))

(γ + λ)2
− 1

)

,

where

A ≡
√

4γλ3 + λ4 + 2λ2 (3γ2 + β2(−(n− 1)) + βγn) + 4γλ(β + γ)(γ + β(n − 1)) + (β + γ)2(γ + β(n− 1))2

(γ + λ)2
.

An illustration for the asymptotic knowledge stocks is given in Figure 9 for the complete graph
Kn and the star K1,n−1.
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9.2. The Competitive Case

Next, we consider the competitive case with θ = 0. The value function can then be written as follows

V0,r =

∫ ∞

0
e−rt

E(W0(ht, G)|G)dt = n

∫ ∞

0
e−rt

E

(

1 + bh̄t +
b2σ2h,t

1 + bh̄t
− cd̄t

∣
∣
∣
∣
∣
G

)

dt.

In the following we consider the steady state in the limit of t→ ∞ and assume pairwise independence
limt→∞Cov(hik,t, hjk,t|G) = 0 for all i 6= j. Then h̄ and σ2h are the sample mean and variance of
the i.i.d. random variables {|S(hi)|}ni=1, defined by h̄ = 1

n

∑n
i=1 |S(hi)| and σ2h = 1

n

∑n
i=1 |S(hi)|2 −

h̄2. Note that, under pairwise independence and α = 0, |S(hi)| follows a binomial distribution
Binom(N, p) with success probability p = E(hik), mean µ = Np and variance σ2 = Np(1 − p). In
the limit of large n, by the CLT we then have that

√
n(h̄− µ)|G)) ∼ N (0, σ2), as n→ ∞,

and √
n(σ2h − σ2)|G)) ∼ N (0, 2σ4), as n→ ∞.

Next, denote by δ = (h̄, σ2h)
⊤. Because the mean and variance are independent for normally dis-

tributed random variables, we can write

√
n(δ − E(δ)) ∼ N (0,Σ), as n→ ∞,

with

Σ =

[
σ2 0
0 2σ4

]

.

In the following we denote by Φ(h̄, σ2h) =
1
nW0(h, G). Since Φ(h̄, σ2h) is a continuous function of h̄

and σ2h we can directly apply the delta method to show that

√
n(Φ(δ) − Φ(E(δ))) ∼ N (0,VΦ), as n→ ∞,

where

VΦ =
∂Φ(E(δ))

∂δ
Σ
∂Φ(E(δ))

∂δ⊤
.

In particular, this implies that

lim
n→∞

E(Φ(h̄, σ2h)) = Φ(E(h̄),E(σ2h)) = Φ(Np,Np(1− p)),

where p = E(hik). It then follows that

lim
t→∞

lim
n→∞

1

n
E

(

1 + bh̄t +
b2σ2h,t

1 + bh̄t
− cd̄t

∣
∣
∣
∣
∣
G

)

= 1 + b

(

Np+
1− p

1 + 1
bNp

)

− cd̄,

Since this is an increasing function in p,37 asymptotic welfare attains its maximum at p = 1, where
we get

lim
n→∞

1

n
V0,r(G) = o(1) +O

(
1

r

)
(
1 + bN − cd̄

)
.

37The derivative w.r.t. p is given by b
(

bn+1
(bnp+1)2

+ n− 1
)

≥ 0.
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Figure 10: The welfare gain from competition in the star network K1,n−1 with the same parameter values as in Figure
9. The threshold βc = (λ+ γ)/

√
n− 1 is indicated with a dashed line.

This is identical to the case without competition (with θ = 1), when β ≫ λ or β → 0 and γ ≫ λ (cf.
Proposition 8).

Figure 9 also shows asymptotic welfare for the complete graph Kn and the star for θ = 1 and
θ = 0 as a function of β for different values of the linking cost c ∈ {0.01, 0.02, 0.03}. For both cases,
θ = 1 and θ = 0, welfare is increasing with decreasing cost c. Moreover, welfare for the star K1,n−1 is
always higher than in the complete graph Kn, indicating that centralization has a conducive effect on
welfare. This resembles previous studies of R&D networks which abstracted away any technological
dynamics [cf. Westbrock, 2010]. Moreover, observe that the variance in the knowledge stocks in the
complete graph is zero, so that welfare in both cases, θ = 1 and θ = 0 is the same. However, welfare
gains can be obtained from competition in the case of the star K1,n−1. These gains are shown in
Figure 10. We see that the gains are increasing with increasing values of β, but only after β exceeds
the threshold βc.

9.3. Welfare Gains from Competition

By considering the two polar opposite cases of independent markets (θ = 1) and full competition
(θ = 0) we can investigate whether competition has a conducive or detrimental effect on innovation
[cf. Aghion et al., 2005; Schmutzler, 2010]. In the case of N = 2 and η → ∞ as well as η → 0 we
know from Propositions 7 that the stationary knowledge stocks and network density are identical
for the non-competitive case (θ = 1) and the competitive case θ = 0, so that from Equation (48) it
follows that welfare in the competitive case is higher.

Proposition 10. In the case of N = 2 and ρ→ ∞ the value function limr→0 V1,r in the competitive
case with θ = 0 is higher than in the non-competitive case with θ = 1 for both strong shocks when
η → 0 and vanishing shocks when η → ∞. In particular, in the limit of large ρ the following holds:

(i) In the case of η → 0 and γ = 0 the welfare gain from competition is given by

W0(h, G)−W1(h, G) =

b2
(
−50α3 + α

(
20λ(A − 5λ) + βn(A− 15λ) − β2n2

)
+ 5α2(2A− 40λ− 3βn) + βλn(A− βn)

)

αβ(Ab− 5b(α + 2λ) + (b+ 1)βn)
,

(53)

where we have denoted by A =
√

100αλ + (5α+ βn)2.
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Figure 11: (Top left panel) The welfare gain from competition for different values of the knowledge obsolescence rate
λ with α = 0.01, γ = 0, n = 100 and b = 1 when η → 0. (Top right panel) Welfare gain from competition for different
values of α for the same parameter values setting λ = 10. (Bottom left panel) The welfare gain from competition for
different values of the knowledge obsolescence rate λ with α = 0, n = 100 and b = 1 when η → ∞. (Bottom right
panel) Welfare gain from competition for different values of γ for the same parameter values.

(ii) In the case of η → ∞ the welfare gain from competition is given by

W0(h, G) −W1(h, G) =
1

β2γ4n+ bβγ2 (3αγ(γ + λ) + (γ + λ) (3(γ + λ)2 −A) + 2βγ2n)

×
[
b2
(
−18α2γ2(γ + λ)2 − 6(γ + λ)4

(
3(γ + λ)2 −A

)
− 3αγ

(
2(γ + λ)2

(
6(γ + λ)2 −A

)

+βγ2n(γ + 2λ)
)
+ βγ2n

(
Aγ + 2Aλ− 3(γ + 6λ)(γ + λ)2

))]
, (54)

where we have denoted by

A =
√

9γ2(α+ γ)2 + 18γλ2(α+ 3γ) + 36γλ3 + 9λ4 + 12γ2λ(3α + 3γ + βn).

Figure 11 shows the welfare gain from competition for different values of the knowledge obsoles-
cence rate λ, the in-house innovation rates γ and the α for both cases without profit shocks (η → ∞)
and with strong shocks (η → 0) as a function of the spillover parameter β. The two cases can show
starkly different behavior, as we find for example that the welfare gain is decreasing with strong
shocks, but increasing with vanishing shocks.

10. Empirical Implications

In this section we estimate the parameters of the model by targeting the temporal evolution of the
average number of collaborations shown in Figure 2 in Section 2. We focus on this statistic not
only because it is of primary interest for the analysis in this paper, but also because it captures
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the time varying pattern of the R&D collaboration network using all firms in the data sample in a
concise way.38 In order to estimate the parameters of the model we use the Likelihood-Free Markov
Chain Monte Carlo (LF-MCMC) algorithm suggested by Marjoram et al. [2003].39 ,40 The purpose of
the LF-MCMC algorithm is to estimate the parameter vector δ ≡ (α, β, γ, ρ, η, λ, τ, b, c)1×L , L = 9,
of the model on the basis of the summary statistics of the average degree So ≡ (d̄obst )2011t=1985. The
algorithm generates a Markov chain which is a sequence of parameters (δs)

S
s=1 with a stationary

distribution that approximates the distribution of each parameter value δ ∈ δ conditional on the
observed statistic So.

Definition 2. Consider the statistics S and denote by So the observed statistics. Further, let ∆(So,S)
be a measure of distance between the realized statistic S of the model with parameter vector δ and the
observed statistic So. Then we consider the Markov chain (δs)

S
s=1 induced by the following algorithm:

(i) Given δ, propose δ′ according to the proposal density qs(δ → δ′).

(ii) Generate a network according to δ′ and calculate the summary statistics S′.

(iii) Calculate

h(δ, δ′) = min

(

1,
qs(δ

′ → δ)

qs(δ → δ′)
1{∆(S′,So)<ǫs}

)

,

where ǫs ≥ 0 is a monotonic decreasing sequence of threshold values, ǫs ↓ ǫmin, and ∆ :
R
T
+ × R

T
+ → R+ is a distance metric in R

T
+.

(iv) Accept δ′ with probability h(δ, δ′), otherwise stay at δ and go to (i).

Marjoram et al. [2003] have shown that the distribution generated by the above algorithm con-
verges to the true conditional distribution of the parameter vector δ, given the observations So and
the threshold values.

The proposal distribution qs(δ → δ′) is a truncated normal distribution δ′ ∼ N (δ,Σs)
1[δmin,δmax](δ) for each parameter δ ∈ δ with a diagonal variance-covariance matrixΣs = diag{σ21,s, . . . , σ2L,s}.
More precisely, for each parameter θi ∈ R+ we choose a proposal distribution given by

qs(δ → δ′) =
φ(δ′|δ, σ2s )

Φ(δmax|δ, σ2s )− Φ(δmin|δ, σ2s )
1[δmin,δmax](δ

′),

where φ(δ|µ, σ2) and Φ(δ|µ, σ2) are the pdf and cdf, respectively, of a normally distributed ran-
dom variable with mean µ and variance σ2. During the “burn-in” phase [Chib, 2001], we con-
sider a monotonic decreasing sequence of thresholds given by ǫs ≥ ǫs+1 ≥ . . . ≥ ǫmin with ǫs+1 =
max

{
(1− γ)ǫs, ǫ

min
}
and γ = 0.05. Similarly, we assume a decreasing sequence of variances σ2s ≥

σ2s+1 ≥ . . . ≥ (σmin)2 with σ2s+1 = max
{
(1− γ)σ2s , (σ

min)2
}

for the proposal distribution qs(δ →
δ′). The maximum number of iterations, S, has been chosen such that reasonably high values
of pδ(S) were obtained. As a measure of distance we choose the Euclidean distance ∆(S,So) =
√
∑2012

t=1985

(
d̄t − d̄obst

)2
. The parameter ranges are α ∈ [0, 200], β ∈ [0, 50], γ ∈ [0, 0.025], ρ ∈ [0, 1.5],

38In contrast, the patent data is only available for 20% of the firms, and hence any estimation relying on patents
would force us to discard 80% of the data.

39This is essentially a simulated method of moments (SMM) estimation procedure [cf. McFadden, 1989; Pakes and
Pollard, 1989].

40See Sisson and Fan [2011] for an introduction to LF-MCMC, Robert and Casella [2004] for a general discussion of
MCMC approaches, and Chib [2001] and Chernozhukov and Hong [2003] for applications of MCMC in econometrics.
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Figure 12: Comparison of the average degree d̄ from the prediction of the theoretical model for N = 2 indicated with
a line and the empirical observations indicated with circles. The parameters used are θ = 0, α = 0, β = 700, b = 69,
c = 2900, γ = 1, η = 0.01, λ = 400, n = 500, ρ = 1/τ + 300 and τ = 0.01. The initial condition is x0(0) = 0.75,
x̄0(1) = 0.125, x̄0(2) = 0 and an empty network.

η ∈= [0, 5], λ ∈ [0, 50], τ ∈ [0, 0.05], b ∈ [0, 500] and c ∈ [0, 5]. The parameters ǫmin are choose
sufficiently small after long experimentation with different starting values and burn-in periods.

The parameter estimates from the above procedure are shown in Table 2. Moreover, Figure 12
shows a comparison of the average degree from the theoretical model for N = 2 and the empirical
observations. The parameters used are θ = 0, α = 0, β = 700, b = 69, c = 2900, γ = 1, η = 0.01,
λ = 400, n = 500, ρ = 1/τ + 300 and τ = 0.01. The initial condition is x0(0) = 0.75, x̄0(1) = 0.125,
x̄0(2) = 0 and an empty network.

We can further infer the knowledge stocks of the firms from the observed network for every year
by using Equation (50), or by using a continued fraction expansion approximation as in Equation (52)
with the estimated parameter values from Table 2. This allows us to compute asymptotic welfare.
We can further compute welfare for a star network with the same number of firms as in the observed
network from Corollary 4. The relative welfare gains from imposing the star network structure over
the different years of observation are shown in Figure 13. We find that welfare can be improved
by up to 48%. This indicates the possibility for policy makers to improve the innovativeness of an
economy considerably from not only fostering R&D collaborations per se but also paying attention
to the overall R&D collaboration network structure.

11. Conclusion

In this paper we study the co-evolutionary dynamics of firms’ technology portfolios and the formation
of R&D collaborations that influence and get influenced by these technology portfolios. We inves-
tigate the stationary states of this dynamics process, and show that there exists a critical level for
the technology spillover parameter below which no significant innovation takes place in the economy.
Moreover, we analyze the impact of competition on innovation and R&D network formation, and
find that in general competition is welfare increasing. This is due to the fact that competition leads
to reallocation and the replacement of less productive firms with more centrally located ones in the
network that also tend to be more productive. We further identify the efficient network structure as
a nested split graph, which is characterized by a core periphery structure. The stability analysis of
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Table 2: Estimation of the model parameters δ ∈ δ ≡
(α, β, γ, ρ, η, λ, τ, b, c) for the competitive case when θ = 0. The ta-
ble shows simulated averages of the parameters and their standard
deviations,a after the chain has converged.b

δ µδ σ̄δ σδ ιδ pδ(S)

α 112.6535 48.7623 9.1379 8279.6846 0.8612
β 802.4149 166.5676 34.0604 20089.8680 0.6556
γ 0.5054 0.2458 0.0171 985.8151 0.7242
ρ 366.5746 150.7862 31.8503 22590.2242 0.2957
η 0.1734 0.1147 0.0237 24211.7205 0.4745
λ 299.6674 107.8416 21.6602 13774.0216 0.9460
τ 0.0254 0.0220 0.0035 15998.2589 0.0766
b 46.5475 24.1763 4.5532 22727.7992 0.2348
c 2745.4919 177.2581 36.3354 16860.3328 0.9309

n 500
S 200000

a µδ is the average and σ̄δ is the simulation standard deviation
of the respective parameter, while σδ is the standard deviation
calculated from batch means (of length 10) for each parameter
δ ∈ δ [Chib, 2001]. ιδ is the integrated autocorrelation time
which should be much smaller than the number S of iterations
of the Markov chain [Sokal, 1996].

b pδ(S) is the p-value of Geweke’s spectral density diagnostic
(converging in distribution to a standard normal random vari-
able as S → ∞) indicating the convergence of the chain [Brooks
and Roberts, 1998; Geweke, 1992]. The maximum number of
iterations, S, has been chosen such that reasonably high values
of pδ(S) were obtained.
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Figure 13: Relative percentage increase in welfare (W (K1,n−1) − W (Gobs))/W (Gobs) from imposing a star network
K1,n−1 as compared to the observed network Gobs.
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our model indicates that the R&D collaboration intensity can exhibit a cyclical pattern, which can
be described as a damped oscillation. We confirm this novel observation using an empirical sample
of a large R&D collaboration network over the years 1985 to 2012. We provide a formal explanation
for this novel empirical observation, and our results indicate that the cyclicality in the data is a com-
petition effect. Finally, we indicate the potential welfare loss incurred in the empirically observed
networks.
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Appendix

A. Pair Approximation

In this section we provide a complete derivation of the dynamics for an arbitrary number N of
technology categories without making the assumption that ρ is large, so that we need to take into
account the remainder term of the order of o(ρ) in Equation (18) in Theorem 1.

Proposition 11. Consider the parameters as in Theorem 1. Let the probability that a firm with technology
vector h is connected to a firm with technology vector h′ be denoted by ξt(h,h

′) ≡ P(aij,t = 1|hit = h,hjt =
h′), and let the fraction of firms with knowledge vector h be xt(h) ≡ P(hit = h). Then, under the pair
approximation of Equation (19), xt(h) converges in probability to the solution of Equation (17), and ξt(h,h

′)
converges in probability to the solution of the ODE

dξt(h,h
′)

dt
= ρg(h,h′) (1− ξt(h,h

′))− ρ ξt(h,h
′)

+

N∑

k=1

1{hk=1} (γ + α〈h − ek,u〉)
xt(h− ek)

xt(h)
(ξt(h− ek,h

′)− ξt(h,h
′))

+
N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)

xt(h
′ − ek)

xt(h′)
(ξt(h,h

′ − ek)− ξt(h,h
′))

+ λ

N∑

k=1

1{hk=0}
xt(h+ ek)

xt(h)
(ξt(h+ ek,h

′)− ξt(h,h
′))

+ λ

N∑

k=1

1{h′

k
=0}

xt(h
′ + ek)

xt(h′)
(ξt(h,h

′ + ek)− ξt(h,h
′))

+ β

N∑

k=1

1{hk=1} (ξt(h− ek,h
′)− ξt(h,h

′))
∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)
xt(h− ek)xt(h

′′)

xt(h)

+ β

N∑

k=1

1{h′

k
=1} (ξt(h

′ − ek,h)− ξt(h,h
′))

∑

h′′∈HN :h′′

k
=1

ξt(h
′ − ek,h

′′)
xt(h

′ − ek)xt(h
′′)

xt(h′)
. (55)

Observe that Equation (55) is of the form of Equation (18) as ρ becomes large, independently of
the approximation in Equation (19).

Proposition 12. Consider the parameters as in Theorem 1. Let the fraction of firms with a stock of knowledge
of s be denoted by x̄t(s) and let the probability of a link between a firm with knowledge stock s and a firm with s′

be ξ̄t(s, s
′) for any 0 ≤ s, s′ ≤ N defined as in Equations (20) and (21). Then, under the pair approximation

of Equation (19), x̄t(s) converges in probability to the solution of Equation (23), and ξ̄t(s, s
′) converges in

probability to the solution of the ODE

dξ̄t(s, s
′)

dt
= ρḡ(s, s′)− ρ(1 + ḡ(s, s′))ξ̄t(s, s

′)

+
x̄t(s− 1)

x̄t(s)
s
(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
)

[

(γ + α(s− 1)) + β

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′)

]

+
x̄t(s

′ − 1)

x̄t(s′)
s′
(
ξ̄t(s

′ − 1, s)− ξ̄t(s
′, s)

)

[

(γ + α(s′ − 1)) + β

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s
′ − 1, s′′)x̄t(s

′′)

]

+ λ
x̄t(s+ 1)

x̄t(s)
(N − s)

(
ξ̄t(s+ 1, s′)− ξ̄t(s, s

′)
)
+ λ

x̄t(s
′ + 1)

x̄t(s′)
(N − s′)

(
ξ̄t(s

′ + 1, s)− ξ̄t(s
′, s)
)
. (56)
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A.1. The Case of N = 1

In the case of N = 1 where s ∈ {0, 1} we obtain from Equation (23)

dx̄t(1)

dt
= γx̄t(0)− λx̄t(1) + βξ̄t(0, 1)x̄t(0)x̄t(1),

dx̄t(0)

dt
= λx̄t(1)− γx̄t(0)− βξ̄t(0, 1)x̄t(0)x̄t(1), (57)

and from Equation (56) we get

dξ̄t(0, 1)

dt
= ρḡ(0, 1)− ρ(1 + ḡ(0, 1))ξ̄t(0, 1)

+
x̄t(0)

x̄t(1)
(ξ̄t(0, 0)− ξ̄t(0, 1))

(
γ + βξ̄t(0, 1)x̄t(1)

)
+ λ

x̄t(1)

x̄t(0)
(ξ̄t(1, 1)− ξ̄t(0, 1)), (58)

and

dξ̄t(0, 0)

dt
= ρḡ(0, 0)− ρ(1 + ḡ(0, 0))ξ̄t(0, 0) + 2λ

x̄t(1)

x̄t(0)
(ξ̄t(1, 0)− ξ̄t(0, 0)), (59)

and

dξ̄t(1, 1)

dt
= ρḡ(1, 1)− ρ(1 + ḡ(1, 1))ξ̄t(1, 1) + 2

x̄t(0)

x̄t(1)
(ξ̄t(0, 1)− ξ̄t(1, 1))

(
γ + βξ̄t(0, 1)x̄t(1)

)
, (60)

with

ḡ(0, 1) =







eη(βg1,τ −c)

1+eη(βg1,τ −c)
e−ηc

1+e−ηc = eη(βbτ−2c)

(1+eη(βbτ−c))(1+e−ηc)
if θ = 1,

eη(βg0,τ (x)−c)

1+eη(βg0,τ (x)−c)
e−ηc

1+e−ηc = e
η(

2βτb

1+bh̄t(x)
−c)

1+e
η(

2βτb

1+bh̄t(x)
−c)

e−ηc

1+e−ηc if θ = 0,

where the average stock of knowledge is given by h̄t(x) = x̄t(1), and

ḡ(0, 0) = ḡ(1, 1) =
e−2ηc

(1 + e−ηc)2
, (61)

for both cases θ = 0 and θ = 1. Note that limη→0 ḡ(0, 0) = limη→0 ḡ(1, 1) = 1
4 and limη→∞ ḡ(0, 0) =

limη→∞ ḡ(1, 1) = 0. Further note that x̄t(1) = 1 − x̄t(0). Observe that in the case of N = 1 the
parameter α does not affect the dynamics. Also note that limη→∞ ḡ(0, 1) = 0 and limη→0 ḡ(0, 1) =

1
4 .

An example of a numerical simulation of the stochastic process introduced in Definition 1 using
the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson, 2012;
Gibson and Bruck, 2000], and the solution of the ODEs in Equations (57)–(60) superimposed is
shown in Figure 14.

A.2. The Case of N = 2

When N = 2 with s ∈ {0, 1, 2} we obtain from Equation (23)

dx̄t(0)

dt
= 2

(
λx̄t(1)− γx̄t(0)− β(ξ̄t(0, 1)x̄t(0)x̄t(1) + ξ̄t(0, 2)x̄t(0)x̄t(2))

)

dx̄t(1)

dt
= γx̄t(0) + λx̄t(2)− (λ+ γ + α)x̄t(1) + β

(
ξ̄t(0, 1)x̄t(0)x̄t(1)− ξ̄t(1, 1)x̄t(1)

2

+ξ̄t(0, 2)x̄t(0)x̄t(2)− ξ̄t(1, 2)x̄t(1)x̄t(2)
)

dx̄t(2)

dt
= 2

(
(γ + α)x̄t(1)− λx̄t(2) + β

(
ξ̄t(1, 1)x̄t(1)

2 + ξ̄t(1, 2)x̄t(1)x̄t(2)
))
, (62)
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Figure 14: An example of a numerical simulation of the stochastic process introduced in Definition 1 for N = 1 using
the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson, 2012; Gibson and Bruck,
2000], and the solution of the ODEs in Equations (57)–(60) shown with a dashed line.

and from Equation (56) we obtain

dξ̄t(0, 1)

dt
=

1

2
ρg̃(0, 1)− ρ

(

1 +
1

2
g̃(0, 1)

)

ξ̄t(0, 1)

+
x̄t(0)

x̄t(1)

(
ξ̄t(0, 0)− ξ̄t(1, 0)

) [
γ + β

(
ξ̄t(0, 1)x̄t(1) + 2ξ̄t(0, 2)x̄t(2)

)]

+ λ
x̄t(1)

x̄t(0)
2
(
ξ̄t(1, 1)− ξ̄t(0, 1)

)
+ λ

x̄t(2)

x̄t(1)

(
ξ̄t(2, 0)− ξ̄t(1, 0)

)
, (63)

dξ̄t(0, 2)

dt
= ρg̃(0, 2)− ρ (1 + g̃(0, 2)) ξ̄t(0, 2)

+ 2
x̄t(1)

x̄t(2)

(
ξ̄t(1, 0)− ξ̄t(2, 0)

) [
γ + α+ β

(
ξ̄t(1, 1)x̄t(1) + 2ξ̄t(1, 2)x̄t(2)

)]

+ 2λ
x̄t(1)

x̄t(0)

(
ξ̄t(1, 2)− ξ̄t(0, 2)

)
, (64)

dξ̄t(1, 1)

dt
=

1

4
ρg̃(1, 1)− ρ

(

1 +
1

4
g̃(1, 1)

)

ξ̄t(1, 1)

+ 2
x̄t(0)

x̄t(1)

(
ξ̄t(0, 1)− ξ̄t(1, 1)

) [
γ + β

(
ξ̄t(0, 1)x̄t(1) + 2ξ̄t(0, 2)x̄t(2)

)]

+ 2λ
x̄t(2)

x̄t(1)

(
ξ̄t(2, 1)− ξ̄t(1, 1)

)
, (65)
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dξ̄t(1, 2)

dt
=

1

2
ρg̃(1, 2)− ρ

(

1 +
1

2
g̃(1, 2)

)

ξ̄t(1, 2)

+
x̄t(0)

x̄t(1)

(
ξ̄t(0, 2)− ξ̄t(1, 2)

) [
γ + β

(
ξ̄t(0, 1)x̄t(1) + 2ξ̄t(0, 2)x̄t(2)

)]

+ 2
x̄t(1)

x̄t(2)

(
ξ̄t(1, 1)− ξ̄t(2, 1)

) [
γ + α+ β

(
ξ̄t(1, 1)x̄t(1) + 2ξ̄t(1, 2)x̄t(2)

)]

+ λ
x̄t(2)

x̄t(1)

(
ξ̄t(2, 2)− ξ̄t(1, 2)

)
, (66)

dξ̄t(0, 0)

dt
= ρḡ(0, 0′)− ρ(1 + ḡ(0, 0′))ξ̃t(0, 0

′)

+ 4λ
x̄t(1)

x̄t(0)

(
ξ̄t(1, 0)− ξ̄t(0, 0)

)
, (67)

dξ̄t(2, 2)

dt
= ρḡ(2, 2)− ρ(1 + ḡ(2, 2))ξ̃t(2, 2)

+ 4
x̄t(1)

x̄t(2)

(
ξ̄t(1, 2)− ξ̄t(2, 2)

) [
γ + α+ β

(
ξ̄t(1, 1)x̄t(1) + 2ξ̄t(1, 2)x̄t(2)

)]
. (68)
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From the definition in Equation (22) we find that

g̃(0, 1) =
∑

h=(0,0)⊤

h
′∈{(0,1)⊤,(1,0)⊤}

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2 e−ηc

1+e−ηc
eη(βg1,τ −c)

1+eη(βg1,τ −c) = 2 e−ηc

1+e−ηc
eη(βbτ−c)

1+eη(βbτ−c) if θ = 1,

2 e−ηc

1+e−ηc
eη(βg0,τ (x)−c)

1+eη(βg0,τ (x)−c) = 2 e−ηc

1+e−ηc
e
η(β 2τb

1+bh̄t(x)
−c)

1+e
η(β 2τb

1+bh̄t(x)
−c)

if θ = 0,

g̃(0, 2) =
∑

h=(0,0)⊤

h
′=(1,1)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







e−ηc

1+e−ηc
e
η(2βgn1,τ −c)

1+e
η(2βgn

1,τ
−c) = e−ηc

1+e−ηc
eη(2βbτ−c)

1+eη(2βbτ−c) if θ = 1,

e−ηc

1+e−ηc
eη(2βg0,τ (x)−c)

1+eη(2βg0,τ (x)−c) = e−ηc

1+e−ηc
e
η(2β 2τb

1+bh̄t(x)
−c)

1+e
η(2β 2τb

1+bh̄t(x)
−c)

if θ = 0,

g̃(1, 1) =
∑

h∈{(0,1)⊤,(1,0)⊤}
h

′∈{(0,1)⊤,(1,0)⊤}

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2
(

e−2ηc

(1+e−ηc)2 + e2η(βg1,τ −c)

(1+eη(βg1,τ −c))2

)

= 2
(

e−2ηc

(1+e−ηc)2 + e2η(βbτ−c)

(1+eη(βbτ−c))2

)

if θ = 1,

2
(

e−2ηc

(1+e−ηc)2 + e2η((1+b)βg0,τ (x)−c)

(1+eη((1+b)βg0,τ (x)−c))2

)

= 2

(

e−2ηc

(1+e−ηc)2 + e
2η((1+b)β 2τb

1+bh̄t(x)
−c)

(1+e
η((1+b)β 2τb

1+bh̄t(x)
−c)

)2

)

if θ = 0,

g̃(1, 2) =
∑

h∈{(0,1)⊤,(1,0)⊤}
h

′=(1,1)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2 e−ηc

1+e−ηc
eη(βg0,τ −c)

1+eη(βg0,τ −c) = 2 e−ηc

1+e−ηc
eη(βbτ−c)

1+eη(βbτ−c) if θ = 1,

2 e−ηc

1+e−ηc
eη((1+b)βg0,τ (x)−c)

1+eη((1+b)βg0,τ (x)−c) = 2 e−ηc

1+e−ηc
e
η((1+b)β 2τb

1+bh̄t(x)
−c)

1+e
η((1+b)β 2τb

1+bh̄t(x)
−c)

if θ = 0,

g̃(0, 0) =
∑

h=(0,0)⊤,

h
′=(0,0)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=

{
e−2ηc

(1+e−ηc)2 if θ = 1,

e−2ηc

(1+e−ηc)2 if θ = 0,

g̃(2, 2) =
∑

h=(1,1)⊤,

h
′=(1,1)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=

{
e−2ηc

(1+e−ηc)2 if θ = 1,

e−2ηc

(1+e−ηc)2 if θ = 0,

where the average stock of knowledge is given by h̄t(x) = 2(x̄t(1) + x̄t(2)).
An example of a numerical simulation of the stochastic process introduced in Definition 1 using

the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson, 2012;
Gibson and Bruck, 2000], and the solution of the ODEs in Equations (62)–(68) superimposed is
shown in Figure 15.
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Figure 15: An example of a numerical simulation of the stochastic process introduced in Definition 1 for N = 2 using
the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson, 2012; Gibson and Bruck,
2000], and the solution of the ODEs in Equations (62)–(68) shown with a dashed line.
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B. Proofs

Proof of Proposition 1. When the time τ of a collaboration is short compared to the dynamics of the
generation and diffusion of knowledge in the entire industry, we can write the expected stock of knowledge of
firm i at time t+ τ , given the current knowledge portfolios ht and network Gt, as follows

Et (| S(hi,t+τ )||ht, Gt) = Et

(
N∑

k=1

1{hik,t+τ=1}

∣
∣
∣
∣
∣
ht, Gt

)

=

N∑

k=1

P(hik,t+τ = 1|ht, Gt)

=

N∑

k=1

(
νik,tτ1{hik,t=0} + (1− λτ)1{hik,t=1}

)
+ o(τ)

= | S(hi,t)|+
N∑

k=1

(
νik,t1{hik,t=0} − λ1{hik,t=1}

)
τ + o(τ)

= | S(hi,t)|+
N∑

k=1







γ + α| S(hi,t)|+ β

n∑

j=1

aij,thjk,t



1{hik,t=0} − λ1{hik,t=1}



 τ + o(τ)

= | S(hit)|+ (γτ + ατ | S(hit)|)| S(hc
it)| − λτ | S(hit)|+ βτ

n∑

j=1

aij,t〈hc
it,hjt〉+ o(τ).

(69)

The product 〈hc
it,hjt〉 measures the number of ideas i does not know but j knows. Denoting by fit ≡ | S(hit)|

and ∆fit ≡ (γ + α| S(hit)|)| S(hc
it)| − λ| S(hit)|+ βτ

∑n
j=1 aij,t〈hc

it,hjt〉, we can write the above equation as

Et (| S(hi,t+τ )||ht, Gt) = fit +∆fitτ + o(τ).

Considering the network Gt + ij obtained from Gt by adding the link ij we then can write

Et (| S(hi,t+τ )||ht, Gt + ij) = fit +∆fitτ + βfij,tτ + o(τ),

where we have also denoted by fij,t ≡ 〈hc
it,hjt〉.

From Equation (8) it follows that in the case of independent markets when θ = 1, a firm’s gross profit is
a linear function of its stock of knowledge. We then can write the expected next period’s profit of firm i as

Et (πi(ht+τ )|ht, Gt) = 1 + Et (| S(hi,t+τt)||ht, Gt)− cdit

= 1 + fit +∆fitτ + βfij,tτ − cdit + o(τ).

Then the change in the present discounted profit of a firm i from forming the link ij is given by

Vi(ht, Gt + ij)− Vi(ht, Gt) = δ Et (πi(ht+τ )|ht, Gt + ij)− δ Et (πi(ht+τ )|ht, Gt) + o(τ)

= δ Et (| S(hi,t+τ )||ht, Gt + ij)− δ Et (| S(hi,t+τ )||ht, Gt)− δc+ o(τ)

= δ (βτfij,t − c) + o(τ)

= δ (βτ〈hc
it,hjt〉 − c) + o(τ).

To simplify our notation we have assumed in the expression above that the per period cost for an additional
link needs to be paid at the end of a collaboration period.41

41Otherwise, we could introduce a cost c′ = 1 + c to obtain the same expression.
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Next we consider the case of competitive markets when θ = 1. Note that

Et

(
| S(hi,t+τ )|2|ht, Gt

)
= | S(hit)|2

+ 2| S(hit)|



(γ + α| S(hit)|)| S(hc
it)| − λ| S(hit)|+ β

n∑

j=1

aij,t〈hc
it,hjt〉



 τ + o(τ), (70)

which can be written as
Et

(
| S(hi,t+τ )|2|ht, Gt

)
= f2

it + 2fit∆fitτ + o(τ).

Adding the link ij yields

Et

(
| S(hi,t+τ )|2|ht, Gt + ij

)
= f2

it + 2fit∆fitτ + 2βfitfij,tτ + o(τ).

Moreover, we have that

h̄t+τ (ht, Gt) ≡ Et

(

1

n

n∑

i=1

| S(hi,t+τ )|
∣
∣
∣
∣
∣
ht, Gt

)

= γNτ +
1− λτ − γτ

n

n∑

i=1

| S(hit)|+
ατ

n

n∑

i=1

| S(hit)|| S(hc
it)|+

βτ

n

n∑

i=1

n∑

j=1

aij,t〈hc
it,hjt〉+ o(τ)

= h̄t +∆h̄tτ + o(τ), (71)

where we have denoted by h̄t ≡ 1
n

∑n
i=1 | S(hit)| and ∆h̄t ≡ γN− λ+γ

n

∑n
i=1 | S(hit)|+ α

n

∑n
i=1 | S(hit)|| S(hc

it)|+
β
n

∑n
i=1

∑n
j=1 aij,t〈hc

it,hjt〉. Similarly we get

Et

(

1

n

n∑

i=1

| S(hi,t+τ )|
∣
∣
∣
∣
∣
ht, Gt + ij

)

= h̄t +∆h̄tτ +
1

n
βτ(fij,t + fji,t) + o(τ).

Using a Taylor expansion around the mean (see e.g. Chap. 2.3 in Paolella [2007])

E

(
X

Y

)

=
E (X)

E (Y )
+O

(

1

E (Y )2

)

,

we then can write42

Et

(

1

1 + b 1n
∑n

j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

= n Et

(

1

n+ b
∑n

j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

= n




1

n+ bEt

(
∑n

j=1 | S(hj,t+τ )|
∣
∣
∣ht, Gt + ij

) +O

(
1

n2

)




=
1

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) +O

(
1

n

)

,

42This approximation also becomes more accurate the higher is the average stock of knowledge and the larger is b.
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and

1

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) =
1

1 + b(h̄t +∆h̄tτ +
1
nβ(fij,t + fji,t)τ + o(τ))

=
1

1 + b(h̄t +∆h̄tτ)

1

1 + 1
n

bβ(fij,t+fji,t)τ

1+b(h̄t+∆h̄tτ)
+ o(τ)

=
1

1 + b(h̄t +∆h̄tτ)

(

1− 1

n

bβ(fij,t + fji,t)τ

1 + b(h̄t +∆h̄tτ)
+ o

( τ

n

))

=
1

1 + b(h̄t +∆h̄tτ)
+O

( τ

n

)

.

It then follows that

Et

(

1

1 + b 1n
∑n

j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

1

1 + b 1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

= O
( τ

n

)

.

Moreover, similar to above using a Taylor approximation around the mean for large n we have that

Et

(

| S(hi,t+τ )|
1 + b 1n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

=
Et ( | S(hi,t+τ )||ht, Gt + ij)

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) +O

(
1

n

)

,

and

Et ( | S(hi,t+τ )||ht, Gt + ij)

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) =
fit +∆fitτ + βfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ +
1
nβ(fij,t + fji,t)τ + o(τ))

=
fit +∆fi,tτ + βfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)

1

1 + 1
n

bβ(fij,t+fji,t)τ

1+b(h̄t+∆h̄tτ)
+ o(τ)

=
fit +∆fitτ + βfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)

(

1− 1

n

bβ(fij,t + fji,t)τ

1 + b(h̄t +∆h̄tτ)
+ o

( τ

n

))

=
fit +∆fitτ + βfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)
+O

( τ

n

)

.

We then have that

Et

(

| S(hi,t+τ )|
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

| S(hi,t+τ )|
1 + b 1n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

=
βfij,tτ

1 + b(h̄t +∆h̄tτ)
+O

( τ

n

)

=
βfij,tτ

1 + bh̄t
+O

( τ

n

)

Next, note that similar to above we an write due to a Taylor approximation around the mean for large n

Et

(

| S(hi,t+τ )|2
1 + b 1n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

=
Et

(
| S(hi,t+τ )|2

∣
∣ht, Gt + ij

)

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) +O

(
1

n

)

,
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and

Et

(
| S(hi,t+τ )|2

∣
∣ht, Gt + ij

)

1 + bEt

(
1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣ht, Gt + ij

) =
f2
it + 2fit∆fitτ + 2βfitfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ +
1
nβ(fij,t + fji,t)τ + o(τ))

=
f2
it + 2fit∆fitτ + 2βfitfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)

1

1 + 1
n

bβ(fij,t+fji,t)τ

1+b(h̄t+∆h̄tτ)
+ o

(
τ
n

)

=
f2
it + 2fit∆fitτ + 2βfitfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)

×
(

1− 1

n

bβ(fij,t + fji,t)τ

1 + b(h̄t +∆h̄tτ)
+ o

( τ

n

))

=
f2
it + 2fit∆fitτ + 2βfitfij,tτ + o(τ)

1 + b(h̄t +∆h̄tτ)
+O

( τ

n

)

.

It then follows that

Et

(

| S(hi,t+τ )|2
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

| S(hi,t+τ )|2
1 + b 1n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

=
2βfitfij,tτ

1 + b(h̄t +∆h̄tτ)
+O

( τ

n

)

=
2βfitfij,tτ

1 + bh̄t
+O

( τ

n

)

.

The change in the present discounted profit of a firm i from forming the link ij in the competitive case of
θ = 0 is given by

Vi(ht, Gt + ij)− Vi(ht, Gt) =

δ

[

Et

(

1

1 + b 1n
∑n

j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

1

1 + b 1
n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

+Et

(

2b| S(hi,t+τ )|
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

2b| S(hi,t+τ )|
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

+ Et

(

b2| S(hi,t+τ )|2
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt + ij

)

− Et

(

b2| S(hi,t+τ )|2
1 + b 1

n

∑n
j=1 | S(hj,t+τ )|

∣
∣
∣
∣
∣
ht, Gt

)

+ o (τ)− c]

From the above calculations it follows that for θ = 0 the change in the present discounted profit can be written
as

Vi(ht, Gt + ij)− Vi(ht, Gt) = δ
2bβ(1 + bfit)fij,tτ

1 + bh̄t
− δc+O

( τ

n

)

.

Therefore, we can write the change in the present discounted profit of the firm i from forming the link ij for
the general case of θ ∈ {0, 1} (for independent or competitive sectors) as follows

Vi(ht, Gt + ij)− Vi(ht, Gt) = βτδ

(

θ + (1 − θ)
2b(1 + bfit)

1 + bh̄t

)

fij,t − δc+O
( τ

n

)

. (72)

Proof of Theorem 1. Let nt(h) denote the expected number of firms with technology h, mt(h,h
′) the

expected number of links between firms with technologies h and h′ for h 6= h′ and m(h,h) being equal to
twice the number of links between firms with technology h. Moreover, let τt(h,h

′,h′′) be the expected number
of triplets with a firm with technology h being connected to a firm with technology h′ and this firm being

connected to a firm with technology h′′. Further, let xt(h) =
nt(h)

n and zt(h,h
′) = mt(h,h

′)
n2 . Normalization

requires that
∑

h∈HN xt(h) = 1 and
∑

h,h′∈HN zt(h,h
′) = 2mt

n2 = d̄t

n , where mt is the expected number of

links and d̄t is the expected average degree. Moreover, the expected number of ideas of a firm is given by
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h̄t =
∑

h∈HN xt(h)| S(h)|.
The expected number nt(h) of firms with technology h can increase by in-house R&D through discovering

idea k of firms with technology h−ek. This happens at a rate γ+α〈h−ek,u〉. Moreover, firms with technology
h− ek can learn idea k from firms with technology h′ wand h′k = 1 at a rate βmt(h− ek,h

′). Similarly, nt(h)
can decrease if a firm with technology h discovers a new idea (hk = 0) either through in-house R&D at a
rate γ + α〈h,u〉 or through learning from collaborating firms with technology h′ at a rate βmt(h,h

′) for all
h′ ∈ HN such that h′k = 1. Besides, nt(h) increases if an idea k becomes obsolete for a firm with technology
h+ ek at a rate λ, and it declines if an idea k with hk = 1 becomes obsolete at the same rate λ. The expected
change in the number nt(h) of firms with technology h is then given by

nFx(h) ≡
N∑

k=1

1{hk=1}



(γ + α〈h− ek,u〉)nt(h− ek) + β
∑

h′∈HN :h′

k
=1

mt(h− ek,h
′)





−
N∑

k=1

1{hk=0}



(γ + α〈h,u〉)nt(h) + β
∑

h′∈HN :h′

k
=1

mt(h,h
′)





+ λ

N∑

k=1

1{hk=0}nt(h+ ek)− λ

N∑

k=1

1{hk=1}nt(h). (73)

Dividing by n and using the fact that xt(h) =
nt(h)

n and zt(h,h
′) = mt(h,h

′)
n2 yields the expected change for

the fraction xt(h) of firms with technology h given by

Fx(h) =
N∑

k=1

1{hk=1}



γ + α〈h− ek,u〉+ nβ
∑

h′∈HN :h′

k
=1

zt(h− ek,h
′)

xt(h− ek)
1{xt(h−ek)>0}



xt(h− ek)

−
N∑

k=1

1{hk=0}



γ + α〈h,u〉+ nβ
∑

h′∈HN :h′

k
=1

zt(h,h
′)

xt(h)
1{xt(h)>0}



xt(h)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)− λ

N∑

k=1

1{hk=1}xt(h). (74)

Observe that by introducing the rescaled variables β → β/n, c→ c/n, δ/n→ δ, marginal profits in Equation
(72) do not change, and similarly, rescaling the parameters β → β/n, c→ c/n and assuming that the parameter
of the logistically distributed error term for the marginal profits from collaborations in Definition 1 is rescaled
as η/δ → ηn/δ leaves the linking probability in Equation (14) unchanged. However, Equation (74) becomes
independent of n and can be written as

Fx(h) =

N∑

k=1

1{hk=1}



γ + α〈h− ek,u〉+ β
∑

h′∈HN :h′

k
=1

zt(h− ek,h
′)

xt(h− ek)
1{xt(h−ek)>0}



xt(h− ek)

−
N∑

k=1

1{hk=0}



γ + α〈h,u〉+ β
∑

h′∈HN :h′

k
=1

zt(h,h
′)

xt(h)
1{xt(h)>0}



xt(h)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)− λ

N∑

k=1

1{hk=1}xt(h). (75)

Note that the probability that a firm with technology vector h is connected to a firm with technology vector
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h′ is given by

P(aij,t = 1|hit = h,hjt = h′) =
P(aij,t = 1,hit = h,hjt = h′)

P(hit = h)P(hjt = h′)

=
mt(h,h

′)

n2

1
nt(h)

n

1
nt(h′)

n

=
mt(h,h

′)

nt(h)nt(h′)

=
zt(h,h

′)

xt(h)xt(h′)

≡ ξt(h,h
′),

where zt(h,h
′) = P(aij,t = 1,hit = h,hjt = h′) = mt(h,h

′)
n2 and xt(h) ≡ P(hit = h) = nt(h)

n . The probability
that a randomly selected firm j has technology h′, given that it is connected to a firm i with technology h, is

P(aij,t = 1,hjt = h′|hit = h) = P(aij,t = 1|hit = h,hjt = h′)P(hjt = h′)

=
P(aij,t = 1,hjt = h′,hit = h)

P(hit = h)P(hjt = h′)
P(hjt = h′)

=
P(aij,t = 1,hjt = h′,hit = h)

P(hit = h)

=
zt(h,h

′)

xt(h)
.

Let the support of h be S(h) and its cardinality | S(h)| = 〈h,u〉, counting the number of nonzero entries in h,
with u being a vector of ones. Then we can write Equation (75) as follows

Fx(h) = γ
∑

k∈S(h)

xt(h− ek) + λ
∑

k∈S(hc)

xt(h+ ek)

− (λ| S(h)|+ γ| S(hc)|)xt(h)
+ α(| S(h)| − 1)

∑

k∈S(h)

xt(h− ek)

− α| S(h)|| S(hc)|xt(h)
+ β

∑

k∈S(h)

∑

h′∈HN :h′

k
=1

zt(h− ek,h
′)1{xt(h−ek)>0}

− β
∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

zt(h,h
′)1{xt(h)>0}. (76)

In the following let n2Fz(h,h
′) denote the expected increment in the number mt(h,h

′) of links between firms
with technologies h and h′. The rate at which links between firms with technologies h and h′ decay is given

by ρnt(h)nt(h
′) mt(h,h

′)
nt(h)nt(h′) , where nt(h)nt(h

′) is the expected number of pairs of firms with technologies h

and h′ that are selected, and mt(h,h
′)

nt(h)nt(h′) is the probability that a link exists between them. Similarly, the

rate at which such links are created is given by ρnt(h)nt(h
′)g(h,h′)

(

1− mt(h,h
′)

nt(h)nt(h′)

)

, where 1− mt(h,h
′)

nt(h)nt(h′) is

the probability that a link does not exist between the firms with technologies h and h′, and g(h,h′) is the
probability that they want to form a link when they have the opportunity. Collecting these terms, and noting
that contributions stemming from changes in the technologies h and h′ of the firms happen at a rate o(ρ) we
get

n2
Fz(h,h

′) ≡ ρ nt(h)nt(h
′)g(h,h′)

(

1− mt(h,h
′)

nt(h)nt(h′)

)

− ρmt(h,h
′) + o(ρ), (77)
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where we have denoted by

g(h,h′) ≡ eη(βgθ,τ (xt)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (xt)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (xt)(1+| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (xt)(1+| S(h′)|)1−θ〈h′c,h〉−c)
. (78)

Dividing Equation (77) by n2 gives

Fz(h,h
′) = ρ xt(h)xt(h

′)

[

g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− zt(h,h
′)

xt(h)xt(h′)

]

+ o(ρ). (79)

We next introduce the vector Pn(t) = ((xt(h))h∈HN , (zt(h,h
′)h,h′∈HN )) ∈ R

2N+2N×2N

+ . Moreover, we intro-
duce the random variable ζnP = (ζnx , ζ

n
z ), whose distribution describes the stochastic increments of (Pn(t))t∈T

from the state P to state z given by

P (ζnP = z) = P (Pn (t+∆t) = P + z|Pn (t) = P ) .

The increments ζnx describe the change due to innovation or obsolescence, while the increments ζnz correspond
to the change due to link formation or decay.

Let Fx(h) be defined as in Equation (76) and Fz(h,h
′) as in Equation (79). Further, we introduce the

functions V N
y , AN

y and AN
y,δ defined by

V n
y (P ) ≡ λnyE[ζ

n
y ],

An
y (P ) ≡ λnyE[|ζny |],

An
y,δ(P ) ≡ λnyE[

∣
∣
∣ζny I{|ζn

y |>δ}

∣
∣
∣],

with y ∈ {x, z}. The jump rate at which innovations happen is given by λnx = n while the jump rate of link
changes is given by λnz = n2. Observe that V n(P ) = (V n

x (P ), V n
z (P )) is the expected increment of ζny∈{x,z} for

a short time interval [t, t +∆t). Consider some sequence (δn)∞n=n0
with limn→∞ δn = 0. In the following we

want to show that the following three conditions hold:

(i) limn→∞ supP∈Pn

∣
∣V n

y (P )− Vy(P )
∣
∣ = 0,

(ii) supn supP∈Pn An
y (P ) <∞, and

(iii) limn→∞ supP∈Pn An
y,δn(P ) = 0,

First, consider y = x. Let eh be the standard unit basis vector corresponding to technology h. Observe that

V n
x (P ) = nE[ζnx ]

= n
∑

h,h′

1

n
(eh′ − eh)P

(

ζnx =
1

n
(eh′ − eh)

)

=
∑

h

ehFx(h) = Vx(P ),

which is independent of n assuming that β is propositional to 1/n. This implies that condition (i) is satisfied.

Further, observe that since |eh′ −eh| =
√
2 for h 6= h′ and 0 otherwise, (Pn(t))t∈T has jumps of at most

√
2/n.

Hence, for δn =
√
2/n it follows that

An
x,δn(P ) = nE

[∣
∣
∣ζnx I{|ζn

x |>
√
2/n}

∣
∣
∣

]

= 0,

and condition (iii) holds. Finally, we find that

An
x(P ) = nE[|ζnx |] ≤ n

√
2

n
=

√
2 <∞,

and also condition (ii) is satisfied. Next, consider the case of y = z. Let eh,h′ be the standard unit basis vector
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indicating a link between a firm with technology h and a firm with technology h′. First, observe that

V n
z (P ) = n2

E[ζnz ]

= n2
∑

h′′,h′′′

1

n2
(eh′′,h′′′ − eh,h′)P

(

ζnz =
1

n2
(eh′′,h′′′ − eh,h′)

)

=
∑

h,h′

eh,h′Fz(h,h) = Vz(P ),

which is independent of n. This implies that condition (i) is satisfied. Further, observe that since |eh′′,h′′′ −
eh,h′| =

√
2 for (h′′,h′′′) 6= (h,h′) and 0 otherwise, (Pn(t))t∈T has jumps of at most

√
2/n2. Hence, for

δn =
√
2/n2 we have that

An
z,δn(P ) = n2

E

[∣
∣
∣ζnz I{|ζn

z |>
√
2/n2}

∣
∣
∣

]

= 0,

and condition (iii) holds. Moreover, we find that

An
z (P ) = nE[|ζnz |] ≤ n2

√
2

n2
=

√
2 <∞,

and also condition (ii) is satisfied. Finally, observe that V (P ) is a Lipschitz continuous vector field in P ,
as both Fx(·) and Fz(·, ·) are linear functions of x and z in the limit of large ρ, and hence have bounded
derivatives. Together with conditions (i), (ii) and (iii), we then can apply Kurtz’s Theorem [cf. Sandholm,
2010, Chap.10.2], which states that for any solution {P (t)}t∈T of the mean-field dynamics43

dP

dt
=

d

dt











...
xt(h)

...
zt(h,h

′)
...











= V (P ) =

[

Vx(P )
Vz(P )

]

=











...
Fx(h)

...
Fz(h,h

′)
...











(80)

starting from P0 we have that

lim
n→∞

P

(

sup
t∈[0,T ]

|Pn(t)− P (t)| ≥ ǫ

)

= 0,

for any T <∞ and ǫ > 0. In particular, in the limit of large n we then can write

plim
n→∞

dxt(h)

dt
= Fx(h),

and

plim
n→∞

dzt(h,h
′)

dt
= Fz(h,h

′).

Next, if we introduce the variable

ξt(h,h
′) ≡ P(aij,t = 1|hit = h,hjt = h′) =

zt(h,h
′)

xt(h)xt(h′)
, (81)

then we have that

dξt(h,h
′)

dt
=

1

xt(h)xt(h′)

dzt(h,h
′)

dt
− zt(h,h

′)

xt(h)xt(h′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

.

43See also Kurtz [1971] and Wormald [1995].
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Inserting Equation (79) gives

dξt(h,h
′)

dt
= ρg(h,h′) (1− ξt(h,h

′))− ρ ξt(h,h
′)

+ ξt(h,h
′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

− ξt(h,h
′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

+ o(ρ)

= ρ g(h,h′)− ρ (1 + g(h,h′)) ξt(h,h
′) + o(ρ). (82)

Moreover, inserting the definition of ξt(h,h
′) from Equation (81) into Equation (76) we get

dxt(h)

dt
= γ

∑

k∈S(h)

xt(h− ek) + λ
∑

k∈S(hc)

xt(h+ ek)

− (λ| S(h)|+ γ| S(hc)|) xt(h)
+ α(| S(h)| − 1)

∑

k∈S(h)

xt(h− ek)

− α| S(h)|| S(hc)|xt(h)
+ β

∑

k∈S(h)

∑

h′∈HN :h′

k
=1

ξt(h− ek,h
′)xt(h− ek)xt(h

′)

− β
∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

ξt(h,h
′)xt(h)xt(h

′). (83)

Proof of Proposition 2. Let us define

x̃t(s) ≡
∑

h∈HN :| S(h)|=s

xt(h), 0 ≤ s ≤ N.

Summation over all h ∈ HN with the property that | S(h)| = s in Equation (76) gives

dx̃t(s)

dt
= γ(N − s+ 1)x̃t(s− 1) + λ(s + 1)x̃t(s+ 1)

− (λs+ γ(N − s))x̃t(s)

+ α(s− 1)(N − s+ 1)x̃t(s− 1)

− αs(N − s)x̃t(s)

+ β
∑

h∈HN :| S(h)|=s

∑

k∈S(h)

∑

h′∈HN :h′

k
=1

ξt(h− ek,h
′)xt(h− ek)xt(h

′)

− β
∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

ξt(h,h
′)xt(h)xt(h

′), (84)

where we have used the fact that

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

xt(h− ek) =
∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

xt(h)

= (N − s+ 1)
∑

h∈HN :| S(h)|=s−1

xt(h)

= (N − s+ 1)x̃t(s− 1),
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and

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

xt(h+ ek) =
∑

h∈HN :| S(h)|=s+1

∑

k∈S(h)

xt(h)

= (s+ 1)
∑

h∈HN :| S(h)|=s+1

xt(h)

= (s+ 1)x̃t(s+ 1).

Further, define

z̃t(s, s
′) ≡

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

zt(h,h
′), 0 ≤ s, s′ ≤ N,

and let the average be given by

z̄t(s, s
′) ≡ 1

(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

zt(h,h
′) =

1
(
N
s

)
1
(
N
s′

) ξ̃t(s, s
′), 0 ≤ s, s′ ≤ N. (85)

With44

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

∑

h′∈HN :h′

k
=1

zt(h− ek,h
′) =

∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

zt(h,h
′)

=
∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

z̄t(| S(h)|, | S(h′)|)

= (N − s+ 1)

N∑

s′=1

(
N

s′ − 1

)

z̄t(s− 1, s′)

= (N − s+ 1)
N∑

s′=1

(
N

s′−1

)

(
N
s′

) z̃t(s− 1, s′)

= (N − s+ 1)

N∑

s′=1

s′

N − s′ + 1
z̃t(s− 1, s′),

and similarly

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

∑

h′∈HN :h′

k
=1

zt(h,h
′) = (N − s+ 1)

N∑

s′=1

s′

N − s′ + 1
z̃t(s, s

′).

44If the initial conditions are such that x0(h), z0(h,h
′) and ξ0(h,h

′) depend only on the knowledge stocks |S(h)|
and |S(h′)|, respectively, then this holds for all later times t > 0.
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we obtain

dx̃t(s)

dt
= γ(N − s+ 1)x̃t(s− 1) + λ(s+ 1)x̃t(s+ 1)

− (λs+ γ(N − s))x̃t(s)

+ α(s− 1)(N − s+ 1)x̃t(s− 1)

− αs(N − s)x̃t(s)

+ β(N − s+ 1)

N∑

s′=1

s′

N − s′ + 1
z̃t(s− 1, s′)1{x̃t(s−1)>0}

− β(N − s+ 1)

N∑

s′=1

s′

N − s′ + 1
z̃t(s, s

′)1{x̃t(s)>0}, (86)

We can write Equation (86) more compactly as follows

dx̃t(s)

dt
= γ(N − s+ 1)(γ + α(s− 1))x̃t(s− 1) + λ(s+ 1)x̃t(s+ 1)

− (λs+ γ(N − s) + αs(N − s))x̃t(s)

+ β(N − s+ 1)

N∑

s′=1

s′

N − s′ + 1
(z̃t(s− 1, s′)1{x̃t(s−1)>0} − z̃t(s, s

′)1{x̃t(s)>0}). (87)

Introducing the average

x̄t(s) ≡
1
(
N
s

)

∑

h∈HN :| S(h)|=s

xt(h) =
1
(
N
s

) x̃t(s), 0 ≤ s ≤ N, (88)

and using the fact that

dx̄t(s)

dt
=

1
(
N
s

)

∑

h∈HN :| S(h)|=s

dxt(h)

dt
,

where
(
N
s

)
is the number of vectors h ∈ HN with | S(h)| = s, we obtain from Equation (76)

dx̄t(s)

dt
= γsx̄t(s− 1) + λ(N − s)x̄t(s+ 1)

− (λs+ γ(N − s))x̄t(s)

+ α(s− 1)sx̄t(s− 1)− αs(N − s)x̄t(s)

+ βs
N∑

s′=1

z̄t(s− 1, s′)

(
N − 1

s′ − 1

)

1{x̄t(s−1)>0}

− β(N − s)

N∑

s′=1

z̄t(s, s
′)

(
N − 1

s′ − 1

)

1{x̄t(s)>0},

which can be written more compactly as follows

dx̄t(s)

dt
= (γs+ α(s− 1)s)x̄t(s− 1) + λ(N − s)x̄t(s+ 1)

− (λs+ γ(N − s) + αs(N − s))x̄t(s)

+ β

N∑

s′=1

(
N − 1

s′ − 1

)

(sz̄τ (s− 1, s′)1{x̄t(s−1)>0} − (N − s)z̄τ (s, s
′)1{x̄t(s)>0}). (89)
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We further define

ξ̄t(s, s
′) ≡ 1

(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

zt(h,h
′)

xt(h)xt(h′)
≈ z̄t(s, s

′)

x̄t(s)x̄t(s′)
, (90)

so that we can write Equation (89) as follows

dx̄t(s)

dt
= (γs+ α(s− 1)s)x̄t(s− 1) + λ(N − s)x̄t(s+ 1)

− (λs+ γ(N − s) + αs(N − s))x̄t(s)

+ β

N∑

s′=1

(
N − 1

s′ − 1

)
(
sξ̄t(s− 1, s′)x̄t(s− 1)x̄t(s

′)− (N − s)ξ̄t(s, s
′)x̄t(s)x̄t(s

′)
)
.

Summation over all h ∈ HN with the property that | S(h)| = s and h′ ∈ HN with | S(h′)| = s′ and inserting
the definition in Equation (90) into Equation (18) gives

dξ̄t(s, s
′)

dt
= ρḡ(s, s′)− ρ(1 + ḡ(s, s′))ξ̄t(s, s

′) + o(ρ),

where we have denoted by

ḡ(s, s′) ≡ 1
(
N
s

)
1
(
N
s′

) g̃(s, s′)

≡ 1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h′)|=s′

g(h,h′)

=
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h′)|=s′

eη(βgθ,τ (xt)(1+s)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (xt)(1+s)1−θ〈hc,h′〉−c)

eη(βgθ,τ (h̄t)(1+s′)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (xt)(1+s′)1−θ〈h′c,h〉−c)
,

which is a symmetric matrix, ḡ(s, s′) = ḡ(s′, s) for all 0 ≤ s, s′ ≤ N .

Proof of Corollary 1. The proof follows from setting dx̃t(s)
dt = 0 in Equation (87) and inserting x̃(s) from

Equation (25).

Proof of Lemma 1. It follows immediately, that the fixed points for ξ̄(s, s′) of Equation (24) are given by

ξ̄(s, s′) =
ḡ(s, s′)

1 + ḡ(s, s′)
.

Moreover, the fixed points from Equation (23) satisfy the following recursive equation

(

λs+ (N − s)(γ + αs) + β(N − s)
N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(s, s′)x̄(s′)

)

x̄(s)

=

(

s(γ + α(s− 1)) + βs

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(s− 1, s′)x̄(s′)

)

x̄(s− 1) + λ(N − s)x̄(s+ 1).

For s = 0 we obtain (

γ + β

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(0, s′)x̄(s′)

)

x̄(0) = λx̄(1). (91)
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Similarly, for s = 1 we get

(

λ+ (N − 1)(γ + α) + β(N − 1)
N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(1, s′)x̄(s′)

)

x̄(1)

=

(

γ + β

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(0, s′)x̄(s′)

)

x̄(0) + λ(N − 1)x̄(2).

Using Equation (91), this can be written as

(

γ + α+ β
N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(1, s′)x̄(s′)

)

x̄(1) = λx̄(2).

One can show by induction that for general s ≥ 0 the following recursive equation holds

(

γ + sα+ β

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(s, s′)x̄(s′)

)

x̄(s) = λx̄(s+ 1).

Hence, we get

x̄(s+ 1) =
x̄(0)

λs+1

s∏

k=0

(

γ + kα+ β

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(k, s′)x̄(s′)

)

.

Proof of Corollary 2. The proof follows directly from Lemma 1 for β = 0 and the normalization condition

1 =
∑N

s=0

(
N
s

)
x̄(s).

Proof of Proposition 3. In the limit of ρ→ ∞ and β, γ → 0 we have that

x̄(s) = x̄(0)

(
β

λ

)s s−1∏

k=0

N∑

s′=1

ξ̂(k, s′)x̄(s′),

where we have denoted by ξ̂(k, s′) =
(
N−1
s′−1

)
ξ̄(k, s′). From this equation we see that x̄(s) = δs,0 is always a

solution. We next compute a threshold βc such that for all β < βc this is the unique solution. For s = 1 we
obtain

x̄(1) = x̄(0)
β

λ
ξ̂(0, 1)x̄(1).

When x̄(1) > 0 (and consequently x̄(0) < 1) we must have that

x̄(0) =
λ

βξ̂(0, 1)
.

As x̄(0) < 1 it must hold that

β > βc ≡ λ

ξ̂(0, 1)
=
λ(1 + ḡ(0, 1))

ḡ(0, 1)
.

Note that

ḡ(0, 1) =
eη(βbτ−2c)

(1 + eη(βbτ−c))(1 + e−ηc)
,

from which we get

βc = λ (ecη + 2) +
1

(2− θ)bητ
W
(

λbητ (ecη + 1) eη(c−bτ(ecη+2)λ)
)

,

and W (x) is the Lambert W function (or product-log), which is implicitly defined by W (x)eW (x) = x.
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We next analyze the stability of the trivial solution. Denote by Fs ≡ dx̄(s)
dt and Zs,s′ ≡ dξ̄(s,s′)

dt . In the case
of independent markets, θ = 1, when ḡ(s.s′) does not depend on x̄(s), we can write the Jacobian as follows

J =




















∂F0

∂x̄(0)
· · · ∂F0

∂x̄(N)

∂F0

∂ξ̄(0, 0)
· · · ∂F0

∂ξ̄(N,N)
...

. . .
...

...
. . .

...
∂FN

∂x̄(0)
· · · ∂FN

∂x̄(N)

∂FN

∂ξ̄(0, 0)
· · · ∂FN

∂ξ̄(N,N)

0 · · · 0
∂Z0,0

∂ξ̄(0, 0)
0 0

...
. . .

... 0
. . . 0

0 · · · 0 0 0
∂ZN,N

∂ξ̄(N,N)




















.

The Jacobian is thus a block matrix of the form

J =

[

J11 J12
0 J22

]

,

whose eigenvalues are the combined eigenvalues of J11 and J22. The latter is a diagonal matrix and has

eigenvalues given by µs =
∂Zs,s

∂ξ̄(s,s)
= −ρ(1 + ḡ(s, s)). In order to compute the eigenvalues of the first, J11,

observe that in the limit of γ, α→ 0 we have that

(J11)sk =
∂Fs

∂x̄(k)
= λ(N − s)δk,s+1 − λsδk,s

+ β

(

s
N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄s−1,s′ x̄(s
′)δk,s−1 − (N − s)

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄s,s′ x̄(s
′)δk,s

+sx̄(s− 1)

(
N − 1

k − 1

)

ξ̄s−1,k − (N − s)x̄(s)

(
N − 1

k − 1

)

ξ̄s,k

)

This can be written as
∂Fs

∂x̄(k)
= F

(0)
sk + βF

(1)
sk ,

where the matrix F(0) is given by

F(0) =









0 λN 0 0 0 · · ·
0 −λ λ(N − 1) 0 0 · · ·
0 0 −2λ λ(N − 2) 0 · · ·
0 0 0 −3λ λ(N − 3)
...

...
. . .

. . .
. . .









.

Observe that F(0) is a upper triangular matrix whose eigenvalues are given by the entries on the diagonal,
that is, 0,−λ,−2λ, . . . ,−Nλ. Similarly, we get

F(1) =







0 −Nξ̄(0, 1)x̄(0) −N(N − 1)ξ̄(0, 2)x̄(0) · · ·
0 ξ̄(0, 1)x̄(0) (N − 1)ξ̄(0, 2)x̄(0) · · ·
0 0 0 · · ·
...

...
...






.
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Combining F(0) and F(1), and setting x̄(0) = 1, yields

J11 =









0 N(λ− βξ̄(0, 1)) −N(N − 1)ξ̄(0, 2) · · ·
0 −λ+ βξ̄(0, 1) (N − 1)(λ+ βξ̄(0, 2)) · · ·
0 0 −2λ λ(N − 2) 0 · · ·
0 0 0 −3λ λ(N − 3)
...

...
. . .

. . .
. . .









This is an upper triangular matrix with eigenvalues given by 0,−λ+ βξ̄(0, 1),−2λ, . . . ,−Nλ. All eigenvalues
are non-positive if β < λ

ξ̂(0,1)
, which is equivalent to the critical level βc we have identified above. Hence, if

β < βc then the trivial solution is asymptotically stable.
From the threshold βc we finally find that

∂βc

∂λ
=
bηλτ (ecη + 2) +W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)

bηλτ
(
W
(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)
+ 1
) > 0,

and
∂βc

∂c
=
bηλτecη (ecη + 1) + (2ecη + 1)W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)

bτ (ecη + 1)
(
W
(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)
+ 1
) > 0,

and

∂βc

∂b
= −W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

) (
bηλτ (ecη + 2) +W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

))

b2ητ
(
W
(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)
+ 1
) < 0,

and

∂βc

∂τ
= −W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

) (
bηλτ (ecη + 2) +W

(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

))

bητ2
(
W
(
bηλτ (ecη + 1) eη(c−bλτ(ecη+2))

)
+ 1
) < 0,

This concludes the proof.

Proof of Proposition 4. We have that

x̄(s+ 1) = x̄(0)
(γ

λ

)s+1 s∏

k=0

(

1 + k
α

γ
+
β

γ

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(k, s′)x̄(s′)

)

.

In the following we denote by α̃ ≡ α
γ , β̃ ≡ β

γ , γ̃ ≡ γ
λ and ξ̂(s, s′) ≡

(
N−1
s′−1

)
ξ̄(s, s′), so that we can write

x̄(s+ 1) = x̄(0)γ̃s+1
s∏

k=0

(

1 + kα̃+ β̃
N∑

s′=1

ξ̂(k, s′)x̄(s′)

)

.

Using the Taylor expansion

s∏

k=0

(ak + βbk) =

s∏

k=0

ak + β

s∑

k=0

s∏

l 6=k

albk +O(β2),

we get

s∏

k=0

(

1 + kα̃+ β̃
N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄(k, s′)x̄(s′)

)

=
s∏

k=0

(1 + α̃k)

+ β̃

s∑

k=0

s∏

l 6=k

(1 + α̃l)

N∑

s′=1

ξ̂(k, s′)x̄(s′) +O(β2).
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We then obtain

x̄(s+ 1) = x̄(0)γ̃s+1





s∏

k=0

(1 + α̃k) + β̃

s∑

k=0

s∏

l 6=k

(1 + α̃l)

N∑

s′=1

ξ̂(k, s′)x̄(s′)



+O(β2).

From which we get

x̄(s+ 1) = x̄(0)γ̃s+1





s∏

k=0

(1 + α̃k) + β̃

s∑

k=0

s∏

l 6=k

(1 + α̃l)

N∑

s′=1

ξ̂(k, s′)x̄(0)γ̃s
′

s′−1∏

k′=0

(1 + α̃k′)



+O(β2).

Further, denoting by

as ≡ γ̃s
s−1∏

k=0

(1 + α̃k)

and

bs ≡ γ̃s
s−1∑

k=0

s−1∏

l 6=k

(1 + α̃l)

N∑

s′=1

ξ̂(k, s′)γ̃s
′

s′−1∏

k′=0

(1 + α̃k′)

we can write
x̄(s) = x̄(0)as + β̃x̄(0)2bs.

Moreover, from the normalization condition 1 =
∑N

s=0

(
N
s

)
x̄(s) we obtain

1 =
N∑

s=0

(
N

s

)

x̄(s) = x̄(0)
N∑

s=0

(
N

s

)

as + β̃x̄(0)2
N∑

s=0

(
N

s

)

bs.

Denoting by a ≡∑N
s=0

(
N
s

)
as and b ≡∑N

s=0

(
N
s

)
bs we find that

x̄(0) =
2

a+
√

a2 + 4βb
.

From a first order Taylor expansion we then find

x̄(0) =
1

a
− β̃

b

a3
+O(β2),

and

β̃x̄(0)2 =
β̃

a2
+O(β2),

so that

x̄(s) =
1

a
as + β̃

1

a2

(

bs −
b

a
as

)

.

Further, observe that

as
a

=

∏s−1
k=0(1 + α̃k)

∑N
s′=0

(
N
s′

)∏s′−1
k=0 (1 + α̃k)

=

∏s−1
k=0

γ+αk
λ

∑N
s′=0

(
N
s′

)∏s′−1
k=0

γ+αk
λ

= x̄(s)|β=0 ≡ x̄0(s).

Hence, we can write

x̄(s) = x̄0(s) + β̃
bs − bx̄0(s)

a2
.

This is

x̄(s) = x̄0(s) +
β

γ

b

a2

(
bs
b
− x̄0(s)

)

+O

(
β

γ

)2

,
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where x̄0(s) ≡ x̄(s)|β=0 is given in Equation (30),

bs =

s−1∑

k=0

s−1∏

l 6=k

γ + αl

λ

N∑

s′=1

(
N − 1

s′ − 1

)
ḡ(k, s′)

1 + ḡ(k, s′)

s′−1∏

k′′=0

γ + αk′′

λ
,

b =
∑N

s′=0

(
N
s′

)
bs′ and a =

∑N
k=0

(
N
k

)∏k−1
l=0

γ+αl
λ for all s = 0, . . . , N . In the following we denote by Fs ≡ dx̄(s)

dt

and Zs,s′ ≡ dξ̄(s,s′)
dt . In the case of independent markets, θ = 1, when ḡ(s.s′) does not depend on x̄(s), we can

write the Jacobian as follows

J =




















∂F0

∂x̄(0)
· · · ∂F0

∂x̄(N)

∂F0

∂ξ̄(0, 0)
· · · ∂F0

∂ξ̄(N,N)
...

. . .
...

...
. . .

...
∂FN

∂x̄(0)
· · · ∂FN

∂x̄(N)

∂FN

∂ξ̄(0, 0)
· · · ∂FN

∂ξ̄(N,N)

0 · · · 0
∂Z0,0

∂ξ̄(0, 0)
0 0

...
. . .

... 0
. . . 0

0 · · · 0 0 0
∂ZN,N

∂ξ̄(N,N)




















.

The Jacobian is thus a block matrix of the form

J =

[

J11 J12
0 J22

]

,

whose eigenvalues are the combined eigenvalues of J11 and J22. The latter is a diagonal matrix and has

eigenvalues given by µs =
∂Zs,s

∂ξ̄(s,s)
= −ρ(1 + ḡ(s, s)). In order to compute the eigenvalues of the first, observe

that

∂Fs

∂x̄(k)
= s (γ + α(s − 1)) δk,s−1 + λ(N − s)δk,s+1 − (λs+ (N − s)(γ + αs))δk,s

+ β

(

s

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄s−1,s′ x̄(s
′)δk,s−1 − (N − s)

N∑

s′=1

(
N − 1

s′ − 1

)

ξ̄s,s′ x̄(s
′)δk,s

+sx̄(s− 1)

(
N − 1

k − 1

)

ξ̄s−1,k − (N − s)x̄(s)

(
N − 1

k − 1

)

ξ̄s,k

)

This can be written as
∂Fs

∂x̄(k)
= F

(0)
sk + βF

(1)
sk ,

where the matrix F(0) is given by

F(0) =








−γN λN 0 0 0 · · ·
γ −(λ+ (N − 1)(γ + α)) λ(N − 1) 0 0 · · ·
0 2(γ + α) −(2λ+ (N − 2)(γ + 2α)) λ(N − 2) 0 · · ·
0 0 3(γ + 2α) −(3λ+ (N − 3)(γ + 3α)) λ(N − 3)
...

...
. . .

. . .
. . .









.

Observe that F(0) is a real tridiagonal matrix of the form

F(0) =





a1 b2
c2 a2 b3

. . .
. . .

. . .
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where ai = −(λ(i− 1)+ (N − i+1)(γ+α(i− 1))), bi = λ(N − i+2) and ci = (i− 1)(γ+α(i− 2)). It is known
that such a real tridiagonal matrix has only real and simple eigenvalues if cibi > 0 [cf. e.g. Veselić, 1979]. We
have that cibi = λ(N − i+2)(i− 1)(γ+α(i− 2)) > 0 and so this condition is satisfied. We thus conclude that
F(0) has only real and simple eigenvalues.

Moreover, we have that [cf. Horn and Johnson, 1990, Theorem 6.3.12]

µi(J11) = µi(F
(0)) + β

w⊤
i F

(1)vi

w⊤
i vi

+ O(β2) (92)

wherewi and vi are the left and right eigenvectors corresponding to the eigenvalue µi(F
(0)). The characteristic

equation 0 = (F(0)−µIn)v for the right eigenvector v is given by the following second order difference equation
with variable coefficients [cf. Elaydi, 2005]

k(γ + α(k − 1))vk − (λk + (N − k)(γ + αk) + µ)vk+1 + λ(N − k)vk+2 = 0,

with the boundary conditions v0 = vN+2 = 0 for k = 0, . . . , N − 1. Similarly, the difference equation for the
left eigenvector reads as

λ(N − k)wk − (λk + (N − k)(γ + αk) + µ)wk+1 + k(γ + α(k − 1))wk+2 = 0,

with the boundary conditions w0 = wN+2 = 0 for k = 0, . . . , N − 1. We then find that all terms on the
right hand side of Equation (92) are real up to the first order terms in β, showing that the eigenvalues of the
Jacobian are real.

In the following we provide an explicit expression for N = 1, 2. The difference equations for the eigenvalues
µ together with the boundary conditions admit a closed form solution only in the cases of N = 1 and N = 2.
In the case of N = 1 we obtain the two eigenvalues

µ1 = 0, µ2 = −(γ + λ).

The corresponding left eigenvector is given by

v1 =

[
λ

γ
, 1

]⊤

v2 = [−1, 1]
⊤
,

while the right eigenvector is

w1 = [1, 1]
⊤

w2 =

[

−λ
γ
, 1

]⊤
.

In the case of N = 2 we get the three eigenvalues

µ1 = 0, µ2,3 = −1

2

(

α+ 3(γ + λ)±
√

α2 − 2α(γ − 3λ) + (γ + λ)2
)

.

Observe that
α2 − 2α(γ − 3λ) + (γ + λ)2 ≥ α2 − 2αγ + γ2 = (α− γ)2 ≥ 0,

so that all eigenvalues are real. The corresponding left eigenvectors are given by

v1 =

[
λ2

γ(α+ γ)
,

λ

α+ γ
, 1

]⊤

v2 =

[

−α+ γ − λ+
√

α2 − 2α(γ − 3λ) + (γ + λ)2

2(α+ γ)
,−α+ 3γ − λ+

√

α2 − 2α(γ − 3λ) + (γ + λ)2

4(α+ γ)
, 1

]⊤

v3 =

[

−α− γ + λ+
√

α2 − 2α(γ − 3λ) + (γ + λ)2

2(α+ γ)
,
−α− 3γ + λ+

√

α2 − 2α(γ − 3λ) + (γ + λ)2

4(α+ γ)
, 1

]⊤

,
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while the right eigenvectors are

w1 = [1, 2, 1]
⊤

w2 =




γ
(

−α+ γ − λ+
√

α2 − 2α(γ − 3λ) + (γ + λ)2
)

2λ2
,−α+ 3γ − λ+

√

α2 − 2α(γ − 3λ) + (γ + λ)2

2λ
, 1





⊤

w3 =




γ
(

−α+ γ − λ−
√

α2 − 2α(γ − 3λ) + (γ + λ)2
)

2λ2
,
−α− 3γ + λ+

√

α2 − 2α(γ − 3λ) + (γ + λ)2

2λ
, 1





⊤

.

We find that in all cases considered (for θ = 1, β small and N = 1, 2) the Jacobian possesses only real
eigenvalues.

Proof of Proposition 5. We first show that the eigenvalues of the Jacobian J are all negative evaluated at
x = 0 if the spillover parameter β is below a threshold βc. The Jacobian is given by

J =







(1− 2x)zβ − γ − λ −(x− 1)xβ

2b2e
η( 2bβτ

bx+1
−c)(z−1)βηρτ

(1+ecη)

(

1+e
η( 2bβτ

bx+1
−c)

)2

(bx+1)2
−



1 + e
η( 2bβτ

bx+1
−c)

(1+ecη)

(

1+e
η( 2bβτ

bx+1
−c)

)



 ρ






.

Evaluated at x = 0 this simplifies to

J =

[
zβ − γ − λ 0

2b2eη(c+2bβτ)(z−1)βηρτ

(1+ecη)(ecη+e2bβητ )2

(

−1− e2bβητ

(1+ecη)(ecη+e2bβητ )

)

ρ

]

.

The eigenvalues of the Jacobian are given by µ1,2 = 1
2 (tr(J) ±

√

tr(J)2 − 4det(J)), and we obtain complex

eigenvalues if tr(J)2 < 4det(J). For the trace we get

tr(J) = − ρe2bβητ

(ecη + 1) (e2bβητ + ecη)
− γ − λ+ βnz − ρ,

and for the determinant we obtain

det(J) = −ρ
(
2e2bβητ + eη(2bβτ+c) + ecη + e2cη

)
(−γ − λ+ βnz)

(ecη + 1) (e2bβητ + ecη)

Inserting into µ1,2 = 1
2 (tr(J) ±

√

tr(J)2 − 4det(J)) delivers the eigenvalues

µ1 = −γ − λ+ βz,

µ2 = −ρ
(
2e2bβητ + e2bβητ+cη + ecη + e2cη

)

(ecη + 1) (e2bβητ + ecη)
.

From these eigenvalues we find that they are real and negative if β < βc = λ+γ
z . Hence, we have that x1 = 0

is an asymptotically stable fixed point in the limit of γ → 0 if

β < βc =
λ(1 + g)

g
, (93)

where g is given by

g =

{
eη(βbτ−2c)

(1+eη(βbτ−c))(1+e−ηc)
if θ = 1,

eη(2βτb−c)

1+eη(2βτb−c)
e−ηc

1+e−ηc if θ = 0,
(94)

from which we get

βc = λbητ (ecη + 2) +
W
(
(2− θ)λbητ (ecη + 1) eη(c−(2−θ)bτ(ecη+2)λ)

)

(2− θ)bητ
,
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and W (x) is the Lambert W function (or product-log), which is implicitly defined by W (x)eW (x) = x.
Next, we consider the limit η → 0. We then have that g = 1

4 and it follows that in the stationary state

z = 1
5 . The steady state for x then solves

γ − 1

5
x(5(γ + λ) + β(x− 1)) = 0,

from which we obtain

x =
β − 5(γ + λ) +

√

(β − 5(γ + λ))2 + 20βγ

2β
.

From the above equation we find that

∂x

∂γ
=

1

2β

(

5(β + 5(γ + λ))
√

(β − 5(γ + λ))2 + 20βγ
− 5

)

.

This derivative is non-negative for all β > 0 and attains its unique maximum at β = 5(γ+λ). Next, for η → 0
we obtain the Jacobian

J =

[
(1 − 2x)zβ − γ − λ −(x− 1)xβ

0 − 5ρ
4

]

.

The trace and determinant are given by

tr(J) = −γ − λ+ β(1 − 2x)z − 5ρ

4
,

and

det(J) =
5

4
ρ(γ + λ+ β(2x− 1)z),

from which we get the eigenvalues

µ1 = −γ − λ+ β(1 − 2x)z,

µ2 = −5ρ

4
.

Inserting the fixed point delivers

µ1 = −1

5

√

(β − 5(γ + λ))2 + 20βγ,

which shows that the Jacobian possesses only real and negative eigenvalues.
We next consider the case of θ = 1. The stationary state is given by

z =
g

1 + g
, (95)

and
βg

1 + g
x2 −

(
βg

1 + g
− λ− γ

)

x− γ = 0,

with the solutions

x =
gβ − γ − gγ − λ− gλ+

√

4g(1 + g)βγ + (γ + λ+ g(γ + λ− β))2

2gβ
. (96)

In the limit of γ → 0 we obtain the trivial solution x = 0 and the solution x = 1− λ(1+g)
βg . Inserting g gives

x = 1− λe−bβητ
(
2ebβητ + eη(bβτ+c) + ecη + e2cη

)

β
.
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Figure 16: The average stock of knowledge h̄ as a function of γ for λ ∈ {10, 50, 100}. The solid line indicates the exact
solution, the dashed line the first order approximation in β and the dashed-dotted line the solution for β = 0. The
parameters used are b = 10, β = 100, c = 1, η = 1 and τ = 0.01.

We then find that

∂x

∂λ
= −e

η(c−bβτ)
(
ebβητ + ecη + 1

)
+ 2

β
< 0

∂x

∂c
= −ηλe

η(c−bβτ)
(
ebβητ + 2ecη + 1

)

β
< 0

∂x

∂β
=
λe−bβητ

(
2ebβητ + ecη(bβητ + 1) + e2cη(bβητ + 1) + eη(bβτ+c)

)

β2
> 0

∂x

∂b
= ηλτ (ecη + 1) eη(c−bβτ) > 0

∂x

∂τ
= bηλ (ecη + 1) eη(c−bβτ) > 0.

Moreover, we find that

∂x

∂η
=
λeη(c−bβτ)

(
bβτ (ecη + 1)− c

(
ebβητ + 2ecη + 1

))

β
,

which is positive if c
(
ebβητ < 2ecη + 1

)
+ bβτ (ecη + 1). Further, in the limit of small β we obtain

x =
γ

γ + λ
+ β

γλḡ(0, 1)

(γ + λ)3(1 + ḡ(0, 1))
+O

(
β2
)
=

γ

γ + λ
+ β

γλ

(2ecη + e2cη + 2) (γ + λ)3
+O

(
β2
)
.

An illustration can be seen in Figure 16. Next we analyze the stability of the fixed point. The Jacobian is

J =

[

(1− 2x)zβ − γ − λ (1− x)xβ
0 −ρ(1 + g)

]

.

Using the fact that x at β = 0 is given by γ
γ+λ we can write

∆x = x− γ

γ + λ
= β

γλ

(2ecη + e2cη + 2) (γ + λ)3
+O

(
β2
)
.
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From this expression we then find

∂∆x

∂γ
= β

λ(λ − 2γ)

(2ecη + e2cη + 2) (γ + λ)4
+O

(
β2
)

∂∆x

∂λ
= β

γ(γ − 2λ)

(2ecη + e2cη + 2) (γ + λ)4
+O

(
β2
)

∂∆x

∂c
= β

2γηλecη (ecη + 1)

(2ecη + e2cη + 2)
2
(γ + λ)3

+O
(
β2
)

∂∆x

∂η
= β − 2cγλecη (ecη + 1)

(2ecη + e2cη + 2)2 (γ + λ)3
+O

(
β2
)
.

The trace of the Jacobian is tr(J) = (1 − 2x)zβ − γ − λ − ρ(1 + g) and its determinant is det(J) = ((2x −
1)zβ + γ + λ)ρ(1 + g). The eigenvalues of the Jacobian are given by µ1,2 = 1

2 (tr(J)±
√

tr(J)2 − 4 det(J)), so

that we obtain complex eigenvalues if tr(J)2 < 4 det(J), or equivalently

(√

4zβγ + (γ + λ− zβ)2 + ρ(1 + g)
)2

< 4
√

4zβγ + (γ + λ− zβ)2ρ(1 + g),

where z = g/(1 + g). Denoting by y ≡
√

4zβγ + (γ + λ− zβ)2, this can be written as follows

(y + ρ(1 + g))2 < 4yρ(1 + g).

This is equivalent to (y − ρ(1 + g))2 < 0 which can never be satisfied for any admissible choice of the model’s
parameter values. Hence, when θ = 1 this system does not show oscillatory behavior. Moreover, for the
eigenvalues we obtain

µ1 = −
√

(γ + g(−β + γ + λ) + λ)2 + 4βγg(g + 1)

g + 1

µ2 = −ρ(1 + g),

which are both real and negative.
In the following we compute the fixed points for small values of τ when γ = 0 and θ = 0. From

g ≡ ḡ(0, 1) =
ec(−η)eη(

2βbτ
bx+1−c)

(
ec(−η) + 1

)(

eη(
2βbτ
bx+1−c) + 1

) ,

we obtain for the stationary state

z =
g

1 + g
=

1

eη(c−
2bβτ
bx+1 )

(

e
2bβητ
bx+1 + ecη + 1

)

+ 2
=

2bβητecη (ecη + 1)

(bx+ 1) (2ecη + e2cη + 2)
2 +

1

2ecη + e2cη + 2
+O

(
τ2
)
.

Dropping terms of the order O
(
τ2
)
and inserting into the stationary state condition x(βnz − λ)− βnx2z = 0

gives the solutions indicated in Equations (38) and (39).
Finally, in the case of η → ∞ we have that g = 0 and the fixed point is given by γ

γ+λ and z = 0. If

c > 2bβτ
b+1 then the eigenvalues of the Jacobian are given by µ1 = −(γ + λ) and µ2 = −ρ, which are both real

and negative.

Proof of Proposition 6. The stationary solution satisfies

0 = γ − βx2z1 + x(−γ − λ+ βz1)

0 = g1ρ− (g1 + 1)ρz1 +
(1− x)(z2 − z1)(γ + βxz1)

x
+
λx(z3 − z1)

1− x

0 = g2ρ− (g2 + 1)ρz2 +
2λx(z1 − z2)

1− x

0 = g3ρ− (g3 + 1)ρz3 +
2(1− x)(z1 − z3)(γ + βxz1)

x
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From this system of equations we obtain

x =
−γ − λ+

√

(γ + λ− βz1)2 + 4βγz1 + βz1
2βz1

z2 =
g2ρ− g2ρx+ 2λxz1

2λx− (g2 + 1)ρ(x− 1)

z3 =
2(x− 1)z1(γ + βxz1)− g3ρx

2(x− 1)(γ + βxz1)− (g3 + 1)ρx
,

and

2g1 − 2(1 + g1)z1 =
2(g3(−1 + z1) + z1)λ (z1β − γ − λ+A(z1))

(z1β + γ + λ−A(z1)) (2λ+ ρ+ g3ρ)

+
(g2(−1 + z1) + z1) (z1β + γ + λ−A(z1))

2
(z1β + γ − λ+A(z1))

(z1β − γ − λ+A(z1)) (z1β(2λ+ ρ+ g2ρ) + (−γ − λ+A(z1)) (2λ− (1 + g2)ρ))
,

with A(z1) ≡
√

4z1βγ + (−z1β + γ + λ)2. In the case of γ = 0 the non-trivial solution is then given by

x = 1− λ

βz1

z2 =
g2ρ− g2ρx+ 2λxz1

2λx− (g2 + 1)ρ(x− 1)

z3 =
g3ρ− 2β(x− 1)z21

(g3 + 1)ρ− 2β(x− 1)z1
,

while z1 is the root of

g1(1− z1)−
λ(g2(z1 − 1) + z1)

g2ρ− 2λ+ ρ+ 2βz1
+

(g3(z1 − 1) + z1)(λ − βz1)

g3ρ+ 2λ+ ρ
− z1 = 0.

A (cumbersome) closed form solution to this equation exists and can be obtained upon request from the
author. In first order of large ρ the above equation can be written as

0 =
1

ρ

(
(g3(z1 − 1) + z1)(λ − βz1)

g3 + 1
− λ(g2(z1 − 1) + z1)

g2 + 1

)

+O

(
1

ρ2

)

.

The solution to this equation is given by

z1 = − 1

2β(g2 + 1)(g3 + 1)

×
(

−
√

(g2 + 1) (4β(g3 + 1)(g1(g2 + 1)(g3 + 1)ρ+ λ(g2 − g3)) + (g2 + 1)(βg3 − (g1 + 1)(g3 + 1)ρ)2)

+(g1 + 1)g2(g3 + 1)ρ+ g1g3ρ+ g1ρ− βg2g3 − βg3 + g3ρ+ ρ) .

The critical level βc is obtained from setting 1− λ
βz1

= 0. This yields

βc =
(g2 + 1)λ(g1ρ+ λ+ ρ)

g1g2ρ+ g1ρ+ g2λ
,

with the limit

lim
ρ→∞

βc =
λ(1 + g1)

g1
.

Inserting g1 and g2 into βc yields

βc =
λ
(
2ecη + e2cη + 2

) (
(λ+ 2ρ)ebβητ + (λ+ ρ)eη(bβτ+c) + ecη(λ+ ρ) + e2cη(λ+ ρ)

)

λ (ecη + 1) (ebβητ + ecη) + ρ (2ecη + e2cη + 2) ebβητ
.
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Figure 17: (Left panel) The average stock of knowledge h̄, and (right panel) the critical threshold βc as a function of
ρ for b = 10, β = 10, c = 1, η = 1, λ = 1 and τ = 0.01.

For the derivative we then obtain

∂βc

∂ρ
= − λ2ecη (ecη + 1)

2 (
2ecη + e2cη + 2

) (
ebβητ − 1

) (
ebβητ + ecη

)

(
(λ+ 2ρ)ebβητ + (λ+ 2ρ)eη(bβτ+c) + ρebβητ+2cη + λecη + λe2cη

)2 < 0.

We next compute the Jacobian. For θ = 1, it is given by

J =









z1(β − 2xβ)− γ − λ− µ −(x− 1)xβ 0
(z1−z2)(z1βx2+γ)

x2 + (z3−z1)λ
(x−1)2 2(x− 1)z1β + z2(β − xβ) + γ + xλ

x−1 − µ− (g1 + 1)ρ− γ
x − (x−1)(xz1β+γ)

x
2(z1−z2)λ
(x−1)2 − 2xλ

x−1
2xλ
x−1 − µ− (g2 + 1)ρ

− 2(z1−z3)(z1βx2+γ)
x2 − 2(x−1)(x(2z1−z3)β+γ)

x 0 2(x−1)(

In the case of γ = 0 we get

J =







−λ− µ (1− x)xβ 0 0
0 z2(β − xβ) + xλ

x−1 − µ− (g1 + 1)ρ 0 xλ
1−x

− 2z2λ
(x−1)2 − 2xλ

x−1
2xλ
x−1 − µ− (g2 + 1)ρ 0

0 0 0 −µ− (g3 + 1)ρ






.

An LU decomposition of J− µI4 = LU yields [cf. Horn and Johnson, 1990]

L =







1 0 0 0
0 1 0 0

− 2z2λ
(x−1)2(−λ−µ)

2(1−x)xz2βλ

(x−1)2(−λ−µ)
− 2xλ

x−1

z2(β−xβ)+ xλ
x−1−µ−(g1+1)ρ

1 0

0 0 0 1






,

and

U =








−λ− µ (1− x)xβ 0 0
0 z2(β − xβ) + xλ

x−1 − µ− (g1 + 1)ρ 0 xλ
1−x

0 0 2xλ
x−1 − µ− (g2 + 1)ρ −

xλ
(

2(1−x)xz2βλ

(x−1)2(−λ−µ)
− 2xλ

x−1

)

(1−x)(z2(β−xβ)+ xλ
x−1−µ−(g1+1)ρ)

0 0 0 −µ− (g3 + 1)ρ







.

Using the fact that det(J−µI4) = det(L) det(U), and that the determinant of a triangular matrix is given by
the product of the diagonal entries, gives the following characteristic polynomial

1

(x− 1)2
(λ+ µ)(g3ρ+ µ+ ρ)(−(g2 + 1)ρ(x− 1) + µ+ 2λx− µx)

×
(
g1ρ+ x(−(g1 + 1)ρ+ λ− µ) + µ+ ρ+ β

(
−(x− 1)2

)
z2
)
= 0.
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From this equation we obtain the eigenvalues

µ1 = −λ
µ2 = −(g3 + 1)ρ

µ3 =
2λx

x− 1
− (g2 + 1)ρ

µ4 =
(g1 + 1)ρ(1− x)− λx+ β(1 − x)2z2

1− x
.

These eigenvalues are all real and negative for large ρ.

Proof of Proposition 7. Note that when N = 2 with s ∈ {0, 1, 2} we obtain from Equation (23)

dx̄t(0)

dt
= 2

(
λx̄t(1)− γx̄t(0)− β(ξ̄t(0, 1)x̄t(0)x̄t(1) + ξ̄t(0, 2)x̄t(0)x̄t(2))

)

dx̄t(1)

dt
= γx̄t(0) + λx̄t(2)− (λ+ γ + α)x̄t(1) + β

(
ξ̄t(0, 1)x̄t(0)x̄t(1)− ξ̄t(1, 1)x̄t(1)

2

+ξ̄t(0, 2)x̄t(0)x̄t(2)− ξ̄t(1, 2)x̄t(1)x̄t(2)
)

dx̄t(2)

dt
= 2

(
(γ + α)x̄t(1)− λx̄t(2) + β

(
ξ̄t(1, 1)x̄t(1)

2 + ξ̄t(1, 2)x̄t(1)x̄t(2)
))
, (97)

and from Equation (24) we obtain

dξ̄t(0, 1)

dt
=

1

2
ρg̃(0, 1)− ρ

(

1 +
1

2
g̃(0, 1)

)

ξ̄t(0, 1)

dξ̄t(0, 2)

dt
= ρg̃(0, 2)− ρ (1 + g̃(0, 2)) ξ̄t(0, 2)

dξ̄t(1, 1)

dt
=

1

4
ρg̃(1, 1)− ρ

(

1 +
1

4
g̃(1, 1)

)

ξ̄t(1, 1)

dz̄t(1, 2)

dt
=

1

2
ρg̃(1, 2)− ρ

(

1 +
1

2
g̃(1, 2)

)

ξ̄t(1, 2). (98)
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From the definition in Equation (22) we find that

g̃(0, 1) =
∑

h=(0,0)⊤

h
′∈{(0,1)⊤,(1,0)⊤}

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2 e−ηc

1+e−ηc
eη(βg1,τ −c)

1+eη(βg1,τ −c) = 2 e−ηc

1+e−ηc
eη(βbτ−c)

1+eη(βbτ−c) if θ = 1,

2 e−ηc

1+e−ηc
eη(βg0,τ (x)−c)

1+eη(βg0,τ (x)−c) = 2 e−ηc

1+e−ηc
e
η(β 2τb

1+bh̄t(x)
−c)

1+e
η(β 2τb

1+bh̄t(x)
−c)

if θ = 0,

g̃(0, 2) =
∑

h=(0,0)⊤

h
′=(1,1)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







e−ηc

1+e−ηc
e
η(2βgn1,τ −c)

1+e
η(2βgn

1,τ
−c) = e−ηc

1+e−ηc
eη(2βbτ−c)

1+eη(2βbτ−c) if θ = 1,

e−ηc

1+e−ηc
eη(2βg0,τ (x)−c)

1+eη(2βg0,τ (x)−c) = e−ηc

1+e−ηc
e
η(2β 2τb

1+bh̄t(x)
−c)

1+e
η(2β 2τb

1+bh̄t(x)
−c)

if θ = 0,

g̃(1, 1) =
∑

h∈{(0,1)⊤,(1,0)⊤}
h

′∈{(0,1)⊤,(1,0)⊤}

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2
(

e−2ηc

(1+e−ηc)2 + e2η(βg1,τ −c)

(1+eη(βg1,τ −c))2

)

= 2
(

e−2ηc

(1+e−ηc)2 + e2η(βbτ−c)

(1+eη(βbτ−c))2

)

if θ = 1,

2
(

e−2ηc

(1+e−ηc)2 + e2η((1+b)βg0,τ (x)−c)

(1+eη((1+b)βg0,τ (x)−c))2

)

= 2

(

e−2ηc

(1+e−ηc)2 + e
2η((1+b)β 2τb

1+bh̄t(x)
−c)

(1+e
η((1+b)β 2τb

1+bh̄t(x)
−c)

)2

)

if θ = 0,

g̃(1, 2) =
∑

h∈{(0,1)⊤,(1,0)⊤}
h

′=(1,1)⊤

eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h)|)1−θ〈hc,h′〉−c)

eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

1 + eη(βgθ,τ (x)(1+b| S(h′)|)1−θ〈h′c,h〉−c)

=







2 e−ηc

1+e−ηc
eη(βg0,τ −c)

1+eη(βg0,τ −c) = 2 e−ηc

1+e−ηc
eη(βbτ−c)

1+eη(βbτ−c) if θ = 1,

2 e−ηc

1+e−ηc
eη((1+b)βg0,τ (x)−c)

1+eη((1+b)βg0,τ (x)−c) = 2 e−ηc

1+e−ηc
e
η((1+b)β 2τb

1+bh̄t(x)
−c)

1+e
η((1+b)β 2τb

1+bh̄t(x)
−c)

if θ = 0,

where the average stock of knowledge is given by h̄t(x) = 2(x̄t(1)+ x̄t(2)). Note that in the limit of η → 0 we
obtain

lim
η→0

g̃(0, 1) =
1

2
,

lim
η→0

g̃(0, 2) =
1

4
,

lim
η→0

g̃(1, 1) = 1,

lim
η→0

g̃(1, 2) =
1

2
,

while in the limit of η → ∞ we obtain

lim
η→∞

g̃(0, 1) = lim
η→∞

g̃(0, 2) = lim
η→∞

g̃(1, 2) = 0

lim
η→∞

g̃(1, 1) = 2×
{

1{βbτ>c} if θ = 1,
1{ 2b(b+1)βτ

4b+1 >c} if θ = 0.

We now proof part (i) of the proposition. Denote by x1 ≡ limt→∞ x̄t(1), x2 ≡ limt→∞ x̄t(2) and z1 ≡
limt→∞ ξ̄t(0, 1), z2 ≡ limt→∞ ξ̄t(0, 2), z3 ≡ limt→∞ ξ̄t(1, 1), z4 ≡ limt→∞ ξ̄t(1, 2) and also let g1 ≡ g̃(0, 1),
g2 ≡ g̃(0, 2), g3 ≡ g̃(1, 1) and g4 ≡ g̃(1, 2). The fixed point x1 = x2 = 0 is stable if the Jacobian has only
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negative eigenvalues. The Jacobian is given by

J =

[

J11 J12
J21 J22

]

,

with

J11 =

[

(1 − 4x1 − x2)z1β − 2β(x2z2 + x1z3)− x2z4β − 3γ − λ z2β(1− 2x2)− x1(z1 + 2z2 + z4)β − γ + λ
2(2x1z3β + x2z4β + γ) 2x1z4β − 2λ

]

J12 =

[

x1(1− 2x1 − x2)β x2(1− 2x1 − x2)β −x21β −x1x2β
0 0 2x21β 2x1x2β

]

J22 =






−ρ
(
1 + 1

2g1
)

0 0 0
0 −ρ(1 + g2) 0 0
0 0 −ρ

(
1 + 1

4g3
)

0
0 0 0 −ρ

(
1 + 1

2g4
)




 .

In the case of θ = 0 we further have that

J21 =




















4b2e
η

(

2bβτ
2b(x1+x2)+1

−c

)

(z1−1)βηρτ

(1+ecη)

(

1+e
η

(

2bβτ
2b(x1+x2)+1

−c

)
)2

(2b(x1+x2)+1)2

4b2e
η

(

2bβτ
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while in the case of θ = 1 we have that

J21 =






0 0
0 0
0 0
0 0






Note that we obtain the same result for θ = 0 in the special case of η → ∞ and c > 2b(b+1)βτ
4b+1 as well as η → 0

or τ → 0. Moreover, in both cases, evaluated at x1 = x2 = 0 we obtain

J12 =

[

0 0 0 0
0 0 0 0

]

.

Hence, in both cases when x1 = x2 = 0 we have that45

det(J− µI6) = det(J11 − µI2)det(J22 − µI4).

We have that

det(J22 − µI4) =
1

16
(2µ+ g1ρ)(µ+ g2ρ)(4µ+ g3ρ)(2µ+ g4ρ),

The roots of the characteristic polynomial give us the eigenvalues µ3 = −ρ
(
1 + 1

2g1
)
, µ4 = −ρ(1 + g2),

µ5 = −ρ
(
1 + 1

4g3
)
, µ6 = −ρ

(
1 + 1

2g4
)
. These are all negative an real. Further we have that at x1 = x2 = 0

det(J11 − µI2) = α(2γ + µ) + (γ + λ+ µ)(2(γ + λ) + µ)− β(z1(2λ+ µ) + 2z2(α+ γ)).

45We have used the fact that for any block matrix, det

[

A B

C D

]

= det(D) det(A−BD
−1

C) when D is invertible.
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Setting α = γ = 0 this simplifies to

det(J11 − µI2) = λ+ µ− βz1)2λ+ µ

The roots are given by

µ1 = βz1 − λ

µ2 = −2λ.

Inserting the stationary state

z1 =
g1

g1 + 2

delivers Equation (35). This completes the proof of part (i) of the proposition.
Next, we consider part (ii) of the proposition. For small values of τ we have that

z1 =
g1

g1 + 2
=

ebβητ

2ebβητ + eη(bβτ+c) + ecη + e2cη
=

bβητecη (ecη + 1)

(2ecη + e2cη + 2)
2 +

1

2ecη + e2cη + 2
+O

(
τ2
)

z2 =
g2

g2 + 1
=

e2bβητ

2e2bβητ + eη(2bβτ+c) + ecη + e2cη
=

2bβητecη (ecη + 1)

(2ecη + e2cη + 2)
2 +

1

2ecη + e2cη + 2
+O

(
τ2
)

z3 =
g3

g3 + 4
=

e2bβητ

(ebβητ+ecη)2
+ 1

(ecη+1)2

e2bβητ

(ebβητ+ecη)2
+ 1

(ecη+1)2
+ 2

=
bβητecη (ecη + 1)

(2ecη + e2cη + 2)
2 +

1

2ecη + e2cη + 2
+O

(
τ2
)

z4 =
g4

g4 + 2
=

ebβητ

2ebβητ + eη(bβτ+c) + ecη + e2cη
=

bβητecη (ecη + 1)

(2ecη + e2cη + 2)2
+

1

2ecη + e2cη + 2
+O

(
τ2
)
.

In the case of α = γ = 0, the stationary state solves the equations

0 = β
(
x21(−z3) + x1z1(−2x1 − x2 + 1) + x2z2(−2x1 − x2 + 1)− x1x2z4

)
− x1λ+ γ(−2x1 − x2 + 1) + λx2

0 = 2
(
β
(
x21z3 + x1x2z4

)
− λx2

)
.

For x2 we get

x2 =
βx21z1

λ− βx1z1
,

while solving for x1 gives

x1 =
1

3 3
√
Aβ2z21(4β(3βz1(z1 − z2) + 2z1 − z2) + 1)

× (−A2/3 + 2
3
√
Aβz1(λ + β(βz21(6β(z1 − z2) + 1) + λ(12βz1(z1 − z2) + 9z1 − 2z2)))

− 4β6z61(6β(z1 − z2) + 1)2 + 4β4λz41(β(12(3β
2z1(z1 − z2)(2z1 + z2)

+ β(4z21 − 2z1z2 + z22) + z1)− 5z2) + 1)− β2λ2z21(4β(144β
3z21(z1 − z2)

2

+ 48β2z1(3z
2
1 − 4z1z2 + z22) + β(48z21 − 27z1z2 + 4z22) + 6z1 − z2) + 1))),

where A = B + 6
√
3C with

B = β3z31(−8β6z61(6β(z1 − z2) + 1)3 + 12β4λz41(β(6(36β
3z1(z1 − z2)

2(2z1 + z2)

+ 6β2(z1 − z2)(10z
2
1 − 3z1z2 + 2z22) + β(20z21 − 21z1z2 + 7z22) + 3z1)− 11z2) + 1)

− 6β2λ2z21(β(432β
4z21(z1 − z2)

2(5z1 − 2z2) + 72β3z1(z1 − z2)(35z
2
1 − 30z1z2 − 2z22)

+ 12β2(93z31 − 112z21z2 + 9z1z
2
2 + 4z32) + 2β(117z21 − 78z1z2 − 4z22) + 24z1 − 7z2) + 1)

+ λ3(2β(432β5z31(z1 − z2)
2(11z1 + 16z2) + 216β4z21(z1 − z2)(33z

2
1 + 19z1z2 − 16z22)

+ 72β3z1(60z
3
1 − 27z21z2 − 23z1z

2
2 + 8z32) + 2β2(3z1 − 2z2)(225z

2
1 + 33z1z2 − 8z22)

+ 3β(75z21 − 30z1z2 − 4z22) + 18z1 − 3z2) + 1)),
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and

C = β8λ2z61(4β(3βz1(z1 − z2) + 2z1 − z2) + 1)2(1296β10z81z
2
2(z1 − z2)

2

+ 432β9z81z2(z1 − z2)(6λz1 − 18λz2 + z2) + 36β8z61(36λ
2(z1 − z2)

2(z21 − 10z1z2 + 4z22) + z21z
2
2

+ 24λz2(z
3
1 − 5z21z2 + 3z1z

2
2 − z32)) + 72β7λz51(z1z2(z

2
1 − 11z1z2 + 5z22) + 6λ(z1 − z2)(3z

3
1 − 22z21z2

+ 31z1z
2
2 − 4z32)− 36λ2z1(z1 − 10z2)(z1 − z2)

2) + 12β6λz41(3λ(12λ(15λ− 8) + 13)z41

− 6λ(6λ(126λ− 73) + 37)z31z2 + (18λ(414λ2 − 226λ+ 29)− 5)z21z
2
2 − 24λ(72λ(2λ− 1) + 7)z1z

3
2 + 12λz42)

+ 24β5λ2z41((6λ(75λ− 13) + 3)z31 + (9(55− 336λ)λ− 10)z21z2 + (3726λ2 − 681λ+ 31)z1z
2
2

− 2(3λ(192λ− 35) + 2)z32) + β4λ2z31((12λ(597λ− 43) + 4)z31 − 4(9144λ2 − 507λ+ 1)z21z2

+ (12λ(2703λ− 253) + 37)z1z
2
2 + 432λ(1− 16λ)z32) + 2β3λ3z21(6(199λ− 6)z31

+ (79− 4350λ)z21z2 + 2(1506λ− 71)z1z
2
2 + 4(1− 96λ)z32) + β2λ3z1((413λ− 4)z31 + 4(1− 250λ)z21z2

+ 2(326λ− 5)z1z
2
2 − 32λz32) + 2βλ4z1(17z

2
1 − 26z1z2 + 20z22) + λ4(z21 − z1z2 + z22)).

To determine the stability of the fixed points, observe that in the case of τ → 0 the block element J21 of the
Jacobian J is an all zero matrix, so that

det(J− µI6) = det(J11 − µI2)det(J22 − µI4).

We know that the characteristic polynomial det(J22 −µI4) has only real eigenvalues. Moreover, in the case of
γ = 0 and c = 0 where z1 = z2 = z3 = z4 = 1

5 we have that

det(J11 − µI2) =
1

25

(
25(αµ+ (λ+ µ)(2λ+ µ)) + 2β2(x1 + x2)(2x1 + 2x2 − 1)

+5β(−2λ− µ+ α(6x1 + 4x2 − 2) + 2(3λ+ 2µ)(x1 + x2))) .

The roots are given by

µ1,2 =
1

10

(

−5α− 15λ±
√

25α2 + 150αλ+ (5λ+ β)2 − 10αβ(8x1 + 4x2 − 3) + β(−4x1 − 4x2 + 1)
)

.

The eigenvalues are real if the term under the square root is positive. Using the fact that x1 = 5λ(β−5λ)
β2 and

x2 = (β−5λ)2

β2 we find that this is equivalent to

25α2 − 10α(β − 20λ)(5λ+ β)

β
+ (5λ+ β)2 > (5λ+ β)

200αλ+ β2 + 5β(λ− 2α)

β
> 0,

which holds if α < λ
2 .

In the following we prove part (iii) of the proposition. In the case of η → 0 we have that z1 = z2 = z3 =
z4 = 1

5 . Setting also γ = 0 we obtain for the fixed points

0 =
2

5
βx1(x1 + x2) + 2αx1 − 2λx2,

0 =
1

5

(
−3βx21 + x1(−5α− 5λ+ β − 4βx2) + x2(5λ+ (β − βx2))

)
.

The solutions are given by x1 = x2 = 0, or

x2 =
2α(A− 5α) + λ(−25α+A− β)

2αβ
,
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and

x1 =
1

6αβ

[
15α2 + 45αλ− 2A(2α+ λ)

+α
(
100αλ3 + λ2

(
−175α2 + 2β(β −A) + 10αβ

)
+ α2

(
25α2 + β(4A+ 5β) + 10αβ

)

+2αλ
(
(β − 5α)2 −Aβ

)) 1
2 + α2β + 2αβλ

]

,

where we have denoted by A ≡
√

100αλ+ (5α+ βn)2. Since the block element J21 of the Jacobian J is an
all zero matrix when η → 0, the same reasoning as above shows that the Jacobian has only real eigenvalues.

Finally, we give a proof of part (iv) of the proposition. When βbτ > c in the case of θ = 1 and 2b(b+1)βτ
4b+1 > c

in the case of θ = 0 then in the limit of η → ∞ starting from an empty graph K̄n we have that

z1 = z2 = z4 = 0,

z3 =
1

3
.

The fixed points of Equation (43) then satisfy

0 = 2

(
1

3
βx21 + x1(α + γ)− λx2

)

0 = γ − 1

3
βx21 − x1(α+ 3γ + λ)− γx2 + λx2

and the solution is given by

x1 =
−3αγ − 3(γ + λ)2 +

√

12βγ2λ+ 9 (αγ + (γ + λ)2)
2

2βγ
,

and

x2 =
1

12βγ2λ

(

3αγ + 3γ2 − 6γλ− 3λ2 +

√

12βγ2λ+ 9 (αγ + (γ + λ)2)2
)

,

×
(

−3αγ − 3 (γ + λ)
2
+

√

12βγ2λ+ 9 (αγ + (γ + λ)2)
2

)

.

For γ = 0 the unique solution is x1 = x2 = 0. In the case of θ = 1 we have that the block element J21 of the
Jacobian J is an all zero matrix. The eigenvalues of the Jacobian are then determined by

det(J− µI6) = det(J11 − µI2)det(J22 − µI4).

We know that the characteristic polynomial det(J22 − µI4) has only real eigenvalues. Moreover, when z1 =
z2 = z4 = 0 and z3 = 1

3 we have that

det(J11 − µI2) = α(2γ + µ) + (γ + λ+ µ)(2(γ + λ) + µ) +
2

3
βx1(2γ + µ).

The roots give us the eigenvalues

µ1,2 =
1

6

(

−3α− 9γ − 9λ−
√

9λ2 + 18λ(3α+ γ + 2βx1) + (3α− 3γ + 2βx1)2 − 2βx1

)

.

Since the term under the square root cannot be negative, we find that the eigenvalues are real. In the case of

θ = 0 and 2b(b+1)βτ
4b+1 < c, we have that z1 = z2 = z3 = z4 = 0 and the characteristic polynomial is given by

det(J11 − µI2) = α(2γ + µ) + (γ + λ+ µ)(2(γ + λ) + µ).
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The roots give us the eigenvalues

µ1,2 =
1

2

(

±
√

α2 − 2α(γ − 3λ) + (γ + λ)2 − α− 3γ − 3λ
)

.

These eigenvalues are real if λ > γ
3 .

Proof of Proposition 11. In the following we also consider contributions to mt(h,h
′) originating from

changes in the technologies h and h′ of the firms that are of the order of o(ρ) in Equation (99):

n2
Fz(h,h

′) ≡ nt(h)nt(h
′)ρ g(h,h′)

(

1− mt(h,h
′)

nt(h)nt(h′)

)

− ρmt(h,h
′)

}

A

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)nt(h− ek)
mt(h− ek,h

′)

nt(h− ek)
−

N∑

k=1

1{hk=0} (γ + α〈h,u〉) nt(h)
mt(h,h

′)

nt(h)

+λ
N∑

k=1

1{hk=0}nt(h+ ek)
mt(h+ ek,h

′)

nt(h+ ek)
− λ

N∑

k=1

1{hk=1}nt(h)
mt(h,h

′)

nt(h)







B

+β

N∑

k=1

1{hk=1}
∑

h′′∈HN :h′′

k
=1

mt(h− ek,h
′′)

[

1{h′′ 6=h′}
mt(h− ek,h

′)

nt(h− ek)
+ 1{h′′=h′}

(

1 +
τt(h

′,h− ek,h
′)

mt(h− ek,h′)

)]

−β
N∑

k=1

1{hk=0}
∑

h′′∈HN :h′′

k
=1

mt(h,h
′′)

[

1{h′′ 6=h′}
mt(h,h

′)

xt(h)
+ 1{h′′=h′}

(

1 +
τt(h

′,h,h′)

mt(h,h′)

)]







C

+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)nt(h

′ − ek)
mt(h,h

′ − ek)

nt(h′ − ek)
−

N∑

k=1

1{h′

k
=0} (γ + α〈h′,u〉)nt(h

′)
mt(h,h

′)

nt(h′)

+λ
N∑

k=1

1{h′

k
=0}nt(h

′ + ek)
mt(h,h

′ + ek)

nt(h′ + ek)
− λ

N∑

k=1

1{h′

k
=1}nt(h

′)
mt(h,h

′)

nt(h′)







B′

+β

N∑

k=1

1{h′

k
=1}

∑

h′′∈HN :h′′

k
=1

mt(h
′ − ek,h

′′)

[

1{h′′ 6=h}
mt(h,h

′ − ek)

nt(h′ − ek)
+ 1{h′′=h}

(

1 +
τt(h,h

′ − ek,h)

mt(h′ − ek,h)

)]

−β
N∑

k=1

1{h′

k
=0}

∑

h′′∈HN :h′′

k
=1

mt(h
′,h′′)

[

1{h′′ 6=h}
mt(h

′,h)

nt(h′)
+ 1{h′′=h}

(

1 +
τt(h,h

′,h)

mt(h′,h)

)]

.







C′

(99)

We now explain each of the terms on the RHS in Equation (99). Part A takes into account the contribution
due to link creation or removal. The rate at which links between firms with technologies h and h′ decay is

given by ρnt(h)nt(h
′) mt(h,h

′)
nt(h)nt(h′) , where nt(h)nt(h

′) is the expected number of pairs of firms with technologies

h and h′ that are selected, and mt(h,h
′)

nt(h)nt(h′) is the probability that a link exists between them. Similarly, the

rate at which such links are created is given by ρnt(h)nt(h
′)g(h,h′)

(

1− mt(h,h
′)

nt(h)nt(h′)

)

, where 1− mt(h,h
′)

nt(h)nt(h′) is

the probability that a link does not exist between the firms with technologies h and h′, and g(h,h′) is the
probability that they want to form a link when they have the opportunity.

The remaining parts, B, C, B′ and C′ capture contributions stemming from changes in the technologies
h and h′ of the firms.

First, we consider part B which captures either gains due to the discovery of h by a firm with technology
h− ek, gains trough obsolescence of idea k of a firm with technology h+ ek, losses due to successful in-house
R&D of a firm with technology h, or losses due to obsolescence of an idea of a firm with technology h. The
rate at which the first happens through in-house R&D is given by (γ + α〈h − ek,u〉)nt(h − ek). Moreover,
the expected number of links to firms with technologies h′ in which a firm with technology h− ek is involved

is given by mt(h−ek,h
′)

nt(h−ek)
. Summation over all k = 1, . . . , N gives the first equation in B. In the same way, the

second term captures the rate of decline through a firm with technology h learning about a new idea k it does
not possess yet, i.e. hk = 0, which happens at a rate (γ + α〈h,u〉)nt(h) and the expected number of links

to firms with technology h′ involving the firm with technology h given by mt(h,h
′)

nt(h)
. The third term captures

the loss of an idea of a firm with technology h+ ek, which happens at a rate λnt(h + ek), and the expected
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number of links to firms with technology h′ involving a firm with technology h being given by mt(h+ek,h
′)

nt(h+ek)
.

Finally, we need to consider the loss of an idea k by a firm with technology h, which happens at a rate λnt(h),
and the expected number of links to firms with technology h′ involving a firm with technology h being given

by mt(h,h
′)

nt(h)
. Summation over all k = 1, . . . , N gives the last equation in B.

Part C captures contributions due to technology spillovers. The first equation corresponds to a firm with
technology h − ek learning about the idea k from linked firms with technology h′′ which have the idea k,
i.e. h′′k = 1. The rate at which this happens is βmt(h − ek,h

′′). We then need to consider two cases. First,
assume that h′′ 6= h′. Then the expected number of links created is given by the expected number of links to

firms with technology h′ involving a firm with technology h − ek, which is mt(h−ek,h
′)

nt(h−ek)
. Second, assume that

h′′ = h′. Then (at least) one link between a firm with technology h and technology h′ is created. Additional
links are created if the firm with technology h − ek, which has learned from the firm with technology h′,
has other neighbors with technology h′. The number of such neighbors for each link between a firm with

technology h− ek and a firm with technology h′ is given by τt(h
′,h−ek,h

′)
mt(h−ek,h′) . Summation over all k = 1, . . . , N

and technologies h′′ with h′′k = 1 gives the first equation in part C.
The second equation in part C captures the losses from a firm with technology h which is connected to a

firm with technology h′ that learns about a new idea k (that is hk = 0) from a linked firm with technology h′′

with h′′k = 1. Similar to the discussion in the previous paragraph, the rate at which this happens is βmt(h,h
′′)

times the expected number of links to firms with technology h′ involving a firm with technology h, which is
mt(h,h

′)
nt(h)

for all h′′ 6= h′. Moreover, when h′′ = h′ additional links are created if the firm with technology h,

which has learned from the firm with technology h′, has other neighbors with technology h′. The number
of such neighbors for each link between a firm with technology h and a firm with technology h′ is given by
τt(h

′,h,h′)
mt(h,h′) . Summation over all k = 1, . . . , N and technologies h′′ with h′′k = 1 gives the second equation in

part C.
Part B′ is identical to part B but with the roles of h and h′ exchanged. Similarly, part C′ is identical to

C but with h and h′ exchanged.
In the following we make a pair approximation as in Gross et al. [2006]; Keeling and Eames [2005]:

τt(h,h
′,h′′) ≈ mt(h,h

′)mt(h
′,h′′)

nt(h′)
.

In particular, we then obtain

τt(h,h
′,h)

mt(h′,h)
≈ mt(h,h

′)

nt(h′)
= n

zt(h,h
′)

xt(h′)

Introducing the rescaled variables β → β/n, c → c/n, δ/n → δ (β → β/n, c → c/n and η/δ → ηn/δ,
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respectively), and dividing by n2 we can write Equation (99) as

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)
zt(h− ek,h

′)

xt(h− ek)
−

N∑

k=1

1{hk=0} (γ + α〈h,u〉) xt(h)
zt(h,h

′)

xt(h)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)
zt(h+ ek,h

′)

xt(h+ ek)
− λ

N∑

k=1

1{hk=1}xt(h)
zt(h,h

′)

xt(h)

+ β

N∑

k=1

1{hk=1}
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)

[

1{h′′ 6=h′}
zt(h− ek,h

′)

xt(h− ek)
+ 1{h′′=h′}

(
1

n
+
zt(h

′,h− ek)

xt(h− ek)

)]

− β

N∑

k=1

1{hk=0}
∑

h′′∈HN :h′′

k
=1

zt(h,h
′′)

[

1{h′′ 6=h′}
zt(h,h

′)

xt(h)
+ 1{h′′=h′}

(
1

n
+
zt(h,h

′)

xt(h)

)]

+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉) xt(h′ − ek)

zt(h,h
′ − ek)

xt(h′ − ek)
−

N∑

k=1

1{h′

k
=0} (γ + α〈h′,u〉)xt(h′)

zt(h,h
′)

xt(h′)

+ λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)
zt(h,h

′ + ek)

xt(h′ + ek)
− λ

N∑

k=1

1{h′

k
=1}xt(h

′)
zt(h,h

′)

xt(h′)

+ β

N∑

k=1

1{h′

k
=1}

∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)

[

1{h′′ 6=h}
zt(h,h

′ − ek)

xt(h′ − ek)
+ 1{h′′=h}

(
1

n
+
zt(h,h

′ − ek)

xt(h′ − ek)

)]

− β

N∑

k=1

1{h′

k
=0}

∑

h′′∈HN :h′′

k
=1

zt(h
′,h′′)

[

1{h′′ 6=h}
zt(h

′,h)

xt(h′)
+ 1{h′′=h}

(
1

n
+
zt(h,h

′)

xt(h′)

)]

, (100)
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Equation (100) can be further written as

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)
zt(h− ek,h

′)

xt(h− ek)
−

N∑

k=1

1{hk=0} (γ + α〈h,u〉) xt(h)
zt(h,h

′)

xt(h)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)
zt(h+ ek,h

′)

xt(h+ ek)
− λ

N∑

k=1

1{hk=1}xt(h)
zt(h,h

′)

xt(h)

+ β

N∑

k=1

1{hk=1}
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)zt(h− ek,h

′)

xt(h− ek)
+
β

n

N∑

k=1

1{hk=1}1{h′

k
=1}zt(h− ek,h

′)

− β

N∑

k=1

1{hk=0}
∑

h′′∈HN :h′′

k
=1

zt(h,h
′′)zt(h,h′)

xt(h)
− β

n

N∑

k=1

1{hk=0}1{h′

k
=1}zt(h,h

′)

+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉) xt(h′ − ek)

zt(h,h
′ − ek)

xt(h′ − ek)
−

N∑

k=1

1{h′

k
=0} (γ + α〈h′,u〉)xt(h′)

zt(h,h
′)

xt(h′)

+ λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)
zt(h,h

′ + ek)

xt(h′ + ek)
− λ

N∑

k=1

1{h′

k
=1}xt(h

′)
zt(h,h

′)

xt(h′)

+ β

N∑

k=1

1{h′

k
=1}

∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)zt(h,h′ − ek)

xt(h′ − ek)
+
β

n

N∑

k=1

1{h′

k
=1}1{hk=1}zt(h

′ − ek,h)

− β

N∑

k=1

1{h′

k
=0}

∑

h′′∈HN :h′′

k
=1

zt(h
′,h′′)zt(h′,h)

xt(h′)
− β

n

N∑

k=1

1{h′

k
=0}1{hk=1}zt(h

′,h). (101)
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From Equation (101) we obtain

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+
zt(h,h

′)

xt(h)

[
N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉) xt(h− ek)−
N∑

k=1

1{hk=0} (γ + α〈h,u〉) xt(h)

+λ

N∑

k=1

1{hk=0}xt(h+ ek)− λ

N∑

k=1

1{hk=1}xt(h)

]

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)

(
zt(h+ ek,h

′)

xt(h+ ek)
− zt(h,h

′)

xt(h)

)

+ β

N∑

k=1

1{hk=1}




∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)zt(h,h′)

xt(h)

+1{h′

k
=1}

zt(h− ek,h
′)

n
+

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)





− β

N∑

k=1

1{hk=0}




∑

h′′∈HN :h′′

k
=1

zt(h,h
′′)zt(h,h′)

xt(h)
+ 1{h′

k
=1}

zt(h,h
′)

n





+
zt(h,h

′)

xt(h′)

[
N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)xt(h′ − ek)−

N∑

k=1

1{h′

k
=0} (γ + α〈h′,u〉) xt(h′)

+λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)− λ

N∑

k=1

1{h′

k
=1}xt(h

′)

]

+
N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)xt(h′ − ek)

(
zt(h,h

′ − ek)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)

+ λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)

(
zt(h,h

′ + ek)

xt(h′ + ek)
− zt(h,h

′)

xt(h′)

)

+ β

N∑

k=1

1{h′

k
=1}




∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)zt(h,h′)

xt(h′)

+1{hk=1}
zt(h

′ − ek,h)

n
+

(
zt(h

′ − ek,h)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)





− β

N∑

k=1

1{h′

k
=0}




∑

h′′∈HN :h′′

k
=1

zt(h
′,h′′)zt(h′,h)

xt(h′)
+ 1{hk=1}

zt(h
′,h)

n



 . (102)
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This can be written as follows

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+
zt(h,h

′)

xt(h)

dxt(h)

dt
+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)

(
zt(h+ ek,h

′)

xt(h+ ek)
− zt(h,h

′)

xt(h)

)

+ β

N∑

k=1

1{hk=1}



1{h′

k
=1}

zt(h− ek,h
′)

n
+

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)





− β

n

N∑

k=1

1{hk=0}1{h′

k
=1}zt(h,h

′)

+
zt(h,h

′)

xt(h′)

dxt(h
′)

dt
+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉) xt(h′ − ek)

(
zt(h,h

′ − ek)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)

+ λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)

(
zt(h,h

′ + ek)

xt(h′ + ek)
− zt(h,h

′)

xt(h′)

)

+ β
N∑

k=1

1{h′

k
=1}



1{hk=1}
zt(h

′ − ek,h)

n
+

(
zt(h

′ − ek,h)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)





− β

n

N∑

k=1

1{h′

k
=0}1{hk=1}zt(h

′,h). (103)

This is

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+
zt(h,h

′)

xt(h)

dxt(h)

dt
+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉) xt(h− ek)

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)

(
zt(h+ ek,h

′)

xt(h+ ek)
− zt(h,h

′)

xt(h)

)

+ β

N∑

k=1

1{hk=1}

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)

+
zt(h,h

′)

xt(h′)

dxt(h
′)

dt
+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)xt(h′ − ek)

(
zt(h,h

′ − ek)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)

+ λ

N∑

k=1

1{h′

k
=0}xt(h

′ + ek)

(
zt(h,h

′ + ek)

xt(h′ + ek)
− zt(h,h

′)

xt(h′)

)

+ β

N∑

k=1

1{h′

k
=1}

(
zt(h

′ − ek,h)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)

+
β

n

N∑

k=1

1{hk=1}1{h′

k
=1}zt(h− ek,h

′) +
β

n

N∑

k=1

1{h′

k
=1}1{hk=1}zt(h

′ − ek,h)

− β

n
zt(h,h

′)
N∑

k=1

(

1{hk=0}1{h′

k
=1} + 1{h′

k
=0}1{hk=1}

)

. (104)
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Using the fact that

N∑

k=1

1{hk=0}1{h′

k
=1} = 〈hc,h′〉,

N∑

k=1

1{h′

k
=0}1{hk=1} = 〈h′c,h〉,

we obtain

Fz(h,h
′) = xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+
zt(h,h

′)

xt(h)

dxt(h)

dt
+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)

(
zt(h+ ek,h

′)

xt(h+ ek)
− zt(h,h

′)

xt(h)

)

+ β
N∑

k=1

1{hk=1}

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)

+
zt(h,h

′)

xt(h′)

dxt(h
′)

dt
+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)xt(h′ − ek)

(
zt(h,h

′ − ek)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)

+ λ
N∑

k=1

1{h′

k
=0}xt(h

′ + ek)

(
zt(h,h

′ + ek)

xt(h′ + ek)
− zt(h,h

′)

xt(h′)

)

+ β

N∑

k=1

1{h′

k
=1}

(
zt(h

′ − ek,h)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)

+
β

n

N∑

k=1

1{hk=1}1{h′

k
=1} (zt(h− ek,h

′) + zt(h
′ − ek,h))−

β

n
zt(h,h

′)(〈hc,h′〉+ 〈h′c,h〉). (105)

Using the fact that plim
n→∞

dzt(h,h
′)

dt = Fz(h,h
′),46 and dropping terms of the order O

(
1
n

)
in Equation (105)

46The same argument as in the proof of Theorem 1 holds. In particular, note that the RHS of Equation (105) is
Lipschitz in xt(·) and zt(·, ·), as it is composed of either linear terms, or has derivatives that are products of (conditional)
probabilities, which are all bounded. It then follows that Kurtz’s Theorem can be applied to establish convergence in
probability to the mean dynamic.
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yields

dzt(h,h
′)

dt
= xt(h)xt(h

′)

[

ρ g(h,h′)

(

1− zt(h,h
′)

xt(h)xt(h′)

)

− ρ
zt(h,h

′)

xt(h)xt(h′)

]

+
zt(h,h

′)

xt(h)

dxt(h)

dt
+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)xt(h− ek)

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)

+ λ

N∑

k=1

1{hk=0}xt(h+ ek)

(
zt(h+ ek,h

′)

xt(h+ ek)
− zt(h,h

′)

xt(h)

)

+ β
N∑

k=1

1{hk=1}

(
zt(h− ek,h

′)

xt(h− ek)
− zt(h,h

′)

xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)

+
zt(h,h

′)

xt(h′)

dxt(h
′)

dt
+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)xt(h′ − ek)

(
zt(h,h

′ − ek)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)

+ λ
N∑

k=1

1{h′

k
=0}xt(h

′ + ek)

(
zt(h,h

′ + ek)

xt(h′ + ek)
− zt(h,h

′)

xt(h′)

)

+ β
N∑

k=1

1{h′

k
=1}

(
zt(h

′ − ek,h)

xt(h′ − ek)
− zt(h,h

′)

xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′). (106)

Equations (74) and (107) now represent a closed system for the variables xt(h) and zt(h,h
′). We next introduce

the variable

ξt(h,h
′) ≡ zt(h,h

′)

xt(h)xt(h′)
,

for which we have that

dξt(h,h
′)

dt
=

1

xt(h)xt(h′)

dzt(h,h
′)

dt
− zt(h,h

′)

xt(h)xt(h′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

.
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Using Equation (107) we then get

dξt(h,h
′)

dt
= ρg(h,h′) (1− ξt(h,h

′))− ρ ξt(h,h
′)

+ ξt(h,h
′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

− ξt(h,h
′)

(
1

xt(h)

dxt(h)

dt
+

1

xt(h′)

dxt(h
′)

dt

)

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)
xt(h− ek)

xt(h)

(
zt(h− ek,h

′)

xt(h− ek)xt(h′)
− zt(h,h

′)

xt(h)xt(h′)

)

+ λ

N∑

k=1

1{hk=0}
xt(h+ ek)

xt(h)

(
zt(h+ ek,h

′)

xt(h+ ek)xt(h′)
− zt(h,h

′)

xt(h)xt(h′)

)

+ β

N∑

k=1

1{hk=1}

(
zt(h− ek,h

′)

xt(h− ek)xt(h′)
− zt(h,h

′)

xt(h)xt(h′)

)
∑

h′′∈HN :h′′

k
=1

zt(h− ek,h
′′)

xt(h)

+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)

xt(h
′ − ek)

xt(h′)

(
zt(h,h

′ − ek)

xt(h′ − ek)xt(h)
− zt(h,h

′)

xt(h′)xt(h)

)

+ λ

N∑

k=1

1{h′

k
=0}

xt(h
′ + ek)

xt(h′)

(
zt(h,h

′ + ek)

xt(h′ + ek)xt(h)
− zt(h,h

′)

xt(h′)xt(h)

)

+ β
N∑

k=1

1{h′

k
=1}

(
zt(h

′ − ek,h)

xt(h′ − ek)xt(h)
− zt(h,h

′)

xt(h′)xt(h)

)
∑

h′′∈HN :h′′

k
=1

zt(h
′ − ek,h

′′)

xt(h′)
. (107)

This is

dξt(h,h
′)

dt
= ρg(h,h′) (1− ξt(h,h

′))− ρ ξt(h,h
′)

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)
xt(h− ek)

xt(h)
(ξt(h− ek,h

′)− ξt(h,h
′))

+ λ

N∑

k=1

1{hk=0}
xt(h+ ek)

xt(h)
(ξt(h+ ek,h

′)− ξt(h,h
′))

+ β

N∑

k=1

1{hk=1} (ξt(h− ek,h
′)− ξt(h,h

′))
∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)
xt(h− ek)xt(h

′′)

xt(h)

+

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)

xt(h
′ − ek)

xt(h′)
(ξt(h,h

′ − ek)− ξt(h,h
′))

+ λ

N∑

k=1

1{h′

k
=0}

xt(h
′ + ek)

xt(h′)
(ξt(h,h

′ + ek)− ξt(h,h
′))

+ β

N∑

k=1

1{h′

k
=1} (ξt(h

′ − ek,h)− ξt(h,h
′))

∑

h′′∈HN :h′′

k
=1

ξt(h
′ − ek,h

′′)
xt(h

′ − ek)xt(h
′′)

xt(h′)
. (108)
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We then get

dξt(h,h
′)

dt
= ρg(h,h′) (1− ξt(h,h

′))− ρ ξt(h,h
′)

+

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)
xt(h− ek)

xt(h)
(ξt(h− ek,h

′)− ξt(h,h
′))

+
N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)

xt(h
′ − ek)

xt(h′)
(ξt(h,h

′ − ek)− ξt(h,h
′))

+ λ

N∑

k=1

1{hk=0}
xt(h+ ek)

xt(h)
(ξt(h+ ek,h

′)− ξt(h,h
′))

+ λ

N∑

k=1

1{h′

k
=0}

xt(h
′ + ek)

xt(h′)
(ξt(h,h

′ + ek)− ξt(h,h
′))

+ β

N∑

k=1

1{hk=1} (ξt(h− ek,h
′)− ξt(h,h

′))
∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)
xt(h− ek)xt(h

′′)

xt(h)

+ β

N∑

k=1

1{h′

k
=1} (ξt(h

′ − ek,h)− ξt(h,h
′))

∑

h′′∈HN :h′′

k
=1

ξt(h
′ − ek,h

′′)
xt(h

′ − ek)xt(h
′′)

xt(h′)
. (109)

Proof of Proposition 12. Summation over all h ∈ HN with the property that | S(h)| = s and h′ ∈ HN

with | S(h′)| = s′ and inserting the definition in Equation (90) into Equation (55) gives

dξ̄t(s, s
′)

dt
= ρḡ(s, s′)− ρ(1 + ḡ(s, s′))ξ̄t(s, s

′)

+
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{hk=1} (γ + α〈h− ek,u〉)
xt(h− ek)

xt(h)
(ξt(h− ek,h

′)− ξt(h,h
′))

+
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{h′

k
=1} (γ + α〈h′ − ek,u〉)

xt(h
′ − ek)

xt(h′)
(ξt(h,h

′ − ek)− ξt(h,h
′))

+ λ
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{hk=0}
xt(h+ ek)

xt(h)
(ξt(h+ ek,h

′)− ξt(h,h
′))

+ λ
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{h′

k
=0}

xt(h
′ + ek)

xt(h′)
(ξt(h,h

′ + ek)− ξt(h,h
′))

+ β
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{hk=1} (ξt(h− ek,h
′)− ξt(h,h

′))
∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)
xt(h− ek)xt(h

′′)

xt(h)

+ β
1
(
N
s

)
1
(
N
s′

)

∑

h∈HN :| S(h)|=s

h
′∈HN :| S(h)|=s′

N∑

k=1

1{h′

k
=1} (ξt(h

′ − ek,h)− ξt(h,h
′))

∑

h′′∈HN :h′′

k
=1

ξt(h
′ − ek,h

′′)
xt(h

′ − ek)xt(h
′′)

xt(h′)
.

(110)
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Note that

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(γ + α| S(h− ek)|)
xt(h− ek)

xt(h)
ξt(h− ek,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

(γ + α| S(h)|) xt(h)

xt(h+ ek)
ξt(h,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α| S(h)|) xt(h)ξt(h,h′)
∑

k∈S(hc)

1

xt(h+ ek)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α(s− 1))
x̄t(s− 1)ξ̄t(s− 1, s′)

x̄t(s)

∑

k∈S(hc)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α(s− 1))
x̄t(s− 1)ξ̄t(s− 1, s′)

x̄t(s)
(N − s+ 1)

= (γ + α(s− 1))
x̄t(s− 1)ξ̄t(s− 1, s′)

x̄t(s)
(N − s+ 1)

(
N

s− 1

)(
N

s′

)

.

It then follows that

1
(
N
s

)
1
(
N
s′

)

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(γ + α| S(h− ek)|)
xt(h− ek)

xt(h)
ξt(h− ek,h

′)

= s (γ + α(s− 1))
x̄t(s− 1)ξ̄t(s− 1, s′)

x̄t(s)
.

Similarly, we have that

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(γ + α| S(h− ek)|)
xt(h− ek)

xt(h)
ξt(h,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

(γ + α| S(h)|) xt(h)

xt(h+ ek)
ξt(h+ ek,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α| S(h)|)xt(h)
∑

k∈S(hc)

ξt(h,h
′)

xt(h+ ek)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α(s− 1))
x̄t(s− 1)ξ̄t(s, s

′)

x̄t(s)

∑

k∈S(hc)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(γ + α(s− 1))
x̄t(s− 1)ξ̄t(s, s

′)

x̄t(s)
(N − s+ 1)

= (γ + α(s− 1))
x̄t(s− 1)ξ̄t(s, s

′)

x̄t(s)
(N − s+ 1)

(
N

s− 1

)(
N

s′

)

.

Hence, we get

1
(
N
s

)
1
(
N
s′

)

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(γ + α| S(h− ek)|)
xt(h− ek)

xt(h)
ξt(h,h

′)

= s (γ + α(s− 1))
x̄t(s− 1)ξ̄t(s, s

′)

x̄t(s)
.
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Next, we have that

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

xt(h+ ek)

xt(h)
ξt(h+ ek,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

∑

k∈S(h)

xt(h)

xt(h− ek)
ξt(h,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

xt(h)ξt(h,h
′)
∑

k∈S(h)

1

xt(h− ek)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

x̄t(s+ 1)ξ̄t(s+ 1, s′)

x̄t(s)

∑

k∈S(h)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

x̄t(s+ 1)ξ̄t(s+ 1, s′)

x̄t(s)
(s+ 1)

=
x̄t(s+ 1)ξ̄t(s+ 1, s′)

x̄t(s)
(s+ 1)

(
N

s+ 1

)(
N

s′

)

.

Thus we get

1
(
N
s

)
1
(
N
s′

)

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

xt(h+ ek)

xt(h)
ξt(h+ ek,h

′)

=
x̄t(s+ 1)ξ̄t(s+ 1, s′)

x̄t(s)
(N − s)

Similarly, we have that

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

xt(h+ ek)

xt(h)
ξt(h,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

∑

k∈S(h)

xt(h)

xt(h− ek)
ξt(h− ek,h

′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

xt(h)
∑

k∈S(h)

ξt(h− ek,h
′)

xt(h− ek)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

x̄t(s+ 1)ξ̄t(s, s
′)

x̄t(s)

∑

k∈S(h)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s+1

x̄t(s+ 1)ξ̄t(s, s
′)

x̄t(s)
(s+ 1)

=
x̄t(s+ 1)ξ̄t(s, s

′)

x̄t(s)
(s+ 1)

(
N

s′

)(
N

s+ 1

)

.

We then get

1
(
N
s

)
1
(
N
s′

)

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(hc)

xt(h+ ek)

xt(h)
ξt(h,h

′)

=
x̄t(s+ 1)ξ̄t(s, s

′)

x̄t(s)
(N − s).
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Moreover, we have that

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(ξt(h− ek,h
′)− ξt(h,h

′))
xt(h− ek)

xt(h)

∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)xt(h

′′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

(ξt(h,h
′)− ξt(h+ ek,h

′))
xt(h)

xt(h+ ek)

N∑

s′′=1

∑

h′′∈HN :h′′

k
=1,| S(h′′)|=s′′

ξt(h,h
′′)xt(h

′′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

∑

k∈S(hc)

(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
) x̄t(s− 1)

x̄t(s)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′)

=
∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s−1

(N − s+ 1)
(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
) x̄t(s− 1)

x̄t(s)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′)

=

(
N

s− 1

)(
N

s′

)

(N − s+ 1)
(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
) x̄t(s− 1)

x̄t(s)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′).

We then get

1
(
N
s

)
1
(
N
s′

)

∑

h′∈HN :| S(h)|=s′

∑

h∈HN :| S(h)|=s

∑

k∈S(h)

(ξt(h− ek,h
′)− ξt(h,h

′))
xt(h− ek)

xt(h)

∑

h′′∈HN :h′′

k
=1

ξt(h− ek,h
′′)xt(h

′′)

= s
(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
) x̄t(s− 1)

x̄t(s)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′).

Collecting the above terms in Equation (110) delivers

dξ̄t(s, s
′)

dt
= ρḡ(s, s′)− ρ(1 + ḡ(s, s′))ξ̄t(s, s

′)

+ s (γ + α(s− 1))
x̄t(s− 1)

x̄t(s)

(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
)

+ s′ (γ + α(s′ − 1))
x̄t(s

′ − 1)

x̄t(s′)

(
ξ̄t(s

′ − 1, s)− ξ̄t(s
′, s)
)

+ λ
x̄t(s+ 1)

x̄t(s)
(N − s)

(
ξ̄t(s+ 1, s′)− ξ̄t(s, s

′)
)

+ λ
x̄t(s

′ + 1)

x̄t(s′)
(N − s′)

(
ξ̄t(s

′ + 1, s)− ξ̄t(s
′, s)
)

+ βs
(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
) x̄t(s− 1)

x̄t(s)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′)

+ βs′
(
ξ̄t(s

′ − 1, s)− ξ̄t(s
′, s)

) x̄t(s
′ − 1)

x̄t(s′)

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s
′ − 1, s′′)x̄t(s

′′). (111)
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This can be further simplified to

dξ̄t(s, s
′)

dt
= ρḡ(s, s′)− ρ(1 + ḡ(s, s′))ξ̄t(s, s

′)

+
x̄t(s− 1)

x̄t(s)

(
ξ̄t(s− 1, s′)− ξ̄t(s, s

′)
)
s

[

(γ + α(s− 1)) + β

N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s− 1, s′′)x̄t(s
′′)

]

+
x̄t(s

′ − 1)

x̄t(s′)

(
ξ̄t(s

′ − 1, s)− ξ̄t(s
′, s)

)
s′
[

(γ + α(s′ − 1)) + β
N∑

s′′=1

(
N

s′′ − 1

)

ξ̄t(s
′ − 1, s′′)x̄t(s

′′)

]

+ λ
x̄t(s+ 1)

x̄t(s)
(N − s)

(
ξ̄t(s+ 1, s′)− ξ̄t(s, s

′)
)
+ λ

x̄t(s
′ + 1)

x̄t(s′)
(N − s′)

(
ξ̄t(s

′ + 1, s)− ξ̄t(s
′, s)

)
. (112)

Equations (23) and (112) provide a complete system of ODEs to describe the time evolution of x̄t(s) and
ξ̄t(s, s

′).

Proof of Lemma 2. When we start from the initial condition hik,0 = 0 for all i = 1, . . . , n and k = 1, . . . , N
at early times t quadratic terms in O(yi(t)yj(t)) are negligible, and we can analyze the ODE

dyi(t)

dt
= γ − (λ + γ)yi(t) + β

n∑

j=1

aijyj(t). (113)

In vector-matrix form this is
dy(t)

dt
= γu− (λ+ γ)y(t) + βAy(t).

We can write y(t) as a linear combination of the eigenvectors {vk}nk=1 associated with the eigenvalues {µk}nk=1
of A, that is

y(t) =
n∑

k=1

ck(t)vk.

Inserting into Equation (113) yields

n∑

k=1

dck(t)

dt
vk =

n∑

k=1

[γ〈u,vk〉 − (λ+ γ)ck(t) + βµkck(t)]vk.

Using the othonormality condition of the eigenvectors 〈vj ,vk〉 = δjk we get

dck(t)

dt
= γ〈u,vk〉 − (λ+ γ + βµk)ck.

The solution of this ODE is given by

ck(t) =
1

λ+ γ − βµk

[

(γ + λ− βµk)ck(0) + γ〈u,vk〉
(

e(γ+λ−βµk)t − 1
)]

e−(γ+λ−βµk)t.

From the initial condition it follows that ck(0) = 〈(0, . . . , 0)⊤,vk〉 = 0, so that we get

ck(t) =
γ〈u,vk〉

γ + λ− βµk

(

1− e−(γ+λ−βµk)t
)

.

Consequently, it follows that

y(t) =
n∑

k=1

γ〈u,vk〉
γ + λ− βµk

(

1− e−(γ+λ−βµk)t
)

vk.

Because for α = 0 the different knowledge categories are independent, we then have that E(| S(hit)||G) =
NE(hik,t|G) = Nyi(t).
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Proof of Proposition 8. In the stationary state dyi(t)
dt = 0 we obtain from Equation (50) that

0 = γ − (λ+ γ)yi + β
n∑

j=1

aijyj − β
n∑

j=1

aijyiyj .

This can be written as

yi =
γ + β

∑n
j=1 aijyj

λ+ γ + β
∑n

j=1 aijyj
.

For β ≫ λ+ γ we immediately see that yi = 1. In contrast, for β ≪ λ+ γ we get

yi =
γ

λ+ γ
+

β

λ+ γ

n∑

j=1

aijyj ,

which can be written as

y =
γ

λ+ γ
u+

β

λ+ γ
Ay.

If β
λ+γ <

1
µ1
, where µ1 is the largest eigenvalue of A, the matrix In − β

λ+γA is invertible, and we obtain

y =
γ

λ+ γ

(

In − β

λ+ γ
A

)−1

u =
γ

λ+ γ
b

(

G,
β

λ+ γ

)

.

We have introduced the Bonacich centrality vector defined by [cf. Bonacich, 1987]

b (G,φ) =

n∑

k=1

φkAku,

for φ < 1/µ1. The Boncaich centrality can also be written as

bi (G,φ) = 1 + φdi + φ2
n∑

j=1

aijdj +O(φ3).

For β → 0 we then find that yi =
γ

λ+γ , which corresponds to the steady state values of a pure birth death

process with birth rate γ and death rate λ.
We further find that the steady state values for yi can be written as a continued fraction expansion

yi = 1−
λ

λ+γ

1 + β
λ+γ

∑n
j=1 aijyj

= 1−
λ

λ+γ

1 + β
λ+γ di −

βλ
(λ+γ)2

∑n
j=1

aij

1+ β
λ+γ

dj−
. . .

.

This gives us an upper bound on yi given by

0 ≤ yi ≤ 1−
λ

λ+γ

1 + β
λ+γ di

.

Proof of Proposition 9. The proof follows from the fact that the graph G ∈ G(n,m) that maximizes the
sum of Bonacich centralities is a nested split graph [cf. Belhaj et al., 2013; König et al., 2014].

Proof of Corollary 3. From Equation (51) and the symmetry implied by a k-regular graph we know that
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the

y = 1−
λ

λ+γ

1 + β
λ+γ ky

,

for 0 ≤ k ≤ n − 1, where we have denoted by y = limt→∞ E(Xi(t)|G) and Xi(t) = 1{hik,t=1}. Solving this
equation delivers

y =
1

2
+
γ + λ

2βk

(√

2λ(γ − βk) + (γ + βk)2 + λ2

(γ + λ)2
− 1

)

.

Proof of Corollary 4. In the star K1,n−1 we have two types of firms, the one in the center and the ones
in the periphery. W.l.o.g. we denote by y1 the asymptotic probability of the central firm to have knowledge
of the technology, and by y2 the corresponding probability of a firm in the periphery. From Equation (51) it
then follows that

y1 = 1−
λ

λ+γ

1 + β
λ+γ (n− 1)y2

,

y2 = 1−
λ

λ+γ

1 + β
λ+γ y1

.

The solution is given by

y1 =
(γ + λ)2

2β(γ + λ+ β(n− 1))

×
(√

4γλ3 + λ4 + 2λ2 (3γ2 + β2(−(n− 1)) + βγn) + 4γλ(β + γ)(γ + β(n− 1)) + (β + γ)2(γ + β(n− 1))2

(γ + λ)4

+
β(β(n− 1)− γ(n− 2))

(γ + λ)2
− 1

)

y2 =
(γ + λ)2

2β(n− 1)(β + γ + λ)

×
(√

4γλ3 + λ4 + 2λ2 (3γ2 + β2(−(n− 1)) + βγn) + 4γλ(β + γ)(γ + β(n− 1)) + (β + γ)2(γ + β(n− 1))2

(γ + λ)4

+
β(β(n− 1) + γ(n− 2))

(γ + λ)2
− 1

)

.

Proof of Proposition 10. In order to determine welfare, we need to compute the following quantities from
the endogenous variables x̄(s) and ξ̄(s, s′), s, s′ ∈ {0, . . . , N},

h̄ =

N∑

s=0

s

(
N

s

)

x̄(s)

σ2
h =

N∑

s=0

(s− h̄)2
(
N

s

)

x̄(s),

In the case of N = 2 we have that

h̄ = 2(x̄(1) + x̄(2))

σ2
h = h̄2(1 − 2x̄(1)− x̄(2)) + 2(1− h̄)2x̄(1) + (2− h̄)2x̄(2).

From Proposition 7 we know that in the limit of η → ∞ both cases θ = 1 and θ = 0 are identical, and in
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particular the number of links is the same, so that the welfare gain can be computed from

W0(h, G) −W1(h, G) =
nb2σ2

h

1 + bh̄
,

where we insert x̄(1) and x̄(2) as stated in Proposition 7 into the above expressions for h̄ and σ2
h delivers

Equation (54). The same observation can be made for the case of strong socks as stated in Proposition 7,
where x1 and x2 can be obtained for the case of γ = 0. Inserting into the welfare gain gives Equation (53).
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