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Abstract

This paper analyses dynamically inconsistent time preferences in the seminal Rubinstein

[1982] model of sequential bilateral bargaining. I consider any continuous time preferences

which satisfy a weak impatience property and study multiple-selves equilibrium for sophisti-

cated players. Employing a novel analytical approach to account for the temporal structure

of equilibrium outcomes, I characterise (i) the set of equilibrium outcomes for any preference

pro�le and (ii) the set of preference pro�les for which equilibrium is unique. Previous �ndings

for (dynamically consistent) exponential discounting carry over to any preferences which sat-

isfy a form of present bias, where, for both players, the most costly period of delay is always

the �rst one from the immediate present, e.g. any hyperbolic or quasi-hyperbolic discounting.

In this case, the restriction to stationary equilibrium is without loss of generality for charac-

terising the set of equilibrium surplus divisions. More generally, this is not the case, however:

if there is a player who always �nds a near-future period of delay su�ciently more costly than

the �rst one, there exist equilibrium divisions and delays which rely on non-stationary threats

for all o�-path subgames.
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1 Introduction

As a mechanism to share economic surplus, bargaining is pervasive in decentralised exchange

and accordingly fundamental to the economic analysis of contracts. In the absence of irrevoca-

ble commitments, time becomes a signi�cant variable of bargaining agreements; parties may not

only agree now or never, but also sooner or later. At the heart of economists' understanding

of how the bargaining parties' �time preferences� shape the agreement they will reach lies the

seminal work of Rubinstein [1982].1 Explicitly formalizing the bargaining process as one where

parties alternate over time in making and answering proposals, without any deadline, it reaches

surprisingly sharp conclusions about how two completely informed and impatient parties share an

economic surplus: under seemingly weak assumptions on the players' preferences, there is a unique

subgame-perfect Nash equilibrium with the properties that (i) agreement is reached immediately,

(ii) a player's �bargaining power� can be measured by her tolerance of a bargaining period's de-

lay, and (iii) the initial proposer enjoys a strategic advantage. Moreover, this equilibrium has a

simple��stationary��structure: whenever it is her turn in the respective role, a player always

makes the very same o�er and follows the very same acceptance rule, and in any round the pro-

poser's o�er equals the smallest share the respondent accepts, given that upon a rejection, roles

reverse and the same property holds true.2

In this framework, the fundamental motive for reaching agreement is the parties' impatience

as a property of their time preferences. Yet, the basic model is fully understood only for a very

particular form of such impatience, namely exponential discounting.3 In view of the large body

of empirical evidence on individual intertemporal choice, which shows that people systematically

violate this assumption, and of the success in applied work of alternative discounting models, most

prominently the (β, δ)-model of �quasi-hyperbolic� discounting as proposed by Laibson [1997], this

currently restricts the theory's applicability and raises the question of how robust the original

1Ståhl [1972] had pioneered a similar approach to bargaining theory but appears to have been largely ignored.
2The original Rubinstein [1982] model actually permits multiplicity, but only in a knife-edge case of preference

pro�les, which I ignore in this discussion as did the subsequent literature (indeed, that case is ruled out in all of
the model's later reproductions involving the author himself: see Binmore et al. [1986], Rubinstein [1987], Osborne
and Rubinstein [1990, Chapter 3], Binmore et al. [1992], Osborne and Rubinstein [1994, Chapter 7] and Rubinstein
[1995]).

3Rubinstein [1982] works directly with preference relations, but Fishburn and Rubinstein [1982] show that his
axioms imply exponential discounting (see also Osborne and Rubinstein [1990, Section 3.3]).
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conclusions are to various other forms of impatience that have been documented.4

I address these issues here by extending the basic Rubinstein [1982] model to any continuous

time preferences satisfying a weak impatience property. More speci�cally, I study any continuous

preferences over bargaining agreements represented by some function Ui (xi, t) for a player i, where

xi is i's share of the surplus in an agreement and t is its delay, such that a greater share is always

preferred and i is impatient in the following sense: (i) for any share, later is not preferred over

sooner, (ii) a positive share now is preferred over the same share later, and (iii) in the limit as the

delay approaches in�nity, if the present utility value does not vanish for all agreements, there is a

�nite delay after which further delay is costless.

Such preferences of a player i are dynamically consistent if and only if Ui (xi, t) = δt · u (xi)

for some δ ∈ (0, 1) and u : [0, 1] → R, which is exponential discounting. Hence my innovation in

this paper is the analysis of dynamically inconsistent time preferences. What makes this analysis

challenging is the need to account for the temporal structure of the set of equlibrium agreements.5

I achieve this here via a novel analytical approach to the alternating-o�ers protocol reminiscient

of the framework proposed by Abreu [1988] that introduced simple strategies and proved existence

of optimal penal codes as simple strategies for the theory of repeated games with (exponential)

discounting, thus simplifying the history-dependence of (non-stationary) equilibrium strategies to

consider.6

The central results of this analysis are (i) a characterisation of equilibrium outcomes for any

preference pro�les and (ii) a characterisation of those preference pro�les that yield equilibrium

uniqueness.7 These generate the following main insights. First, the aforementioned celebrated

4Frederick et al. [2002] survey a large number of mostly psychological studies from as early as the 1970s and,
referring to the exponential-discounting model as the �DU model�, conclude that �virtually every assumption un-
derlying the DU model has been tested and found to be descriptively invalid in at least some situations� (p. 352),
with hyperbolic discounting as �the best documented DU anomaly� (p. 360). Recently, there has been a surge of
interest by experimental economists in the study of time preferences, with the result that previous �ndings have
been somewhat quali�ed with respect to the domain of choice and the elicitation method used (see for example the
discussions in Attema [2012] and Augenblick et al. [2013]).

5Existing analytical approaches exploit recursions on payo� extrema; see the survey of Binmore et al. [1992] for
two alternative approaches to proving the Rubinstein [1982] results, which culminated in the formulation of Merlo
and Wilson [1995] in their extension to stochastic environments. When preferences are dynamically inconsistent,
the possibility of equilibrium delay through history-dependent behaviour means that payo�s alone do not encode
su�cient information for such a recursion, whence those approaches become inadequate.

6I am deeply grateful to Can Çeliktemur for pointing out this similarity to me.
7When some player's preferences are dynamically inconsistent, the equilibrium concept has to take a stance
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conclusions found under exponential discounting are robust to various forms of present bias, where,

whenever an immediate reward and an indi�erent delayed reward are shifted into the future by

one period, the decision maker is at least as patient, i.e. the indi�erence may only be broken in

favour of the larger later reward. Because present bias is in particular a property of hyperbolic and

quasi-hyperbolic discounting, this result opens the door to the use of non-cooperative bargaining

theory in applied economic modelling studying such preferences.

Second, for preferences which�in violation of present bias�exhibit greater impatience about a

near-future period's delay than the present period, there emerges a novel form of (non-stationary)

equilibrium delay in reaching agreement, where to avoid such a particularly costly near-future

period of delay to some given agreement as a respondent, such a player is willing to accept shares

which are low enough to present a threat which is in turn su�ciently severe to induce the same

player to indeed favour that delayed agreement as a proposer (facing one period of delay less).

Interestingly, and in contrast to previously proposed delay equilibria, such equilibrium can be

constructed without the use of stationary equilibrium in any subgame and in this sense is �purely

non-stationary�. A qualitative property of time preferences which permits this type of delay has

very recently been documented for a large proportion of participants in a number of experimental

studies that study monetary trade-o�s within distinctively short horizons and may therefore be

particularly relevant for bargaining applications; in loose graphic terms for separable time prefer-

ences (discounting), it is that the discounting function is initially concave, dropping most sharply

over some near-future period rather than the �rst period of delay.8

regarding the con�ict that exists within that player's own objectives across time. The concept I employ here assumes
that the players always correctly predict their opponents' as well as their own behaviour, which they then take as
given in evaluating the di�erent actions that are currently available. Chade et al. [2008] analyze repeated games
with (β, δ)-discounting using the very same concept. It is the natural extension to dynamic strategic environments
with multiple persons of Strotz-Pollak equilibrium, also known as multiselves equilibrium, which was pioneered by
Strotz [1955-1956] and Pollak [1968] and further developed by Peleg and Yaari [1973] and Goldman [1980] for
dynamic single-person decision problems. Technically, this equilibrium's de�ning property is robustness against
one-stage deviations; the one-stage deviation principle (e.g. see Fudenberg and Tirole [1991, Theorem 4.2]) here
ensures equivalence with subgame-perfect Nash equilibrium under exponential discounting.

8The survey sections of Attema [2012, p. 1390] and Olea and Strzalecki [2014, pp. 23-24] list several references
for this �nding called �increasing impatience� and �future bias�. Besides these, also a number of �eld studies
in development economics, investigating the e�ects of providing various commitment opportunities on savings,
conducted surveys to elicit time preferences where the answers of signi�cant proportions of participants showed
patterns of this type (e.g. Ashraf et al. [2006], Brune et al. [2013], Dupas and Robinson [2013] and Giné et al. [2013]).
Bleichrodt et al. [2009], Takeuchi [2011] and Pan et al. [2013] propose discounting models that can rationalise such
choices.
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Third, the approach of this paper highlights the generalisability of the Abreu [1988] framework

to other stochastic games satisfying some form of stationarity beyond repeated games. This may

provide a useful starting point in further related theoretical analyses.

The paper proceeds as follows: section 2 presents the model, with a focus on the preferences

and the equilibrium concept studied here. Section 3 �rst explains how the analytical approach used

in the related literature on bargaining with exponential discounting fails to be feasible when pref-

erences are dynamically inconsistent and introduces some notation, then informally develops and

formally exploits a more general approach based on the framework of Abreu [1988] in the repeated-

games context leading to the �rst main result which is the characterisation of equilibrium outcomes

for any preference pro�le, then presents the second main result which is the characterisation of

those preference pro�les for which equilibrium is unique together with simpler su�cient conditions

on individual preferences in isolation and ends by providing an simple example of time preferences

which imply unbounded delay in equilibrium. Section 4 brie�y discusses the implications of vari-

ous more or less recent alternative models of time preferences inspired by empirical evidence, and

section 5 concludes the paper by summarising its contribution and pointing out some questions

that it raises. Relations to the existing literature are made throughout.

2 Model

I follow Rubinstein [1982] exactly with regards to the bargaining protocol of inde�nitely alternating

o�ers and will therefore describe this part of the model only informally, focussing instead on the

generalisation of preferences and the equilibrium concept investigated here.

Bargaining Protocol and Strategies There are two players {1, 2} ≡ I who bargain over a

perfectly divisible surplus of (normalised) size one. In each round n ∈ N one of them proposes a

surplus division x ∈ {(x1, x2) ∈ R+|x1 + x2 = 1} ≡ X to the other who then responds by either

accepting or rejecting the proposal. If it is accepted, the game ends in agreement on x; otherwise,

one period of time elapses until the subsequent round takes place, with the roles of proposer

and respondent reversed. This process of alternating o�ers begins with player 1's proposal and
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continues until there is agreement, possibly without ever terminating.

A history of play to the beginning of round n ∈ N, denoted hn−1, is a sequence of n−1 rejected

proposals, and a strategy σi of a player i assigns to every possible history hn−1 ∈ Xn−1 an available

action, where h0 = X0 = ∅. For instance, if n is odd, player 1's strategy assigns to such a history

hn−1 a proposal σ1 (hn−1) = x, and player 2's strategy speci�es for every possible such proposal

whether she accepts or rejects it; while, in general, σ2 (hn−1) is therefore an �acceptance rule�

which partitions X into a subset of accepted proposals and its complement of rejected proposals,

for the purposes of this paper it is without loss of generality to restrict attention to �threshold

rules� described by a single number q ∈ [0, 1] where for instance σ2 (hn−1) = q means that player

2 accepts a proposal x by player 1 if and only if x2 ≥ q. A particularly simple strategy of a

given player is one where in any round that player makes the same proposal and follows the same

acceptance rule irrespective of the history of play; if σi is such a stationary strategy, it is then

characterised simply by a pair (x, q) ∈ X × [0, 1], where x ∈ X is the division that i o�ers as the

proposer and q ∈ [0, 1] speci�es the threshold for i's acceptance as the respondent.

Outcomes and (Time) Preferences Any pair of strategies σ = (σ1, σ2) induces an outcome

in an obvious way. Players will be assumed to care only about the division of the surplus and the

delay of an eventual agreement, whence the preference-relevant such outcomes are either of the

form (x, t) ∈ X × T ≡ A, T ≡ N0, where agreement on division x is reached with a delay of t

periods, or (perpetual) disagreement, denoted simply by D. After any (non-terminal) history of

play, in terms of relative time (delay), the set of feasible outcomes A ∪ {D} is therefore identical.

The focus of this paper is on the players' time preferences over this domain of feasible bargaining

outcomes, which satisfy the following assumption, where I �nd it notationally convenient to let

Ai ∪{D}, Ai ≡ [0, 1]×T , be a player i's set of personal feasible outcomes and Ai is obtained from

A as projecting any x ∈ X to i's own surplus share q = xi ∈ [0, 1]; due to the fact that x1 +x2 = 1,

this is without loss of generality.

Assumption 1. In any round n ∈ N, player i ∈ I has preferences over personal feasible outcomes

Ai∪{D} are represented by a utility function Ui : Ai∪{D} → R such that the following properties

hold for any (q, q′) ∈ [0, 1]2, any (t, t′) ∈ T 2 and any k ∈ R:
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(1) Disagreement is worst: Ui (q, t) ≥ Ui (D),

(2) Continuity: {z ∈ Ai ∪ {D} |Ui (z) ≥ k} and {z ∈ Ai ∪ {D} |Ui (z) ≤ k} are closed,

(3) Desirability: q > q′ implies Ui (q, t) > Ui (q
′, t),

(4) Impatience:

(i) t > t′ implies Ui (q, t) ≤ Ui (q, t
′),

(ii) q > 0 implies Ui (q, 0) > Ui (q, 1), and

(iii) if limt→∞ Ui (1, t) > Ui (0, 0), there exists a t̂ ∈ T such that limt→∞ Ui (q, t) = Ui
(
q, t̂
)
.

This class of preferences covers all main models of time preferences that have been put forward

in the literature; in particular, it generalises the most widely studied class of separable time

preferences, where Ui (q, t) = d (t)·u (q) and d is a decreasing �discounting� function, as axiomatised

by Fishburn and Rubinstein [1982, Theorem 1], to also cover non-separable time preferences such

as those put forward by Benhabib et al. [2010] and Noor [2011].9 While property (1) re�ects once

more the consequentialist nature of preferences, properties (2) and (3) are elementary preference

properties, and property (4) formalises a rather weak notion of impatience toward agreement: for

any given division of the surplus, players do not prefer agreeing on it later over sooner (i), if a

division yields them a positive share, players prefer immediate agreement over delayed agreement

on it (ii), and either they become �in�nitely impatient� as the delay approaches in�nity�the

standard case which guarantees �continuity at in�nity��or they are impatient only about a �nite

number of periods of delay (iii).

Halevy [2012] shows that, given that the preferences studied here are dynamically consistent

if and only if they satisfy the stationarity axiom. The latter requires that the preference over two

delayed rewards (q, t) and (q′, t′) depends only on the relative delay, i.e. Ui (q, t) ≥ Ui (q
′, t′) if and

only if Ui (q, t+ τ) ≥ Ui (q
′, t′ + τ) for any τ ∈ T , and imposing this property yields exponential

discounting, where Ui (q, t) = δt · u (q) for some δ ∈ (0, 1) and some continuous increasing func-

tion u. Hence, with the exception of exponential discounting preferences, for which Rubinstein

9Ok and Masatlioglu [2007] propose a theory of relative discounting which relaxes transitivity for comparisons
across di�erent delays and accommodates the procedural models suggested by Read [2001a] and Rubinstein [2003a].
While assumption 1 imposes such transitivity, section 4.3 argues that the characterisation results obtained are more
general and also apply to any preferences that fall under their theory. Another procedural model of intertemporal
choice is found in Manzini and Mariotti [2007]; their model violates impatience, however, which means it is not
covered here.
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[1982] developed his bargaining theory, all of the time preferences studied here are dynamically

inconsistent.

Equilibrium Concept I assume that the players' preferences are common knowledge. In par-

ticular, and employing the recent terminology proposed by O'Donoghue and Rabin [1999], players

are sophisticated about their own as well as their opponent's dynamic inconsistency. The equi-

librium concept has to incorporate how this intertemporal con�ict in a player's preferences is

resolved. For single-person decision problems, the standard solution concept for such sophisticated

decision makers is that of Strotz-Pollak equilibrium (named after the pioneering contributions in

this area of Strotz [1955-1956] and Pollak [1968]), also known as multiple-selves equilibrium (see

e.g. Piccione and Rubinstein [1997]), which is the subgame-perfect Nash equilibrium of an auxil-

iary game in which the decision-maker at any point in time is a distinct non-cooperative player.

Technically, therefore, one then looks for strategies which are robust to �one-stage deviations�, and

this formalises the presumption that a dynamically consistent decision-maker cannot �intrinsically�

commit to future behaviour.10

The equilibrium notion here is the natural extension of this concept to multiple-player games.

In its de�nition provided below, zhi (σ) denotes a player i's outcome in Ai ∪ {D} that obtains if,

following history h, players adhere to strategy pro�le σ; e.g. if player j is the respondent in some

round n following a beginning-of-round history hn−1 and facing a proposal x, then h = (hn−1, x),

and if σj (hn−1) = q with qj ≤ xj, then zhj (σ) = (xj, 0).

De�nition 1. A strategy pro�le σ = (σ1, σ2) is a multiple-player Strotz-Pollak equilibrium (�equi-

librium�) if, for any round n ∈ N and history hn−1 ∈ Xn−1 to the beginning of this round,

Ui

(
zh

n−1

i (σ)
)
≥ Ui

(
z
(hn−1,x)
i (σ)

)
Uj

(
z
(hn−1,x)
j (σ)

)
≥ Uj

(
z
(hn−1,x,σj(hn−1,x))
j (σ)

)

for any division x ∈ X and {i, j} = I with i = 1 if n is odd and i = 2 if n is even.

10There exists a relatively small literature that has developed re�nements of this concept, see Kocherlakota [1996],
Asheim [1997] and Plan [2010].
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Observe that this indeed de�nes the subgame-perfect Nash equilibrium of the auxiliary game

where the set of players is taken to be I × N. The well-known one-stage deviation principle (e.g.

Fudenberg and Tirole [1991, Theorem 4.1]) says that such equilibrium coincides with the subgame-

perfect Nash equilibrium of the actual game played by I whenever both players' preferences satisfy

exponential discounting. In what follows, �equilibrium� will refer to the above de�nition.

Final Remarks on the Model It is worthwhile to emphasise here the focus of the paper and

distinguish it from other bargaining theories. The model's central premise is that parties are

impatient about reaching a bargaining agreement and consequentialist in their preferences. While

impatience about enjoying the fruits of agreement can plausibly be expected to be prevalent in

any bargaining problem, consequentialism means a theoretical abstraction which allows to focus

on the role of impatience alone. In particular, the latter means that the players' preferences do not

intrinsically respond to observed past bargaining behaviour as in Fershtman and Seidmann [1993],

Compte and Jehiel and Li [2007] where the bargaining parties come to prefer impasse over any

agreement that yields less than they could have obtained from an earlier rejected proposal (where

�less� refers to an agreement's material terms in the two former models and to its discounted utility

terms in the latter).11

Moreover, I assume common knowledge of preferences, so players are fully aware of their oppo-

nent's as well as their own (future) preferences; there is neither private information about prefer-

ences which is the most prominent explanation for delay in the literature (see Kennan and Wilson

[1993]) nor naiveté about future preferences (as investigated by Akin [2007] for (β, δ)-discounting

preferences under a certain stationarity restriction on equilibrium). Given the generality of the

model in terms of time preferences and the strategy space considered, this is a natural starting

point. While the basic mechanisms of signalling and screening identi�ed in bargaining under incom-

plete information can be expected to be orthogonal to the interest in impatience per se, naiveté

may yield di�erent implications depending on the type of dynamic inconsistency (e.g. contrast

present-biased (β, δ)-discounting with the preferences of the example in section 3.4).

11Rejecting a somewhat generous o�er by the opponent then buys commitment similar to the role of history-
dependent outside options as in Compte and Jehiel [2004].
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3 Results

3.1 Preliminaries

An important property of the game studied here is its stationarity: all subgames beginning with a

given player i's proposal are identical; denote this game by Gi. Consequently, their respective sets

of equilibria are identically equal to those of game Gi, in particular the proposing players' in�mal

and supremal equilibrium payo�s.

With exponential discounting, two rounds of simple backwards-induction recursions on these

extremal payo�s results in the very same extreme values and therefore characterises them as �xed

points; the underlying temporal structure of equilibrium outcomes is irrelevant.12 Moreover, in

order to characterise the set of equilibrium bargaining divisions, it is without loss of generality

to restrict attention to stationary equilibria, which are also used to establish that the extrema of

the set of equilibrium payo�s obtained from the �xed point problem are themselves equilibrium

payo�s.

In contrast, this procedure is not feasible with dynamically inconsistent preferences. To il-

lustrate, suppose player 1 has (β, δ)-discounting preferences with linear instantaneous utility and

her in�mal equilibrium payo� as the initial proposer equals some vi, where the maximal equilib-

rium delay is one period and the in�mal equilibrium payo�s are xi among immediate-agreement

equilibria and βδx′i among delay equilibria, respectively, so vi = min {xi, βδx′i}. Then i's in�mal

rejection equilibrium value�her in�mal equilibrium �threat point��equals min {βδxi, βδ2x′i} =

βδ ·min {xi, δx′i} which is βδvi if xi ≤ βδx′i, βδxi with βδvi < βδxi < δvi if βδx′i < xi < δx′i, and

δvi if δx′i ≤ xi. Hence, knowledge of vi alone is insu�cient to even execute the �rst recursion unless

delay is ruled out beforehand.13 This observation leads to a novel approach which, by necessity,

directly deals with the possibility of equilibrium delay.

A �rst result is immediate, however: perpetual disagreement D is not an equilibrium outcome.

Due to the players' impatience, there exist proposals which the respondent must accept even if he

12Shaked and Sutton [1984] �rst demonstrated the e�ectiveness of this approach; for variations see for instance
Binmore et al. [1992] and Merlo and Wilson [1995].

13This is in fact the �aw in the uniqueness proof of Lu [2006] for such preferences; his claim of equilibrium
uniqueness is true, however, as corollary 1 in section 3.3 shows.

10



were to otherwise obtain the maximal feasible rejection value and which still leave a positive share

for the proposer; this implies that an initial proposer i's in�mal equilibrium payo� strictly exceeds

ui (0) and, since D is the worst possible outcome, also Ui (D).

The (short) proof of this claim uses the following de�nitions for each i ∈ I, which will be

prominent also in the subsequent analysis. First, de�ne an instantaneous utility function ui :

[0, 1] → R such that ui (q) ≡ Ui (q, 0) for any q ∈ [0, 1], which is continuous and increasing by

assumption 1, properties (2) and (3), respectively. Second, let πi : Ui (Ai ∪ {D})→ [0, 1] with

πi (U) ≡ min {q ∈ [0, 1] |ui (q) ≥ U}

be player i's minimal acceptable share for rejection value U , which is non-decreasing and con-

tinuous. Finally, in all that follows, for any given player i ∈ I, j will denote the opponent, i.e.

j = 3− i

Lemma 1. All equilibrium outcomes are agreement outcomes.

Proof. By contradiction. Suppose D were an equilibrium outcome of Gi, i ∈ I, and consider its

�rst round. In any equilibrium, respondent j accepts any o�ered share xj > πj (Uj (1, 1)) because

Uj (1, 1) the maximal possible rejection value. Proposing division x such that πj (Uj (1, 1)) < xj <

1, which exists due to j's impatience, i obtains utility ui (xi) > ui (0) ≥ Ui (D).

The remaining part of this subsection introduces further notation. In view of lemma 1, for each

player i ∈ I, let A∗i ⊆ Ai be the set of i's personal feasible equilibrium outcomes of Gi and de�ne

the following extrema on the basis of A∗i , which are i's in�mal equilibrium payo� as the initial

respondent in Gi, v∗i , i's in�mal equilibrium threat point as the initial respondent in Gj, w∗i , and

the supremal equilibrium delay in Gi, t∗i :

v∗i ≡ inf {Ui (q, t) | (q, t) ∈ A∗i }

w∗i ≡ inf {Ui (q, t+ 1) | (q, t) ∈ A∗i }

t∗i ≡ sup {t ∈ T |∃q ∈ [0, 1] , (q, t) ∈ A∗i } .
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It will also be useful to de�ne a function φi : ui ([0, 1])× T → [0, 1] such that

φi (u, t) ≡ max {q ∈ [0, 1] |u ≥ Ui (q, t)}

which gives the maximal share with delay t that is not preferred over instantaneous utility u and

is non-decreasing in both u as well as t and continuous in u; note that whenever φi (u, t) < 1,

it is in fact the delay-t share which is utility-equivalent to u. Finally, I will employ a function

κi : T × Ui (Ai)× Ui (Ai)× Uj (Aj)→ R+ such that

κi (t, vi, vj, wj) =


φi (vi, t) + πj (wj) t = 0

φi (vi, t) + max {φj (vj, t− 1) , φj (uj (0) , t)} t > 0

for the surplus cost of delay t in Gi with immediate-agreement value vk for proposer k, any

k ∈ I, and rejection value wj for (initial) respondent j. The terminology will become clearer when

recognising κi in the central formal results which follow.

3.2 Equilibrium

The work of Abreu [1988] presented an analytical framework for repeated games with (exponen-

tial) discounting, which showed that the history-dependence of �o�-path� equilibrium strategies

is tractable: in terms of the most extreme credible threats, or �punishment� equilibrium paths,

which support the game's entire set of equilibrium paths�this is called an �optimal penal code��

it is su�cient to look for one such path per player, for any deviation of that player; there is a

�simple penal code� which is optimal. Note that if in some repeated game this simple penal code

which is optimal were to consist only of stationary equilibrium paths, this would mean that upon

any deviation by a player, it would specify in�nite repetition of that player's least preferred Nash

equilibrium of the stage game in the ensuing subgame.

The approach taken here is an application of this idea to alternating-o�ers bargaining with

the preferences described by assumption 1. It is worthwhile pointing out an important di�erence

between the bargaining game investigated here and repeated games: not all deviations can be pun-
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ished, since acceptance of a proposal terminates the game.14 Consequently, there are only types

of deviations from a speci�ed path which may be punished: (1) a proposer's making a deviating

o�er that is rejected and (2) a respondent's rejection of an o�er which she is supposed to accept.

Moreover, also the fact that payo�s are realised only upon agreement limits the �richness� of avail-

able punishments. As it turns out, however, how rich the space of available punishments�hence

the space of equilibrium paths�actually is, depends on the bargaining parties' time preferences.

Before the formal statements, which summarise the results of my approach, I brie�y sketch the

reasoning that underlies it.

To begin with, it is intuitively rather clear that one can identify paths with outcomes in this

game as follows: an outcome (x̂, t) is an equilibrium outcome of Gi, i ∈ I, if and only if the path

(1ti, x̂) is an equilibrium path of Gi, where 1ti ∈ X t is the history to the beginning of round t + 1

in which each previous proposer k ∈ I proposed division 1k ≡ x such that xk = 1, starting with

k = i. This re�ects the basic property of this theory of bargaining that how parties fail to agree

is irrelevant in equilibrium: o�ering the opponent a positive share when it is understood to be

rejected essentially means not to o�er anything. Hence, it is without loss of generality to consider

only equilibrium paths of this form.

The next observations concern the proposer's strategic advantage, which is typically invoked

in intuitions about sequential bargaining equilibria.15 Its essence is that any equilibrium payo� a

player may obtain as the initial proposer is her payo� in an immediate-agreement equilibrium, in

particular the player's in�mal equilibrium payo� v∗i can be obtained from the set of immediate-

agreement-equilibrium payo�s. This provides an important clue in relating the extreme credible

punishments across a given player's roles as proposer and respondent trough impatience: in partic-

14Busch and Wen [1995, p. 547], in making a similar comparison and introducing their intuition for equilibrium
uniqueness in Rubinstein [1982], observe that �(...) history-dependent strategies do not have the same power in
Rubinstein bargaining (...). The reason is that a player will always accept any o�er which yields at least as much
as rejecting it, since acceptance cannot be punished.� Before multiple equilibria and delay are ruled out, this is
misleading, however, because a responding player's equilibrium strategy may reject o�-path o�ers which are more
worth more than the (delayed) equilibrium outcome. The reason is that the respondent would be rewarded with
a rejection value su�ciently above the equilibrium outcome's value in order to constitute a punishment to the
proposer that deters the latter from making such an o�er in the �rst place despite the greater overall surplus of
this immediate agreement relative to the equilibrium outcome.

15For instance, Kreps [1990, p. 564]�referring to equilibrium uniqueness result of Rubinstein [1982] under expo-
nential discounting�states: �The uniqueness result is not quite intuitive or obvious, but you should be convinced
that what drives these equilibria is that each party when it is making an o�er is able to put the onus of waiting
entirely on the other side.�

13



ular, a proposing player i's most extreme punishment in the subsequent round's game Gj, following

i's deviation, is an equilibrium of Gj in which i immediately accepts y such that xi = πi (w
∗
i ). A

rather straightforward argument then establishes that

v∗i = ui (1− πj (Uj (1− πi (w∗i ) , 1))) . (1)

Moreover, and related to the proposer's strategic advantage, for equilibrium delay to arise, say

agreement on division x after t periods in Gi (in the t+1-th round), each player as a proposer along

the path before the agreement round must be deterred from making an immediately accepted o�er

to the respondent. Given the players' impatience and the stationarity of the game, a threat that

achieves this the �rst time around that player i proposes is necessary and su�cient for successful

deterrence�and thus delay�in on-path stages where i proposes, and similarly for j. Therefore

(x, t) must satisfy

xi ≥ φi (v
∗
i , t)

xj ≥


πj
(
w∗j
)

t = 0

φj
(
v∗j , t− 1

)
t > 0,

and, upon replacement of φj
(
v∗j , t− 1

)
by max

{
φj
(
v∗j , t− 1

)
, φj (uj (0) , t)

}
in the second inequal-

ity for t > 0, this turns out to su�ce for (x, t) to be an equilibrium outcome of Gi: the proposer's

strategic advantage is �overwhelming� in the sense that once the players' incentives to delay are put

in place at their respective proposer stages, they do not have a pro�table deviation as a respondent

either.

This yields two further insights and as many equations (per player): �rst, the initial proposer i

is indi�erent across all delayed outcomes that are each the worst for the given delay; each of them

is worth v∗i , and, by mere impatience, therefore

w∗i = inf {Ui (φi (v∗i , t) , t+ 1) |t ∈ T, t ≤ t∗i } . (2)

14



Second, given a delay t, in order for a division x such that (x, t) is an equilibrium outcome of Gi

to exist, it is necessary and su�cient that

κi
(
t, v∗i , v

∗
j , w

∗
j

)
≤ 1;

otherwise at least one of the players who get to propose on the path to (x, t) before the agreement

stage would prefer the immediate agreement based on the most extreme threat, worth v∗k to a

player k, over waiting the remaining number of periods for agreement on division x. In other

words, the surplus of size one is too small to be able to meet incentive constraints at the proposal

stages. But this means that the supremal delay in Gi is determined by

t∗i = sup
{
t ∈ T |κi

(
t, v∗i , v

∗
j , w

∗
j

)
≤ 1
}
. (3)

The set of equations 1 through 3, each for both i ∈ I, characterises equilibrium, where in particular

impatience property (iii) of preference assumption 1 ensures that each w∗i is in fact a minimum

based on an actual continuation equilibrium outcome.

The next lemma formalises these insights into this paper's central tool which is a system of

equations that implicitly provides the structure of a �simple penal code� in this bargaining game

in analogy to what Abreu [1988] proposed for repeated games.

Lemma 2. Suppose the values (vk, wk, tk)k∈I solve

vi = ui (1− πj (Uj (1− πi (wi) , 1))) (4)

wi = min {Ui (φi (vi, t) , t+ 1) |t ∈ T, t ≤ ti} (5)

ti = sup {t ∈ T |κi (t, vi, vj, wj) ≤ 1} (6)

for both i ∈ I. Then every outcome (x, t) ∈ A such that

φi (vi, t) ≤ xi ≤


1− πj (wj) t = 0

1−max {φj (vj, t− 1) , φj (uj (0) , t)} t > 0
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for i ∈ I is an equilibrium outcome of Gi.

Proof. Take such a solution (vk, wk, tk)k∈I and note that due to impatience, for {i, j} = I, uj (0) <

vj from equation 4, implying φj (vj, t) > 0 for all t ∈ T , so equation 6 yields that whenever

0 < t ≤ ti, it holds that φi (vi, t) < 1 and hence Ui (φi (vi, t) , t) = vi. Also observe that wi ≤

Ui (φi (vi, 0) , 1) < Ui (φi (vi, 0) , 0) = vi, where the �rst (weak) inequality follows from equation 5

and the second (strict) inequality follows from φi (vi, 0) > 0 and impatience.

Tthe following main step of the proof shows that, for each i ∈ I, any outcome
(
x(i), t(i)

)
where

t(i) solves equation 5 and x
(i)
i = φi

(
vi, t

(i)
)
is an equilibrium outcome of Gi, and it does so by

means of a recursive equilibrium construction. To simplify the exposition, I �rst assume existence

of a strategy pro�le in Gi which supports outcome
(
x(i), t(i)

)
as an equilibrium outcome of Gi for

each i ∈ I to then recursively construct it, thus actually verifying existence. Suppose then that,

for each i ∈ I, α(i) is such a strategy pro�le in Gi and consider strategy pro�le β(i) in Gj, j = 3− i,

such that β(i)
j (∅) = y(i), β(i)

i (∅) = y
(i)
i and, for any x ∈ X, β(i) (·|x) = α(i), where y(i) is de�ned

through y(i)i = πi (wi); clearly, β(i) supports
(
y(i), 0

)
as an equilibrium outcome of Gj if α(i) is an

equilibrium of Gi.

Construct now a strategy pro�le σ(i) for Gi as follows: �rst, take any history 1n−1i of round

n ∈ N with n < t(i) + 1 where k and l denote the proposer and respondent, respectively of this

round; then σ
(i)
k

(
1n−1i

)
= 1k, σ

(i)
l

(
1n−1i

)
= πl

(
Ul

(
y
(k)
l , 1

))
and σ(i)

(
·|1n−1i , x

)
= β(k) for any

x ∈ X with x 6= 1k. Second, take history 1t
(i)

i (of round n = t(i) + 1), again denoting by k and

l the proposer and respondent, respectively; then let σ(i)
k

(
1t

(i)

i

)
= x(i), σ(i)

l

(
1t

(i)

i

)
= x

(i)
l and, for

any x ∈ X, σ(i)
(
·|1t(i)i , x

)
equals β(k) if xl < x

(i)
l and α(l) otherwise. To complete the description

by recursion, set α(i) = σ(i) for each i ∈ I.

The path resulting under σ(i) is indeed
(

1t
(i)

i , x(i)
)
: while this is clear whenever πk

(
Uk

(
y
(i)
k , 1

))
>

0 for both k ∈ I, if πj
(
Uj

(
y
(i)
j , 1

))
= 0, j = 3 − i, then vi = ui (1) from equation 4, whence

φi (vi, 0) = 1 and ti = 0 because of equation 6, whereas in the remaining case of πj
(
Uj

(
y
(i)
j , 1

))
>

0 but πi
(
Ui

(
y
(j)
i , 1

))
= 0, it follows similarly that tj = 0 and, moreover, ti ≤ 1 from equation 6;

therefore also in both of the these cases it is indeed path
(

1t
(i)

i , x(i)
)
that results under σ(i). To

complete the main step, it remains to be shown that σ(i) constitutes equilibrium in Gi; due to its
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recursive construction, it su�ces to establish best responses for histories 1n−1i , any n ∈ N such

that n ≤ t(i) + 1.

First, let n < t(i)+1, which exists only if t(i) > 0, and consider the respective round's respondent,

denoted by l ∈ I: given any proposal x 6= 1k, k = 3− l, rejection is worth Ul
(
y
(k)
l , 1

)
, whereas re-

jecting 1k is worth Ul
(
x
(i)
l , t

(i) + 1− n
)
≥ ul (0), where the last inequality follows from impatience

and equation 6, which altogether makes σ(i)
l

(
1n−1i

)
= πl

(
Ul

(
y
(k)
l , 1

))
a best response for any

possible x; on the other hand, proposer k obtains (i) at most uk
(

1− πl
(
Ul

(
y
(k)
l , 1

)))
= vk when

making an immediately accepted proposal, (ii) Uk
(
y
(k)
k , 1

)
≤ uk

(
y
(k)
k

)
= max {uk (0) , wk} < vk

from any rejected proposal not equal to 1k, and (iii) Uk
(
x
(i)
k , t

(i) + 1− n
)
from proposing 1k, which

is no less than vk both if k = i�then because Ui
(
x
(i)
i , t

(i) + 1− n
)
≥ Ui

(
x
(i)
i , t

(i)
)

= vi�and if

k = j�since this can only arise if n > 1, and then, using equation 6, Uj
(
x
(i)
j , t

(i) + 1− n
)
≥

Uj

(
x
(i)
j , t

(i) − 1
)
≥ Uj

(
φj
(
vj, t

(i) − 1
)
, t(i) − 1

)
= vj, whence σ

(i)
k

(
1n−1i

)
= 1k is a best response.

Second, take n = t(i) + 1 and again begin by considering respondent l: rejecting proposer

k's o�er xl ≥ x
(i)
l is worth wl, and this is neither greater than ul

(
x
(i)
l

)
if l = i, because then

ui

(
x
(i)
i

)
= ui

(
φi
(
vi, t

(i)
))
≥ ui (φi (vi, 0)) = vi > wi, nor if l = j, since in this case, either

t(i) > 0 and equation 6 implies x(i)j = 1 − φi
(
vi, t

(i)
)
≥ φj

(
vj, t

(i) − 1
)
≥ φj (vj, 0), whence

uj

(
x
(i)
j

)
≥ uj (φj (vj, 0)) = vj > wj, or t(i) = 0 and equation 6 implies x(i)j = 1−φi (vi, 0) ≥ πj (wj),

whence uj
(
x
(i)
j

)
≥ wj.

In contrast, rejecting proposer k's o�er of x ∈ X such that xl < x
(i)
l is worth Ul

(
y
(k)
l , 1

)
=

Ul (1− πk (wk) , 1). Now note that equation 4 implies that φk (vk, 0) = 1− πl (Ul (1− πk (wk) , 1)),

whence

πl (Ul (1− πk (wk) , 1)) ≥ 1− φk (vk, t) (7)

for any t ∈ T due to the non-decreasingness of φk in t. For the case where l = j this says in particu-

lar that πj (Uj (1− πi (wi) , 1)) ≥ 1−φi
(
vi, t

(i)
)

= x
(i)
j , whereas for l = i it must be that t(i) > 0 and

inequality 7 together with equation 6 (in this order) can be used to obtain πi (Ui (1− πj (wj) , 1)) ≥

1 − φj
(
vj, t

(i) − 1
)
≥ φi

(
vi, t

(i)
)

= x
(i)
i ; in any case, πl (Ul (1− πk (wk) , 1)) ≥ x

(i)
l , so either

Ul (1− πk (wk) , 1) ≥ ul (0) and therefore Ul (1− πk (wk) , 1) ≥ ul

(
x
(i)
l

)
> ul (xl), or Ul (1− πk (wk) , 1) <

ul (0) implying that x(i)l = 0 so there is no x ∈ X with xj < x
(i)
l .
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Now consider proposer k: given l's acceptance rule, the best possible immediate agreement for

k is that on x(i), and any proposal that is rejected yields respondent l a share at least as large with

positive delay, whence it is worse for k than immediate agreement on x(i).

Finally, the proof that every (x, t) ∈ A as stated is an equilibrium outcome of Gi is achieved

simply by replacing
(
x(i), t(i)

)
with (x, t) in the above construction �on the path�, and verifying that

there are no pro�table one-stage deviations along that path (1ti, x) given the o�-path continuation

strategy pro�les which have been proven to constitute equilibrium in the previous main step.

Recall the two kinds of deviations that can be punished in the bargaining game studied here:

(1) a proposer's making a deviating o�er that is rejected and (2) a respondent's rejection of an

o�er which she is supposed to accept. Simple penal codes specify a punishment outcome which

is an equilibrium for each of these, and lemma 2 provides these from the solutions to the system

of equations 4-6 for any i ∈ I: if i deviates in the sense of (2) as the respondent by rejecting a

proposal, then equilibrium outcome
(
x(i), t(i)

)
is played in the subsequently ensuing game Gi, where

t(i) solves equation 5 and x(i)i = φi
(
vi, t

(i)
)
, and if i deviates in the sense of (1) as the proposer by

making a deviating proposal that is rejected, then equilibrium outcome
(
y(i), 0

)
is played in the

subsequently ensuing game Gj, where y
(i)
i = πi

(
Ui
(
φi
(
vi, t

(i)
))
, t(i) + 1

)
.

The �rst main theorem establishes that there is an optimal penal code which takes this form

and thus, in conjunction with lemma 2, characterises the sets of equilibrium outcomes and payo�s.

Theorem 1. The values (v∗k, w
∗
k, t
∗
k)k∈I solve the system of equations 4-6 for both i ∈ I such that

if (vk, wk, tk)k∈I is any (other) solution, then v∗k ≤ vk, w
∗
k ≤ wk and t

∗
k ≥ tk for both k ∈ I.

Proof. Take any i ∈ I, let w̃i = inf {Ui (xi, t+ 1) | (x, t) ∈ A∗i } and consider Gj, j = 3 − i: since

for any (x, t) ∈ A∗i , there exists an equilibrium of Gj where there is immediate agreement on y

such that yi = πi (Ui (xi, t+ 1)), and because of continuity as well as impatience of preferences,

sup
{
Uj (xj, 0) | (x, 0) ∈ A∗j

}
= uj (1− πi (w̃i)) = sup

{
Uj (xj, t) | (x, t) ∈ A∗j

}
, which implies also

that sup
{
Uj (xj, t+ 1) | (x, t) ∈ A∗j

}
= Uj (1− πi (w̃i) , 1) because by i's impatience 1−πi (w̃i) > 0

must be j's supremal equilibrium share in Gj and j is impatient. This means that, for any

ε > 0, there exists an immediate-agreement outcome (x′, 0) which is an equilibrium outcome of Gj

such that Uj
(
x′j, 1

)
≥ uj (x̃j − ε), where x̃j ≡ πj (Uj (1− πi (w̃i) , 1)), and due to j's impatience,
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for ε > 0 su�ciently small, x′j ≥ x̃j, implying that Ui (x′i, 1) < ui (x̃i) by i's impatience and

ui (x̃i) > ui (0). Hence there exists an assignment of continuation equilibria such that j's accepting

a proposal x ∈ X if and only if xj ≥ x̃j and i's o�ering j a share x̃j are best responses, and therefore

immediate agreement on division x̃ is an equilibrium outcome of Gi. Because j must accept any

share greater than x̃j, v∗i ≥ ui (x̃i), and therefore v∗i = ui (x̃i), proving that (v∗k, w
∗
k, t
∗
k)k∈I must

solve equation 4.

Next, observe that κi
(
t∗i , v

∗
i , v
∗
j , w

∗
j

)
≤ 1, i ∈ I, since otherwise, from the de�nition of κi,

if t∗i = 0, for any (x, 0) ∈ A, either ui (xi) < ui (φi (v
∗
i , 0)) = v∗i or uj (xj) < uj

(
πj
(
w∗j
))

=

max
{
uj (0) , w∗j

}
= w∗j , and thus uj (xj) < w∗j since xj ≥ 0, whence (x, 0) cannot be an equilibrium

outcome, and if t∗i > 0, for any (x, t∗i ) ∈ A, either Ui (xi, t∗i ) < Ui (φi (v
∗
i , t
∗
i ) , t

∗
i ) = v∗i or at least one

of Uj (xj, t
∗
i − 1) < Uj

(
φj
(
v∗j , t

∗
i − 1

)
, t∗i − 1

)
= v∗j and Uj (xj, t

∗
i ) < uj (0), whence there cannot

be an equilibrium outcome with delay t∗i either.

Now let (v0k, w
0
k, t

0
k)k∈I ≡ (v∗k, w

∗
k, t
∗
k)k∈I and de�ne a sequence

(
(vnk , w

n
k , t

n
k)k∈I

)
n∈N such that,

for each i ∈ I, j = 3 − i and n ∈ N, tni ≡ sup
{
t ∈ T |κi

(
t, vn−1i , vn−1j , wn−1j

)
≤ 1
}
, wni ≡

inf
{
Ui
(
φi
(
vn−1i , t

)
, t+ 1

)
|t ∈ T, t ≤ tni

}
and vni ≡ ui (1− πj (Uj (1− πi (wni ) , 1))). The previous

paragraph proved that t1i ≥ t0i , implying that w1
i ≤ w0

i and thus also v1i ≤ v0i , whence, by con-

struction, the sequence satis�es generally that tni ≥ tn−1i , wni ≤ wn−1i and vni ≤ vn−1i for each i ∈ I

and any n ∈ N. Moreover, for any n ∈ N, it is true that |tn1 − tn2 | ≤ 1: whenever (tn1 , t
n
2 ) 6= (t11, t

1
2),

tni > 0 for some i ∈ I and

1 ≥ φi (v
n
i , t

n
i ) + max

{
φj
(
vnj , t

n
i − 1

)
, φj (uj (0) , tni )

}
≥ φi (v

n
i , t

n
i ) + φj

(
vnj , t

n
i − 1

)
= φj

(
vnj , t

n
i − 1

)
+ max {φi (vni , tni ) , φi (ui (0) , tni )}

≥ κj
(
tni − 1, vnj , v

n
i , w

n
i

)
,

for j = 3− i, which implies tnj ≥ tni − 1; in particular, either both sequences tni have a �nite limit,

or both become in�nitely large.

The �nal step of the proof will establish that there exists N ∈ N such that
(
tN+1
1 , tN+1

2

)
=
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(
tN1 , t

N
2

)
, because then (vnk , w

n
k , t

n
k)k∈I =

(
vN+1
k , wN+1

k , tN+1
k

)
k∈I for all n ∈ N with n ≥ N + 1,

and these values solve the system of equations 4-6 for any i ∈ I and j = 3 − i; since tN+1
i ≥ t∗i ,

wN+1
i ≤ w∗i and vN+1

i ≤ v∗i for each i ∈ I, application of lemma 2 implies that (v∗k, w
∗
k, t
∗
k)k∈I =(

vN+1
k , wN+1

k , tN+1
k

)
k∈I and thus also that there cannot be another solution which does not satisfy

all of the inequalities stated.

Suppose �rst that limt→∞ Ui (1, t) ≤ ui (0) for i ∈ I. For any u with u > ui (0), there then

exists t̂ ∈ N such that, for any t ≥ t̂, Ui (1, t) < u and, consequently, φi (u, t) = 1 hold true. In

particular, this is the case for u = ui (1− πj (Uj (1, 1))), since 1 − πj (Uj (1, 1)) > 0 due to j's

impatience, where j = 3− i; for any n ∈ N, since vni ≥ ui (1− πj (Uj (1, 1))), there exists therefore

t̂ ∈ N such that φi (vni , t) = 1 for any t ≥ t̂. Because also φj
(
vnj , t

)
> 0 for any t ∈ T , it follows

that tni ≤ t̂ and tnj ≤ t̂ + 1 for some t̂ < ∞, j = 3− i, whence each sequence tni has a �nite limit,

so there indeed exists N ∈ N such that
(
tN+1
1 , tN+1

2

)
=
(
tN1 , t

N
2

)
.

Take the alternative case where limt→∞ Ui (1, t) > ui (0) for both i ∈ I and assumption 1,

property (4) (iii), says that there exists a t̂ ∈ N such that, for any q ∈ [0, 1], limt→∞ Ui (q, t) =

Ui
(
q, t̂
)
. Note that each vni is a non-increasing sequence bounded below by ui (1− πj (Uj (1, 1))),

j = 3− i, whence it has a limiting value v̄i ≥ ui (1− πj (Uj (1, 1))). There exists then a t̂ ∈ N such

that

wni ≥ inf
{
Ui
(
φi
(
vn−1i , t

)
, t+ 1

)
|t ∈ T

}
≥ inf {Ui (φi (v̄i, t) , t+ 1) |t ∈ T}

= min
{
Ui (φi (v̄i, t) , t+ 1) |t ∈ T, t ≤ t̂− 1

}
for any n ∈ N, whence wni converges to some w̄i ≥ min

{
Ui (φi (v̄i, t) , t+ 1) |t ∈ T, t ≤ t̂− 1

}
, and

this is true for each i ∈ I. This means, however, that if the sequences tni do not possess a �nite

limit, there exists N ∈ N such that tNi ≥ t̂ for both i ∈ I, and then
(
tN+1
1 , tN+1

2

)
=
(
tN1 , t

N
2

)
must

hold.
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3.3 Uniqueness

Arguably, the main reason for the success of the Rubinstein [1982] model of sequential bargaining

was the uniqueness of its prediction for what then was the standard model of time preferences:

exponential discounting. Impatience alone, in the general class of time preferences which fall under

assumption 1, does, however, neither guarantee a unique (immediate-agreement) prediction nor

stationary equilibrium outcomes as optimal simple penal codes; the example of section 3.4 augments

theorem 1 to prove this point. Although multiplicity of equilibrium outcomes is disconcerting

in principle, it may only arise for time preferences which are empirically�in a broad sense�

implausible. This section therefore investigates the question which preference pro�les out of the

class considered imply a unique equilibrium. While the main theoretical result is a characterisation

of these preference pro�les, a corollary to it presents more readily testable�both empirically and in

applied work with given preferences�su�cient conditions than which are necessary for equilibrium

uniqueness at the level of each player's time preferences in isolation.

Rather unsurprisingly, if there is a unique equilibrium, it is the familiar stationary equilibrium

with immediate agreement in any round which Rubinstein [1982] discovered. The assumptions

on preferences together with the alternating o�ers protocol mean that the limit of any sequence

of equilibria of the truncated games G1 with �nite horizon n converges to an equilibrium of the

in�nite-horizon game. If this limit is independent of whether the initial n is odd or even, i.e. who

makes the last o�er, it is indeed unique. Since, for any �nite horizon, the game can be solved

via backwards induction, speci�cally due to impatience property (ii), this will result in immediate

agreement in any round; moreover, the stationarity of the in�nite-horizon game means that the

limiting equilibrium will be stationary.

De�ne now for each player i ∈ I a function fi : [0, 1]→ [0, 1] as follows:

fi (q) = 1− πj (Uj (1− πi (Ui (q, 1)) , 1)) .

The signi�cance of this function lies in its relation to stationary equilibrium: if the division with

share q for player i is the outcome in Gi in round 3 in case there is no agreement in the �rst
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two rounds, independent of what happens in these rounds, then, from two rounds of backwards

induction, fi (q) is the maximal share which player i can obtain as the initial proposer in round

1. Fixed points of fi are therefore limiting shares of initial proposer i in Gi of sequences of �nite-

horizon equilibrium shares and thus stationary-equilibrium shares for each i ∈ I. The following

lemma therefore proves existence of stationary equilibrium.

Lemma 3. For each k ∈ I, the function fk possesses a �xed point q = fk (q), and if q ∈ [0, 1] is a

�xed point of fi, i ∈ I, then q′ = 1− πi (Ui (q, 1)) is a �xed point of fj; moreover, f1 has a unique

�xed point if and only if f2 has a unique �xed point.

Proof. Take any k ∈ I. The function fk is continuous by the continuity of preferences and satis�es

0 < fk (0) ≤ fk (1) ≤ 1 by impatience, whence it has a �xed point by the intermediate-value

theorem. Note, moreover, that fk is non-decreasing by desirability.

Now suppose q is a �xed point of fi, i ∈ I, and let q′ = 1− πi (Ui (q, 1)); then, for j = 3− i,

fj (q′) = 1− πi (Ui (1− πj (Uj (1− πi (Ui (q, 1)) , 1)) , 1))

= 1− πi (Ui (fi (q) , 1))

= 1− πi (Ui (q, 1))

= q′.

For the last claim, suppose q is in fact the unique �xed point of fi; it remains to show that then

q′ is the unique �xed point of fj. Suppose not, and fj had another �xed point q′′ 6= q′. Then also

q′′′ = 1−πj (Uj (q′′, 1)) would be a �xed point of fi; because q is the unique �xed point of fi, q′′′ = q

has to hold. Moreover, since q′ is a �xed point of fj, it must be that also 1 − πj (Uj (q′, 1)) = q

from repeating the above argument. But this leads to a contradiction as follows:

1− q = πj (Uj (q′, 1)) = πj (Uj (q′′, 1))⇒ fj (q′) = fj (q′′)⇒ q′ = q′′.

Since stationary equilibrium always exists, a necessary condition for uniqueness of equilibrium
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is uniqueness of stationary equilibrium, i.e. uniqueness of the �xed point of f1. In terms of lemma

2, this would say that there is a unique simple penal code in stationary strategy pro�les; however,

there may then still be simple penal codes in non-stationary strategy pro�les and such have to be

ruled out for su�ciency.

Theorem 2. There exists a unique equilibrium if and only if the system of equations 4 through

6,i ∈ I, has a unique solution. This equilibrium is then given by the stationary strategy pro�le σ

such that at any stage when a player i ∈ I is the proposer, i proposes a division x to responding

player j = 3− i with xj = 1− φi (v∗i , 0) = πj
(
Uj
(
φj
(
v∗j , 0

)
, 1
))

and this is the minimal share that

j accepts.

Proof. Necessity of a unique solution for a unique equilibrium, whence a unique equilibrium out-

come, follows from lemma 2. For su�ciency, �rst establish that there always exists a solution

with t1 = t2 = 0; to see this, recall lemma 3, take any q∗ = f1 (q∗) and set v1 = u1 (q∗) as

well as w1 = U1 (q∗, 1), which clearly solve equations 4 and 5 for i = 1 given t1 = 0. Next, let

v2 = u2 (1− π1 (U1 (q∗, 1))) as well as w2 = U2 (1− π1 (U1 (q∗, 1)) , 1) and verify that these values

solve equations 4 and 5 for i = 2 given t2 = 0. For the values (vk, wk, 0)k∈I to indeed solve the

system of equations 4 through 6 for any i ∈ I and j = 3− i, only equation 6 needs to be checked

for each i ∈ I and j = 3− i:

κ1 (0, v1, v2, w2) = q∗ + π2 (U2 (1− π1 (U1 (q∗, 1)) , 1))

= f1 (q∗) + π2 (U2 (1− π1 (U1 (q∗, 1)) , 1))

= 1;

similarly,

κ2 (0, v2, v1, w1) = φ2 (v2, 0) + π1 (U1 (q∗, 1))

= 1− π1 (U1 (q∗, 1)) + π1 (U1 (q∗, 1))

= 1,
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and noting that φi (vi, 0) < φi (vi, 1), (vk, wk, 0)k∈I is proven to be a solution. Hence, if there is a

unique solution, it is this solution, and by theorem 1, (vk, wk, 0)k∈I = (v∗k, w
∗
k, t
∗
k)k∈I .

Using lemma 2, observe next that this solution has a unique outcome associated with it in each

Gi which is
(
x(i), 0

)
, i ∈ I, where x(1)1 = q∗ and x(2)2 = 1 − π1 (U1 (q∗, 1)). There is then a unique

equilibrium that yields exactly these outcomes in the two subgames, and it is the stationary one

described in the theorem.

Given a particular preference pro�le, checking for equilibrium uniqueness on the basis of this

characterisation is rather cumbersome, as it would require proving uniqueness of the solution to a

system of equations which relates the two bargaining parties' preferences. The following corollary

presents a simpler, though somewhat weaker, test by providing su�cient conditions for uniqueness

that concern each player's preferences in isolation.

Corollary 1. If, for each i ∈ I and any (q, t) ∈ [0, 1]× T ,

(i) q − πi (Ui (q, 1)) is increasing and

(ii) ui (q) = Ui (φi (ui (q) , t) , t) implies Ui (φi (ui (q) , 0) , 1) ≤ Ui (φi (ui (q) , t) , t+ 1),

then equilibrium is unique.

Proof. First, observe that condition (i) ensures that f1 as well as f2 (recall lemma 3) have a unique

�xed point; to see this, write

q − f1 (q) = q − 1 + π2 (U2 (1− π1 (U1 (q, 1)) , 1))

= [q − π1 (U1 (q, 1))]− [(1− π1 (U1 (q, 1)))− π2 (U2 (1− π1 (U1 (q, 1)) , 1))]

and note that q − f1 (q) is increasing in q: by condition (i), the �rst term in square brackets is

increasing in q and the second term is increasing in 1− π1 (U1 (q, 1)), and since 1− π1 (U1 (q, 1)) is

non-increasing in q, overall their di�erence is increasing. This means that q − f1 (q) has at most

one root, and application of lemma 3 yields the result that f1 and f2 have a unique �xed point.

Next, recall the proof of lemma 2, at the outset of which it was argued that any solu-

tion (vk, wk, tk)k∈I to the system of equations 4 through 6, {i, j} = I, must satisfy that vi =

Ui (φi (vi, t) , t) for any t ≤ ti, any i ∈ I. Condition (ii) then implies that Ui (φi (vi, 0) , 1) ≤

24



Ui (φi (vi, t) , t+ 1), whence it follows that wi = Ui (φi (vi, 0) , 1) and by consequence

vi = ui (1− πj (Uj (1− πi (Ui (φi (vi, 0) , 1)) , 1)))

⇔

φi (vi, 0) = 1− πj (Uj (1− πi (Ui (φi (vi, 0) , 1)) , 1))

for each i ∈ I.

Letting q∗ = f1 (q∗), φ1 (v1, 0) = q∗ and φ2 (v2, 0) = 1 − π1 (U1 (q∗, 1)) must hold, so there

are unique values (v1, v2) in any solution (vk, wk, tk)k∈I to the system of equations 4 through 6,

{i, j} = I. These also pin down (w1, w2) uniquely, as above, and any such solution must be of the

form studied in the su�ciency part of the proof of theorem 2 satisfying t1 = t2 = 0. Thus there is

a unique solution, and equilibrium uniqueness follows from theorem 2.

Condition (i) is merely a translation of the �increasing loss to delay� axiom in the context of

the analysis of exponential discounting (see Osborne and Rubinstein [1990, chapter 3]). Condition

(ii) is novel, however, and�in conjunction with (i)�it extends earlier su�ciency statements to a

much larger set of time preferences than exponential discounting, which itself clearly satis�es it.

In fact, it can be interpreted as a form of present �bias� in a weak sense: noting that ui (q) =

Ui (φi (ui (q) , 0) , 0), it says that whenever individual i is indi�erent between receiving a reward q

immediately and receiving a reward q′ = φi (ui (q) , t) with t periods of delay, as one period of delay

is added and both are moved into the future, such indi�erence may only be resolved in favour of

the larger later share.

It is relatively easy to check that any hyperbolic discounting or any quasi-hyperbolic discounting

satis�es condition (ii) (in addition to assumption 1, of course). Similarly, the non-separable time

preferences proposed by Benhabib et al. [2010] and Noor [2011] do so, although the interpretation of

condition (i) is less clear when there is no separability of instantaneous utility and time-discounting.

Section 4 discusses the empirical evidence on time preferences and sketches the implications of these

alternative models of time preferences in the present bargaining game.

In any case, condition (ii) on its own implies that the optimal simple penal codes of theorem 1
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are stationary equilibrium outcomes. The reason is that while the proposer's strategic advantage

means that the minimal equilibrium payo� of a player i as the initial proposer for when agreement

takes place with a given delay cannot fall below the minimal immediate-agreement equilibrium

payo�, such present bias makes the same player in the role of respondent of Gj at least as patient

in comparing immediate agreement and delayed agreement continuation outcomes of Gi; hence the

rejection value is minimal for the least preferred immediate-agreement equilibrium of Gi.

3.4 An Example of Unbounded Equilibrium Delay

To demonstrate the novel equilibria, which support optimal simple penal codes in non-stationary

Consider the following symmetric separable preferences:

Ui (xi, t) = d (t) · xi, d (t) =


1 t = 0

α t = 1

αβ t > 1

,

where 0 < β < α < 1. It is insightful to decompose d (t) into the product of discount factors for

each period of delay as d (τ) =
∏τ

t=1 δ (t), where δ (t) ≡ d(t)
d(t−1) is the discount factor�and measure

of patience�for the t-th period of delay, t ∈ N.16 Then

δ (t) =


α t = 1

β t = 2

1 t > 2,

and present bias is violated because β < α; moreover, note that

Ui (0, 0) = 0 < lim
t→∞

d (t) · xi = αβxi = Ui (xi, t)

for any xi > 0 and t > 1, verifying impatience property (iii) of assumption 1 (the remaining

16I follow the convention here that the empty product d (0) equals 1.

26



properties are obvious).

Let vti denote the minimal equilibrium share for a given delay of t periods of player i in Gi;

by symmetry, vti = vt. Recall that v0 = v∗ is the minimal equilibrium payo� of i as evaluated in

initial round of Gi. Indi�erence across delays means that for any t > 1:

v∗ = αv1 = αβvt ⇒ v1 =
v∗

α
∧ vt =

v∗

αβ
.

Hence we get the minimal rejection equilibrium value:

w∗ = min

{
αv∗, αβ

v∗

α
, αβ

v∗

αβ

}
= βv∗.

This pins down v∗ as follows:

v∗ = 1− α (1− βv∗)⇔ v∗ =
1− α

1− αβ
.

The condition for equilibrium delay of more than two, in fact arbitrarily many, periods is:

v∗

αβ
+
v∗

αβ
≤ 1⇔ 2 ≤ αβ (1− αβ)

1− α
. (8)

Now note that the denominator only depends on α which can be arbitrarily close to 1, and the

numerator can be maximised to 1
4
by setting αβ = 1

2
, pinning down β = 1

2α
. Thus we can solve for

the minimal value of α so the above holds:

2 ≤
1
4

1− α
⇔ α ≥ 7

8
.

Note that equation 8 guarantees that v, v1 and v2 are actually no larger than one because:

v∗ < v1 =
v∗

α
< v2 =

v∗

αβ
< 2

v∗

αβ
≤ 1.

For a convenient numerical example, one may take α = 15
16

= 30
32

> 28
32

= 7
8
which implies
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β = 16
30

= 8
15

and therefore v = 1
8
and w = 1

15
. For these numerical values, the proof of the

following proposition explicitly constructs an optimal penal code which is �purely� non-stationary

(there is no subgame in which its restriction is a stationary equilibrium), and this penal code

supports agreement with any delay t ∈ T .

Proposition. Suppose z(1) =
((

2
15
, 13
15

)
, 1
)
is a continuation equilibrium outcome of G1 and z

(2) =((
13
15
, 2
15

)
, 1
)
is a continuation equilibrium outcome of G2. Then each z(i), i ∈ I, is an equilibrium

outcome of the respective Gi. Hence z
(i) is indeed an equilibrium outcome of Gi.

Proof. Consider G1 and construct an equilibrium σ as follows (the conclusion for G2 follows by

symmetry), where the respondent's acceptance rule in any given round as a function of the history

preceding that round will be denoted by the minimal accepted share.

First, in the initial round σ1 (∅) = 11 and σ2 (∅) = 7
8
. The best-response property of these will

be veri�ed at the end of the argument.

If x 6= 11 is rejected in this round, then in the subsequent round σ2 (x) =
(

1
15
, 14
15

)
and σ1 (x) = 1

15

which is rationalised by �restarting� σ in the subsequent subgame G1 with outcome
((

2
15
, 13
15

)
, 1
)

for any rejected proposal, because then (i) rejection has value αβ 2
15

= 1
15

to responding player 1,

which equals that of acceptance, and (ii) making an o�er that is rejected has value αβ 13
15

= 13
30

to

proposing player 2, which is less than that of making the most preferred accepted proposal which

equals 13
15
.

If x = 11 is rejected in the initial round, then σ2 (11) =
(

2
15
, 13
15

)
and σ1 (11) = 2

15
, and if x with

x1 ≥ 2
15

is rejected, the strategy is �restarted� so outcome
((

2
15
, 13
15

)
, 1
)
in subsequent subgame G1

obtains, whereas if x with x1 < 2
15

is rejected, then the subsequent subgame G1 is played with the

�mirror strategy� of σ where outcome
((

13
15
, 2
15

)
, 1
)
obtains. Responding player 1's acceptance rule

is a best response because rejecting shares x1 ≥ 2
15

results in a payo� of 1
15

which is less than that

of acceptance of at least 2
15
, and accepting shares x1 < 2

15
is worth less than 2

15
whereas rejection

has value αβ 13
15

= 13
30
> 2

15
.

Finally, reconsider the initial round's speci�cation: if responding player 2 were to accept a

share 0 < x2 <
7
8
her payo� would be less than 7

8
which is the value of rejecting any such o�er

because α 14
15

= 7
8
, making acceptance of any share greater than that optimal; and accepting a zero
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share would be worse than rejecting it in favour of share 13
15

with one period of delay which is worth

α 13
15

= 13
16
. Proposing player 1 obtains a payo� of α 2

15
= 1

8
by proposing 11, whereas any proposal

x with x2 ≥ 7
8
would be immediately accepted and yield a payo� no greater, and any proposal x

with 0 < x2 <
7
8
would be rejected and result in a payo� of α 2

15
= 1

8
which is no greater either.

4 Empirical Evidence on Time Preferences and Implications

The empirical literature on time preferences is vast. A large body of evidence on choice from

various domains of intertemporal trade-o�s has accumulated in psychology since the 1970s and is

summarised by Frederick et al. [2002] who conclude that �virtually every assumption underlying the

(exponential-discounting) model has been tested and found to be descriptively invalid in at least

some situations� (p. 352). Moreover, in comparison to empirical violations of expected-utility

preferences, Loewenstein and Prelec [1992] observe that �the counterexamples to (exponential

discounting) are simple, robust and bear directly on central aspects of economic behavior� (p.

574). The most convincing such evidence comes in the form of preference reversals, where e.g. the

same person prefers $20 today over $30 in three weeks but also $30 in 9 weeks over $20 in 6 weeks.

This is a direct violation of the stationarity axiom necessary for exponential discounting.

This section brie�y discusses the evidence and implications of alternative models of discount-

ing put forward in the literature. Most importantly, it serves to demonstrate the implication of

corollary 1 that, under standard assumptions on the curvature of the instantaneous utility func-

tion, uniqueness of equilibrium, and thus immediate agreement (e�cient bargaining), is a robust

implication across various forms of present bias.

4.1 Separable Time Preferences (Discounting)

While assumption 1 only assumes stability of time preferences across di�erent points in time

in the sense that delayed rewards are evaluated the same way (Halevy [2012] terms this time-

invariance), time preferences are most meaningful if stable also across domains of choice, i.e. if
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they are separable:

Ui (q, t) = di (t)ui (q) .

In this case di (t) is individual i's �discounting� function which captures individual i's general

impatience about the timing of various kinds of rewards.

Especially in the present context, it is instructive to de�ne a function δi : N→ [0, 1] such that

δi (t) ≡ di(t)
di(t−1) which expresses i's discount factor for each period of delay from the present, so that

di (t) ≡
∏t

t′=1 δi (t
′).17 Note that stationarity�equivalently, exponential discounting and dynamic

consistency�would require here that δi (t) be constant. The (β, δ)-model of quasi-hyperbolic

discounting, in its strict version, would have δi (1) = βδ < δ = δi (t) for any t > 1, and hyperbolic

discounting, again in its strict version, would have δi increasing.

All of these examples satisfy condition (ii) of corollary 1: assuming separability, it says that

[ui (q) = di (t)ui (q
′)⇒ di (1)ui (q) ≤ di (t+ 1)ui (q

′)]⇔ δi (1) ≤ δi (t+ 1)

for any t ∈ T . The psychological content of this property is straightforward: the �rst period of

delay from the present looms largest, and this con�rms its interpretation as a weak form of present

bias. Moreover, condition (i) is met by any instantaneous utility function which is concave�a

standard property in economics�whence for the most important alternative models to exponential

discounting, the prediction for the Rubinstein [1982] bargaining model is unique. As shown,

this unique equilibrium satis�es all the familiar properties: it is stationary, characterised by the

players' attitudes to the �rst period of delay together with their instantaneous utility functions

(δi (1) , ui)i∈I , implies immediate agreement (e�ciency) and exhibits the usual comparative statics

where an increase in δi (1) can only increase a player i's equilibrium share for given ui and opponent

preferences.18

17I follow the convention that the empty product for t = 0 equals one. In order to relate this de�nition to
�discount rates�, simply let δi (t) = 1

1+ρi(t)
, where ρi (t) is the discount rate for the t-th period of delay from the

present.
18Given an individual's preferences satisfy exponential discounting with some discount factor δ ∈ (0, 1) and

instantaneous utility function u, for any ε ∈ (0, 1), there then exists an instantaneous utility function v such that
εt ·v (q) also represents such an individual's preferences (see Fishburn and Rubinstein [1982, theorem 2] and Osborne
and Rubinstein [1990, footnote 5]). Thus the discount factor alone is ill-de�ned as a measure of impatience, and
this has lead to di�erent concepts of impatience or delay aversion for such preferences in bargaining (Osborne and
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However, while some form of (non-exponential) hyperbolic discounting appears empirically well-

established regarding �primary� rewards (actual consumption), there is some controversy about

whether this is true (or should even be expected) also about time preferences over money (see

for instance the discussions in Read [2001a], McClure et al. [2007], Andreoni and Sprenger [2012],

Read et al. [2012] and Augenblick et al. [2013]). Interestingly, there are several recent experimental

studies, investigating such monetary rewards over also particularly short horizons of less than a

week which �nd behaviour that suggests impatience, as measured by δi, may actually increase

with delay for short delays and then switch to being decreasing (at least weakly) only for delays

of more than at least a few days (see in particular the �ndings and discussions in Sayman and

Öncüler [2009], Attema et al. [2010] and Takeuchi [2011], and also further references in Attema

[2012, section 3.1] among which Read [2001a] is �rst to explicitly advance such evidence, and

Halevy [2012] and Olea and Strzalecki [2014] are most recent examples). Qualitatively, in a way

similar to how (β, δ)-discounting captures the most salient property of hyperbolic discounting,

this is for instance modelled by the discounting function in section 3.4, for which a novel kind of

equilibria with delayed agreement is shown to arise. While the domain for which such time pref-

erences have been documented appears most pertinent for bargaining, such a �discounting-based

explanation� for ine�cient delay in real bargaining over money�in spite of perfect information

and full sophistication�awaits further validation of these �ndings.

4.2 Non-separable Time Preferences

Rather naturally, the economics literature on time-preferences has focussed on separable prefer-

ences (discounting). There are a few exceptions, however, which this section deals with. First,

Benhabib et al. [2010] �nd strong experimental evidence for present bias in choice over mone-

tary rewards but estimate that such bias has a �xed-cost component. They suggest the following

time-preference speci�cation (here in the most general form they envisage, in slightly di�erent

notation):

Ui (q, t) = δtiui (q)− bi
(
1− (δiεi)

t) ,
Rubinstein [1990, section 3.10.2]) and more generally (Benoît and Ok [2007]).
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where (δi, εi) ∈ (0, 1)2 and bi > 0 is a �xed cost to delay. This speci�cation also satis�es condition

(ii) of corollary 1 whence, when combined with concave ui, it yields a unique equilibrium prediction

in the bargaining model studied here.

Second, Noor [2011], referring to the empirical �nding that imputed discount rates for a given

delay appear decreasing in the size of the (monetary) reward (the so-called �magnitude e�ect�),

develops an axiomatic decision theory for the following representation:

Ui (q, t) = (δi (q))
t ui (q) ,

where δi (·) is an increasing function. This model can rationalise evidence on hyperbolic discounting

but, contrary to the latter, does not require calibrationally implausible degrees of concavity on

the instantaneous utility function to generate the magnitude e�ect. Once more, condition (ii) is

satis�ed for such decreasing δi, which may therefore be thought of another form of present bias.19

Contrary to any separable time preferences or also the �xed-cost model of Benhabib et al. [2010],

concavity of ui is now not su�cient for condition (i) to hold, however, because δi is a function of q

and a �su�ciently convex� δi (q)ui (q) may still permit multiple �xed points of fi (see Noor [2011,

section 4]).

4.3 Other �Time Preferences�

Recently, Ok and Masatlioglu [2007] have developed an axiomatic decision theory of �relative

discounting�. Assuming separability but allowing for cycles in the ranking of rewards that come

with di�erent delays, they obtain a representation of the following form: a reward q with delay t

is weakly preferred by individual i to a reward q′ with delay t′ if and only if

ui (q) ≥ ηi (t, t
′)ui (q

′) ,

19Noor [2011] actually applies his theory to the bargaining problem analysed here, but under the restriction to
stationary equilibrium. My results show that this is indeed without loss of generality with regards to characterising
the set of equilibrium divisions.
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where ηi (t, t′) = 1
ηi(t′,t)

re�ects how discounting is relative to the particular delays under considera-

tion. The authors also show how their theory can accommodate formal versions of two procedural

modes of choice in the domain of delayed money rewards which have been suggested: subadditive

discounting by intervals (Read [2001a]) and similarity-based choice rules (Rubinstein [2003a]).

While assumption 1 imposes transitivity also in binary comparisons across any di�erent delays,

the set of equilibrium outcomes is characterised by means of optimal penal codes which mean

that each player, at any stage, faces only a problem of choosing between a pair of outcomes: an

immediate agreement and a known delayed agreement (given perfect information, in equilibrium

there is no uncertainty about which outcome would obtain upon a contemplated deviation); hence

only the functions ηi (0, t) are pertinent to the characterisation. But then one can simply set

ηi (0, t) = di (t) and analyse them as a separable time preference (see section 4.1); the type of

intransitivity permitted by Ok and Masatlioglu [2007] is immaterial in this application.20

5 Conclusion

The contribution of this paper is two-fold: on the one hand, I characterise the equilibrium of the

classic alternating-o�ers bargaining game proposed by Rubinstein [1982] for time preferences which

are of increasing interest in economics, in particular hyperbolic and quasi-hyperbolic discounting.

Corollary 1 presents su�cient conditions for equilibrium uniqueness which are satis�ed by the

latter. On the other hand, I employ a novel analytical approach to the equilibrium characterisa-

tion which reveals the generalisability of the powerful framework that Abreu [1988] developed for

repeated games with discounting to other stochastic games. This insight may be useful for related

theoretical work.

In the bargaining model studied here, this approach uncovers a novel kind of non-stationary

delay equilibria for time preferences where a near-future period is �discounted� more heavily than

the �rst period from the immediate present. Interestingly, time preferences with this property have

recently been documented experimentally for a signi�cant portion of subjects on a domain which

20In fact, the authors also apply their decision theory to the exact same bargaining problem as investigated
here, claiming a certain uniqueness result, but they fail to recognise how the most widely used method of proof for
uniqueness cannot be applied with dynamically discounting (see section 3.1).
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appears most relevant for bargaining: short-horizon monetary trade-o�s. It remains, however, to

be seen whether these preferences elicited at a single point in time are due to transient individual

environmental factors or in fact inherently stable across time as assumed here; Halevy [2012]

provides an investigation of this question.

The existence of such delay equilibria comes with multiplicity, which raises the question of

re�nement: in particular, how much and what kind of intra-personal coordination is required to

obtain a unique prediction. Given the robustness of stationary equilibrium, it seems that this

would be the prediction of any re�nement that achieves this.

While the results presented here were derived for a bargaining environment without uncertainty,

their extension to alternating-o�ers bargaining under the shadow of exogenous breakdown risk is

straightforward. Hence the pure equilibria for various non-expected-utility risk preferences are

characterised, e.g. those proposed by Halevy [2008]. Once there is risk, however, randomisation

may be of strategic use. But it seems unlikely that allowing for mixed strategies would a�ect the

sets of equilibrium outcomes and payo�s which are found to be convex already here (regarding

outcomes, this holds for any given delay only since time is discrete).

Finally and relatedly, the relationship between the predictions derived here and axiomatic

bargaining solutions deserve further attention, especially in view of the work of Rubinstein et al.

[1992] who extended the Nash bargaining solution to (dynamically inconsistent) non-expected-

utility preferences.
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