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1 Introduction

Strong restrictions on the structure of intertemporal preferences are a common feature
in the study of repeated games. In fact, most of the literature assumes that preferences
can be represented by an additive payoff function with a constant rate of time preference.
This specification has limited descriptive or normative appeal. Its primary advantage is
analytic tractability. This paper considers a more general class of intertemporal prefer-
ences introduced by Uzawa [14]. Specifically, the discounted sum of payoffs is defined
recursively as

vi(a0, a1, ...) = gi(a0) + βi(a0)vi(a1, a2, ...) (1)

where gi(a) is player i’s stage payoff from an action profile a and βi(a) is the player’s
discount factor as a function of that action. Repeated games in which intertemporal pref-
erences take this form are referred to as games with endogenous discounting or ED games
for short.

The paper achieves two objectives. The first is to establish a folk theorem for ED games.
In this regard, the familiar conclusion that every sequentially rational outcome can arise
in an equilibrium of a repeated game is confirmed. Below we describe some of the main
challenges encountered in proving a folk theorem. The second objective is to investigate
how efficiency restricts the set of equilibrium outcomes. While some of the findings apply
more generally, in this part of the paper attention is mainly limited to a repeated prison-
ers’ dilemma game. The potentially surprising conclusion is that, for a natural subclass
of the preferences we consider, any efficient equilibrium leads to an eventually unique
outcome. The result suggests that the multiplicity of efficient equilibria, traditionally as-
sociated with repeated interactions, is an artefact of the time-additive model. The rest of
the introduction describes how we specialize the preferences in (2) and the precise mean-
ing of uniqueness.

In the literature on endogenous discounting, it is common to assume that discount factors
are a strictly monotonic function of the underlying outcomes. This is also the assumption
under which we investigate whether equilibrium outcomes are unique. There are two
cases to consider. One is that the marginal impatience of each player i, 1− βi(a), decreases
the more desirable he finds the constant path (a, a, ...). Increasing marginal impatience is
the obvious polar case. Interestingly, the merits of each case have been debated going
back to the classical works of Fisher et al. [7, p.72] and Friedman [8, p.30]. Epstein [5, 6]
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provides a comprehensive summary of the arguments that have been made. In this paper,
we do not take sides in this debate. The two cases lead to different uniqueness results.
Since the driving forces behind them are also quite different, we investigate each case in
turn.

To illustrate the uniqueness results, consider a repeated prisoners’ dilemma game. As
usual, let C stand for ‘cooperate’ and D for ‘defect’. An interesting consequence of the
more flexible class of preferences we study is the need to distinguish between two forms
of dynamic cooperation. In particular, say that cooperation is intratemporal if (C, C) is
played in every period. Cooperation is intertemporal if the players alternate between
(D, C) and (C, D), i.e., between their most preferred outcomes. With these definitions in
place, consider the case when marginal impatience is increasing. The paper shows that,
after some period, the play path in any efficient equilibrium is one of dynamic coopera-
tion. Furthermore, whether cooperation is intratemporal or intertemporal is independent
of the equilibrium being played. The outcome is fully determined by the specification
of preferences. Consequently, all efficient equilibria of the repeated game result, eventu-
ally, in a unique play path. If marginal impatience is decreasing, the uniqueness result
is stronger. In any efficient equilibrium, cooperation is intratemporal and starts immedi-
ately.

It is important to emphasize that, in the standard time-additive model, intertemporal co-
operation is never efficient. Therefore, the more general class of preferences we consider
do not simply restrict the set of outcomes that can arise in an efficient equilibrium. If
marginal impatience is increasing, they can also generate different, potentially interesting
dynamics.

In formulating a folk theorem for ED games, one of the main problems posed by adopting
the more general utility specification in (1) is that a change in the rate of time preference
may change the minmax strategies against each player. In general, one cannot there-
fore keep a sequentially rational outcome fixed and at the same time let discount factors
converge to one. Our solution to this problem involves several steps. A preliminary re-
sult shows that the search for minmax strategies can be restricted to strategies that are
history independent. The result extends the well-known fact that in standard repeated
games it is sufficient to look at minmax strategies in the stage game. The next step is to
identify a path along which discount factors converge to one, yet the ranking of history-
independent strategies, and therefore the minmax strategies against each player, remain
invariant. The appeal of the proposed convergence path is not limited to the role it plays
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in proving a folk theorem. It is chosen so that the relative impatience, 1−βi(a)
1−β j(a′) , between

any two action profiles and any two players, remains constant as discount factors con-
verge to one.

A final difficulty arises in games with more than two players. As is well-known from
Fudenberg and Maskin [9], a rich set of actions is then necessary to insure that players
can be rewarded for carrying out the punishments against a player who deviates. As
before, we need the rewarding strategies to be history independent so that they remain
invariant as discount factors converge to one. Because the preferences in (2) are non-
additive, however, we have not been able to find such strategies under the traditional full-
dimensionality condition introduced in Fudenberg and Maskin [9]. A stronger condition
is proposed instead.1

An axiomatic foundation for the preferences we consider is provided by Epstein [5]. He
shows that a utility representation as in (1) exists if and only if behavior is stationary
and random play paths are evaluated according to the expected-utility criterion. Two as-
pects of his result are worth emphasizing here. First, the representation in (1) is obtained
precisely by relaxing time additivity. The latter is arguably the most problematic feature
of the standard model. The result also shows that, unless one is willing to abandon the
more appealing properties of stationarity and expected utility, there is no room to pursue
generalizations.

One limitation should be acknowledged from the start. As discussed in Fudenberg and
Tirole [11, p.21], there are games in which an efficient equilibrium may not be the most
reasonable prediction of how a game is played. In the uniqueness results we obtain, this
paper uses the ’Pareto refinement’ without providing any formal justification. While the
efficient equilibria we find for the prisoners’ dilemma seem intuitive, more research is
certainly needed to understand when imposing efficiency is appropriate from a positive
standpoint.

2 Related Literature

Recursive preferences with endogenous discounting have been previously used in the
literature on optimal growth. See Epstein [6], Lucas and Stokey [13], and the survey in

1We conjecture that this condition can be substantially relaxed. Since the problem is only tangential to the
analysis of uniqueness, which is our main concern, we leave this to future work.
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Backus et al. [1]. In departing from the standard model, one of the primary motivation of
these papers is to escape the well-known ‘immiseration’ result of Becker [3]. The result
states that only the most patient player can own capital in a steady state of the economy.
This has long been viewed as an unappealing consequence of the time-additive speci-
fication. Both Epstein [6] and Lucas and Stokey [13] emphasize the role of increasing
marginal impatience in insuring that there is a unique steady state and that the distri-
bution of wealth is nondegenerate. The uniqueness results appear conceptually related
to ours. However, we have not been able to find any formal connection. The contin-
uous choice framework in those papers is different from the discrete games which are
the focus of this paper. In addition, both Epstein [6] and Lucas and Stokey [13] impose
additional, auxiliary assumptions on preferences which are not needed here. Finally, it
should be mentioned that these papers do not investigate the case of decreasing marginal
impatience.

Lehrer and Pauzner [12] provide a game-theoretic analogue of the immiseration result of
Becker [3]. In their paper, discount factors are constant but heterogeneous across players.
Efficiency then requires that the utility of the most patient player is eventually maximized.
Unlike Becker [3], however, such an outcome need not be sequentially rational for the
impatient player. This implies that a strategic setting such as the repeated prisoners’
dilemma game has no efficient equilibrium. In this paper, heterogeneity in the players’
rates of time preference can arise endogenously even when the players are a priori identical.
This occurs along any path along which the players attain different outcomes. It will
be clear from the discussion in Section 7.3 that such endogenous heterogeneity plays an
important role in the analysis of this paper. The switch from exogenous to endogenous
heterogeneity however produces substantially different results from those of Lehrer and
Pauzner [12].

3 The Model

Time is discrete and varies over an infinite horizon t ∈ {0, 1, ...}. There is finite set of
players I = {1, 2, ..., n}. In each period t, player i can choose a pure action in a finite set
Ai. Mixed actions are denoted by αi ∈ ∆(Ai). To simplify the analysis, we permit public
randomization: in each stage the players can condition their actions on an exogenous
random variable. As is typical, we do not make the assumption explicit. A complete
history up to some period t consists of all the past mixed actions, realized outcomes and
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public signals. We assume perfect monitoring: each player can condition his action at
time t on the entire history. Let Σi denote the corresponding set of behavioral strategies
for player i ∈ I and let Σ := ×i∈IΣi. A generic strategy profile is denoted as σ = (σi)i ∈ Σ.
A play path a = (a0, a1, ..., ) ∈ A∞ is a sequence of action profiles. Given a path a =

(a0, a1, ..., ) ∈ A∞ and a time period t ∈ T, ta denotes the continuation path (at, at+1, ...)
starting from period t. To describe player i’s preferences, first define a utility function vi

on A∞ as follows

vi(a) = gi(a0) + βi(a0)gi(a1) + βi(a0)βi(a1)gi(a2) + ... = gi(a0) + βi(a0)vi(1a) (2)

where gi : A → R is player i’s stage payoff and βi : A → (0, 1) is his discount factor.
Given (2), preferences can be extended to random strategy profiles in the usual manner. In
particular, each strategy profile σ ∈ Σ induces a probability distribution on A∞. Abusing
notation, we denote the induced measure by σ as well. Player i’s expected payoff from
a strategy profile σ is then vi(σ) := Eσvi(a). Note that if each βi : A → (0, 1) is a
constant function, one obtains the standard time-additive model with a constant rate of
time preference.

By an equilibrium of an ED game, we always mean a subgame perfect equilibrium that
induces a deterministic play path. An equilibrium is efficient if it yields payoffs on the
Pareto frontier of the feasible set.

4 Equivalent ED Games

An important difference between ED games and standard repeated games has to be em-
phasized. For this, it is necessary to first understand the uniqueness of the utility repre-
sentation in (2). For the moment, suppress the index i. Note from (2) that a preference
relation on ∆(A∞) is uniquely determined by the tuple (β, g) where β : A → (0, 1) and
g : A→ R. Epstein [5] shows that (β, g), (β′, g′) represent the same preference relation on
∆(A∞) if and only if β′ = β and g′ = αg + γ(1− β) for some constants α, γ with α > 0.2

The key implication is that, unless γ = 0 or β is a constant function, the functions g
and g′ need not be cardinal or even monotone transformations of one another. Therefore,
equivalent transformations of an ED game may not in general lead to equivalent stage

2Technically, the uniqueness of the function β requires that A is a topologically connected space. In this
paper, we abstract away from the problem of uniqueness and simply assume that the βi’s are known.
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games.

5 Minmax Strategies

One of the main problems in analyzing repeated games with endogenous discounting
is that the minmax strategies of each player may change when discount factors change.
In particular, the traditional result that allows us to identify minmax strategies in the
repeated game with minmax strategies in the stage game is no longer available. The
following lemma provides an appropriate generalization. Say that a strategy σi is constant
or history independent if αi ∈ ∆i is played in every history. Denote each such strategy by
αcon

i .

Lemma 5.1. For every player i ∈ I,

min
σ−i∈×k 6=iΣk

max
σi∈Σi

vi(σi, σ−i) = min
α−i∈×k 6=i∆Ak

max
αi∈∆Ai

vi(α
con
i , αcon

−i ).

Let Mi ∈ Σ be the strategy profile such that Mi
−i ∈ ×k 6=iΣk are the minmax strategies

against player i and Mi
i ∈ Σi is his best reply. Normalize the utility functions so that

gi(Mi) = 0, for each i ∈ I. Given Lemma 5.1, assume that each strategy profile Mi

consists of constant strategies.

For the rest of the analysis, it is useful to compute the payoffs from a constant strategy
profile αcon, α ∈ ∆(A). When no confusion arises, we may write vi(α) instead vi(α

con).
For every i ∈ I, α ∈ ∆(A), let gi(α) := ∑a∈A gi(a)α(a), and βi(α) := ∑a∈A βi(a)α(a). Note
that each constant strategy induces an IID probability measure on A∞. Consequently, the
ex ante expected payoff from a constant strategy is equal to its expected payoff after any
given history. Thus,

vi(α
con) = Eα[gi(a) + βi(a)vi(α

con)] = gi(α) + βi(α)vi(α
con) ⇔ (3)

vi(α
con) =

gi(α)

1− βi(α)
. (4)

One can see from (8.3) that if discount factors are constant, as they are in the standard
model, the ranking of constant strategies is determined entirely by the stage payoffs gi.
This is not true in general. In particular, a change in the rates of time preference may
change the minmax strategies against each player and their respective security levels.

7



This complicates both the statement and the proof of our folk theorems.3 As we now
show however there are reasonable convergence paths along which the problem does not
arise. Specifically, write the discount factor of each player i as follows

βi(a) = 1− λ(1− β0
i (a)) (5)

where 0 < λ ≤ 1. In the rest of the paper, we will be concerned with equilibrium behav-
ior as λ goes to zero. As mentioned in the introduction, note that the relative impatience,
1−βi(a)
1−β j(a′) , between any two action profiles and any two players, remains constant as dis-
count factors approach 1.

Given the specification in (5), it is convenient to normalize the utility functions as follows

vi(a, λ) = λ
∞

∑
t=0

t−1

∏
τ=0

βi(aτ)gi(at) = λgi(a0) + βi(a0)vi(1a, λ) (6)

where ∏−1
τ=0 βi(aτ) = 1. To emphasize that players’ preferences may change as λ con-

verges to zero, we sometimes make the dependence on λ explicit as in (6) above. How-
ever, and this is key for our analysis, the ranking of constant strategies is independent of
λ for every player i ∈ I. Specifically, the expression in (8.3) becomes

vi(α
con, λ) =

gi(α)

1− β0
i (α)

=: vi(α), ∀λ ∈ (0, 1], ∀i ∈ I, ∀α ∈ ∆(A).

Using the normalized utility function, we can now define the following sets which will
be used in the rest of the paper

V(λ) := {v(σ, λ) : σ ∈ Σ} and V := co{v(a) : a ∈ A}.

where ‘co’ denotes the convex hull of a set. Thus, V(λ) is the set of feasible payoffs in
the repeated game and V is the convex hull of all payoffs achievable by constant pure
strategies. Also, define the set of feasible and strictly individually-rational payoffs:

V∗(λ) = {(v1, ..., vn) ∈ V(λ) : vi > 0, i ∈ I} and V∗ = {(v1, ..., vn) ∈ V : vi > 0, i ∈ I}.

3The statement of the folk theorem is complicated because the set of sequentially rational play paths
changes with the discount factor. In stochastic games, where a similar problem arises, see e.g. Dutta [4], it
is common to define sequential rationality using the asymptotic minmax levels. In this case, however, one
cannot guarantee that efficient outcomes are achieved. The latter is important for our ‘anti-folk’ results in
Section 7.
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6 Folk Theorems

With endogenous discounting, the feasible set V(λ) may change as λ approaches 0 and
the βi’s converge to one. For this reason, the folk theorem cannot be stated in terms of
payoffs. Instead, we ask what paths a ∈ A∞ can be sustained in a subgame perfect equi-
librium of the repeated game. The common sufficient condition to establish Folk Theorem
is the full dimensionality assumption, which was introduced by Fudenberg and Maskin
[9]. Full dimensionality enables players to be rewarded for having carried out the min-
max punishments. It provides incentives for the other players to punish the deviator in
the rewarding phase of the punishment. With time-additive preferences, there exists a
constant strategy that achieves any given payoff vector. Hence, full dimensionality en-
sures the existence of both rewarding payoffs and rewarding strategies. However, with
endogenous discounting preferences, Lemma 6.2 implies that given some payoff profile,
there may not exist a constant strategy to achieve it. There are two reasons why we re-
quire rewarding strategies to be constant. First, if the strategies are not constant, to obtain
the same payoffs, the strategies may have to change as discount factors change. Second,
using nonconstant strategies makes it difficult to verify individual rationality in each time
period. Thus, we need a stronger assumption to ensure the existence of constant reward-
ing strategies. The following assumption requires that the set of action profiles should be
rich enough.

Richness: For any i ∈ I, there exists action profiles ai and ãi such that vi(ai) ≤ 0 < vi(ãi)

and vj(ai) > 0, vj(ãi) ≥ 0.

Richness implies the usual full dimensionality condition. It is sufficient but not necessary
for the Folk Theorem. It excludes the class of games in which all the actions but the
minmax actions yield strictly positive payoffs for all the players. The following lemma
states that under Richness, constant rewarding strategies exist.

Lemma 6.1. Assume Richness. There exists ε such that for any 0 < ε < ε, for any i ∈ I, we can
find αi ∈ ∆A such that vi(α

i) = ε and vj(α
i) > ε for all j ∈ I \ {i}.

Theorem 6.1. Assume Richness. For any ε > 0 and for any path a ∈ A∞ such that vi(ta, λ) ≥ ε

for all i ∈ I, t ∈ T, λ ∈ (0, 1], there exists λ ∈ (0, 1] such that for all 0 < λ < λ, a can be
supported in a subgame perfect equilibrium.

If we assume that βi(a) = β j(a) for all a ∈ A and i, j ∈ I, we can state a folk theorem in
terms of payoffs as is typical in the literature. This is because the feasible set no longer
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depends on λ. Furthermore, any feasible payoff can be achieved by a constant mixed
strategy. These results are summarized in the next lemma.

Lemma 6.2. Suppose that βi(a) = β j(a) for all i, j ∈ I, a ∈ A. Then, V = V(λ). Moreover, for
any v ∈ V, there exists α ∈ ∆A such that v = v(α).

We emphasize that the assumption in Lemma 6.2 is extremely restrictive. In most games,
the same action profiles a ∈ A may give different players different outcomes. Conse-
quently, the assumption rules out the possibility that the rate of time preference depends
on outcomes. The assumption is consistent with models of endogenous discounting as
developed by Becker and Mulligan [2] in which individuals make efforts to increase their
patience.

Theorem 6.2. Suppose that βi(a) = β j(a) for all i, j ∈ I, a ∈ A. Suppose V∗ has full dimension.
Then, for any v ∈ V∗, there exists λ ∈ (0, 1] such that for all 0 < λ < λ there exists a subgame
perfect equilibrium of the infinitely repeated game in which player i receives payoff vi.

In two-player games, the richness condition in Theorem 6.1 and the full dimensionality
condition in Theorem 6.2 are not needed. The proofs are similar to that of Theorem 1
in Fudenberg and Maskin [9]. It should also be mentioned that Fudenberg and Maskin
[9, 10] extend their folk theorem to the case in which mixed actions are not observable
and public randomization is not available. It is an open problem if such generalizations
are valid for ED games.

7 Efficiency

In this section, we restrict attention to symmetric, two-player repeated games. The notion
of symmetry needs clarification. As discussed in the introduction, we now assume that,
for each player i, the discount factor βi(a) depends on the action profile only through
player i’s stage payoff. Symmetry then means that there is no a priori heterogeneity in
this dependence. As a result, we are limiting attention to settings in which intertemporal
trade and any heterogeneity in the rate of time preference can only arise endogenously,
in the course of the game. The objective is to investigate if and when efficiency requires
intertemporal trade and whether such allocations can be supported as equilibria of the
game.
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It is useful to recall some elementary facts about the Pareto frontier of the set of feasi-
ble payoffs V(λ). Since the set is convex, every point on the outer boundary maximizes
a weighted sum of the players’ payoffs. To characterize the frontier, it is furthermore
enough to focus on the set of deterministic paths. In particular, for any pair of positive
weights η := (η1, η2) ∈ R2

+, let P(λ, η) be the set of efficient paths that solve the maxi-
mization problem

max
a∈A∞

η1

∞

∑
t=0

t−1

∏
τ=0

β1(aτ)g1(at) + η2

∞

∑
t=0

t−1

∏
τ=0

β2(aτ)g2(at). (7)

We now formalize two polar assumptions about how discount factors depend on action
profiles.

Increasing Marginal Impatience (IMI): For each player i, for any a, a′ ∈ A, gi(a)
1−βi(a) >

gi(a′)
1−βi(a′)

if and only if βi(a) < βi(a′).

Decreasing Marginal Impatience (DMI): For each player i, for any a, a′ ∈ A, gi(a)
1−βi(a) >

gi(a′)
1−βi(a′)

if and only if βi(a) > βi(a′).

7.1 Increasing Marginal Impatience

Assume that marginal impatience is increasing. The focus of this section is a repeated
prisoners’ dilemma game. Let the action space A and the stage payoffs (gi)i∈I be as in the
matrix below,

C D
C d, d c, b
D b, c 0, 0

Figure 1: The prisoners’ dilemma

where, as usual, C stands for cooperate and D for defect. Because discount factors depend
on outcomes only and this dependence is identical across players, we write β0(b) :=
β0

1(D, C) = β0
2(C, D) and similarly for all other outcomes in the matrix above. Together,

the matrix in Figure 7.1 and the discount factors determine the utility functions vi : A∞ →
R. Assume that b

1−β0(b) >
d

1−β0(d) > 0 > c
1−β0(c) . Note that this is an ordinal assumption

on preferences. For example, the first inequality says that each player prefers a constant
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path in which he defects and the other player cooperates to one in which both players
cooperate.

It is useful to illustrate some of the issues discussed in Section 4. First, imagine a restricted
ED game in which players choose their actions once and these actions are repeated in
all other time periods. This is effectively a one-shot game with payoffs determined by
the functions vi : A∞ → R, i ∈ I. The inequalities insure that the restricted game is
prisoners’ dilemma. More can be said so long as the stage payoffs are normalized so
that the payoffs from (D, D) are zero as in Figure 7.1. Observe that, by IMI, we have
β0(b) < β0(d) < β0(0) < β0(c). In turn, this implies that b > d > 0 > c. Thus, the stage
game as defined by the matrix above is a one-shot prisoners’ dilemma game as well. To
facilitate interpretation,

In the results below, the following two paths play a recurring role. Let aA denote the path
((C, C), (C, C), ...) in which the players cooperate in every period. We refer to this path as
intratemporal cooperation. Let aB denote the path ((C, D), (D, C), (C, D)...) in which the
players alternate between (C, D) and (D, C). Abusing notation, we also use aB to denote
the alternating sequence that begins with (D, C).

The main results of the section can be summarized as follows. Provided that players
are sufficiently patient, there are efficient equilibria. Moreover, in any efficient equilib-
rium, the play path is eventually equal to either aA or aB. This is the anti-folk result we
referred to in the introduction. Which of paths arises in an efficient equilibrium of the
game depends on the following inequality. It compares the payoff from alternating be-
tween (C, D) and (D, C), as players becomes increasingly patient, with the payoff from
cooperating in every period.

lim
λ→0

vi(aB) =
b + c

1− β0(b) + 1− β0(c)
≥ d

1− β0(d)
= vi(aA), ∀i ∈ I. (8)

The analysis begins by characterizing the efficient paths when the players have equal
weights in the maximization problem in 7. In this case, it is also easy to verify that the
corresponding paths are sequentially rational and therefore can be supported in equilib-
rium.

Theorem 7.1. If (8) holds, the efficient play path given η = (1, 1) is to alternate between (C, D)

and (D, C). If (8) does not hold, there exists λ′ such that, for any 0 < λ < λ′, the efficient
play path is the constant path ((C, C), (C, C), ...). Moreover, there exists λ such that for any
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0 < λ < λ, the efficient path given η = (1, 1) can be supported as a subgame perfect equilibrium
of the game.

The next result completes the characterization of the Pareto frontier by considering all
directions η ∈ R2

++. It shows that, after a finite number of periods, any efficient path is
equal to either aA or aB.

Theorem 7.2. For every λ ∈ (0, 1], η ∈ R2
++ and a ∈ P(λ, η), there exists some time T such

that the continuation path Ta is either aA or aB. It is aA if (8) holds and aB, otherwise.

Along the path aA in which both players cooperate, their continuation payoffs at any
given point in time are identical. If the path is aB, the players’ continuation payoffs are
different but the difference converges to zero as discount factors approach 1. It follows
from Theorem 7.2 that, along any efficient path the differences in continuation payoffs are
eventually negligible. The observation is summarized in the following corollary.

Corollary 7.1. Given any ε > 0 and η ∈ R2
++, there exists λ such that for any 0 < λ < λ, there

is some T such that |v1(Ta, λ)− v2(Ta, λ)| < ε for any a ∈ P(λ, η).

Theorem 7.2 is the main result of this section and the groundwork for our anti-folk result.
The remaining difficulty is to check if the efficient paths can be sustained in equilibrium.
Once again Theorem 7.2 is helpful. Its proof shows that if an efficient sequence is strictly
individually rational at time 0, then it is strictly individually rational at each time t. As
a result, in the next theorem we only require the former. To state the result formally, let
IRε(λ) = {a ∈ A∞ : vi(a, λ) > ε, i = 1, 2}

Corollary 7.2. If there exist ε > 0 and η ∈ R2
+ such that P(λ, η) ⊆ IRε for all λ ≥ 0, then there

exists λ ∈ (0, 1] such that P(λ, η) ⊆ SPE(λ) for all 0 < λ < λ, where SPE(λ) is the set of all
the subgame perfect play paths.

7.2 Decreasing Marginal Impatience

This section considers arbitrary two-player, symmetric ED games. It shows that, under
DMI, any efficient path is eventually constant. There are two possibilities. The first is
that all players receive identical payoffs along an efficient path. DMI implies that the
players’ rates of time preference are identical. This means that there are no gains from
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intertemporal trade. The other possibility is that one of the players emerges as the more
patient player and eventually attains his highest feasible payoff. If all efficient paths are
of this form, we can no longer guarantee the existence of an efficient equilibrium. Here,
the problem is similar to that pointed out in Lehrer and Pauzner [12]. To state the theorem
formally, let

Ai
:= argmax

a∈A
vi(a), i ∈ I, and AE := {a ∈ A : vi(a) = vj(a)}.

Theorem 7.3. For every λ > 0, η ∈ R2
+, and every a ∈ P(λ, η), there exists some T such that

at ∈ B for all t ≥ T where B ∈ {A1
, A2

, AE}.

In the rest of the section, we consider the implications of Theorem 7.3 for the efficient
equilibria of the repeated prisoners’ dilemma game. It is clear that paths in which one
of the players’ continuation payoff is eventually maximized are not sequentially rational
for the other player. Therefore, they cannot arise in an equilibrium of the game. The only
other potentially efficient paths are the ones in which both players eventually cooperate.
From the proof of Theorem 7.3, one can in fact see that, to achieve efficiency, cooperation
must start immediately. It remain to verify when this path is efficient. For this, it is
sufficient that

d
1− β0(d)

>
1
2

b
1− β0(b)

+
1
2

c
1− β0(c)

. (9)

The inequality says that each player prefers cooperation in every period to a mixed path
in which with equal probability he receives his worst or his best stream of outcomes.
Note that this requirement is typically imposed on the payoffs of a prisoners’ dilemma
game. Because cooperation in every period is sequentially rational, we have the following
corollary.

Corollary 7.3. If (9) holds, cooperation in every period is the only path that can arise in an
efficient equilibrium of the repeated prisoners’ dilemma game. If (9) fails, the game has no efficient
equilibrium.

Combined with the results from the previous section, we reach the notable conclusion
that, under both increasing and decreasing marginal impatience, the play path in an effi-
cient equilibrium of the PD game, when such exists, is eventually unique. It should be
emphasized however that the driving forces behind these results are different. Under
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DMI, there is a conflict between efficiency and sequential rationality. As a result, effi-
ciency restricts the paths that can arise in equilibrium. The conflict is similar to that one
emphasized by Lehrer and Pauzner [12]. The conflict is less stark in our model because
the players are a priori symmetric. Consequently, differences in the rate of time prefer-
ence, which are the trigger of the conflict, can only arise endogenously. This leaves the
door open for the players to coordinate on a path along which such differences do not
arise. In contrast, under IMI, there is no conflict between efficiency and sequential ra-
tionality. In fact, as Theorem 7.1 and its corollaries imply, efficiency promotes sequential
rationality by insuring that continuation outcomes are eventually in the mid-segment of
the Pareto frontier.

8 Appendix

Let ht be the complete history observed by all the players at the beginning of time t and let
σht ∈ ∆(A) be the mixed action profile played in that history given a behavioral strategy
profile σ ∈ Σ.

Proof of Lemma 5.1. Fix i ∈ I. First, we show that if players other than i use a constant
strategy, then player i’s best response is a constant strategy. That is, given any α−i ∈
×j 6=i∆Aj, there exists αi ∈ ∆Ai such that

αcon
i ∈ arg max

σi∈Σi
vi(σi, αcon

−i ) (10)

To see this, let σ̂i be a best response for player i. Then

vi(σ̂i, αcon
−i ) = E(gi(a) + βi(a)vi(σ̂

h1

i , αcon
−i ))

= Egi(a) + E(βi(a)vi(σ̂
h1

i , αcon
−i ))

= gi(αi, α−i) + βi(αi, α−i)vi(σ̂i, αcon
−i ),

(11)

where αi is the induced mixed action by σ̂i in the first period, and a is in the support
of (αi, α−i). And σ̂h1

i is player i’s continuation strategy after history h1 is realized in the
first period. The last equality follows from the fact that vi(σ̂

h1

i , αcon
−i ) = vi(σ̂

h̃1

i , αcon
−i ) =

vi(σ̂i, αcon
−i ), for any possible histories h1 and h̃1. Because when the other players use a

constant strategy, player i’s best response should be independent of histories. From equa-
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tion (11), we get

vi(σ̂i, αcon
−i ) =

gi(αi, α−i)

1− βi(αi, α−i)
= vi(α

con
i , αcon

−i ),

which implies (10).

Similarly, given any αi ∈ ∆Ai, there exists α−i ∈ ×j 6=i∆Aj such that

αcon
−i ∈ arg min

σ−i∈×j 6=iΣj
vi(α

con
i , σ−i). (12)

From (10), we have

min
σ−i∈×j 6=iΣj

max
σi∈Σi

vi(σi, σ−i) ≤ min
α−i∈×j 6=i∆Aj

max
σi∈Σi

vi(σi, αcon
−i ) = min

α−i∈×j 6=i∆Aj
max

αi∈∆Ai
vi(α

con
i , αcon

−i ).

For the converse inequality, note that, for every σ−i ∈ ×j 6=iΣj,

max
σi∈Σi

vi(σi, σ−i) ≥ max
αi∈∆Ai

vi(α
con
i , σ−i).

Hence,

min
σ−i∈×j 6=iΣj

max
σi∈Σi

vi(σi, σ−i) ≥ min
σ−i∈×j 6=iΣj

max
αi∈∆Ai

vi(α
con
i , σ−i) = min

α−i∈×j 6=i∆Aj
max

αi∈∆Ai
vi(α

con
i , αcon

−i ).

The last equality follows from (12).

Let V� = ∏n
i=1[mina∈A vi(a), maxa∈A vi(a)]. The relation between the sets is illustrated

by the following lemma. For simplicity, when we prove Lemma 8.1 and Lemma 6.2,
we assume there are only two available pure actions a and b, but all the claims can be
generalized to finitely many actions.

Lemma 8.1. V ⊆ V(λ) ⊆ V�.

Proof of Lemma 8.1. Fix λ ∈ (0, 1]. By definition, V ⊆ V(λ) and V ⊆ V�.

Fix i ∈ I. Suppose vi(a) ≤ vi(b). It is easy to check that any constant strategy αcon, the
payoff vi(α) =

α(a)g(a)+α(b)g(b)
1−α(a)β(a)−α(b)β(b) is in [vi(a), vi(b)].
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Note that for any continuation payoff w ∈ [vi(a), vi(b)], we have

λg(α) + β(α)w ∈ [vi(a), vi(b)], for any α. (13)

So if the continuation payoff lies in [vi(a), vi(b)], no matter how we choose the action
today, the payoff will still lie in this interval.

Next we show that the payoff of any strategy is in [vi(a), vi(b)]. Let w0 be some feasible
continuation payoff and w0 + ε ∈ (vi(a), vi(b)) (ε can be any number). By (18), if we
take w + ε as continuation payoff, for any current action profile α, the total payoff is
w1 = λg(α) + β(α)w0 ∈ [vi(a), vi(b)]. Now take w1 as the continuation payoff and take
any action in the current period. The total payoff w2 is also in this interval. Repeat this
process T times and the limit of wT as T goes to infinity equals the total payoff if we have
started from w0 at the beginning instead of w0 + ε. Since wT ∈ [vi(a), vi(b)], the payoff
from any strategy lies in [vi(a), vi(b)].

Proof of Lemma 6.1. Fix i ∈ I. Recall that for any a ∈ A, vi(a) = gi(a)
1−β0

i (a)
. Richness implies

gi(ai) ≤ 0 < gi(ãi) and gj(ai) > 0, gj(ãi) ≥ 0. For any 0 < ε < vi(ãi), there exists αi whose

support is ai and ãi such that vi(α
i) = gi(α

i)

1−β0
i (α

i)
= ε. We can solve for αi, which is

αi(ai) =
gi(ãi)− (1− β0

i (ãi))ε

gi(ãi)− gi(ai) + (β0
i (ãi)− β0

i (ai))ε
∈ (0, 1) and α(ãi) = 1− αi(ai). (14)

For any j 6= i and α whose support is ai and ãi, vj(α) =
gj(α)

1−β0
j (α)

> ε if and only if

α(ai)[gj(ai)− gj(ãi) + (β0
j (ai)− β0

j (ãi))ε] > −gj(ãi) + (1− β0
j (ãi))ε. (15)

It is easy to check that under richness, there exists εi such that for any 0 < ε < εi, αi

defined in (14) satisfies inequality (15). Since the number of players is finite, there exists
a uniform ε = mini∈I εi for all i ∈ I such that the result holds.

Proof of Theorem 6.1. Take any ε > 0. By Lemma 6.1, for each player i ∈ I, there exists ε

such that for any 0 < ε < ε, we can find αi ∈ ∆A such that vi(α
i) = ε and vj(α

i) > ε for all
j ∈ I \ i. Take any 0 < ε < min{ε, ε}. Take any a ∈ A∞ such that inft≥0,λ∈(0,1] vi(ta, λ) ≥ ε

for all i ∈ I. Let gi = maxa gi(a) and βi = maxa βi(a). For each player i, choose an integer
µi such that µi >

gi
ε(1−β0

i (Mi))
.
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Consider the following repeated game strategy for player i:
(A) play at

i at period t as long as at−1 was played last period. If player j deviates from (A),
then
(B) play Mj

i for µj periods and then
(C) play α

j
i thereafter.

If player k deviates in phase (B) or (C), then begin phase (B) again with j = k.

If player i deviates in phase (A) and then conforms, he receives at most gi the period he
deviates, zero for µi periods, and continuation payoff ε . His total payoff is no greater
than

λgi + βi[βi(Mi)]µi ε < ε ≤ vi(ta, λ).

To see this,

λgi + βi[βi(Mi)]µi ε− vi(ta, λ) < λgi + ([1− λ(1− β0
i (Mi))]µi − 1)ε < 0

⇔ gi
ε
<

1− [1− λ(1− β0
i (Mi))]µi

λ(1− β0
i (Mi))

(1− β0
i (Mi)) =

1− δµi

1− δ
(1− β0

i (Mi))

⇔ µi >
gi

ε(1− β0
i (Mi))

,

where δ = 1− λ(1− β0
i (Mi)) and limλ→0

1−δµi
1−δ = limδ→1

1−δµi
1−δ = µi. So the potential gain

is less than zero.

If player i deviates in phase (B) when he is being punished, he obtains at most zero the
period in which he deviates, and then only lengthens his punishment, postponing the
positive continuation payoff ε.

If player i deviates in phase (B) when play j is being punished, and then conforms, he
receives at most

λgi + βi[βi(Mi)]µi ε.

If he doesn’t deviate, he receives at least

gi(Mj)(1− [βi(Mj)]µ)

1− β0
i (Mj)

+ [βi(Mj)]µvj(α
i),
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where 1 ≤ µ ≤ µj. Thus the gain to deviating is at most

λgi + βi[βi(Mi)]µi ε− gi(Mj)(1− [βi(Mj)]µ)

1− β0
i (Mj)

− [βi(Mj)]µvj(α
i)

< λgi + (ε− [βi(Mj)]µvj(α
i))− gi(Mj)(1− [βi(Mj)]µ)

1− β0
i (Mj)

.

Since gi and gi(Mj)

1−β0
i (Mj)

are fixed, when λ is close enough to 0, the first part and the last

part above approach to zero and the second part is less than zero since vj(α
i) > ε. So the

potential gain to deviating is less than zero.

Finally, the argument for why players don’t deviate in phase (C) is practically the same
as that for phase (A).

Proof of Lemma 6.2. Fix λ ∈ (0, 1]. We only need to show for any v ∈ V(λ), there exists
some θ ∈ [0, 1] such that v = θv(a) + (1− θ)v(b).

For any a, let β(a) = βi(a), for all i ∈ I. Let α ∈ ∆A. For any i ∈ I,

vi(α) =
α(a)gi(a) + (1− α(a))gi(b)

1− [α(a)β(a) + (1− α(a))β(b)]
= θvi(a) + (1− θ)vi(b),

where θ = α(a)(1−β(a))
1−[α(a)β(a)+(1−α(a))β(b)] ∈ [0, 1], which doesn’t depend on i.

Let w be a continuation payoff and w = θ′v(a) + (1− θ′)v(b), where θ′ ∈ [0, 1]. For any
α ∈ ∆A, we have

λgi(α) + β(α)wi = [λ(1− β0(α))θ + β(α)θ′]vi(a) + [λ(1− β0(α))(1− θ) + β(α)(1− θ′)]vi(b).

Recall that β(α) = 1− λ(1− β0(α)). So the payoff is indeed a convex combination of vi(a)
and vi(b).

Let w0 be some feasible continuation payoff and w0 + ε (ε can be any number) be a con-
vex combination of v(a) and v(b). Using the same process as in Lemma 8.1, the payoff
constructed from w0 equals the limit payoff constructed from w0 + ε as T goes to infinity,
which is a convex combination of v(a) and v(b).

To prove the second part of the lemma, for any v = θv(a) + (1 − θ)v(b), take α(a) =
θ(1−β0(b))

1−((1−θ)β0(a)+θβ0(b)) ∈ [0, 1]. It is straightforward to verify that v(α) = v.
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Proof of Theorem 6.2. By Lemma 6.2, for each v ∈ V∗, we can find α ∈ 4A such that
v = v(α). Choose (v′1, ..., v′n) in the interior of V∗ such that vi > v′i for all i. Since v′ =
(v′1, ..., v′n) is in the interior of V∗ and V∗ has full dimension, there exists ε > 0 so that for
each j,

vj = (v′1 + ε, ..., v′j−1 + ε, v′j, v′j+1 + ε, ..., v′n + ε) ∈ V∗.

Let T j be a joint strategy that realizes vj. Take gi = maxa gi(a). For each player i, choose
an integer µi such that µi >

gi
v′i(1−β0(Mi))

.

Consider the following repeated game strategy for player i
(A) play αi each period as long as α was played last period. If player j deviates from (A),
then
(B) play Mj

i for µj periods and then
(C) play T j

i thereafter.
If player k deviates in phase (B) or (C), then begin phase (B) again with j = k.

The rest of the proof is essentially the same as the proof for Theorem 6.1.

8.1 Results in Section 7

We begin with some preliminary lemmas. Let the initial pair of weights be η = (η1, η2) ∈
R2

+. Given any a ∈ P(λ, η), from equation (7), the pair of weights at time t is ηt =

(η1 ∏t−1
τ=0 β1(aτ), η2 ∏t−1

τ=0 β2(aτ)).

Lemma 8.2. Given any λ ∈ (0, 1], η ∈ R2
+, and a ∈ P(λ, η), we have ta ∈ P(λ, ηt) for each

t > 0.

Proof. Suppose there exists t̂ such that t̂a /∈ P(λ, η t̂), it means there exists â such that

η t̂
1v1(â, λ) + η t̂

2v2(â, λ) > η t̂
1v1(t̂a, λ) + η t̂

2v2(t̂a, λ).
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Construct a path a∗ = (a0, ..., at̂−1, â). Then

η1v1(a∗, λ) + η2v2(a∗, λ)

= η1

t̂−1

∑
t=0

t−1

∏
τ=0

β1(aτ)g1(at) + η t̂
1v1(â, λ) + η2

t̂−1

∑
t=0

t−1

∏
τ=0

β2(aτ)g2(at) + η t̂
2v2(â, λ)

> η1

t̂−1

∑
t=0

t−1

∏
τ=0

β1(aτ)g1(at) + η t̂
1v1(t̂a, λ) + η2

t̂−1

∑
t=0

t−1

∏
τ=0

β2(aτ)g2(at) + η t̂
2v2(t̂a, λ)

= ηt
1v1(a, λ) + ηt

2v2(a, λ),

which contradicts a ∈ P(λ, η).

Lemma 8.3. Given any λ ∈ (0, 1] and η ∈ R2
+, if there exists a ∈ A such that the constant path

(a, a, ...) ∈ P(λ, η), then a ∈ A1 ∪ A2 ∪ AE.

Proof. Suppose (a, a, ...) ∈ P(λ, η), but a /∈ A1 ∪ A2 ∪ AE, which means βi(a) > β j(a).
When t goes to infinity, player i’s relative weight will increase to infinity. So repeated
play of a can’t be efficient.

Given DMI or IMI, for any a ∈ AE, v1(a) = v2(a). It follows that arg maxa∈AE v1(a) =

arg maxa∈AE v2(a). Without loss of generality, assume this set is a singleton and denote it
by {ae}. In Lemma 8.4, 8.5, and 8.6, assume either DMI or IMI.

Lemma 8.4. Suppose AE is not empty. Given any λ ∈ (0, 1] and η ∈ R2
+, if there exists

a ∈ P(λ, η) and at ∈ AE for some t, then at = ae.

Proof. If AE is singleton, the result holds trivially. Suppose there exists â ∈ AE \ ae and
at = â. Since β1(â) = β2(â), the direction at t + 1 is the same as the direction at t. So â
can still be chosen at t + 1. Similarly, â can be chosen at any time after t. By construction,
the constant path (â, â, ...) is efficient given ηt. However, since vi(â) < vi(ae), we have
ηt

1v1(â)+ ηt
2v2(â) < ηt

1v1(ae)+ ηt
2v2(ae), which means the constant path (â, â, ...) is strictly

dominated by the constant path of ae. So at 6= â for any t.

Note that given any path a ∈ A∞,

vi(ta, λ) = λ(1− β0
i (at))vi(at) + (1− λ(1− β0

i (at)))vi(t+1a, λ) (16)
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Equation (16) says that each vi(ta, λ) is a convex combination of vi(at) and vi(t+1a, λ).
However, in general, v(ta, λ) may not be a convex combination of v(at) and v(t+1a, λ)

because players have different discount factors.

Lemma 8.5. Given any λ ∈ (0, 1], η ∈ R2
+, and a ∈ P(λ, η), if a0 = ae, then (ae, ae, ...) ∈

P(λ, η). Moreover, the Pareto frontier connecting v(1a, λ), v(a, λ) and v(ae) is linear, and per-
pendicular to the direction η.

Proof. If a = (ae, ae, ...), this result holds trivially. Suppose a 6= (ae, ae, ...). Since η1 =

(η1β1(ae), η2β2(ae)), the direction at t = 1 is the same as the direction at t = 0. If ae

is chosen given η, then ae can also be chosen given η1. Proceeding like this, we can
construct a new path which consists constant play of ae, and by construction, this path
is efficient. By Lemma 8.2, (v1(1a, λ), v2(1a, λ)) is also efficient given η. It implies that
(v1(1a, λ), v2(1a, λ)), (v1(a, λ), v2(a, λ)) and (v1(ae), v2(ae)) are all efficient given η. By
equation (16), v(a, λ) is a convex combination of v(1a, λ) and v(ae). As a result, v(1a, λ),
v(a, λ) and v(ae) are on the same linear segment of the Pareto frontier, which is perpen-
dicular to the direction η.

Lemma 8.6. Given any λ ∈ (0, 1] and η ∈ R2
+ such that ηi

ηj
< 1, for any efficient play path

a ∈ P(λ, η) with vi(a, λ) < vj(a, λ), if a0 = ae and 1a 6= (ae, ae, ...), for any η̂ such that
η̂i
η̂j
< ηi

ηj
< 1 and â ∈ P(λ, η̂), we have â0 6= ae.

Proof. Suppose â0 = ae. From Lemma 8.5, v(1a, λ), v(a, λ) and v(ae) are on the same
linear segment of Pareto frontier which is perpendicular to direction η. Similarly, v(â, λ)

and v(ae) are on the same linear segment of Pareto frontier which is perpendicular to
direction η̂. Since η̂i

η̂j
< ηi

ηj
< 1, we have vi(â, λ) ≤ vi(a, λ) < vj(a, λ) ≤ vj(â, λ). It is

impossible that (vi(ae), vj(ae)) is on both linear segments of Pareto frontier corresponding
to η and η̂, respectively.

From now on, we focus on prisoners’ dilemma.

Lemma 8.7. Given any λ ∈ (0, 1] and η ∈ R2
++, the constant path ((C, D), (C, D), ...) and

((D, C), (D, C), ...) can’t be efficient.

Proof. These two cases are symmetric, so we only prove that ((D, C), (D, C), ...) can’t be
efficient. Given any η ∈ R2

++, suppose ((D, C), (D, C)...) is efficient. Then there exists
some T large enough such that at T, player 1’s relative weight [ η1β(b)

η2β(c) ]
T is almost 0, while
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player 2’s relative weight [ η2β(c)
η1β(b) ]

T is almost infinity. Then at T, choosing (C, D) will im-
prove efficiency, which contradicts the constant path ((D, C), (D, C)...) is efficient.

Lemma 8.8. Given any λ ∈ (0, 1], η ∈ R2
+, and a ∈ P(λ, η), if a0 = (C, D) and a1 = (D, C),

the alternating path ((C, D), (D, C), (C, D), (D, C), ...) is efficient. Similarly, if a0 = (D, C)
and a1 = (C, D), the alternating path ((D, C), (C, D), (D, C), (C, D), ...) is efficient.

Proof. Since the two statements in the lemma are symmetric, we only prove the first one.
Since a0 = (C, D) and a1 = (D, C), the weight pair at t = 1 is η1 = (η1β(c), η2β(b))
and the weight pair at t = 2 is η2 = (η1β(c)β(b), η2β(b)β(c)). Note that the direction
η2 is the same as the direction η. Since a0 = (C, D), it means given η2, (C, D) can still
be chosen on an efficient path. Similarly, the direction at t = 3 is the same as the direc-
tion at t = 1. Since a1 = (D, C), then (D, C) can be chosen given η3. By construction,
((C, D), (D, C), (C, D), (D, C), ...) is efficient.

Proof of Theorem 7.1. Take η = (1, 1). By Lemma 8.4, (D, D) will never be chosen on any
efficient path because it is strictly dominated by (C, C). So given any efficient play path
a ∈ P(λ, η), a0 ∈ {(C, C), (D, C), (C, D)}. Since this is a symmetric game and η1 = η2, the
case in which a0 = (D, C) is symmetric with the case in which a0 = (C, D). So we only
consider the following two cases: a0 = (C, C) and a0 = (D, C).

Suppose a0 = (C, C). By Lemma 8.5, the constant path consisting of (C, C) is an efficient
path given the assumption that a0 = (C, C). Denote this constant path by a1.

Suppose a0 = (D, C). From Lemma 8.7, the constant path ((D, C), (D, C)...) is not ef-
ficient. Let t∗ be the first time period such that at∗ is either (C, C) or (C, D). Suppose
at∗ = (C, C). Take the path a2 in which at = (D, C) for 0 ≤ t < t∗ and at = (C, C)
for t ≥ t∗. Applying Lemma 8.5, we know that a2 is efficient given the assumption that
at∗ = (C, C). Suppose at∗ = (C, D). Take the path a3 in which at = (D, C) for 0 ≤ t < t∗,
at = (C, D) for t = t∗ + 2z and at = (D, C) for t = t∗ + 2z + 1, where z = 0, 1, 2... . By
Lemma 8.8, a3 is efficient given the assumption that at∗ = (C, D).
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Let s(a, λ) = v1(a, λ) + v2(a, λ). We get

s(a1, λ) =
2d

1− β0(d)

s(a2, λ) = (1− β(b)t∗)
b

1− β0(b)
+ β(b)t∗ d

1− β0(d)
+ (1− β(c)t∗)

c
1− β0(c)

+ β(c)t∗ d
1− β0(d)

s(a3, λ) = (1− β(b)t∗)
b

1− β0(b)
+ β(b)t∗ c + β(c)b

1− β(b)β(c)
+ (1− β(c)t∗)

c
1− β0(c)

+ β(c)t∗ b + β(b)c
1− β(b)β(c)

.

Next we show that a3 is efficient only if t∗ = 0 or 1. It is straight forward to check that
s(a3, λ) is the same when t∗ is 0 and 1, and strictly decreasing when t∗ ≥ 1. So for a3 to
be efficient, t∗ can only be 0 or 1, and its highest value is s(a3, λ) = c+β(c)b

1−β(b)β(c) +
b+β(b)c

1−β(b)β(c) .
Also s(a3, λ) is decreasing in λ. Recall that β(a) = 1− λ(1− β0(a)). Take derivative with
respect to λ, we get ds(a3,λ)

dλ < 0. Intuitively, players benefit from intertemporal trade,
and intertemporal trade is made possible because of the difference in discount factors.
When λ → 0, the difference between discount factors becomes smaller, so is the gain
from intertemporal trade. Thus, s(a3, λ) decreases in λ and

lim
λ→0

s(a3, λ) =
2(b + c)

1− β0(b) + 1− β0(c)
.

If equation (8) holds, it is easy to check that s(a3, λ) > s(a2, λ) and s(a3, λ) > s(a1, λ),
which means a3 is efficient. Otherwise, s(a1, λ) > s(a2, λ) and s(a1, λ) > s(a3, λ) when
0 < λ < min{1, λ′}, where λ′ is the solution to s(a1, λ) = s(a3, λ) if s(a1, 1) < s(a3, 1). In
this case, a1 is efficient.

From the proof we can see that, if (C, C) is chosen on some efficient play path, then
(C, C) should be chosen in any period. Conversely, if on some efficient play path, at 6=
(C, C), then (C, C) will not be chosen in any period. So either a1 or a3 is efficient. The
“mixed” path a2 will never be efficient. Moreover, whenever η1 = η2, we can choose
a ∈ {(D, C), (C, D)}, as long as the next period we choose {(D, C), (C, D)} \ a. So we
have found all the efficient paths.

Next we show that when λ is small enough, given η = (1, 1), all the efficient paths can
be supported by subgame perfect equilibria. When a1 is efficient, each player’s payoff is

d
1−β0(d) > 0. When a3 is efficient, the lowest possible payoff for some player is c+β(c)b

1−β(b)β(c) .

Since limλ→0
c+β(c)b

1−β(b)β(c) =
b+c

1−β0(b)+1−β0(c) >
d

1−β0(d) > 0, there exists λ small enough such

that c+β(c)b
1−β(b)β(c) > 0. By Theorem 6.1, there exists λ such that for any 0 < λ < λ, the
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efficient paths can be supported as subgame perfect equilibria.

To prove Theorem 7.2, we need the following lemma.

Lemma 8.9. Given any λ ∈ (0, 1], η ∈ R2
+ and a ∈ P(λ, η), if η1

η2
< 1, we have v1(a, λ) ≤

v2(a, λ) and a0 6= (D, C); if η1
η2

> 1, we have v1(a, λ) ≥ v2(a, λ) and a0 6= (C, D).

Proof. The two statements in the lemma are symmetric, so we only prove the first one.
First we show that if η1

η2
< 1, we have v1(a, λ) ≤ v2(a, λ). From Theorem 7.1, when

η̂1 = η̂2, there exists â ∈ P(λ, η̂) such that v1(â, λ) ≤ v2(â, λ). So if η1
η2

< η̂1
η̂2

= 1, then for
any a ∈ P(λ, η), we have v1(a, λ) ≤ v1(â, λ) ≤ v2(â, λ) ≤ v2(a, λ).

Suppose a0 = (D, C). Let T be the first period that at 6= (D, C). Such T exists be-

cause v1(a, λ) ≤ v2(a, λ). Since β1(D, C) < β2(D, C), we have ηT
1

ηT
2

< η1
η2

< 1. We ar-

gue that aT 6= (C, C). Suppose aT = (C, C). From Lemma 8.5, v(C, C) and v(Ta, λ)

are on the same linear segment of the Pareto frontier. By equation (16) and convexity of
the feasible set, this linear segment of Pareto frontier lies below the supporting hyper-
plane at v(a, λ), which is impossible. Thus, aT = (C, D). By Lemma 8.8, the play path
a′ = ((D, C), (C, D), (D, C), (C, D), ...) ∈ P(λ, ηT−1) and v1(a′, λ) > v2(a′, λ). However,

since ηT−1
1

ηT−1
2

< η1
η2

< 1, this contradicts the result above. Thus, a0 6= (D, C).

Proof of Theorem 7.2. Take λ ∈ (0, 1] and η ∈ R2
++. The case η1 = η2 has been proved in

Theorem 7.1. Consider the case η1 6= η2. Without loss of generality, assume 0 < η1 < η2.
Take any a ∈ P(λ, η). Since η1 < η2, by Lemma 8.9, we have v1(a, λ) ≤ v2(a, λ). By
Lemma 8.4, (D, D) will never be chosen on any efficient path. Also, by Lemma 8.9, a0 6=
(D, C). Hence, a0 ∈ {(C, C), (C, D)}.

Suppose a0 = (C, C). By Lemma 8.5, the constant path ((C, C), (C, C), ...) is efficient. It
implies that (8) doesn’t hold. If a = ((C, C), (C, C), ...), the efficient play path is aA from
time 0. Next we will show that if a0 = (C, C), it is impossible that a 6= ((C, C), (C, C), ...).
Suppose a 6= ((C, C), (C, C), ...) and let T be the first period such that at 6= (C, C). For any
0 < t ≤ T, the direction ηt is the same as η. By Lemma 8.9, since η1

η2
< 1, aT 6= (D, C).

Thus, aT = (C, D). Since β1(c) > β2(b), we have ηT+1
1

ηT+1
2

= η1β1(c)
η2β2(b)

> η1
η2

. By symmetry,

the Pareto frontier corresponding to the direction (η2, η1) is a linear segment connecting
(v1(C, C), v2(C, C)) and (v2(Ta, λ), v1(Ta, λ)), where vi(C, C) = d

1−β0(d) .
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If η1
η2

<
ηT+1

1
ηT+1

2
< η2

η1
, then the efficient play path starting from T+ 1 is T+1a = ((C, C), (C, C), ...).

By Lemma 8.5, v(Ta, λ) and v(C, C) are on the same linear segment of Pareto frontier, and
η has the same direction as

(v1(C, C)− v1(Ta, λ), v2(Ta, λ)− v2(C, C)) = λ((1− β0(c))
d

1− β0(d)
− c, b− (1− β0(b))

d
1− β0(d)

).

(17)

The path Ta = ((C, D), (C, C), (C, C), ...) and the path aA = ((C, C), (C, C), ...) both are
efficient given η, which means they yield the same weighted sum of payoffs, that is,

η1(λc + β(c)
d

1− β0(d)
) + η2(λb + β(b)

d
1− β0(d)

) = η1
d

1− β0(d)
+ η2

d
1− β0(d)

. (18)

Equation (17) and (18) hold if and only if (8) holds with equality. But we know in this
case, the constant path aA = ((C, C), (C, C), ...) is not efficient, so we get a contradic-

tion. If ηT+1
1

ηT+1
2
≥ η2

η1
, (D, C) can be chosen at T + 1. By Lemma 8.8, the alternating path

((C, D), (D, C), (C, D), (D, C), ...) is efficient given η. By Lemma 8.5, v(aB, λ) and v(C, C)
are on the same linear segment of Pareto frontier, and η has the same direction as

(v1(C, C)− v1(aB, λ), v2(aB, λ)− v2(C, C)) = (
d

1− β0(d)
− λ(c + β(c)b)

1− β(b)β(c)
,

λ(b + β(b)c)
1− β(b)β(c)

− d
1− β0(d)

)

(19)

The path aB = ((C, D), (D, C), (C, D), (D, C), ...) and the path aA = ((C, C), (C, C), ...)
both are efficient given η, which means they yield the same weighted sum of payoffs, that
is,

η1
λ(c + β(c)b)
1− β(b)β(c)

+ η2
λ(b + β(b)c)
1− β(b)β(c)

= η1
d

1− β0(d)
+ η2

d
1− β0(d)

. (20)

Both (19) and (20) hold if and only if

λ(c + β(c)b)
1− β(b)β(c)

+
λ(b + β(b)c)
1− β(b)β(c)

=
2d

1− β0(d)
. (21)

However, if (21) holds, then we have η1 = η2, which contradicts our assumption that
η1 < η2.

Suppose a0 = (C, D). By Lemma 8.7, the constant path ((C, D), (C, D), ...) is not efficient.
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Let T be the first period such that at 6= (C, D). If aT = (C, C), from the result above we
know that Ta = aA. If aT = (D, C), the play path T−1a = aB is efficient. This is the
unique play path, because by Lemma 8.9, aT+1 6= (D, C), and by the argument above,
if aT+1 = (C, C), the constant path aA will be the unique play path, which contradicts

T−1a = aB is efficient.

Thus, given any λ ∈ (0, 1], we have constructed all the possible efficient play paths, and
in each of them, there exists some T such that Ta is one of aA or aB.

If equation (8) holds, geometrically it means when λ is small enough, the pair of payoffs
from constant path aA is inside the Pareto frontier. Given any η, aA cannot be efficient.
So in this case, the continuation path can only be the alternating path aB. If equation (8)
doesn’t hold, it means when λ is small enough, the payoffs from alternating path aB are
inside the Pareto frontier. Therefore, the continuation path can only be the constant path
aA.

Proof of Corollary 7.1. From 7.2, when λ is small enough, for any a ∈ P(λ, η), the contin-
uation path after some large enough T is either aA or aB. If the continuation path is the
constant path aA, the result trivially holds. If the continuation path is the alternating path
aB, the largest difference between two players’ continuation payoffs is

λ
b + β(b)c

1− β(b)β(c)
− λ

c + β(c)b
1− β(b)β(c)

=
λ[b(1− β0(c))− c(1− β0(b))]

1− β0(b) + 1− β0(c)− λ(1− β0(b))(1− β0(c))
,

which is increasing in λ. Therefore, given any ε > 0, there exists some λ such that for any
0 < λ < λ, the difference between two players’ continuation payoffs is less than ε.

Proof of Corollary 7.2. Take ε > 0 and η ∈ R2
+ such that for any λ ∈ (0, 1], P(λ, η) ⊆ IRε.

We have already proved the case where η1 = η2, so here consider the case where η1 6= η2.
Without loss of generality, assume 0 < η1 < η2.

Fix λ ∈ (0, 1]. Take any a ∈ P(λ, η). Since η1 < η2, by Lemma 8.9, we have ε ≤ v1(a, λ) ≤
v2(a, λ). We need to show that inft vi(ta, λ) ≥ ε, for i = 1, 2. By Lemma 8.4, (D, D)

will never be chosen on any efficient path. Also, by Lemma 8.9, a0 6= (D, C). Hence,
a0 ∈ {(C, C), (C, D)}.

Suppose a0 = (C, C). By Lemma 8.5, the constant path ((C, C), (C, C), ...) is efficient. If
a = ((C, C), (C, C), ...), then by assumption, this path is strictly individually rational at
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each t, and we are done. If not, let T be the first period such that at 6= (C, C). For any
0 < t ≤ T, the direction ηt is the same as η. By assumption P(λ, η) ⊆ IRε, we have
vi(Ta, λ) ≥ ε. In Theorem 7.2, we construct all the possible efficient play paths. From the
construction, it’s easy to check that for each player i, for any t, vi(ta, λ) ≥ v1(Ta, λ) ≥ ε.

Suppose a0 = (C, D). Let T be the first period such that at 6= (C, D). If aT = (C, C),
then we can continue as the case where a0 = (C, C). We can show that each player’s
continuation payoff is bounded below by ε. If aT = (D, C), by Lemma 8.8, the efficient
play path starting from T − 1 is T−1a = aB. Since v1(T−1a, λ) > v1(a, λ) ≥ ε, we have
v2(ta, λ) ≥ v2(Ta, λ) = v1(T−1a, λ) > ε, for any t. For player 1, v1(ta, λ) ≥ v1(a, λ) ≥ ε,
for any t. For player 2, v2(ta, λ) ≥ v2(Ta, λ) > ε, for any t. Therefore, each player’s
continuation payoff is greater than ε.

Thus, given any λ ∈ (0, 1], we have constructed all the possible efficient play paths, and
shown that in each of them, each player’s continuation payoff is above ε. By Theorem 6.1,
there exists λ such that for any 0 < λ < λ, the efficient play path can be supported by an
equilibrium.

Proof of Theorem 7.3. Take λ ∈ (0, 1] and η ∈ R2
+. Let a ∈ P(λ, η). First we show that there

exists some T such that at ∈ B for all t ≥ T where B ∈ {A1
, A2

, AE}.

If there exists ηi = 0, then at ∈ Aj
for all t. So in the following proof, assume η ∈ R2

++. For
expositional convenience, assume A1

and A2
are singletons. If A1

= A2
, it means there is

an action profile a∗ that yields the highest payoff for both players, then any efficient path
is a constant play of a∗. This case is trivial, so we assume A1 6= A2

.

Depending on the relative magnitude of players’ payoffs, there are two cases to consider.
First, vi(a, λ) = vj(a, λ). Suppose βi(a0) 6= β j(a0). Without loss of generality, assume
βi(a0) < β j(a0) and by DMI, vi(a0) < vj(a0). Note that vi(a0) < vi(a, λ), otherwise,
vj(a, λ) = vi(a, λ) ≤ vi(a0) < vj(a0), which contradicts a is efficient. Moreover, βi(a0) <

β j(a0) implies player i’s relative weight decreases at t = 1. By Lemma 8.2, vi(1a, λ) ≤
vi(a, λ). By equation (16), vi(a, λ) is a convex combination of vi(a0) and vi(1a, λ), but
this is impossible, because vi(a0) < vi(a, λ) and vi(1a, λ) ≤ vi(a, λ). So βi(a0) = β j(a0)

and vi(a0) = vj(a0). If vi(a0) > vi(a, λ), it contradicts the optimality of a; if vi(a0) <

vi(a, λ), it implies vi(1a, λ) > vi(a, λ) and a is strictly dominated by 1a, which contradicts
the optimality of a. So we have vi(a0) = vi(a, λ) = vi(1a, λ). Similarly, applying this
argument in each period, we get a = (a, a, ...), where a ∈ AE.
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Second, consider the case vi(a, λ) < vj(a, λ). Suppose a0 ∈ AE, i.e., βi(a0) = β j(a0).
By Lemma 8.4, a0 = ae. Since vi(a, λ) < vj(a, λ), let T′ be the first period such that
βi(at) 6= β j(at). Apply Lemma 8.5 repeatedly, and we can see that for all 0 < t ≤
T′, (vi(ta, λ), vj(ta, λ)) are on the same linear segment of Pareto frontier corresponding
to direction η. By efficiency, the Pareto frontier is downward sloping, so vi(ta, λ) <

vi(t−1a, λ) < vj(t−1a, λ) < vj(ta, λ), for all 0 < t ≤ T′. Suppose βi(aT′) > β j(aT′). By
DMI, we have vi(aT′) > vj(aT′). If vj(aT′) ≥ vj(a, λ), then a is strictly Pareto dominated by
constant play of aT′ . So vj(aT′) < vj(T′a, λ). Also because βi(aT′) > β j(aT′), player j’s rel-
ative weight decreases at T′ + 1. By Lemma 8.2, vj(T′+1a, λ) ≤ vj(T′a, λ), but this contra-
dicts equation (16), because vj(T′a, λ) is a convex combination of vj(aT′) and vj(T′+1a, λ).
Therefore, βi(aT′) < β j(aT′). By DMI, it implies vi(aT′) < vj(aT′). By equation (16),
vi(T′a, λ) is a convex combination of vi(aT′) and vi(T′+1a, λ). Because player i’s discount
factor is lower, his relative weight decreases. Therefore, we have vi(T′+1a, λ) ≤ vi(T′a, λ).
Similarly, player j’s relative weight increases, and hence vj(T′+1a, λ) ≥ vj(T′a, λ). By
Lemma 8.6, for any t ≥ T′, we have at 6= ae. So βi(at) < β j(at) for each t ≥ T′.
Hence, there exists some T large enough such that player j’s relative weight is almost
infinity. As a result, for any t ≥ T, at ∈ Aj

. Applying the same argument as above, when
vi(a, λ) < vj(a, λ), the other possible case is βi(a0) < β j(a0), and there exists some T large

enough such that at ∈ Aj
, for all t ≥ T.

We have shown that along any efficient path a, after some T, the continuation path is
a constant path (a, a, ...), where a ∈ A1 ∪ A2 ∪ AE. If gi(a) < 0 for some i, it means
the continuation payoff for player i is not individually rational. Therefore, a can’t be
supported at equilibrium.
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