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Gale and Shapley (1962) elegantly tackled the problems of “College Admissions and the

Stability of Marriage.” By privileging stability, their analysis suggests an immutability to

a match’s outcome. Of course, this is not what we often observe. Consider but a few

consequences of seemingly (or aspirationally) stable matches:

(1) After freshman year at Yale, a student (understandably) decides to transfer to Harvard.

(2) After ten years of marriage, a couple divorces. Each marries a new partner the following

year.

Both situations feature intended long-term relationships—four years of college, a lifetime of

marriage—that can be revised over time. Often such revisions occur. Sometimes, however,

they do not:

(1′) After freshman year at Yale, a student continues on as a sophomore. Harvard was his

first choice college, but transferring no longer seems worth it.

(2′) After ten years of marriage, a couple is more in love with each other than on their

wedding day.

The above vignettes share three important characteristics that color most economic and

social relationships. First, relationships have a temporal component. They can be revised

with the passage of time and prevailing institutional arrangements determine the ease of re-

matchings. Second, an agent’s preferences over future partners are shaped by past outcomes.

For example, switching costs imply an inter-temporal linkage in preferences. Finally, an agent

is typically uncertain about his future preferences and refines his opinions as new information

comes to light. Any analysis of a two-sided market where relationships are not ephemeral,

which we contend is the vast majority of cases, must address these features. Examples

include interpersonal relations, school assignment, labor markets, and business-to-business

contracting, among many others.

In this study we provide a unified framework addressing the above three features. Our

proposal is a simple two-period generalization of Gale and Shapley’s (1962) “marriage market”

model of one-to-one matching. In each period agents from one side of the market (men,

students, workers) can partner (“match”) with someone from the other side of the market

(women, schools, firms). Each agent’s preferences are defined over partnership plans, i.e. the

entire sequence of partners they encounter over a lifetime. Preference heterogeneity renders

the emergent pattern of reasonable and expected matchings nontrivial from the outset.
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Our analysis has two parts. The first brackets uncertainty and investigates a perfect-

information benchmark. We argue that calibrating the timing of a relationship is often as

important as identifying the right partner(s) and both volatile outcomes (like cases 1 and 2

above) and persistent matchings (cases 1′ and 2′) can be “stable” arrangements in a multi-

period market. To arrive at this conclusion, we first identify sufficient conditions ensuring

the existence of ex ante and dynamically-stable matchings. A matching is ex ante stable if

agents agree to the proposed plan from the outset under the presumption of commitment

to its full execution. Dynamic stability does not presume commitment. We also examine

our market’s core and we provide sufficient conditions for its non-emptiness. While ex ante

stable matchings always exist, the underlying feature supporting dynamically-stable (and

core) matchings is inertia in agents’ preferences. Roughly, preferences exhibit inertia if an

agent becomes more eager to match again with their current partner in a future period.

Surprisingly, matching procedures incorporating spot markets, where agents report prefer-

ences conditional on past match outcomes and re-match, can lead to dynamically-unstable

outcomes.

The second part amends our baseline model by incorporating preference uncertainty.

Each agent does not know his own future preferences and learns new information over time.

Focusing on dynamically-stable outcomes, which have an important no regret property, we

argue that interim spot markets, where agents re-match after learning new information about

their preferences, can have at best a limited role. In our model, interim re-matchings cannot

lead to a Pareto improvement relative to maintaining a matching derived with imperfect

information.

Throughout we link our results to common practices and features of dynamic markets.

For example, we relate several of our results to the phenomenon of market unraveling (Roth

and Xing, 1994). In our environment, it emerges as an inclination to bring forward in

time a future matching. Similarly, our analysis sheds light on the importance of calibrating

relationship or contract length. Time is also an important dimension of market design, which

is often ignored. We highlight instances when it is safe to do so; however, fully discounting

the future can at times mask important market features or preclude innovative solutions.

The next section surveys related studies of dynamic markets. Section 2 introduces our

model and Section 3 elaborates on agents’ preferences. Sections 4 and 5 consider stable

matchings and the core, respectively. Section 6 introduces uncertainty. Section 7 concludes.

Several appendices collect supporting material and results.1

1Appendix A presents proofs of minor technical results. Appendices B, C, and D are available in the
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1 Related Literature

Our model generalizes Gale and Shapley’s (1962) model of one-to-one matching. Conse-

quently, we rely heavily on their analysis and on Roth and Sotomayor’s (1990) comprehensive

synthesis. Though the literature on matching markets is expansive, relatively few studies

directly address the multi-period nature of typical matching problems.

In regards to one-sided markets, several papers revisit the house allocation problem

(Shapley and Scarf, 1974; Hylland and Zeckhauser, 1979) by incorporating dynamics (Ab-

dulkadiroğlu and Loertscher, 2007; Bloch and Cantala, 2013; Kurino, 2014).2 Our analysis

does not address this class of problem directly, though we investigate complementary ques-

tions. For example, like Kurino (2014) we devote considerable attention to understanding

the operation of spot markets/rules in dynamic markets.

Studies of dynamic two-sided markets have typically addressed many-to-one matching

problems motivated by “school choice” applications (Abdulkadiroğlu and Sönmez, 2003; Ab-

dulkadiroğlu, 2013). Dur (2012), Bando (2012), Pereyra (2013), and Kennes et al. (2013)

propose models in this vein.3 Among these studies, Kennes et al. (2013) is closest to our

analysis. Kennes et al. (2013) examine the assignment of children to daycares and they

identify several problems with well-known mechanisms. Several of our assumptions and

mechanisms have direct parallels in their study, which we highlight below. While aspects

of those papers are more general than we allow—i.e. many-to-one matching or overlapping

generations (OLG) of agents—our model is not a special case of any of them.

Dynamic models of one-to-one matchings, like ours, are less common. When formulated,

they have served as a forum for examining “stability” as a solution concept. For example,

Damiano and Lam (2005) and Kurino (2009) identify inadequacies with the classic concepts

of (pairwise) stability and the core and propose alternatives.4 Despite the limitations of the

classic concepts, we rely on them to keep our discussion’s scope manageable and to allow for

easy comparisons with results from static models.

Dynamic matching markets are closely related to (static) many-to-many matching mar-

online supplement. Appendix B provides a detailed comparison of our analysis with other studies of dynamic
matching markets. Appendix C provides examples illustrating noteworthy observations and counterexamples
to tempting conjectures. Appendix D reviews the Gale and Shapley (1962) deferred acceptance algorithm,
which we use extensively.

2Closely related is Ünver’s (2010) model of a dynamic kidney-exchange market.
3Bando (2012) examines a multi-period, many-to-many matching market.
4In Appendix B we compare our model in detail with those proposed by Damiano and Lam (2005),

Kurino (2009), and Kennes et al. (2013). An acquaintance with our model, notation, and analysis is helpful
to appreciate some of the distinctions that we highlight.
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kets. Over a lifetime, each agent can have many partners. In many-to-many markets

(pairwise-)stable and core assignments need not coincide (Blair, 1988) and the development

of alternative solution concepts has drawn interest (Sotomayor, 1999; Konishi and Ünver,

2006; Echenique and Oviedo, 2006). Recently, Hatfield and Kominers (2012) have exam-

ined many-to-many matchings in the “matching with contracts” framework (Hatfield and

Milgrom, 2005). They observe that the expressiveness of the contractual language, roughly

corresponding to the number and the nature of the contractual relationships that agents may

entertain, has important implications for market stability. Our results comparing ex ante

and dynamic stability, which relate to agents’ commitment ability, reinforce and complement

their insight.

The final portion of our analysis examines matching markets with uncertainty (Roth,

1989). Roth and Rothblum (1999), Chakroborty et al. (2010), Hałaburda (2010), and

Lazarova and Dimitrov (2013) also study matching markets with uncertainty though they

focus on different questions than we do.

Our study considers relationships that can last multiple periods. A complementary class

of dynamic models studies how matchings arise over a period of time. Work in this vein has

explored matching dynamics (Roth and Vande Vate, 1990), preference formation (Kadam,

2014), and market unravelling (Roth and Xing, 1994; Li and Rosen, 1998). Though our focus

differs, at times we can reinterpret our model with an eye toward these questions as well.

2 The Model

Mindful of the applications noted above, for expositional ease we present our model using

Gale and Shapley’s terminology of a matching between men and women. For brevity, we

sometimes state definitions or theorems only from the perspective of a typical man. Our

model is symmetric and all definitions apply to women with obvious changes in notation.5

2.1 The One-Period Market

To establish a benchmark, we first review Gale and Shapley’s (1962) (one-period) one-to-one,

matching market. There are finite, disjoint sets of men, M = {m1, . . . , m|M |}, and women,

W = {w1, . . . , w|W |}. Each man (woman) can be matched to one woman (man) or not

matched at all. By convention, a man (woman) who is not matched is treated as matched

5Typically, it is sufficient to replace m’s with w’s and M ’s with W ’s, and vice-versa.
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to himself (herself). Thus, Wm ≡ W ∪ {m} is the set of man m’s potential partners.

Definition 1. The function µ : M ∪W → M ∪W is a (one-period) matching if and only if

1. For all m ∈ M , µ(m) ∈ Wm.

2. For all w ∈ W , µ(w) ∈ Mw.

3. For all i ∈ M ∪W , µ(µ(i)) = i.

Each agent i has a strict preference ranking, Pi, of all potential partners. If i prefers j

to k, then jPik. The confluence of agents’ preferences determine the stability of a matching.

Specifically, a matching µ is stable if (i) each agent weakly prefers his assigned partner to

being not matched; and, (ii) no pair of agents can block the matching by preferring to be

together in lieu of their assigned partners.

Theorem 1 (Gale and Shapley (1962)). There exists a stable (one-period) matching.

To prove Theorem 1, Gale and Shapley (1962) outline the (one-period) man-proposing de-

ferred acceptance algorithm.6 The algorithm identifies a stable matching in every market.

We review its details in Appendix D.

2.2 A Multi-Period Market

Building on the one-period model, suppose that agents interact over two periods, t ∈ {1, 2}.

In every period each man (woman) can be matched with exactly one woman (man) or not

matched at all. An agent’s partner in period t need not be his partner in period t′. We

call this sequence of matches a partnership plan. More formally, (i, j) ∈ Wm × Wm is a

partnership plan for man m where he is matched with i in period 1 and with j in period

2.7 When confusion is unlikely, we abbreviate a partnership plan as ij ≡ (i, j). A plan ij is

persistent if i = j. Else, it is volatile.

Each agent’s preferences are defined over partnership plans. All preferences are strict

and complete. Thus, a strict preference ≻m for m is an asymmetric and negatively-transitive

binary relation defined on Wm ×Wm. If m prefers plan ij to plan kl, we write ij ≻m kl. We

specify a full preference ranking for m by writing

≻m : ij, kl, . . . .

6Roth (2008) explains this algorithm’s broader practical and theoretical importance.
7If i = m or j = m, then m is not matched to any woman in the corresponding period.
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Here ij is m’s most preferred plan, kl is second best, and so on. The associated weak

preference relation, %m, is defined as ij %m kl ⇐⇒ kl 6≻m ij.

A multi-period matching is a sequence of one-period matchings.

Definition 2. The function µ : M ∪W → (M ∪W )2 is a (multi-period) matching if for all

i, µ(i) = (µ1(i), µ2(i)) where µt is a one-period matching implemented in period t.

Henceforth, we refer to a multi-period matching simply as a matching.

2.3 Stability

In the one-period market, stability combines an individual-rationality requirement and a

no-blocking condition. We propose two definitions of stability in our multi-period market

reflecting both ideas. Ex ante stability is motivated by situations where agents can commit

to a partnership plan. Dynamic stability presumes no commitment.

2.3.1 Ex Ante Stability

Ex ante stability considers an agent’s incentive to accept or block a matching before it is

implemented. If the plan is better than each agent’s unilateral outside option (i.e. being

single for all periods) and no pair of agents can craft a better plan only among themselves,

the matching is ex ante stable. Thus, ex ante stability implicitly assumes that agents can

commit to the proposed plan as interim revisions are impossible. More formally, we have

the following definitions.

Definition 3. The partnership plan ij is ex ante individually rational for m if ij %m mm.

Definition 4. The pair (m,w) ∈ M ×W can period-1 block the matching µ if any of the

following conditions hold:

1. ww ≻m µ(m) and mm ≻w µ(w);

2. wm ≻m µ(m) and mw ≻w µ(w);

3. mw ≻m µ(m) and wm ≻w µ(w); or,

4. mm ≻m µ(m) and ww ≻w µ(w).8

8Noting Definition 3, some readers may view condition (4) as redundant. It is included because individual
rationality, blocking, and stability are special cases of the coalition-based definitions proposed in Section 5.
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Definition 5. The matching µ is ex ante stable if

1. µ(i) is ex ante individually rational for all i; and,

2. µ cannot be period-1 blocked by any pair.

Echoing the one-period case, an ex ante stable matching always exists.

Theorem 2. There exists an ex ante stable matching.

Proof. We prove this theorem by adapting the deferred acceptance algorithm (Gale and

Shapley, 1962). Our adaptation posits that each man proposes to one woman at a time but

includes terms concerning their relationship’s timing.

Start by defining a restricted market where each man’s preference ≻m is transformed into

≻′
m as follows: All plans of the form ww′, where w,w′ ∈ W and w 6= w′ are ranked below

mm. The relative rankings of all remaining plans (of the form ww, wm, mw, or mm) are

unchanged relative to ≻m. For example, if

≻m : mw1, w2w1, w1m,w1w2, w1w1, mm, . . . ,

then we can define ≻′
i as

≻′
m : mw1, w1m,w1w1, mm,w2w1, w1w2, . . . .

For each woman, define ≻′
w analogously.

We construct a matching µ∗ via a deferred acceptance procedure where agents make and

accept proposals by following the preference ≻′
i:

1. In round 1, each man proposes to the woman implicated in his most-preferred part-

nership plan according to ≻′
m and offers her the terms of that plan. For example, if

m ranks wm as the best plan, he proposes to w the idea that they partner for period

1 only and be single in period 2. If mm is m’s most preferred plan according to ≻′
m

then he does not make any proposals.

Given all received proposals, each woman tentatively accepts her most preferred pro-

posed plan. She rejects all proposals if she prefers ww to any of them.

2. More generally, in round t, each man whose proposal was rejected in the previous round

proposes to the woman implicated in his most preferred plan that has not yet been
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rejected. He offers her the terms of that agreement. If mm is the man’s most preferred

plan according to ≻′
m among those not rejected, he does not make any proposals.

Out of any new proposals and her current tentatively accepted plan (if any), each

woman tentatively accepts her most preferred plan and rejects the others. She rejects

all proposals if she prefers ww to any of them.

3. The process terminates when no further rejections occur. The tentatively-accepted

plans are implemented as the matching µ∗. Agents without an accepted plan remain

single for both periods.

We must check two conditions to confirm that µ∗ is ex ante stable. First, it is ex ante

individually rational as the algorithm ensures no agent i is ever tied-up in a plan worse than

ii. Second, µ∗ cannot be period-1 blocked by any pair (m,w). To prove this, suppose the

contrary. This implies that there exists a plan xm ∈ {wm,mw,ww} for m and a compatible

plan xw ∈ {mw,wm,mm} for w such that xm ≻m µ∗(m) and xw ≻w µ∗(w).9 If xm ≻m

µ∗(m), then xm ≻′
m µ∗(m). Hence, m must have proposed the plans {xm, xw} to w at some

round before he made his proposal defined in µ∗(m). w must have rejected that original

proposal; thus, µ∗(w) ≻′
w xw. This implies that µ∗(w) ≻w xw—a contradiction.

To conclude, we comment on Theorem 2’s proof. First, the constructed matching may

not be Pareto-optimal.10 Second, the contracts that men propose specify the dates of the

relationship and the binding dates of single-hood. Though atypical in interpersonal rela-

tionships, such arrangements bear resemblance to a non-compete clause in an employment

contract.11 Finally, if agents are restricted (for example, by legal institutions) to choose only

among persistent plans, ex ante stability reduces to stability in the sense of Gale and Shapley

(1962). Such restrictions can be encoded in agents’ preferences.

2.3.2 Dynamic Stability

Though some applications feature binding long-term arrangements, many do not. Instead,

agents can renege or block a plan at an interim stage before its conclusion. Some agents

might re-match between periods. A dynamically-stable plan is both ex ante stable and

immune to blocking actions conditional on the passage of time.

9By “compatible plan” we mean the timings coincide appropriately.
10See Example C.1 in Appendix C. The matching µ Pareto-dominates µ′ if for all i, µ(i) %i µ′(i) and

µ(i) ≻i µ
′(i) for at least one i. A Pareto-optimal matching is not Pareto-dominated by any other matching.

11As another example, most colleges allowing deferred matriculation do not allow the student to enroll in
a different degree program during the deferment.
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Definition 6. The partnership plan ij is dynamically individually rational for m if ij %m

mm and ij %m im.

Definition 7. The pair (m,w) ∈ M ×W can period-2 block the matching µ if any of the

following conditions hold:

1. (µ1(m), w) ≻m µ(m) and (µ1(w), m) ≻w µ(w); or,

2. (µ1(m), m) ≻m µ(m) and (µ1(w), w) ≻w µ(w).

Definition 8. The matching µ is dynamically stable if

1. µ(i) is dynamically individually rational for all i; and,

2. for all t, µ cannot be period-t blocked by any pair.

While dynamic stability has intuitive appeal due to most people’s limited commitment

ability, it is too strong to always point to a stable outcome.

Example 1. Suppose there is one man m and one woman w. Their preferences are

≻m : wm,ww,mm, . . .

≻w : mm,ww, . . .

All partnership plans not listed are inferior to those listed.

There are only two candidate stable matchings. The matching where µ(w) = ww is not

ex ante stable. The couple can period-1 block it as both prefer a long-term relationship to

no relationship at all. The matching where µ′(w) = mm is ex ante stable. However, it is not

dynamically stable since m will renege after period 1.

Example 1 suggests that agents’ preferences must exhibit additional structure to guaran-

tee the existence of a dynamically-stable matching. We develop this structure in the following

section. Before doing so however, we remark on the idea of “stability” in dynamic markets.

Notably, dynamic stability is distinct from “autarkic stability” and “stability” as proposed by

Kennes et al. (2013), though it is closer to the latter. Damiano and Lam (2005) and Kurino

(2009) emphasize the importance of credibility in agents’ blocking actions. We do not en-

tertain such higher-order concerns. We further elaborate on the preceding observations and

relations in Appendix B.
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3 Preferences

We propose two preference restrictions that together ensure the existence of a dynamically-

stable matching in a wide class of situations. The restrictions encode intuitive properties

that are commonly encountered in practice. The first links an agent’s preferences (defined

over plans) to a ranking of partners viewed in isolation, not unlike in a single-period market.

Variants of such preferences are sometimes called separable or time-invariant. Regrettably,

preferences in this class preclude many economically-meaningful situations, particularly those

associated with inter-temporal complementarities. Thus, our second qualification introduces

preference inertia, which is analogous to status quo bias. Combining these conditions results

in preferences satisfying the rankability condition of Kennes et al. (2013). Our construction

decouples the ranking and the inertia elements implied by rankability. This separation

cleanly illustrates the implications of each component concerning the existence of stable and

core matchings and the relationships between said concepts. For example, anticipating the

argument of Section 5, by “magnifying” the degree of preference inertia, we better align

the sets of stable and core matchings. Therefore, the separation affords increased analytic

flexibility.

3.1 Spot Rankings

We introduced our model by considering the one-period marriage market. In that model

agents had a ranking of potential partners. In our dynamic model, they have preferences

over partnership plans. Thus far we have not presumed any connection between one-period

rankings and preferences over plans. Arguably, some connection ought to exist.

Adapting the terminology and notation from the one-period model, we henceforth call

a (strict) ranking of potential partners when viewed in isolation a spot ranking. We let Pm

denote such a ranking for agent m. Thus, Pm is a strict linear order of Wm. If i, j ∈ Wm

and i is superior to j, we write iPmj. Given a spot ranking, we can identify a family of

preferences that capture that ranking’s essence. Intuitively, plans combining individually

higher-ranked options are preferred.

Definition 9. Let P be a spot ranking. The preference ≻ reflects P if and only if

1. iP i′ and jP j′ =⇒ ij ≻ i′j′;

2. ∀i, jP j′ =⇒ ij ≻ ij′; and,
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3. ∀j, iP i′ =⇒ ij ≻ i′j.

Let Si be the set of preference profiles for agent i that reflect some spot ranking.

Example 2. Consider the case of a man m where W = {w1, w2}. The preferences

≻ : w1w1, w1w2, w2w1, w2w2, mw1, mw2, w1m,w2m,mm (1)

and

≻′ : w1w1, w2w1, w1w2, w2w2, mw1, mw2, w1m,w2m,mm (2)

both reflect w1Pw2Pm. On the other hand,

≻′′ : w1w1, w1w2, w2w2, w2w1, mw1, mw2, w1m,w2m,mm (3)

does not reflect any spot ranking.

Preferences in Si feature in many related studies. These preferences are called “time

invariant” by Kurino (2014) and are also used by Pereyra (2013). They also often emerge

when preferences are defined with an additively-separable utility function (Damiano and

Lam, 2005; Bloch and Cantala, 2013). Bando (2012) employs a closely-related history inde-

pendence condition.

Definition 9 identifies a family of preferences for each spot ranking. To go in the opposite

direction—from a ≻ to a P—we focus on persistent plans. The next definition follows

an analogous exercise performed by Kennes et al. (2013) in their definition of an “isolated

preference relation.”

Definition 10. The ex ante spot ranking induced by preference ≻, denoted P≻, is a spot

ranking defined as iP≻j ⇐⇒ ii ≻ jj.

The ex ante spot ranking stems from an agent’s preferences in the hypothetical case

where he is matched with the same partner for all periods. The construction parallels the

manner in which “per-period preferences” might be identified when examining consumption

over time. For example, if an agent maximizes a discounted sum of utilities, we can identify

his per-period preferences with his preferences over constant consumption streams. Similarly,

when examining risk preferences, we can extract an agent’s assessment of the available prizes

by eliciting preferences for degenerate lotteries promising the same prize in every state of

the world.

We rely on the following technical result tying Definitions 9 and 10 together.
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Lemma 1. Let ≻ be a preference for agent m. If ≻ reflects P , then P = P≻.

Proof. See Appendix A.

3.2 Preference Inertia

A limitation of preferences in Si is that an agent’s spot ranking of partners in period 2

is independent of his partner in period 1. This misses a key feature of dynamic choice

problems where implicit or explicit switching costs often matter. For example, after a year

of college a student may become more enthusiastic about his school given his new friends.

Similarly, a worker performing a task may wish to continue at that task since learning-by-

doing renders it easier over time. Additionally, many psychological biases imply inertia in

observed decision making even if “true preferences” lack such inclinations or if switching costs

are small. For example, Samuelson and Zeckhauser (1988) examine status-quo bias across

a variety of economic domains. Similarly, Kahneman et al. (1990) examine the endowment

effect where an initial allocation of goods (the period 1 matching) tilts preferences toward

maintaining that same allocation in the future.

A simple way to capture preference inertia is to allow persistent plans to rise in their

relative ranking.

Definition 11. Let ≻ and ≻′ be preferences. ≻ exhibits inertia relative to ≻′ if and only if

1. ii ≻′ jk =⇒ ii ≻ jk;

2. ii ≻′ jj ⇐⇒ ii ≻ jj; and,

3. If i 6= i′ and j 6= j′, then ii′ ≻′ jj′ ⇐⇒ ii′ ≻ jj′.

When a preference exhibits inertia relative to another, it shares the same ex ante spot

ranking and the relative ordering of volatile plans is unchanged. Only persistent plans

(weakly) “move-up” in rank. For instance, in Example 2 above, ≻′′ exhibits inertia relative

to ≻. Conditional on being matched with w2 in period 1, m is more enthusiastic about

continuing that relationship than switching to w1. According to P≻′′ , however, w1 is superior

to w2. Thus, preferences with inertia can exhibit interim preference reversals.

While any preference can be seasoned with extra inertia, we focus on inertia’s implications

for preferences that reflect a spot ranking. More formally, we let Υ(≻) be the set of all
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preference profiles that exhibit inertia relative to ≻.12 We call

S̄i ≡
⋃

≻∈Si

Υ(≻)

the set of preferences with inertia relative to Si.13 Preferences with inertia relative to Si sat-

isfy the rankability condition of Kennes et al. (2013, Assumption 1). Though preferences with

inertia relative to Si are motivated by the merger of two common behavioral characteristics

(spot rankings and inertia), they also enjoy several useful technical properties.

Lemma 2. Suppose ≻∈ S̄m.

1. ii ≻ jj =⇒ ii ≻ ij and ii ≻ jj =⇒ ii ≻ ji.

2. ij ≻ jj =⇒ ii ≻ jj and ji ≻ jj =⇒ ii ≻ jj.

3. Whenever j 6= i and k 6= i, then jj ≻ kk ⇐⇒ ij ≻ ik and jj ≻ kk ⇐⇒ ji ≻ ki.

Proof. See Appendix A.

4 Dynamically-Stable Matchings

Example 1 showed that dynamically-stable matchings need not exist, even in very small

markets. By restricting agents’ preference to S̄i existence is restored. We prove this result in

Theorem 3 below by employing the following multi-period adaptation of Gale and Shapley’s

deferred acceptance algorithm.

Definition 12. The ex ante deferred acceptance procedure defines a matching µ∗ as follows:

1. For all t, let µ∗
t (·) be the matching identified by the one-period, man-proposing de-

ferred acceptance algorithm when each agent i reports the ranking P≻i
as his/her

preferences.14

2. For each i, assign the partnership plan µ∗(i) = (µ∗
1(i), µ

∗
2(i)).

15

Theorem 3. If ≻i∈ S̄i for all i ∈ M ∪W , then there exists a dynamically-stable matching.

12The intended mnemonic is that Υ (upsilon) moves persistent plans up in the preference ranking.
13Since ≻ exhibits inertia relative to itself, Si ⊂ S̄i.
14That is, µ∗

t = µ∗
t′
.

15This procedure differs from the DA-IP mechanism proposed by Kennes et al. (2013). See Example 5.
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Proof. Let µ∗ be the matching identified by the ex ante deferred acceptance procedure. We

argue that µ∗ is dynamically stable by checking three conditions.

First, we verify that µ∗ is dynamically individually rational for all m ∈ M . (The same

reasoning applies if w ∈ W .) Suppose µ∗(m) 6= mm. Since µ∗(m) is a persistent allocation,

µ∗
1(m) = µ∗

2(m) = w for some w ∈ W . The deferred acceptance algorithm always identifies

an individually-rational matching. Thus, wP≻m
m. This implies ww ≻m mm. Also, ww ≻m

mm =⇒ ww ≻m wm (Lemma 2).

Second, we show that µ∗ cannot be period-2 blocked. Suppose the contrary and assume

m ∈ M and w ∈ W can period-2 block µ∗. If µ∗(m) = ii this means that iw ≻m ii. By

Lemma 2, ww ≻m ii =⇒ wP≻m
i. By the same reasoning as in the above paragraph, we can

conclude that mP≻w
j where µ∗(w) = jj. However, this implies that the matching identified

by the deferred acceptance algorithm given the reported rankings was not (pairwise) stable,

contradicting Gale and Shapley (1962).

Finally, we confirm that µ∗ cannot be period-1 blocked. Suppose the contrary and assume

m and w can period-1 block µ∗. As above, let µ∗(m) = ii and µ∗(w) = jj. There are three

sub-cases:

1. Suppose ww ≻m ii and mm ≻w jj. This implies wP≻m
i and mP≻w

j. However, this

implies that the single period matching µ∗
t (·) is not a (pairwise) stable matching in the

sense of Gale and Shapley (1962)—a contradiction.

2. Suppose wm ≻m ii and mw ≻w jj. Since ii %m mm, if ii ≻m ww then ii ≻m wm,

which is a contradiction. Thus, ww ≻m ii. Likewise mm ≻w jj. Hence, case 1 above

applies.

3. Suppose mw ≻m ii and wm ≻w jj. Since ii %m mm, if ii ≻m ww then ii ≻m mw,

which is a contradiction. Thus, ww ≻m ii. Likewise mm ≻w jj. Hence, case 1 above

applies.

Therefore, our assumption concerning the existence of a blocking pair is incorrect.

As follow-up to Theorem 3, we note four observations. First, volatile plans can be dynam-

ically stable. Second, expediting a future one-period matching generates a new dynamically-

stable matching. Third, preferences not in S̄i do not preclude the existence of a stable

matching. Finally, an alternative, intuitively appealing, matching procedure relying on suc-

cessive “spot markets” to facilitate re-matchings need not yield a stable matching.
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4.1 Volatile Plans

The proof of Theorem 3 constructs a dynamically-stable, but persistent, plan. Volatile plans

can also be dynamically stable.

Example 3. Let M = {m1, m2} and W = {w1, w2}. Agents’ preferences are:

≻m1
: w1w1, w1w2, w2w2, w2w1, m1m1, . . .

≻m2
: w2w2, w2w1, w1w1, w1w2, m2m2, . . .

≻w1
: m2m2, m2m1, m1m2, m1m1, w1w1, . . .

≻w2
: m1m1, m1m2, m2m1, m2m2, w2w2, . . .

In this case, ≻i∈ S̄i for all i. There are exactly three dynamically-stable matchings, as

summarized in Table 1. To read the table, under µ1 agent m1 is matched to w1 in both

periods. The matching µ2 is volatile as agents swap partners between period 1 and 2.

Table 1: All dynamically-stable matchings in Example 3.

Matching m1 m2 w1 w2

µ1 w1w1 w2w2 m1m1 m2m2

µ2 w1w2 w2w1 m1m2 m2m1

µ3 w2w2 w1w1 m2m2 m1m1

4.2 “If we are going to get married eventually, . . . ”

“. . . we might as well get married today!” Likely some readers have proposed that idea to

a future spouse. Though that suggestion may be met with either unease or delight, by

bringing forward in time one-period matchings that are constituents of a dynamically-stable

matching, we can actually construct a new dynamically-stable matching.

Theorem 4. Suppose ≻i∈ S̄i for all i and let µ = (µ1, µ2) be a dynamically-stable matching.

Then µ̄ = (µ2, µ2) is also a dynamically-stable matching.

Proof. Consider the dynamically-stable matching µ = (µ1, µ2) and let µ̄ = (µ2, µ2). If

µ1 = µ2, then the theorem is trivially true. Henceforth, suppose µ1 6= µ2. We argue by
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contradiction. If µ̄ is not dynamically stable, at least one of four possible situations must be

true.

1. Suppose ii ≻i µ̄(i) for some m. Since ≻i∈ S̄i, this implies (µ1(i), i) ≻i (µ1(i), µ2(i)).

Thus, µ is not dynamically stable—a contradiction.

2. Suppose (µ2(i), i) ≻i µ̄(i) for some i. This implies ii ≻i (µ2(i), µ2(i)), which reduces

to case 1 above.

3. Suppose m and w can period-1 block µ̄. There are four sub-cases:

(a) Suppose mm ≻m µ̄(m) and ww ≻w µ̄(w). This case reduces to case (1) examined

above.

(b) Suppose ww ≻m µ̄(m) and mm ≻w µ̄(w). This implies that wP≻m
µ2(m) and

mP≻w
µ2(w). Hence, (µ1(m), w) ≻m (µ1(m), µ2(m)) and (µ1(w), m) ≻w (µ1(w), µ2(w)).

But this implies m and w can period-2 block µ—a contradiction.

(c) Suppose wm ≻m µ̄(m) and mw ≻w µ̄(w). From (1) and (2) above, we know that

µ̄ is dynamically individually rational. Hence, µ̄(m) %m mm and µ̄(w) %w ww.

Noting case (a) above, we may assume that µ̄(m) ≻m mm and µ̄(w) ≻w ww. But

this implies ww ≻m wm ≻m µ̄(m) and mm ≻w mw ≻w µ̄(w). Hence, this case

reduces to case (2) above.

(d) Suppose mw ≻m µ̄(m) and wm ≻w µ̄(w). An analogous argument to the preced-

ing case applies, again leading to a contradiction.

4. Suppose m and w can period-2 block µ̄. Then (µ2(m), w) ≻m (µ2(m), µ2(m)) =⇒

ww ≻m µ̄(m) and (µ2(w), m) ≻w (µ2(w), µ2(w)) =⇒ mm ≻w µ̄(w). Hence, the

reasoning from case (3) applies.

This eliminates all the possibilities which can imply that µ̄2 is not dynamically stable. Hence,

µ̄2 is dynamically stable.

In the introduction, we noted that aspects of our model tie into the phenomenon of

market unraveling (Roth and Xing, 1994). In markets that unravel, parties contract at

earlier-and-earlier dates. Theorem 4 offers one perspective on this issue as bringing forward

relationships that will happen eventually constitutes a stable arrangement. For example, if

it is known that a star athlete will play for a professional team (in period 2), then them

skipping college or junior-league play (in period 1) may be reflective of a stable outcome. Of
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course this preliminary observation downplays the role of uncertainty in market unraveling.

We therefore revisit this question again below.

The complementary case to Theorem 4 need not be true. Prolonging the period-1 match-

ing, i.e. µ̄ = (µ1, µ1), can generate an unstable outcome. To anticipate the discussion to

follow, however, we qualify this observation in Section 6.

Example 4. Let M = {m1, m2} and W = {w1, w2}. Agents’ preferences are:

≻m1
: w1w1, w1m1, w1w2, m1w1, w2w1, m1m1, w2w2, . . .

≻m2
: w2w2, w2m2, w2w1, m2w2, w1w2, m2m2, w1w1, . . .

≻w1
: m2m2, m2m1, m1m2, m1m1, w1w1, . . .

≻w2
: m1m1, m1m2, m2m1, m2m2, w2w2, . . .

There are exactly two dynamically-stable matchings in this economy, as summarized in Table

2.

Table 2: All dynamically-stable matchings in Example 4.

Matching m1 m2 w1 w2

µ1 w2w1 w1w2 m2m1 m1m2

µ2 w1w1 w2w2 m1m1 m2m2

The matching (µ1
1, µ

1
1) is not individually rational for m1 as m1m1 ≻m1

w2w2. Confirming

Theorem 4, however, we see that µ2 = (µ1
2, µ

1
2). This matching is dynamically-stable.

4.3 Dynamic Stability and General Preferences

An intriguing set of stable matchings can emerge if agents’ preferences fall outside of S̄i.
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Example 5. Let M = {m1, m2} and W = {w1, w2}. Agents’ preferences are:

≻m1
: w1w2, w2w2, m1w1, w2m1, m1m1, . . .

≻m2
: w2w1, m2w1, w2w2, m2m2, . . .

≻w1
: m2m1, w1m2, m2m2, m1w1, w1w1, . . .

≻w2
: w2m1, m2w2, m1m2, w2w2, . . .

In this economy there are exactly three dynamically-stable matchings, as summarized in

Table 3. Two facts are noteworthy. First, m1 and m2 disagree on which matching is the

best among the stable set. m1 prefers µ3 while m2 prefers µ1. In a single-period setting, all

men agree on their preferred stable matching (Gale and Shapley, 1962). Second, an agent

may not have any partners in some stable matchings and be matched for all periods in

others. This contrasts the “rural hospital theorem” from the single-period market (cf. Roth

and Sotomayor, 1990, Theorem 2.16).

Table 3: All dynamically-stable matchings in Example 5.

Matching m1 m2 w1 w2

µ1 m1m1 w2w1 w1m2 m2w2

µ2 m1m1 m2w1 w1m2 w2w2

µ3 w1w2 m2m2 m1w1 w2m1

4.4 Repeated Spot Markets

To prove Theorem 3 we employed the ex ante deferred acceptance procedure. This proce-

dure only employed agents’ ex ante spot rankings to generate multi-period matching. An

intuitively-appealing alternative procedure mimics the operation of successive spot markets.

In period 1, the matching is defined by each agent’s ex ante spot ranking, as presently. For

period 2, however, the matching is based on each agent’s spot ranking conditional on the

period-1 match. This dynamic mechanism leverages information about preferences pinned-

down by the period-1 match, a possibly valuable feature. Surprisingly, however, we show

that an unstable matching can result from such a mechanism. To arrive at this conclusion,

we first define an agent’s conditional spot ranking.
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Definition 13. If ≻ are an agent’s preferences, his conditional spot ranking at i, denoted

P i
≻, is a spot ranking defined as jP i

≻k ⇐⇒ ij ≻ ik.16

The following matching procedure is a specialization of the DA-IP procedure proposed

by Kennes et al. (2013) for an OLG school-choice environment.

Definition 14. The spot-market deferred acceptance procedure defines a matching µ̃ as fol-

lows:

1. The period-1 matching µ̃1 is the one-period matching identified by the one-period, man-

proposing deferred acceptance algorithm where each agent i makes/accepts proposals

according to his/her ex ante spot ranking, P≻i
.

2. The period-2 matching µ̃2 is the one-period matching identified by the one-period, man-

proposing deferred acceptance algorithm where each agent i makes/accepts proposals

according to his/her conditional spot ranking at µ̃1(i), P
µ̃1(i)
≻i

.

At first glance, µ̃ should identify a stable matching, particularly when agents’ preferences

exhibit inertia. Given the period 1 matching, each agent’s partner rises in rank and should be

identified again if the deferred acceptance procedure is repeated. Surprisingly, this intuition

can be misleading.

Example 6. Let M = {m1, m2, m3} and W = {w1, w2, w3}. Agents’ preferences are:

≻m1
: w2w2, w1w2, w1w1, . . .

≻m2
: w1w1, w3w3, w3w1, . . .

≻m3
: w1w1, w2w1, w2w2, . . .

≻w1
: m1m1, m2m2, m3m3, m1m2, m1m3, . . .

≻w2
: m3m3, m1m1, m3m1, . . .

≻w3
: m2m2, . . .

Given ≻i we can define each agent’s ex ante spot preference:

P≻m1
: w2, w1, . . .

P≻m2
: w1, w3, . . .

P≻m3
: w1, w2, . . .

P≻w1
: m1, m2, m3, . . .

P≻w2
: m3, m1, . . .

P≻w3
: m2, . . .

16Kennes et al. (2013) present an analogous definition when introducing the “isolated preference relation.”
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Using the above spot rankings we can construct µ̃1 via the man-proposing deferred acceptance

algorithm (see Appendix D):

µ̃1(m1) = w1 µ̃1(m2) = w3 µ̃1(m3) = w2

µ̃1(w1) = m1 µ̃1(w2) = m3 µ̃1(w3) = m2

At µ̃1(·), agents’ conditional spot rankings are:

Pw1

≻m1
: w2, w1, . . .

Pw3

≻m2
: w3, w1, . . .

Pw2

≻m3
: w1, w2, . . .

Pm1

≻w1
: m1, m2, m3, . . .

Pm3

≻w2
: m3, m1, . . .

Pm2

≻w3
: m2, . . .

Using the above spot rankings we can construct µ̃2 via the man-proposing deferred acceptance

algorithm:
µ̃2(m1) = w2 µ̃2(m2) = w3 µ̃2(m3) = w1

µ̃2(w1) = m3 µ̃2(w2) = m1 µ̃2(w3) = m2

The resulting matching is:

µ̃(m1) = w1w2 µ̃(m2) = w3w3 µ̃(m3) = w2w1

µ̃(w1) = m1m3 µ̃(w2) = m3m1 µ̃(w3) = m2m2

This matching is neither ex ante nor dynamically stable. For example, m1 and w2 can

period-1 block µ̃ since w2w2 ≻m1
µ̃(m1) and m1m1 ≻w2

µ̃(w2). Similarly, m2 and w1 can

also period-1 block µ̃.

Example 5 highlights three related ideas: exposure, strategic behavior, and unraveling.

The Exposure Problem In Example 5, w1 faces an exposure problem if she pursues

a relationship with m1, her favorite partner. In period 1 she is able to match with m1,

seemingly making progress toward her most preferred outcome, m1m1. Nevertheless, the spot

market exposes w1 to (loosely speaking) risk concerning the durability of others’ preferences.

Others’ changing opinions impose an externality on w1 ultimately leading to disappointment.

An analogous situation arises in a multi-item auction where complementary goods are sold

independently, often through multi-round procedures. In that setting, it is known that

complementarities often inhibit equilibrium existence and agents face the risk of not securing

items at acceptable prices (Milgrom, 2000). This concern features prominently in the design

of auctions for radio spectrum, for example, and impinges upon bidding strategies (Bulow
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et al., 2009).

To mitigate the exposure problem, an auctioneer may bundle related goods or allow pack-

age bidding (Ausubel and Milgrom, 2002). That is, solutions involve adopting mechanisms

sensitive to complementarities. The spot-market procedure, considered above, ignores such

complementarities in its design. The end result can be a matching that fails to accord with

a stable (“equilibrium”) outcome. Mimicking the idea of bundling, the ex ante deferred ac-

ceptance procedure defines an assignment for both periods from the outset thereby limiting

exposure and instability.

Strategic Manipulation To manage exposure risk in a spot mechanism, an agent may

wish to adopt a more strategic approach than the naive behavior we have implicitly assumed.

In a single-period market operating through a deferred acceptance procedure, it is not a

dominant strategy for all agents to behave straightforwardly (Roth, 1982).17 Instead, the

side receiving proposals (women in our presentation) has an incentive to strategize. Roth

and Rothblum (1999), Ehlers (2004), and Coles and Shorrer (2014) observe that an often

worthwhile strategy (with uncertainty concerning others’ preferences) involves on an agent

“truncating” her preferences by claiming that the least-desirable, but still acceptable, partners

are unacceptable.

In a dynamic market, an agent’s strategic opportunities are far richer. In Example 5, for

instance, w1 is better off settling for a relationship with a lesser-ranked partner (m2) from

the outset rather than pursuing a relationship with m1.18

Thus, a woman receiving proposals may wish to top-truncate her preferences by claiming

the most attractive partners are not acceptable.19 For example, had w1 shunned the period-1

proposal of m1—her favorite partner—she would have been matched with m2 in both periods

and m2m2 ≻w1
µ̃(w1). Therefore, the well-known proverb “A bird in the hand is worth two

in the bush” provides some strategic guidance in such a market.

Unraveling Finally, the instability of the spot-market outcome suggests that inter-temporal

complementarities may contribute to or reinforce market unraveling.

17The single-period market is a special case of the multi-period market; hence, existing impossibility results
apply to our model. For brevity, we do not investigate the strategic implications of particular matching
mechanisms in depth, though this may be an interesting question for future research.

18In fact, in the typical implementation of the deferred acceptance procedure, m2 will propose to w1 before
m1 does (see Appendix D).

19Top-truncation is a common strategy usually attributed to a resource constraint during an interviewing
process (Coles et al., 2010). See also Kadam (2014).
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Inter-temporal links in preferences allow agents to offer enticing preemptive carrots that

can lock-in prospective partners. For example, the job-market for entry-level lawyers in the

United States is often viewed as de facto operating through the market for summer law

interns in the preceding year.20 Most firms have a summer program and extend associate

job offers for the following year to a high fraction (>90%) of summer interns (National

Association for Law Placement, 2014). For firms, there exists a complementarity between

summer and permanent positions as training cost can be lessened. For the student, a secured

job lessens the burden of the final year of school.

5 The Core and Strong Inertia

It is sometimes claimed that a focus on pairwise blocking renders stability too weak a solution

concept. In this section we strengthen our solution concepts by allowing collective blocking

actions and we investigate the market’s core. While the core may at times be empty, a slight

strengthening of the degree of inertia in agents’ preferences is enough to ensure stable and

core matchings coincide. When the preferences of one side of the market feature sufficient

inertia our dynamic problem essentially collapses into a static problem, an observation that

may be useful in practical exercises of market design.

A coalition C is a non-empty subset of agents, C ⊂ M ∪ W . A coalition can block a

matching µ if it can leave the market and define a within-coalition matching that its members

find preferable to µ. A core matching is immune to such collective deviations. More formally,

we have the following analogues of previous definitions.

Definition 15. The function µC
t : C → C is a one-period matching for coalition C (at date

t) if and only if

1. For all m ∈ M ∩ C, µC
t (m) ∈ (W ∩ C) ∪ {m}.

2. For all w ∈ W ∩ C, µC
t (w) ∈ (M ∩ C) ∪ {w}.

3. For all i ∈ C, µC
t (µ

C
t (i)) = i.

Definition 16. A coalition C can period-1 block the matching µ if there exist one-period

matchings for the coalition C, µC
1 and µC

2 , such that for all i ∈ C, (µC
1 (i), µ

C
2 (i)) ≻i µ(i).

20Roth and Xing (1994) and Ginsburg and Wolf (2004) provide detailed descriptions of this market. Avery
et al. (2001) examine unraveling in the closely-related market for judicial law clerks.
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Definition 17. A coalition C can period-2 block the matching µ if there exists a one-period

matching for coalition C, µC
2 , such that for all i ∈ C, (µ1(i), µ

C
2 (i)) ≻i µ(i).

As above, we can distinguish between an ex ante core and a dynamic core.

Definition 18. The matching µ is in the ex ante core if it cannot be period-1 blocked by

any coalition.

Definition 19. The matching µ is in the dynamic core if for all t it cannot be period-t

blocked by any coalition.

Remark 1. The definitions of ex ante and dynamic core collapses to those of ex ante and dy-

namic stability when only one-agent or couple coalitions are allowed. Single-agent coalitions

subsume the individual-rationality requirements.21

For context, we note that the ex ante core corresponds to the “core” in Damiano and

Lam (2005, Definition 3). What we call the dynamic core is sometimes called the “recursive

core.”22 The dynamic core differs from Kurino’s (2009) “dynamic group-stability,” which

allows deviating agents to be matched with non-coalition members in future periods.

In a one-period market, the core is not empty and corresponds to the set of stable matches

(Gale and Shapley, 1962). In the multi-period setting, both the ex ante and the dynamic

core can be empty, even when all agents have preferences with inertia relative to Si.

Example 7. Let M = {m1, m2, m3} and W = {w1, w2, w3}. Agents’ preferences are:

≻m1
: w2w2, w3w3, w3w2, m1w2, w1w2, w1w3, m1m1, w1w1, . . .

≻m2
: w3w3, w1w1, w1w3, m2w3, w2w3, w2w1, m2m2, w2w2, . . .

≻m3
: w1w1, w2w2, w2w1, m3w1, w3w1, w3w2, m3m3, w3w3, . . .

≻w1
: m1m1, m1w1, m1m2, m1m3, w1w1, m2m2, m3m3, . . .

≻w2
: m2m2, m2w2, m2m3, m2m1, w2w2, m3m3, m1m1, . . .

≻w3
: m3m3, m3w3, m3m1, m3m2, w3w3, m1m1, m2m2, . . .

21There is a generalization of “period-t blocking,” “ex ante/dynamic stability,” and “ex ante/dynamic core”
to economies with more than two periods. A coalition C can period-t block µ if there exists a sequence of
one-period matchings (µC

t , µ
C
t+1, . . .) such that for all i ∈ C,

(. . . , µt−1(i), µ
C

t (i), µ
C

t+1(i), . . .) ≻i (. . . , µt−1(i), µt(i), µt+1(i), . . .).

The definitions of stability and the core follow similarly.
22See Damiano and Lam (2005, Definition 4) and Becker and Chakrabarti (1995).
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This market has four ex ante stable matchings, noted in Table 4. The table identifies the

coalition that can period-1 block each matching. Since all matchings in the ex ante and the

dynamic core must be ex ante stable, the ex ante and dynamic cores are empty.23

Table 4: All ex ante stable matchings in Example 7 and blocking coalitions.

Matching m1 m2 m3 w1 w2 w3 Blocking Coalition
µ1 w1w2 w2w1 m3m3 m1m2 m2m1 w3w3 {m2, m3, w2, w3}
µ2 m1m1 w2w3 w3w2 w1w1 m2m3 m3m2 {m1, m3, w1, w3}
µ3 w1w3 m2m2 w3w1 m1m3 w2w2 w3w1 {m1, m2, w1, w2}
µ4 m1m1 m2m2 m3m3 w1w1 w2w2 w3w3 {m2, m3, w2, w3}

The core’s emptiness has been noted in other dynamic models under different assumptions

(Damiano and Lam, 2005; Kurino, 2009) and, more broadly, in models of many-to-many

matching (Blair, 1988). To restore the core’s non-emptiness, we modify the set of admissible

preferences by strengthening the degree of inertia.24

Definition 20. Let ≻ be a preference for agent i.

1. ≻ exhibits strong inertia if for all j, k, j 6= k, jj ≻ jk and jj ≻ kj. Let Ii denote the

set of preference profiles for i that exhibit strong inertia.

2. ≻ exhibits very strong inertia if jj ≻ kl for all j, k, l, k 6= l. Let I∗
i denote the set of

preference profiles for i that exhibit very strong inertia.

Preferences with strong inertia are reasonable in cases where an agent’s enthusiasm for a

particular partnership plan is most strongly influenced by his least-favorite partner in that

plan.25 Preferences with very strong inertia imply an overwhelming desire for persistent

plans. Such preferences (or priorities) feature in most school-choice applications. Typically,

a school guarantees currently-enrolled students a spot for the following year. In this case,

the priority structure exhibits very strong inertia (Kennes et al., 2013).26

23Example C.2 in Appendix C show that even if the ex ante core is not empty, the dynamic core can be
empty.

24Weakening the degree of inertia does not always lead to a non-empty dynamic core (Example C.3).
25A switching cost can rationalize the strict inferiority of variable plans. A moment of reflection points to

a link between these preferences and Leontief preferences from consumer theory.
26See also Appendix B. Guaranteed future attendance is not a universal policy. Progression in an educa-

tional program may be contingent on performance, implying spots in future years are not guaranteed.
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Preferences with strong and very strong inertia are a large class as they place very

mild restrictions on the relative rankings of volatile plans. Neither Ii nor I∗
i encompass or

whittle-down S̄i, but an overlap exists. For perspective, Figure 1 illustrates the relationships

among the preference domains that we have introduced. Intuitively, Ii ∩ S̄i and I∗
i ∩ S̄i are

refinements of S̄i that place a more uniform emphasis on inter-temporal complementarities.

S̄iIi S̄i

I∗
i Si

Figure 1: Preference domains. Si – preferences that reflect a spot ranking; S̄i – preferences
that exhibit inertia relative to Si; Ii – preferences with strong inertia; I∗

i – preferences with
very strong inertia.

We have already noted that our multi-period model reduces to the one-period model in

many special cases. By strengthening inertia, and moving agents’ preferences toward Ii or

I∗
i , we again move closer to Gale and Shapley’s (1962) setting. Indeed, when each agent’s

preferences exhibit very strong inertia, our model trivially reduces to their model. However,

such a drastic restriction is not required to recover many classic results first observed in

the one-period setting. In fact, it is sufficient to nudge the preferences of only one side of

the market into Ii to conclude that the distinction between ex ante and dynamic stability

matters no more and all stable matchings are also core matchings.

Theorem 5. Suppose ≻m∈ S̄m ∪ Im for all m ∈ M and suppose ≻w∈ Iw for all w ∈ W .

1. All ex ante stable matchings are persistent.

2. All ex ante stable matchings are dynamically stable.

3. A matching is dynamically stable if and only if it is in the dynamic core.
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Proof. 1. Let µ∗ be an ex ante stable matching. Suppose m ∈ M is assigned a volatile

plan: µ∗
1(m) 6= µ∗

2(m). Since ≻m∈ S̄m, (µt(m), µt(m)) ≻m µ∗(m) for some t ∈ {1, 2}.

There are two subcases:

(a) If µt(m) = m, then mm ≻m µ∗(m). This contradicts individual rationality.

(b) If µt(m) = w ∈ W , then ww ≻m µ∗(m). For w however, µt(w) = m and

since ≻w∈ Iw, mm ≻w µ∗(w). Therefore, m and w can period-1 block µ∗—a

contradiction.

Hence, m cannot be assigned a volatile plan in an ex ante stable matching.

Suppose instead some w ∈ W is assigned a volatile plan. If w is single in any period,

then µ∗ is not ex ante individually rational for w. If instead w is never single, each of

her male partners must have also been assigned a volatile plan and the above argument

applies.

2. Let µ∗ be an ex ante stable matching. Hence, it is ex ante individually rational and

immune to period-1 blocking by any pair of agents. Two additional conditions need to

be verified:

(a) Suppose that for some m ∈ M , (µ∗
1(m), m) ≻m µ∗(m). Since µ∗(m) is persistent

and ≻m∈ S̄m, mm ≻m (µ∗
1(m), m) ≻m µ∗(m). Hence, µ∗(m) is not ex ante

individually rational—a contradiction. If instead (µ∗
1(w), w) ≻w µ∗(w) for some

w ∈ W , then ww ≻w µ∗(w). This also contradicts ex ante individual rationality.

Hence, µ∗ must be dynamically individually rational for all i.

(b) Suppose there exists a pair (m,w) ∈ M ×W that can period-2 block µ∗. Thus,

(µ∗
1(m), w) ≻m µ∗(m). Since µ∗(m) is time invariant and ≻m∈ S̄m, ww ≻m µ∗(m).

Similarly, since (µ∗
1(w), m) ≻w µ∗(w) and ≻w∈ Iw, mm ≻w µ∗(w). Hence, m and

w can period-1 block µ∗, which contradicts ex ante stability.

Therefore, all ex ante stable matchings are dynamically stable.

3. (⇐) Follows from the definition of the core. (⇒) We prove the contrapositive: If µ is

not the in the dynamic core, then it is not dynamically stable.

If µ can be blocked by a single-agent coalition, then it is not dynamically individually

rational. Hence, it cannot be dynamically stable.
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Suppose, instead, that µ is dynamically individually rational for all agents, but it can

be period-1 blocked by coalition C. C must contain at least one man and one woman.

Choose m ∈ M ∩ C. Then (µC
1 (m), µC

2 (m)) ≻m µ(m) ≻m mm. There are two sub

cases:

(a) If µC
1 (m) = µC

2 (m) = w, then (µC
1 (w), µ

C
2 (w)) ≻w µ(w). Hence, m and w can

period-1 block µ and it is not dynamically stable.

(b) If µC
1 (m) 6= µC

2 (m) then since m ∈ S̄i, (µC
t (m), µC

t (m)) ≻ µ(m) for some t.

If µC
t (m) = m, then µ(m) is not dynamically individual rational. Therefore,

µC
t (m) = w for some w ∈ C ∩ W . For w however, µC(w) ≻w µ(w) and since

≻w∈ Iw and µC
t (w) = m, we conclude that mm ≻w µ(w). Therefore, m and w

can period-1 block µ and it is not dynamically stable.

Hence, if some coalition can period-1 block µ, µ is not dynamically stable.

Finally, suppose µ is dynamically individually rational for all agents but can be period-

2 blocked by some coalition C. C must contain at least one man m and one woman w

such that (µ1(m), w) ≻m µ(m) and (µ1(w), m) ≻w µ(w). If µ1(m) 6= µ2(m), then by

parts 1 and 2 above µ cannot be dynamically stable. Thus, suppose µ(m) is persistent.

Since ≻m∈ S̄m, ww ≻m µ(m). Since ≻w∈ Iw, mm ≻w µ(w). Therefore, m and w can

period-1 block µ. Thus, µ is not dynamically stable.

Since ex ante stable matchings exist, the existence and equivalence of stable and core

matchings follows as a corollary.

Corollary 1. Under the conditions of Theorem 5, the sets of ex ante stable matchings

(ES), dynamically-stable matchings (DS), ex ante core matchings (EC), and dynamic core

matchings (DC) coincide and are not empty.

Proof. By definition DS ⊂ ES. From Theorem 5, ES ⊂ DS; hence ES = DS. Also from

Theorem 5, DS = DC. Finally, since EC ⊂ ES, DS = DC ⊂ EC ⊂ ES = DS. Hence,

EC = DS. These sets are not empty as ES 6= ∅.

6 Limited Information and Learning

We have focused thus far on preference inertia, which is but one feature of multi-period

markets. A second distinguishing feature is agents’ preference uncertainty due to limited in-
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formation about the future. Fresh facts come to light, opinions are refined, and changes

are implemented on account of new information. Students transfer colleges, marriages

are announced (or dissolved), employees are fired or quit, and contracts are breached as

relationship-relevant information becomes known.

To accommodate limited information and learning we amend our model in two ways.

First, we limit what each agent i knows about his preferences and we specify what he learns

as time unfolds. Second, we examine not only the final matching, but we also consider the

procedure that led to that matching. The constrained information structure justifies this

complementary focus. If agents learn about their preferences over time, whatever matching is

implemented in period t should be reliably arrived at by some method using only information

available up to period t. This requirement imposes additional structure on the set of match-

ings we might reasonably expect to see. In our discussion we pay particular attention to

the use of an interim market for re-matching between periods. Learning offers a justification

for re-matchings and an improvement relative to the initial assignment should be possible.

Though we are sympathetic to such an intuition, our analysis qualifies it considerably.

6.1 Uncertain Preferences and Dynamic Stability

Consider agent i who has preferences over partnership plans ≻. Suppose, however, that i

does not know the full ranking as specified by ≻. Instead, his initial knowledge is partial,

but it will become more complete with experience in the market. To be precise, suppose

that before period 1 agent i knows the following:

(L1) The agent’s preferences have inertia in the sense that ≻∈ S̄i.

(L2) The agent knows his ex ante spot ranking of potential partners, P≻.

Given this limited information, there are many preferences that the agent may actually hold.

For example, the agent may know that ll ≻ jj ≻ kk ≻ · · · but the relative ranking of jk,

for example, is unknown. As time passes, agent i learns more about his preferences.

(L3) If in period 1 agent i is assigned to j, he learns his preferences for plans of the form

jl′, for all l′.

Continuing the above illustration, after being matched with j, agent i could learn that ≻ in

fact satisfies

ll ≻ jl ≻ jj ≻ kk ≻ jk ≻ · · · ,

29



which supplements his initial knowledge. Together, (L1)–(L3) outline a simple model of

path-dependent learning.

Remark 2. (L1)–(L3) is consistent with an agent learning about switching costs or the

strength of preference inertia. For example, i knows that ll ≻ jj, but is initially unsure

whether switching to l in period 2 after being matched with j in period 1 is worthwhile.

Given his period 1 knowledge, ll ≻ jl ≻ jj and ll ≻ jj ≻ jl are both plausible. The agent

recognizes the true case only after a period-1 match to j.

Remark 3. Beyond the restrictions in (L1)–(L3), we do not introduce further probabilistic

beliefs or priors.

Though we have modified our model, we maintain dynamic stability as our preferred

solution concept. At first glance, this claim appears at odds with agents’ knowledge and

with the feasibility of relevant blocking actions. For example, suppose i is matched to j in

period 1 and then to k 6= j in period 2. From a period-1 point of view, i does not know his

preference for the plan jk. Thus, he may be uneasy to initiate a period-1 block if this plan

is proposed to him ex ante. Similarly, suppose the matching jk is generated by a sequence

of spot markets (e.g. Definition 14). Once period 2 has arrived and i can rank jk relative

to other options, he cannot turn back the clock to initiate a period-1 block.

Both considerations above draw on a “forward-looking” interpretation of blocking and

dynamic stability, which we have thus far emphasized. However, dynamic stability also has

a complementary “backward-looking” interpretation as an absence of regret. At the end

of period 2, agent i knows his ranking of jk relative to all persistent plans. If jk is not

dynamically stable, i may regret not eloping with l (say) at an earlier opportunity. Thus,

even with uncertain preferences, dynamically-stable outcomes offer an appealing normative

benchmark.

6.2 Matching Procedures

When agents’ preferences were known, our analysis emphasized only the final matching,

µ = (µ1, µ2). We examined the properties of reasonable market outcomes, such as stable or

core matchings, without emphasizing how they arose. In an environment with learning and

uncertainty, however, preferences and information evolve over time. Arguably, what is con-

sidered a “reasonable market outcome” ought to account for these information imperfections

and dynamics. We therefore focus our analysis by considering matchings that are compatible

with specific procedures sensitive to these environmental features.
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A matching procedure identifies a matching in every market. We have already encountered

many matching procedures in the preceding discussion. The ex ante deferred acceptance

procedure and the spot-market deferred acceptance procedure are but two examples. To

introduce some notation, an economy is a tuple e = (M,W, (≻i)i∈M∪W ) encompassing the

market’s men, women, and their preferences. Let E (M,W ) be the set of all economies with

agents in M and W and let M (M,W ) be the set of all matchings of these agents.We call

the function A(·) a matching procedure if it assigns to each economy a matching. That is, if

e ∈ E (M,W ), then A(e) ∈ M (M,W ). Let At(e) be the one-period matching identified by

procedure A in economy e.

Matching procedures may differ along many dimensions. Some always generate Pareto-

optimal assignments, others are strategy-proof, and still others are dictatorial—the space of

all procedures is expansive.27 In our case, we are interested in procedures with two pertinent

properties. First, we specialize to procedures that do not employ information that is unknown

to agents. This implies a procedure cannot use information revealed in period 2 to influence

the period-1 matching.

Definition 21. The matching procedure A is non-prophetic if for all economies e, e′ ∈

E (M,W ) such that P≻i
= P≻′

i
for each i , A1(e) = A1(e

′).

A non-prophetic matching procedure uses at most the information contained in agents’ ex

ante spot ranking in determining a period-1 matching. Both the ex ante and spot-market

deferred acceptance procedures are non-prophetic. A trivial non-prophetic procedure always

assigns each agent to single-hood in period 1.

Our second restriction is to procedures that generate dynamically-stable matchings when-

ever ≻i∈ S̄i for all i. We call such a procedure dynamic-stability inclined ; however, we do

not impose restrictions on its operation when preferences are fully general. As noted above,

such procedures insulate agents from ex post regret.

We offer two theorems drawing on the above restrictions. Abstracting from qualifications,

Theorem 6 shows that if µ = (µ1, µ2) is a dynamically-stable matching generated by some

non-prophetic procedure, then µ̄ = (µ1, µ1) is also dynamically-stable. In principle, a non-

prophetic procedure may generate a dynamically-stable matching where µ1 6= µ2. µ2 may

reflect new information about agents’ preferences thereby justifying the re-matching. We can

interpret the interim swapping as the operation of some spot market. The theorem concludes,

27In general, a procedure can lead to a random matching, i.e. a distribution over M (M,W ). For simplicity,
we consider non-random procedures.
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however, that if we are only interested in dynamically-stable matchings, interim re-matchings

are unnecessary. Prolonging the period-1 matching leads to a dynamically-stable outcome.

Theorem 6. Let A be a non-prophetic, dynamic-stability inclined matching procedure.28

Suppose that in economy e where ≻i∈ S̄i for all i, A(e) = µ = (µ1, µ2). Then µ̄ = (µ1, µ1) is

also a dynamically-stable matching in economy e.

Proof. Suppose µ1 6= µ2. Else, the theorem is trivially true. First, we verify that µ̄ is

dynamically individually rational. Suppose for some m ∈ M , mm ≻m µ̄(m). This implies

µ1(m) = w1 ∈ W . If µ2(m) = m, then w1m ≻m mm ≻m w1w1, which is a contradiction as

≻m∈ S̄m. Therefore, µ2(m) = w2 6= w1 and hence

w2w2 ≻m w1w2
︸ ︷︷ ︸

µ(m)

≻m mm ≻m w1w1.

Now consider an alternative economy, e′, with the same agents and where the preferences

of all i 6= m are exactly as in e, i.e. ≻i=≻′
i for all i 6= m. However, the preferences of agent

m, ≻′
m, exhibit very strong inertia but they maintain the same ex ante ranking as in e, i.e.

P≻′

m
= P≻m

. The relative rankings of other partnership plans is unchanged relative to ≻m as

well. Clearly, ≻′
m∈ S̄m ∩ I∗

m as all persistent plans were shifted to the top of the preference

list. Moreover, mm ≻′
m w1w1 ≻

′
m w1i for all i ∈ Wm \ {w1}.

As the procedure A is non-prophetic, A1(e) = A1(e
′). This implies that in the matching

A1(e
′), agent m is matched to w1 in period 1. But this contradicts A always generating a

dynamically-stable matching when agents’ preferences are in S̄i. Thus, µ̄(m) %m mm. Not-

ing this fact, it follows that µ̄(m) %m µ1(m)m as well. Hence, µ̄ is dynamically individually

rational.

Suppose some pair, m and w, can period-1 block µ̄. Since µ̄ is dynamically individually

rational, there three possible cases:

1. Suppose ww ≻m (µ1(m), µ1(m)) and mm ≻w (µ1(w), µ1(w)). Clearly, w 6= µ1(m) and

m 6= µ1(w).

Now consider an alternative economy e′ where the preferences of all agents other than m

and w are identical to those in e. However, the preferences of m, ≻′
m, are identical to ≻m

except that all persistent partnership plans are shifted to the very top of the preference

ranking and P≻′

m
= P≻m

. Define ≻′
w similarly. In this alternative economy, matching

28For example, the ex ante deferred acceptance procedure satisfies both conditions. It is not the only
procedure to do so.
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procedure A must assign agent m to µ1(m) in period 1. However ww ≻′
m µ1(m)i for all

i ∈ Wm. Likewise, w must be assigned to µ1(w), but mm ≻′
w µ1(w)j for all j ∈ Mw.

Hence, m and w would be able to period-1 block the matching generated by A in the

economy e′, contradicting µ being dynamically stable.

2. Suppose mw ≻m (µ1(m), µ1(m)) and wm ≻w (µ1(w), µ1(w)). Since ≻i∈ S̄i, ww ≻m

mw ≻m (µ1(m), µ1(m)) and mm ≻w wm ≻w (µ1(w), µ1(w)). Thus, case (1) above

applies.

3. Suppose wm ≻m (µ1(m), µ1(m)) and mw ≻w (µ1(w), µ1(w)). The same reasoning as

case (2) and (1) applies.

Therefore, no pair wishes to period-1 block µ̄.

Finally, suppose m and w can period-2 block µ̄. Then (µ1(m), w) ≻m µ̄(m) =⇒ ww ≻m

(µ1(m), w) ≻m µ̄(m). Likewise, (µ1(w), m) ≻w µ̄(w) =⇒ mm ≻w (µ1(w), m) ≻w µ̄(w1).

But this implies m and w could period-1 block µ̄, which by the previous argument is not

possible. Thus, no pair wishes to period-2 block µ̄.

Remark 4. Theorem 4 showed that period-2 matchings can be brought forward in time to

yield a new stable matching. Expediting future matchings that are (possibly) contingent on

unknown information is often not feasible. Theorem 6 shows that if period-1 matchings are

generated by a non-prophetic procedure, they can be prolonged while preserving dynamic

stability. This conclusion does not contradict Example 4 as the theorem restricts attention

to a subset of dynamically-stable matchings.

Theorem 6 shows that prolonging a period-1 relationship leads to a dynamically-stable

outcome overall. This result is important as it provides a fair benchmark for comparison if

we consider the gains that may arise if we consider the operation of a market where agents

re-match between periods 1 and 2.29 Theorem 7 offers a welfare comparison of µ = (µ1, µ2)

and µ̄ = (µ1, µ1) when both matchings are dynamically-stable. It shows that if µ1 6= µ2,

i.e. a non-trivial interim re-matching occurs, then µ cannot Pareto-dominate µ̄. Thus, a

situation where “everyone wins” if they find a new partner for period 2 is impossible.

Theorem 7. Assume ≻i∈ S̄i for all i and suppose µ = (µ1, µ2) is a dynamically-stable

matching such that µ1 6= µ2. Let µ̄ = (µ1, µ1). If for m ∈ M , µ(m) ≻m µ̄(m) then

µ2(m) = w ∈ W and µ̄(w) ≻w µ(w).

29It ensures that we compare a dynamically-stable matching with another dynamically-stable matching.
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Proof. Let m ∈ M be such that µ(m) = (µ1(m), µ2(m)) ≻m (µ1(m), µ1(m)) = µ̄(m). Hence,

(µ2(m), µ2(m)) ≻m µ(m) ≻m µ̄(m).

If µ2(m) = m, then µ would not by individually rational for m. Hence, µ2(m) = w ∈ W .

Thus, ww ≻m µ(m) ≻m µ̄(m).

Now consider w, from above. We know µ1(w) 6= m, µ2(w) = m and that µ is dynamically

stable. Thus, µ(w) ≻m mm. But this implies (µ1(w), µ1(w)) ≻w µ(w), which is the desired

conclusion.

Remark 5. Theorem 7 is independent of the matching procedure that led to µ.

Theorem 7 allows for a welfare assessment of interim re-matching. It has particular

bite in markets with preference uncertainty. As argued above, in such markets we may

reasonably expect matchings to be compatible with some non-prophetic procedure due to

the environment’s limited information. Theorem 6 shows that prolonging an initial matching

preserves dynamic stability. Theorem 7 shows that any further re-matching necessarily leads

to a welfare loss for half of the agents who receive a new partner. Thus, the operation of an

interim market to leverage what agents’ learn about their preferences cannot be universally

beneficial.

We can relate the above analysis to two practical considerations in the functioning of

matching markets. First, uncertainty has been identified as a key reason contributing to

market unraveling (Roth and Xing, 1994) and early contracting can serve as insurance (Li

and Rosen, 1998).30 Our model is consistent with such an interpretation in the following

sense. If initial matchings are determined by a non-prophetic procedure that is dynamic-

stability inclined, agents will generally be averse to revisions of this matching once period 2

arrives. Prolonging the initial matching is dynamically stable and Pareto improvements in

relation to that period-1 status quo cannot be realized. The absence of a Pareto improvement

renders the functioning of a meaningful period-2 market rather precarious. Hence, the period-

2 market, which could exist and be quite lively, has a natural inclination to fold into the

period-1 market. Thus, it is not surprising that the law intern gets a permanent job offer a

year in advance.

30Nearly all theoretical studies of market unravelling focus on information imperfections, or uncertainty
about preferences or others’ interests. See, for example, Hałaburda (2010), Ostrovsky and Schwarz (2010),
Echenique and Pereyra (2013). Avery et al. (2001) describe the market for law clerks in the United States.
Their survey evidence corroborates many of these explanations.
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Building on the above observation, a second consideration touches on advice to partic-

ipants in dynamic, multi-period markets, where preferences may be uncertain. While we

have only briefly highlighted the strategic concerns in multi-period markets, one emergent

theme is that it may be unwise to anticipate a successful re-matching opportunity in a fu-

ture period. We suggest that the majority of agents, at least in markets approximating our

setting, ought to approach multi-period problems anticipating that their initial matching

will be in effect for a very long time. This advice stems from the reality of status quo bias

in preferences (captured by inertia) and is corroborated by the fragility of future markets

where re-matching could occur. This advice is reflected in many institutional arrangements

surrounding multi-period relationships. Marriages are presumed to be permanent; labor con-

tracts are often for a time unspecified; and most colleges admit students for a whole degree

rather than a year or two. Though a couple may divorce, an employee may quit (be made

redundant), or a student may transfer (flunk-out), few parties approach such relationships

anticipating those outcomes.

7 Concluding Remarks

We have proposed a conservative generalization of the classic model of one-to-one matching

to a multi-period setting. The restrictions on preferences that we identify as supportive

of stable outcomes are behaviorally-plausible and, we argue, quite common in practical

situations. Though our model is restricted to two periods, the intuition supporting our

results generalizes. Our model readily accommodates cases where agents are uncertain about

their future preferences. Though agents learn relevant information, leveraging this new

information so as to yield a Pareto-improvement relative to a status quo can be difficult.

For tractability we have abstracted away from many features of dynamic markets. For

example, we have only sketched some of the strategic nuances at play in dynamic markets.

Similarly, we have not addressed the arrival/departure of agents from the market, an im-

portant feature in practice (Kennes et al., 2013; Pereyra, 2013; Kurino, 2014). We hope to

address these questions, among others, in future work.
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A Appendix: Proofs

Proof of Lemma 1. By definition, P = P≻ if and only if for all i, j ∈ Wm, iP j ⇐⇒ iP≻j.

Suppose ≻ reflects P . Given ≻, P≻ is uniquely defined. Let i, j ∈ Wm and without loss

of generality suppose iP≻j. Suppose, for contradiction, that jP i. Then, jP i =⇒ jj ≻

ii =⇒ jP≻i =⇒ ¬[iP≻j]. The first implication is from Definition 9. The second follows

from Definition 10. The final implication is because P≻ is asymmetric. However, the final

implication is a contradiction. Therefore, iP≻j =⇒ iP j. The converse implication follows

similarly. Therefore, P = P≻.

Proof of Lemma 2. Since ≻∈ S̄m, there exists ≻′∈ Sm such that ≻ exhibits inertia relative

to ≻′ and ≻′ reflects P≻′

1. ii ≻ jj ⇐⇒ ii ≻′ jj. Hence iP≻′j and since ≻′ reflects P≻′, ii ≻′ jj =⇒ ii ≻′ ij.

Since ≻ exhibits inertia relative to ≻′, ii ≻ ij. To arrive at the second implication,

note that ii ≻′ jj =⇒ ii ≻′ ji. Hence, ii ≻ ji.

2. Suppose ij ≻ jj. Then ij ≻′ jj =⇒ iP≻′j =⇒ ii ≻′ jj =⇒ ii ≻ jj. Similarly,

assume ji ≻ jj. Then ji ≻′ jj =⇒ iP≻′j =⇒ ii ≻′ jj =⇒ ii ≻ jj.

3. Suppose jj ≻ kk. Then jj ≻′ kk and thus jP≻′k. Therefore, for all i, ij ≻′ ik. Since

≻ exhibits inertia relative to ≻, the relative ranking of volatile partnership plans is

unchanged. Thus, ik ≻ ik. Conversely, ij ≻ ik =⇒ ij ≻′ ik as ≻ and ≻′ agree

on the relative rankings of volatile plans. If kP≻′j then ik ≻′ iyj, which is not true.

Therefore, jP≻′k and thus jj ≻′ kk =⇒ jj ≻ kk.

The second implication follows similarly. jj ≻ kk =⇒ jP≻′k =⇒ ji ≻′ ki =⇒ ji ≻

ki. Conversely, ji ≻ ki =⇒ ji ≻′ ki =⇒ jP≻′k =⇒ jj ≻′ kk =⇒ jj ≻ kk.
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B Appendix: Comparisons and Contrasts

There are several recent studies of dynamic, two-sided matching markets. These studies

differ from our analysis along several dimensions. Principally, these differences can be traced

back to the admissible preference domains and to the definition(s) of market stability.

B.1 Damiano and Lam (2005)

Damiano and Lam (2005) develop a multi-period matching model that they use to examine

the notion of “stability” in a dynamic, two-sided markets. They identify drawbacks of well-

known concepts—such as the core—and they propose alternative definitions, such as self-

sustaining stability.

B.1.1 Preferences

Damiano and Lam (2005) adopt a preference specification over “matching plans” (equivalent

to our partnership plan) that is based on a discounted sum of per-period utilities. Our

preference specification is ordinal over partnership plans.

B.1.2 Stability (“Core” and “Recursive Core”)

Damiano and Lam (2005, Definition 3) say a matching µ is in the core if no coalition of

agents can propose an alternative matching plan (only among themselves) that they prefer

to µ. A key element in this definition is that the alternative within-coalition matching

is binding among the coalition members and formed at period 1. Therefore, this definition

corresponds to our definition of the ex ante core and is weaker than our definition of dynamic

core. The “recursive core,” applied to a matching market by Damiano and Lam (2005) but

proposed by Becker and Chakrabarti (1995) in a different application, is a stronger definition

and corresponds to our definition of the dynamic core. Beyond the requirements identified

above, this definition allows for a coalition to form in any period t (conditional on the history

of matchings) to block µ.

Beyond examining the core and the recursive core, Damiano and Lam (2005) propose

several stronger notions of stability, such as self-sustaining stability and strict self-sustaining

stability. These definitions are similar in spirit to the core, but they additionally require

any blocking deviations pursued by a coalition to be credible. A coalition can block a

proposal only if additional coalitions cannot deviate from the coalition’s deviation, and
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so on. These additional requirements are stronger than what we consider. Imposing such

credibility restrictions on blocking coalitions has been considered in many-to-many matching

models (Konishi and Ünver, 2006).

B.2 Kurino (2009)

Our study shares a similar motivation to the analysis of Kurino (2009), who also examines a

two-sided marriage-market model where agents match for multiple periods. We make diver-

gent assumptions concerning preferences and our preferred specifications of stable outcomes

also differ.

B.2.1 Preferences

Kurino (2009) adopts a preference specification based on a sum of per-period utilities.

Adopting his notation, he assumes that agent’s i utility from the matching µ is Ui(µ) =
∑T

t=0 u
t
i(µ

t(i)). While such preferences allow an agents’ per-period rankings of potential

partners to vary over time in an arbitrary way, such variance is independent of past match

outcomes. Therefore, such preferences are neither more general nor more restrictive than

our specification.

B.2.2 Stability (Dynamic Group Stability)

Kurino (2009) defines the core analogously to Damiano and Lam (2005). Therefore, our

definition of the ex ante core corresponds to his definition. Kurino (2009) provides an example

showing the core’s emptiness given his preference specification. Kurino’s (2009) definition

of “dynamic group-stability” allows agents implicated in a potential blocking coalition to be

sometimes matched with non-coalition members.31 We do not allow this possibility.

B.3 Kennes et al. (2013)

Kennes et al. (2013) study a dynamic model of school choice. Therefore, their model is one

of many-to-one matching. Thus, unlike our analysis, their model assumes a fundamental

asymmetry between the market’s two sides.

31Kurino’s (2009) definition has the flavor of “group stability” as presented by Roth and Sotomayor (1990,
Definition 5.4) for the college-admission model.
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B.3.1 Preferences (and Priorities)

Kennes et al. (2013) study a school-choice problem. Therefore, they endow students with

preferences over schools. Schools rank students based on administratively defined priorities.

Preferences and priorities are not defined symmetrically.

Students’ Preferences Preference in S̄i are equivalent to preferences satisfying the “rank-

ability” assumption proposed by Kennes et al. (2013). Preferences in Si satisfy their strong

rankability definition.

Schools’ Priorities Kennes et al. (2013) propose a priority structure that resembles the

Danish daycare assignment system, which is the market motivating their analysis. Focusing

on this priority structure, however, implies that they restrict one side of the market (schools)

to a set of preferences that is more restrictive (in a sense that we explain below) than those

that we allow.

The priority structure has several components describing how a student’s priority at a

school evolves. Part of their priority structure’s complexity stems from the need to accom-

modate their model’s OLG structure, which is absent from our analysis. Here we highlight

the most salient feature of this priority structure. Kennes et al. (2013, p. 10) “. . . assume

that each school ranks the children in a lexicographical manner in which children’s past

attendance matters the most and then some criterion based on exogenous characteristics

of the child. . . .” In our setting, which restricts their model to one cohort of children born

at period 0 and to schools with capacity 1, their Assumption 2.1 implies that each school

ranks persistent plans at the top of its preference ranking. Thus, each school’s “preferences”

exhibit very strong inertia, which is more restrictive than we assume. Kennes et al. (2013,

Remark 1) note that in their many-to-one setting, this special case corresponds to a static

school-choice problem.

To illustrate the implications of this restriction on preferences in our setting, if the pref-

erences of one side of the market are in S̄i while the preferences of the other are in I∗
i , all

dynamically-stable matchings will only feature persistent partnership plans. Of course, this

reduces our dynamic market to an (essentially) static one. Thus, our results corroborate

Kennes et al. (2013, Remark 1).

Our baseline assumption concerning preferences, ≻i∈ S̄i, allows volatile plans to be part

of a dynamically stable matching.
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B.3.2 Stability (“Autarkic Stability” and “Stability”)

Kennes et al. (2013) propose two notions of market stability. Their definitions are tailored

to a school-choice environment set in an overlapping-generation (OLG) matching model.

Notwithstanding cosmetic differences (i.e. the OLG structure, the many-to-one per-period

match, etc.), their definitions additionally posit an alternative set of market-destabilizing de-

viations than we entertain. Overall, our definition of dynamic stability is neither stronger nor

weaker than their definitions. We view our definitions as complementary to their proposals.

Kennes et al.’s weakest stability concept is “autarkic stability.” Without changing their

notation, we reproduce their definition here.

Definition B.1. (Kennes et al., 2013, Definition 6) A matching µ satisfies autarkic stability

if at any period t ≥ 1, there does not exist a school-child pair (s, i) such that (1) and (2)

below hold at the same time.

1. (a) (s, µt+1(i)) ≻i (µ
t(i), µt+1(i)) or (b) (µt−1(i), s) ≻i (µ

t−1(i), µt(i)).

2. |µt(s)| < rs or/and i⊲t
s (µ

t−1)j for some j ∈ µt(s).

We wish to highlight but two difference between autarkic stability, as defined above, and

our definition of dynamic stability.

• Autarkic stability prevents agents on the two sides of the market from “blocking” a

proposed matching by committing to a two-period relationship. We call this a period-

1 block.

• Autarkic stability allows for a single-period deviation by a student while maintain-

ing the student’s original assignment in the following period. We do not allow such

deviations in our definition.

“Stability” (Kennes et al., 2013, Definition 7) is a strengthening of autarkic stability. A

stable allocation is an autarkic stable allocation that additionally allows for the two-period

deviations we discussed above. Additionally agents are forward looking in the sense that they

anticipate how match outcomes affect priorities. Despite the strengthening, this definition of

stability and its application is not in general stronger than our definition of dynamic stability.

Specifically, one side of the market (schools) bases its acceptance/rejection decisions on a

period-by-period priority structure neglecting the period 2 consequences of accepting an

alternative student in period 1 as part of destabilizing action. In our model, agents on both

sides of the market are treated symmetrically.
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C Appendix: Additional Examples

Example C.1 (A Pareto-Dominated Ex Ante Stable Matching). This example demonstrates

an ex ante stable matching that is Pareto dominated by another ex ante stable matching.

Consider a market with two men and two women. Agents’ preferences are:

≻m1
: w1w2, w1w1, m1m1, . . .

≻m2
: w2w1, w2w2, m1m1, . . .

≻w1
: m1m2, m1m1, w1w1, . . .

≻w2
: m2m1, m2m2, w2w2, . . .

There are exactly two ex ante stable matchings:

µ1(m1) = w1w1 µ1(m2) = w2w2

µ1(w1) = m1m1 µ1(w2) = m2m2

µ2(m1) = w1w2 µ2(m2) = w2w1

µ2(w1) = m1m2 µ2(w2) = m2m1

µ1 is the matching identified by the algorithm in the proof of Theorem 2. The matching µ2

Pareto dominates µ1.
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Example C.2 (An Empty Dynamic Core but a Non-Empty Ex Ante Core). This example

compares the ex ante and dynamic core in the same market. The dynamic core may be

empty even when the ex ante core has multiple members.

Consider a market with four men and four women. Agents’ preferences are:

≻m1
: w1w1, w1w3, w1w2, w3w3, w2w2, m1m1, . . .

≻m2
: w2w2, w2w4, w2w1, w4w4, w1w1, m2m2, . . .

≻m3
: w1w1, m3m3, . . .

≻m4
: w2w2, m4m4, . . .

≻w1
: m2m2, m3m2, m1m2, m3m3, m1m1, w1w1, . . .

≻w2
: m1m1, m4m1, m2m1, m4m4, m2m2, w2w2, . . .

≻w3
: m1m1, w3m1, w3w3, . . .

≻w4
: m2m2, w4w4, . . .

Though we do not list the entire preference ranking, we can assume that ≻i∈ S̄i for all i.

There exist exactly two ex ante stable matchings:

µ1(m1) = w3w3 µ1(m2) = w4w4 µ1(m3) = w1w1 µ1(m4) = w2w2

µ1(w1) = m3m3 µ1(w2) = m4m4 µ1(w3) = m1m1 µ1(w4) = m2m2

µ2(m1) = w1w2 µ2(m2) = w2w1 µ2(m3) = m3m3 µ2(m4) = m4m4

µ2(w1) = m1m2 µ2(w2) = m2m1 µ2(w3) = w3w3 µ2(w4) = w4w4

µ1 and µ2 are both in the ex ante core. Only µ1 is dynamically stable. However, it is not

in the dynamic core. µ1 can be period-1 blocked by the coalition C = {m1, m2, w1, w2}.

Coalition members prefer the within-coalition matching µC :

µC(m1) = w1w2 µC(m2) = w2w1

µC(w1) = m1m2 µC(w2) = m2m1

.

Thus, the dynamic core is empty.

42



Example C.3 (Dynamic Core Matchings and ≻i∈ Si). This example demonstrates a market

where ≻i∈ Si for all i but the set of dynamic core matchings is a strict subset of the set of

dynamically-stable matchings. Therefore, restricting preferences to Si does not restore the

equivalence between stable and core matchings.

Consider a market with four men and four women. Agents’ preferences are:

≻m1
: w4w4, . . . , w3w3, w1w4, w2w3, w3w2, w2w2, . . . , w1w1, . . .

≻m2
: w4w4, w4w1, w1w4, w1w1, . . . , w3w3, . . . , w2w2, . . .

≻m3
: w1w1, w1w4, w4w1, w4w4, . . . , w2w2, . . . , w3w3, . . .

≻m4
: w1w1, . . . , w2w2, w4w1, w3w2, w2w3, w3w3, . . . , w4w4, . . .

≻w1
: m1m1, . . . , m2m2, m1m4, m2m3, m3m2, m3m3, . . . , m4m4, . . .

≻w2
: m1m1, m1m4, m4m1, m4m4, . . . , m2m2 . . . , m3m3, . . .

≻w3
: m4m4, m4m1, m1m4, m1m1, . . . , m3m3 . . . , m2m2, . . .

≻w4
: m4m4, . . . , m3m3, m4m1, m3m2, m2m3, m2m2, . . . , m1m1, . . .

Though we do not list the entire preference profile, we can further assert that each agent’s

preferences reflect their ex ante spot preferences, which are defined above. Thus, ≻i∈ Si for

all i.

While there are many dynamically-stable matches in this economy, consider the matching

µ defined as follows:

µ(m1) = w2w3 µ(m2) = w1w4 µ(m3) = w4w1 µ(m4) = w3w2

µ(w1) = m2m3 µ(w2) = m1m4 µ(w3) = m4m1 µ(w4) = m3m2

This matching is dynamically-stable but is not in the core. For example, consider the coali-

tion C = {m1, m4, w1, w4}. This coalition can period-1 block via the within-coalition match-

ing:

µC(m1) = w1w4 µC(w1) = m4m1

µC(m4) = w4w1 µC(w4) = m1m4

.
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D Appendix: The Deferred Acceptance Algorithm

We often reference and employ the deferred acceptance algorithm (Gale and Shapley, 1962).

Though well-known, we review this procedure below as it applies to a one-period market.

Each man m (woman w) has a strict preference ranking, Pm (Pw), over potential partners

in Wm (Mw).

Definition D.1. The man-proposing deferred acceptance algorithm constructs a (one-period)

matching µ as follows:

1. In round 1, each man proposes to his most preferred partner as defined by Pm. (If

mPmw for all w ∈ W , he does not make any proposals.) Given all received proposals,

each woman engages her most preferred partner as defined by Pw and rejects the others.

All proposals from unacceptable partners (i.e. ranked below w by Pw) are rejected.

2. More generally, in round t, each man whose proposal was rejected in the previous

round proposes to his most preferred partner who has not yet rejected him. If all

such partners are unacceptable, he does not make any proposals. Out of the set of new

proposals and her current engagement (if any), each woman engages her most preferred

partner and rejects the others. If all proposals are unacceptable, she rejects them all.

3. The process stops once no further rejections occur. At that time all engaged pairs are

matched and agents without a partner remain single (i.e. are matched to themselves).

Remark D.1. There is also a woman-proposing deferred acceptance algorithm. It is identical

to the procedure described above with the roles of men and women reversed.

The next example illustrates the algorithm’s operation. These same preferences feature

in Example 5.

Example D.1. Let M = {m1, m2, m3} and W = {w1, w2, w3}. Agents’ preferences are:

Pm1
: w2, w1, m1, . . .

Pm2
: w1, w3, m2, . . .

Pm3
: w1, w2, m3, . . .

Pw1
: m1, m2, m3, w1, . . .

Pw2
: m3, m1, w2, . . .

Pw3
: m2, w3, . . .

That is, m1 prefers w2 to w1. He prefers either to being single. w3 is not acceptable.

Table 5 summarizes the round-by-round operation of the man-proposing deferred accep-

tance algorithm. To read the table, in round 1, m2 and m3 propose to w1. She engages m2,
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which is underlined and m3 is rejected. m1 proposes to w2 and is engaged. No one proposes

to w3. Eventually we arrive at the final matching:

µ(m1) = w1 µ(m2) = w3 µ(m3) = w2

µ(w1) = m1 µ(w2) = m3 µ(w3) = m2

.

Table 5: Round-by-round operation of the deferred acceptance algorithm in Example D.1.

Round w1 w2 w3

1 m2, m3 m1 -
2 m2 m1, m3 -
3 m1, m2 m3 -
4 m1 m3 m2

45



References

Abdulkadiroğlu, A. (2013). School choice. In Vulkan, N., Roth, A. E., and Neeman, Z.,
editors, The Handbook of Market Design, chapter 5, pages 138–169. Oxford University
Press.

Abdulkadiroğlu, A. and Loertscher, S. (2007). Dynamic house allocation. Mimeo.

Abdulkadiroğlu, A. and Sönmez, T. (2003). School choice: A mechanism design approach.
American Economic Review, 93(3):729–747.

Ausubel, L. M. and Milgrom, P. R. (2002). Ascending auctions with package bidding. Fron-
tiers of Theoretical Economics, 1(1):Article 1.

Avery, C., Jolls, C., Posner, R. A., and Roth, A. E. (2001). The market for federal judicial
law clerks. University of Chicago Law Review, 68(3):793–902.

Bando, K. (2012). Dynamic matching markets with choice functions. Mimeo.

Becker, R. A. and Chakrabarti, S. K. (1995). The recursive core. Econometrica, 63(2):401–
423.

Blair, C. (1988). The lattice structure of the set of stable matchings with multiple partners.
Mathematics of Operations Research, 13(4):619–628.

Bloch, F. and Cantala, D. (2013). Markovian assignment rules. Social Choice and Welfare,
40(1):1–25.

Bulow, J., Levin, J., and Milgrom, P. R. (2009). Winning play in spectrum auctions. Working
Paper 14765, NBER.

Chakroborty, A., Citanna, A., and Ostrovsky, M. (2010). Two-sided matching with interde-
pendent values. Journal of Economic Theory, 145:85–105.

Coles, P., Cawley, J., Levine, P. B., Niederle, M., Roth, A. E., and Siegfried, J. J. (2010).
The job market for new economists: A market design perspective. Journal of Economic
Perspectives, 24(4):187–206.

Coles, P. and Shorrer, R. (2014). Optimal truncation in matching markets. Games and
Economic Behavior.

Damiano, E. and Lam, R. (2005). Stability in dynamic matching markets. Games and
Economic Behavior, 52(1):34–53.

Dur, U. (2012). Dynamic school choice problem. Mimeo.

Echenique, F. and Oviedo, J. (2006). A theory of stability in many-to-many matching
markets. Theoretical Economics, 1(2):233–273.

46



Echenique, F. and Pereyra, J. S. (2013). Strategic uncertainty and unraveling in matching
markets. Mimeo.

Ehlers, L. (2004). In search of advice for participants in matching markets which use the
deferred-acceptance algorithm. Games and Economic Behavior, 48(2):249–270.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15.

Ginsburg, T. and Wolf, J. A. (2004). The market for elite law firm associates. Florida State
University Law Review, 31(4):909–965.

Hałaburda, H. (2010). Unravelling in two-sided matching markets and similarity of prefer-
ences. Games and Economic Behavior, 69(2):365–393.

Hatfield, J. W. and Kominers, S. D. (2012). Contract design and stability in many-to-many
matching. Mimeo.

Hatfield, J. W. and Milgrom, P. R. (2005). Matching with contracts. American Economic
Review, 95(4):913–935.

Hylland, A. and Zeckhauser, R. J. (1979). The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314.

Kadam, S. V. (2014). Interviewing in many-to-one matching market. Mimeo.

Kahneman, D., Knetsch, J. L., and Thaler, R. H. (1990). Experimental tests of the endow-
ment effect and the coase theorem. Journal of Political Economy, 98(6):1325–1348.

Kennes, J., Monte, D., and Tumennasan, N. (2013). The daycare assignment: A dynamic
matching problem. Mimeo.

Konishi, H. and Ünver, M. U. (2006). Credible group stability in many-to-many matching
problems. Journal of Economic Theory, 129(1):57–80.

Kurino, M. (2009). Credibility, efficiency, and stability: A theory of dynamic matching
markets. Mimeo.

Kurino, M. (2014). House allocation with overlapping generations. American Economic
Journal: Microeconomics, 6(1):258–289.

Lazarova, E. and Dimitrov, D. (2013). Paths to stability in two-sided matching under
uncertainty. Mimeo.

Li, H. and Rosen, S. (1998). Unraveling in matching markets. American Economic Review,
88(3):371–387.

47



Milgrom, P. (2000). Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy, 108(2):245–272.

National Association for Law Placement (2014). Perspectives on fall 2013 law student re-
cruiting.

Ostrovsky, M. and Schwarz, M. (2010). Information disclosure and unravelling in matching
markets. American Economic Journal: Microeconomics, 2:34–63.

Pereyra, J. S. (2013). A dynamic school choice model. Games and Economic Behavior,
80:100–114.

Roth, A. E. (1982). The economics of matching: Stability and incentives. Mathematics of
Operations Research, 7(4):617–628.

Roth, A. E. (1989). Two-sided matching with incomplete information about others’ prefer-
ences. Games and Economic Behavior, 1(2):191–209.

Roth, A. E. (2008). Deferred acceptance algorithms: History, theory, practice, and open
questions. International Journal of Game Theory, 36(3–4):537–569.

Roth, A. E. and Rothblum, U. G. (1999). Truncation strategies in matching markets—in
search of advice for participants. Econometrica, 67(1):21–43.

Roth, A. E. and Sotomayor, M. A. O. (1990). Two-Sided Matching: A Study in Game-
Theoretic Modeling and Analysis. Number 18 in Econometric Society Monographs. Cam-
bridge University Press, New York.

Roth, A. E. and Vande Vate, J. H. (1990). Random paths to stability in two-sided matching.
Econometrica, 58(6):1475–1480.

Roth, A. E. and Xing, X. (1994). Jumping the gun: Imperfections and institutions related
to the timing of market transactions. American Economic Review, 84(4):992–1044.

Samuelson, W. F. and Zeckhauser, R. J. (1988). Status quo bias in decision making. Journal
of Risk and Uncertainty, 1(1):7–59.

Shapley, L. S. and Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical
Economics, 1(1):23–37.

Sotomayor, M. (1999). Three remarks on the many-to-many stable matching problem. Math-
ematical Social Sciences, 38(1):55–70.

Ünver, M. U. (2010). Dynamic kidney exchange. Review of Economic Studies, 77(1):372–414.

48


