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1 Introduction

Many industries are characterised by three features. Firstly, demand for the

product may be growing over time. This might result from economic growth

driving aggregate consumption up. Alternatively, new industries typically ex-

perience fast growth followed by maturation. Secondly, production may involve

large (up-front) capital costs but small variable costs. This is typical in many

manufacturing sectors or in electricity generation.1 Thirdly, there may exist

economies of scale with respect to the plant size. For example, coal-fired and

nuclear power stations typically display substantial economies of scale.2 Simi-

larly, different types of power generation plants may vary significantly in their

capital costs per unit of capacity: coal-fired generation capacity is often said to

involve much higher capital costs per unit than gas turbines.

How does the market structure of a growing industry develop? Initially, a

budding industry may support very few plants, and thus also very few firms.

With time, new entrants are attracted to the sector by the expanding opportuni-

ties to make profits. However, it has been suggested that cutthroat competition

for such opportunities may yield very stark results. Preemptive investment—

so called as firms always seek to preempt a profitable investment planned by

a competitor—can eat away industry profits. Firms always seek to cut their

competitors out of the market by investing earlier than them, much as firms

in price competition seek to undercut their competitors on price. Gilbert and

Harris (1984) (hereafter GH84) show that, as long as there are at least two firms

in a market, preemptive competition fully dissipates rents, for the industry and

for each individual plant. Further, the results imply that market structure is

irrelevant: any oligopoly always yields the same outcome, irrespective of how

many firms are active, or how existing capacity is distributed across active firms.

Preemption concerns can thus affect how actors in growing sectors expand.

For example, in the energy sector, a glaring example of preemptive behaviour

is the manoeuvering of Russia in the European gas supply sector. Plans to

diversify gas supply in southeastern Europe, by the construction of the Nabucco

pipeline from Turkey to Austria, have been countered with threats by Russia

to expand its supply capacity by the construction of a competing South Stream

1This is also the case in the pharmaceutical industry: however, a large fraction of the
cost of producing new medicines is related to the R&D work. The focus of this paper is on
expanding production capacity.

2The capital cost per kilowatt of coal-fired generation capacity falls by some 30% as
capacity increases from 400 MW to 900 MW (Sargent & Lundy LLC, 2008).
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pipeline. Such preemption may be intended to retain a monopolistic position

in the market. On the other hand, the GH84 model suggests that the mere

potential of a competing investment project will pressurise the monopolist to

expand more rapidly than they would prefer to, forced to relinquish some of

their monopoly rents.

The present paper first demonstrates that the stark results of Gilbert &

Harris follow from the assumption that firms coordinate on very aggressive

strategies. Such equilibria may be considered unreasonable as they are Pareto-

dominated by alternative, tacitly collusive Markov-perfect equilibria. Such tacit

collusion involves no threat strategies, only the recognition of the competitor’s

response to increased capacities.3 In fact, with slightly modified assumptions

regarding the timing of the game and the very long-run evolution of the mar-

ket, the equilibria proposed by GH84 do not arise at all. The tacitly collusive

equilibria I consider feature equal, positive rents. Market structure is again

made relevant, with the ultimate industry structure featuring concentration or

fragmentation depending on the scenario.

I then incorporate economies of scale with respect to plant size into the

model. This introduces new types of equilibrium investment episodes: in par-

ticular, some investment episodes feature second-mover advantage, with one or

both firms wanting the other to make the first investment. Such episodes may

imply that rent equalisation no longer holds, as in the existing literature. Fur-

thermore, even with a very large pool of potential entrants, which leads to rent

dissipation in the manner of GH84, not all individual plants necessarily make

zero profits; instead, some may make profits, and others offsetting losses.

This paper is structured as follows. Section 2 will present the general model

and discusses the equilibrium in the absence of economies of scale, with partic-

ular reference to GH84. Section 3 introduces scale economies and develops the

equilibrium. Section 4 presents numerical examples. Section 5 concludes. I will

begin by describing the existing literature.

1.1 Literature review

Preemptive capacity investment games were introduced by GH84. However, as

I demonstrate below, they focus on an equilibrium which involves extremely ag-

gressive strategies. In particular, the equilibrium features ’purely self-defensive’

3Gilbert and Harris (1984) do recognise that equilibria other than the one they consider
may well exist, possibly involving threat strategies, but do not discuss these further.
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investment (in the sense of Fudenberg and Tirole, 1985): situations in which

both players are happy to invest only because the other one also intends to in-

vest, even though both players would prefer to have no further investment made

by either firm. Such equilibria may not seem very reasonable, and the stark re-

sults are ultimately not very surprising.4 The key issue is the willingness of the

smaller firm to invest: an entrant with no capacity is very hungry and wants to

enter the market, while a small firm with some capacity is less keen to expand

as it has inframarginal revenues to protect. In the present paper, I focus on

equilibria which are not ’self-defensive’. I also explore the effect of alternative

assumptions regarding the timing of the game, as well as the long-run evolution

of the market. In particular, I show that with non-simultaneous timing the

self-defensive equilibrium is not robust to an eventual market contraction.

Boyer et al. (2012) develop a model of duopolistic capacity investment with

stochastically growing demand, with quantity competition in the product mar-

ket. Some of their results are fairly similar to the ones I present: both firms

may enter the market, making positive profits. Their results follow from Cournot

competition with a demand specification which departs from the GH84 canon-

ical model. More specifically, they assume that consumers’ willingness-to-pay

grows indefinitely, but that the number of consumers and the Cournot quantity

are constant, implying that no firm will ever supply arbitrarily large quantities,

and that an entrant can eventually force the incumbent to accommodate entry.

As the model structures differ in several dimensions, it is not immediately clear

what drives the difference between their results and those of GH84. I show

that, in the canonical model, many of the results of Boyer et al. (2012) can be

reproduced by the assumption that demand growth eventually peters out, and

by focusing on non-self-defensive equilibria. Thus the rationale for the results I

obtain is subtly different. In the absence of scale economies, the present paper

yields ambiguous results with respect to the degree of ultimate industry con-

centration; in contrast to Boyer et al., who predict that smaller entrants will

always tend to catch up with the incumbent, so that industries ultimately fea-

ture a group of roughly similar-sized firms. The introduction of scale economies

in the present paper also goes beyond the analysis of Boyer et al. (2012).

4GH84 also impose a small, exogenous timing advantage on one of the firms, in order to
break ties in cases in which both firms want to invest at a given time, conditional on the other
not doing so. The firm with the advantage ends up making all investments. However, this
is not crucial for their key results. Changing the tie-breaking rule to e.g. a coin flip, while
retaining the same strategies, would yield essentially the same equilibrium.
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Katz and Shapiro (1987) extend the methods of Fudenberg and Tirole (1985)

to consider asymmetric situations of preemptive competition. In the present

paper, such asymmetry rises endogenously as firms expand their capacities: I

use very similar methods to describe the equilibrium investment events in any

stage of the preemption game. However, with scale economies, I get many more

types of investment events than the ones considered by Katz and Shapiro (1987).

Mills (1990) extends GH84 by incorporating economies of scale. However,

he assumes the firms do not consider the effects of capacity expansion on their

inframarginal revenues. The results thus omit some of the most interesting

strategic interactions in the game.5 I consider the equilibrium in which the

firms take into account all strategic interactions.

Several authors have recently studied preemption games. Hoppe and Lehmann-

Grube (2005) use the Simon and Stinchcombe (1989) continuous-time framework

to develop an algorithm to solve a larger class of preemption games than the

previous literature has focused on. The model in the present paper does not

fall within their assumptions, however; furthermore, the game I study of course

involves a sequence of strategic investment decisions, instead of just one. Ar-

genziano and Schmidt-Dengler (forthcoming) use the same framework to show

that, with more than two players, equilibrium investments may be clustered (i.e.

occur in waves with more than one player investing simultaneously) even in a

game with full information.6,7

Besanko and Doraszelski (2004) use the Ericson and Pakes (1995) numerical

framework to consider capacity investment dynamics with price or quantity

competition, capital depreciation and firm-specific shocks. Their prediction,

under quantity competition, is that firm sizes tend to even out, much as in

Boyer et al. (2012). Under price competition, they show that firms tend to

engage in tough preemptive competition to obtain a leading position; once one

firm manages to obtain a dominant position, firm sizes start diverging. The

5Were the firms to consider these interactions, the equilibrium in Mills (1990) would
no longer be an equilibrium. To see this, note that there is a profitable deviation to the
equilibrium given for Example 7 in that paper: namely, following the first investment in a
small plant, for the now-incumbent to build another small plant at time t = 4.07− ε, for some
small ε.

6See Murto and Välimäki (2013) for an example of a model in which clustering occurs
with private information; in their model, observed investment decisions lead players to update
their beliefs on an underlying state variable, resulting in investment waves.

7I do not resort to the Simon and Stinchcombe (1989) framework, instead reporting the
equilibrium of a sequential-move game with decision intervals becoming arbitrarily short.
Ongoing work will describe the equilibrium of an asynchronous-move game, in which players
move at decision opportunities arriving as independent Poisson processes (for asynchronous-
move games, see Calcagno et al., 2013).
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present paper demonstrates a different rationale for asymmetric firm sizes with

ex ante identical firms.

2 The model

2.1 Technology and demand

Let there be two firms, indexed by k ∈ {1, 2}, with supply at time t by firm k

given by qk(t) ≤ Qk(t), Qk(t) denoting capacity of firm k at time t. Aggregate

supply is denoted by q(t) =
∑
k q

k(t). I will from now on refrain from explicitly

denoting the dependence of all variables on time. Let the marginal cost of

producing output be zero. It will become clear below that, given my assumptions

on demand, both firms will always supply up to capacity: I will hence dispose

of the variable Qk and instead denote the vector of output and capacities both

by q ≡ (q1, q2). Investment quantities (increments to capacity) will be denoted

similarly q ≡ (q1, q2). Assume building a single unit of capacity involves a

cost of I, so that the investment cost, incurred at the time of investment, is

c(q) = qI. Firms will be able to build multiple units at the same point in time,

so that qk ∈ Z+ ≡ {0, 1, . . . }.
Let demand be given by

p(q, t) =

{
p0(q)f(t) if t ≤ T
0 otherwise.

satisfying f ′(t) > 0, ∂qp0(q)
∂q > 0. The time horizon T is interpreted as a (deter-

ministic) date at which the market disappears as the good in question becomes

obsolete.8 I also allow T = ∞. As marginal revenue is assumed strictly posi-

tive, it is apparent that, as claimed above, firms will always produce up to their

capacity.

I also assume that in the infinite-horizon case demand eventually plateaus:

limt→∞ f ′(t) = 0. This ensures that the ultimate number of investments is

finite, irrespective of whether T is finite or infinite. In particular, an upper

8More realistically, the market could disappear gradually. The main purpose of a finite
horizon is to allow the possibility of backward induction. For this purpose, the precise manner
of the market disappearing does not matter and a simple cut-off date suffices.
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bound to aggregate capacity is given by

n ≡ min

{
q :

∫ T

t′
e−ρ(τ−t

′)p(q + 1, t) dt− I < 0,∀t′ ∈ [0, T ]

}

The bound on capacity is thus derived as the maximal capacity for which the

increment of one further unit of capacity, with no further investment, will yield

a negative profit for an entrant with no existing capacity, irrespective of the

investment date. No firm could ever make a profit making such an investment.9

Given these assumptions, with T =∞ the model conforms closely to that of

GH84. The only departure from their model is the separability of the demand

function; the present model in a special case of GH84. This assumption is made

here for analytical convenience.

2.2 Timing assumptions

I will assume the timing of the game is as follows: time flows continuously, but

the firms get to make choices at discrete moments, separated by intervals of

length κ. At each moment of time, firms choose their actions sequentially. This

could reflect a vanishing observational advantage as in GH84. To allow better

comparisons with their model, in this section, in which capacity investment

does not involve economies of scale, the identity of the firm moving first each

period is exogenously fixed.10 I allow the length of the decision interval become

arbitrarily small (κ→ 0), to capture the fact that investment dates are in reality

chosen from a continuous set.11,12

Note that the GH84 model can be replicated here by imposing simultaneous

9The present paper’s commentary on GH84 holds only for the case in which capacity
expansion eventually stops. This is arguably a more realistic and relevant case than the one
in which capacities ultimately tend to infinity.

10The timing assumptions are close to those made by Gerlagh and Liski (2011); Katz and
Shapiro (1987) use similar assumptions but with simultaneous moves.

11I do not work with a purely continuous-time model as defined by Simon and Stinchcombe
(1989); see Hoppe and Lehmann-Grube (2005) and Argenziano and Schmidt-Dengler (forth-
coming) for applications of this framework to preemption games. Instead, I show that the
continuous-time formulation is an arbitrarily precise approximation to the discrete-decision-
interval game as the period length vanishes. Implementation of the model in the asynchronous-
move framework of Calcagno et al. (2013) is work in progress.

12The game could alternatively be set up in continuous time, as a sequence of stopping
games (as in Murto and Välimäki, 2013). Due to numerous open-set issues, particular re-
strictions on strategies and a carefully selected tie-breaking rule (for situations in which both
players try to invest at the same time) would be required to ensure the existence of equilib-
rium. Furthermore, a multiplicity of equilibria would still exist, although the equilibria would
be very closely related to the ones presented here. I have chosen the discrete decision interval
framework as the assumptions required are more transparent.
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moves at any decision moment, as in Katz and Shapiro (1987), together with a

tie-breaking rule which exogenously favours one of the firms; i.e. if both firms

attempt to invest at the same moment, then the favoured firm gets to go ahead

while the other firm can (but does not have to) cancel its investment plans, with

an abortive investment attempt carrying no costs.

2.3 Strategies

I assume the players condition their actions on the history of the game. However,

generically, this is equivalent to the players conditioning their actions only on

the current state q, the calendar date t and the identity of the player moving

first in period in question; in other words, the players play Markov-perfect

strategies (in the sense of Maskin and Tirole, 2001).13 I thus focus on the

case in which strategies are a function φ only of the calendar date, the existing

distribution of capacity and the binary variable indicating move order: qk,∗ =

φk(q, t,1(k moves first)).

Given any initial state (q0, t0), I will denote the equilibrium capacity, invest-

ment quantity and investment date sequences (for j ≥ 1) by

q∗ ≡ {q∗j } ≡ {(q
1,∗
j , q2,∗j )}

q∗ ≡ {q∗j} ≡ {(q
1,∗
j , q2,∗j )}

t∗ ≡ {t∗j}

respectively, so that

qk,∗j+1 = qk,∗j + qk,∗j+1.

If player i makes the jth investment, then q−i,∗j ≡ 0 (with the superscript −i
denoting ’the player other than i’ as is conventional). As before, aggregate

equilibrium capacity is given by q∗j ≡
∑
k q

k,∗
j .

For convenience of notation, also define

t∗0 ≡ t0
t∗|q∗|+1 ≡ T

qk,∗|q∗|+1 ≡ 0

with |q∗| denoting the number of investments in equilibrium.

13I discuss this in footnote 25, after first setting up the structure of the game.

7



2.4 Aggressive preemption

Without developing the equilibrium fully, I now want to discuss the GH84 results

in the above framework. This section is intended purely to illustrate how key

results in that paper follow from the very aggressive strategies which the firms

are assumed to employ. In the next section I develop the full equilibrium with

scale economies in plant construction. I index, in this section, by a the firm

with the exogenous advantage, and by −a the other firm.

Assumption 1. Suppose the initial level of demand is arbitrarily low. Further,

suppose that for all states satisfying q(0) = (qa, 0), either the equilibrium in-

vestment quantity for t = 0 is 1, or there is no investment. Finally, let T =∞.

Assumption 1 guarantees the model conforms to GH84. The first part is

required to ensure there is no immediate investment; the second part ensures all

investment events are separated by a strictly positive interval of time. In other

words, t∗j+1 > t∗j for all j ∈ {0, . . . , n}, with n the number of investments on

the GH84 equilibrium path. To be satisfied, it requires that investment units

are sufficiently large so that the unit price falls substantially after any capacity

increment.

GH84 provide an equilibrium path of investment dates {t∗j} characterised by

the following conditions:

n∑
z=j

∫ t∗z+1

t∗z

e−ρτp(q(τ), τ) dt− I = 0, j ∈ {1, . . . , n}

with t∗n+1 ≡ ∞. These conditions just state that each plant built makes exactly

zero profits during its lifetime. In equilibrium, all plants are built by the firm

with the advantage, with the second firm ready to make an investment as soon

as an opportunity turns up (although, in equilibrium, one never does).

To see the logic behind the equilibrium, suppose aggregate capacity is n−1,

so that at most one more investment will be made. For any capacity vector

q such that aggregate capacity is q = n − 1, and initial date t (for example,

t = t∗n−1) consider the profits supposing firm k invests at time t′:

πk,Lq,t (t′) =

∫ t′

t

e−ρ(τ−t)p(n−1, τ)qk dτ+

∫ ∞
t′

e−ρ(τ−t)p(n, τ)(qk+1) dτ−e−ρ(t
′−t)I
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Similarly, the profits for following (the other player investing at t′) are

πk,Fq,t (t′) =

∫ t′

t

e−ρ(τ−t)p(n− 1, τ)qk dτ +

∫ ∞
t′

e−ρ(τ−t)p(n, τ)qk dτ

Finally, the profits for abstention by both player from further investment are

given by

πk,A
(qk,n−1−qk),t(t

′) =

∫ T

t

e−ρ(τ−t)p(n− 1, τ)qk dτ

which is of course constant with respect to t′.

Some remarks can be made regarding these functions. Profit from leading is

quasiconcave in t′, seen easily by differentiating the function twice, then setting

the first derivative equal to zero and observing that, due to the separability

of p(q, t), this means the second derivative has to be negative.14 Profits from

following are strictly increasing. Both approach profits from abstaining as t′

becomes very large: limt′→∞ πL,k = limt′→∞ πF,k = πA,k. If qk = 0, then

πF,k = πA,k = 0. If qk > 0, then πA,k > 0; whether πL,k approaches it from

above or below depends on the exact specification of the model.

These curves are illustrated in Figure 1. Which type of πL-curve applies

depends on the parameters of the situation; the key distinction regarding the

current discussion is whether either firm would prefer abstention to leading at

any t′. For zero capacity, πA coincides with πF and profits from leading must

be positive for some t′, by the definition of n, so that πL
′′

applies.

Note also that

πi,L − πi,F =

∫ T

t′
e−ρ(τ−t)p(n, τ) dτ − e−ρ(t

′−t)I

= e−ρ(t
′−t)

(∫ T

t′
e−ρ(τ−t

′)p(n, τ) dτ − I

)

πi,L − πi,A = πi,L − πi,F +

∫ T

t′
e−ρ(t

′−t) (p(n, τ)− p(n− 1, τ)) qk dτ

≤ πi,L − πi,F

The first equation gives the difference between profits from leading and follow-

ing. Note that this is independent of the existing capacity a firm has: if the price

will fall (due to either k or −k investing) at time t′, the impact on inframarginal

revenues is independent of who invests. The second equation yields the differ-

14See Section 3.3.1.
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t′

π1

πA,1

πL
′

πF
πL
′′

q = (qk, q−k)

Figure 1: Profits for leading, following and abstaining for the last investment,
as a function of the investment date. I illustrate, for qk > 0, profits for following
(πF ), two alternative possible profits for leading (πL), and profits for abstaining
(πA). Note that firm k would prefer abstention to following, i.e. firm −k
investing. Whether firm would prefer abstention to leading depends on which
πL-curve applies. If qk = 0, πF is actually given by πA = 0, and πL

′′
applies.

ence between leading and abstention by both firms. This can be conveniently

expressed as the difference between leading and following, plus a term which

does depend (negatively) on the existing capacity of firm k. The inequality

holds weakly if qk = 0, and is otherwise strict.

I now show the sense in which the GH84 equilibrium may be considered

overly aggressive. Note that if capacities are (n − 1, 0), then player −a faces a

scenario illustrated in Figure 1 with πL
′′
: it will strictly prefer investment at

some dates to abstention.

Suppose now qk = n− 2, q−k = 1. Then I can find an instance of the model

in which the maximum possible difference between leading and following, or

maxt′ π
L,−k − πF,−k, is very small. In particular, there is an instance of the

model in which πL,−k−πA,−k < 0; that is, the small firm (with only one unit of

capacity) would prefer for neither firm to ever invest again. It is clear that the

difference πL,k−πA,k is increasing in qk, so that the larger firm would also have

a strict preference for abstention. To belabour the point, if either firm believed

the other will never invest, it would not want to invest either. This corresponds

to the scenario with πL
′

in Figure 1. However, if both firms believe the other

firm is going to invest at some point for which πL > πF , each would want to

preempt its competitor. In the preemptive equilibrium, both firms believe the

other firm will invest at t∗n, defined by πL(t∗) = πF (t∗); and both will be happy

to invest at this point, given their beliefs.

This seems like very aggressive behaviour. Each firm is (weakly) willing to

invest only because it believes the other is going to invest; and both firms would

10



be strictly better off by coordinating on the equilibrium in which both abstain

from investment, with ultimate capacity remaining at n− 1 forever. Fudenberg

and Tirole (1985) call this type of an equilibrium a ’self-defensive’ equilibrium

and consider it to be somewhat unreasonable, as it is Pareto-dominated by the

abstention equilibrium. Note that both firms make strictly positive profits if

they are able to coordinate on the abstention equilibrium.

It can be shown that, from the state (n − 2, 0), the incumbent with the

exogenous advantage has an incentive to allow the entrant to enter: furthermore,

if the entrant knows that from (n − 2, 1) the firms are able to coordinate on

abstaining, there is then no equilibrium in which the incumbent builds a unit

of capacity, taking the equilibrium to (n− 1, 0) and then to (n, 0). This can be

considered tacit collusion, but note that it does not depend on threat strategies.

The incumbent simply realises that allowing the entrant into the sector makes

the entrant less hungry. A small firm with inframarginal revenues to protect no

longer wants to expand as aggressively as an entrant.

The GH84 result holds with an infinite horizon or with a simultaneous move

order in each period, but remains ’self-defensive’ in either case. However, if the

market is expected to decline after some point, so that there is a guaranteed date

following which neither firm want to invest any more, then a sequential move

order will allow the firms to coordinate on abstention, by backward induction,

eliminating the GH84 equilibrium. In this sense the GH84 is sensitive to the

time horizon of the game (an effectively infinite horizon implies that a firm can

never rule out that the other might invest at some distant future date); and to

the timing assumptions (fully simultaneous moves allow self-defensive equilibria

even with a finite time horizon).15

Note that these results do not depend on the exogenous advantage GH84

assign to one of the firms. Suppose ties were broken by the flip of a coin,

another common device is these types of models. In that case the self-defensive

equilibrium would still yield an ultimate capacity of n, whereas the possibility

of coordination on abstention would allow the firms to tacitly collude.

This type of tacit collusion is possible as long as some distribution of n− 1

units of capacity implies both firms prefer abstention to investment. Hence it

15The next iteration of this paper considers the game with asynchronous moves, i.e. with
decision moments for the players arriving as two independent Poisson processes, at an ar-
bitrarily high rate. Preliminary results indicate this formulation also eliminates the GH84
equilibrium, provided the market eventually contracts; that is, the equilibrium seems likely
to be identical to the one presented here. However, the results of the next section may be
slightly modified.
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is easy to check whether a coordinated-abstention equilibrium exists: if a firm

prefers abstention at aggregate capacity n−1
2 (rounded down), then there exists

a coordinated-abstention equilibrium which Pareto-dominates the self-defensive

equilibrium. Moreover, even lower levels of ultimate capacity can be supported

in equilibrium. The firm with the advantage chooses any supportable level

of ultimate capacity it prefers, taking into account that it has to yield some

minimal number of capacity units to the entrant for any given level of ultimate

capacity.

3 Equilibrium with economies of scale

As outlined in the introduction, in many industries scale economies reach beyond

the lumpiness of investment units. Take, for example, the power generation

industry. It is of course not economical to build an infinitesimal coal-fired power

station.16 However, even at empirically relevant plant sizes, doubling plant size

(for example from 500 MW to 1 GW) may have a substantial impact on costs

per unit of capacity.17 Preemptive competition could be seen as implying firms

might tend to build inefficiently small plants in an effort to keep entrants at

bay, leading to wasteful investment in fixed costs.

I thus now turn to developing the full model, taking into account that, in

addition to indivisibilities, there could be economies of scale in capacity in-

vestment. I will only state the differences below, with the specification of the

previous section holding otherwise.

3.1 Demand and capacity technology

I will here, for simplicity, make the additional assumption that demand does

not grow very rapidly: f ′(t) ≤ ρf(t). Further, I assume in this section that T

is finite.

Let the cost structure be given by a linear specification, with zero cost for

no investment explicitly included to ease notation later:

c(q) =

{
α1 + α2q if q > 0;

0 if q = 0.

16For other technologies, such as wind and solar power, capacity may be more fine-grained.
Considering rooftop solar panels might make capacity a nearly continuous variable.

17Sargent & Lundy LLC (2008) report a 30% decrease in unit capacity cost as the size of
a coal-fired plant is increased from 400 MW to 900 MW.
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Let the investment quantity be chosen from a discrete set: q ∈ {0, δ, 2δ, . . . , nδ}.18

I assume that nδ is sufficiently large to cover all investment quantities the players

could desire in equilibrium, so that a player never wants to make two consecutive

investments at the same moment, but would rather prefer one larger investment

to save on the fixed costs.

3.2 Timing and strategies

The timing assumptions are as in the previous section; however, at each decision

moment, the identity of the player moving first is randomised, with each player

having an equal probability of being the first to move.19 When either player

invests, time is immediately incremented by the decision interval, the state

changes, and the game continues with the randomisation of the player with the

advantage.

From the structure of the game it is apparent that the equilibrium will

feature symmetric strategies.

3.3 Value functions

Recalling notation from Section 2.3, I can now state the value20 of the equilib-

rium to player k:

V k(q0, t0) = E


|q∗|∑
j=0

∫ t∗j+1

t∗j

e−ρ(t−t0)p
(
q∗j , t

)
qk,∗j dt− e−ρ(t

∗
j+1−t0)c

(
qk,∗j+1

)
This is just the discounted stream of revenues from selling at full capacity, less

any investment costs. The expectation is taken with respect to the randomisa-

18I could easily use some other discrete set, with arbitrary capacity increments. The key
assumption is one of a discrete, rather than continuous, capacity choice set: the latter presents
substantial difficulties in terms of obtaining the appropriate first- and second-order conditions,
as the equilibrium often involves corner solutions. Furthermore, the full model has to be solved
numerically and a discrete choice set makes this much easier.

19Alternative assumptions include having a fixed move order; or randomising e.g. after
each investment. These choices would in most cases not make a difference, but would change
the equilibrium with some parameter combinations. A move order fixed from period to period
implies that firms know with certainty which firm has a very marginal advantage in the future
and can plan accordingly, and/or that there might be complex correlations in terms of who
has the advantage across time. I elaborate on this below. While fixing the move order would
be a more standard approach, I find it less plausible. For this reason, and with the added
benefit of a simplified computational algorithm, I choose per-period randomisation instead.

20Recall that this is an approximation of the value function as the time interval between
decisions κ goes to zero. As time is defined to run continuously, the integrals are exact;
approximation errors arise only from the investment dates being forced to lie on the grid of
decision points. As κ→ 0, these approximation errors go linearly to zero (see Appendix A).
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tion of the first mover at the beginning of each period, which is the only source

of uncertainty. Observe that by the definition of the cost function and the in-

vestment vectors, if equilibrium investment j is made by player i, the cost for

player −i is (of course) zero.

Slightly abusing notation, I will also denote the next equilibrium investment,

given any initial state (q0, t0) by q∗q0,t0 , t∗q0,t0 . I can then express the value

function recursively:

V k(q0, t0) = E

{∫ t∗q0,t0

t0
e−ρ(t−t0)p (q∗0 , t) q

k
0 dt− e−ρ(t

∗
q0,t0

−t0)c
(
qk,∗q0,t0

)
+ e−ρ(t

∗
q0,t0

−t0)V k(q0 + q∗q0,t0 , t
∗
q0,t0)

}

This recursive formulation allows me to use the framework developed by Fu-

denberg and Tirole (1985) and Katz and Shapiro (1987), and thus yields clearer

insight to the equilibrium than a simple brute-force numerical approach.

3.3.1 Recursive equilibrium investment

I will now construct the equilibrium outcome and the value functions using the

recursive structure above. Given initial state (q0, t0), the profit function for

player k, as a function of the next investment date t′ and investment quantity

vector q′, is

πkq0,t0(q′, t′)

=

∫ t′

t0

e−ρ(t−t0)p(q0, t)q
k
0 dt+

∫ t∗
q′,t′

t′
e−ρ(t−t0)p(q′, t)q′k dt

− e−ρ(t
′−t0)c(q′k)

+ e−ρ(t
∗
q′,t′−t0)E

(
V k(q′ + q∗q′,t′ , t

∗
q′,t′)− c(q

k,∗
q′,t′)

)
(1)

with q′ ≡ q0 + q′. I will denote the profit function if player k leads (i.e. with

q′k 6= 0, q′−k = 0) by πk,Lq0,t0(q′, t′). Similarly, if player k follows (with q′k = 0,

q′−k 6= 0), I will denote the resulting profit function by πk,Fq0,t0(q′, t′). I will from

now on suppress the subscripts indexing the values to a given state.

Assume, in what follows, that the equilibrium value has been determined for

all q̃ ≥ q0, i.e. all states with weakly higher capacity (strictly for at least one

firm) and for all t̃ ∈ [t0, T ]. To determine the equilibrium for state (q0, t0), I

14



will need to construct the profits for either player following and leading at any

t′. I can then construct the equilibrium outcome for this particular state by

backward induction.

I will first show how to construct the profits conditional on firm i leading on

the next investment.21 Fix a scalar q′ and let this be the ith component of q′

(with the other component zero). Then, for any t′, the subsequent investment

date t∗q′,t′ and the corresponding value are known by assumption. For now,

consider only cases such that t∗q′,t′ > t′, i.e. there is an interval of strictly positive

length separating the investment under consideration from the subsequent one.

Then, by subgame perfection,
dt∗

q′,t′

dt′ = 0, i.e. a small delay in investment will

not affect the subsequent investment date.22

It is now straightforward to show that the profit from leading is quasiconcave

in t′. To see this, note that

∂πL,i

∂t′
= e−ρ(t

′−t0)
(
p(q0, t

′)q0
qi0
q0
− p(q′, t′)q′ q

′i

q′
+ ρc

(
q′i
))

(2)

∂2πL,i

∂t′2
= −ρ∂π

L,i

∂t′
+ e−ρ(t

′−t) (pt(q0, t′)qi0 − pt(q′, t′)q′i) (3)

Suppose ∂πL,i

∂t′ = 0, ∂2πL,i

∂t′2
≥ 0; then clearly pt(q0, t

′)qi0 − pt(q′, t′)q′i ≥ 0. But,

by the assumed separability of p(q, t), this implies p0(q0)qi0 − p0(q′)q′i ≥ 0, so

the bracketed term in (2) has to also be positive, and thus ∂πL,i

∂t′ > 0, contrary

to the initial assumption. This yields quasiconcavity. To repeat, the πL-curves

given here are defined only for t′ satisfying t∗x′,t′ > t′.

The choice of investment quantity q′ is simple to determine. Given that

player i gets to lead and given t′, she will choose q′ which yields the highest

possible profit. In other words, from the perspective of moment t0, as long as

player i leads on the next investment, the optimal value is given by the upper

envelope, with respect to q′, of the curves πL,i(t′, q′) (Figure 2). Three features

are worth observing. Firstly, as the profit curves are differentiable, any local

maximum of the upper envelope will also be a critical point, i.e. there will exist

no ’kinked’ maxima. Secondly, the curves’ concavity is increasing in q′, in the

21I refer by the index i to the investing firm, by −i to the non-investing firm, and by k to
any firm.

22The time derivatives of various quantities have to be defined so that dt and the grid size
κ approach zero in lockstep. Note that I use the derivatives to characterise the equilibrium,
but the agents in the model do not need to calculate them, so approximation errors in the
derivatives do not affect the equilibrium outcome.
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sense that for q′ > q′′,

∂πL,i

∂t′

∣∣∣∣
q′

=
∂πL,i

∂t′

∣∣∣∣
q′′
⇒ ∂2πL,i

∂t′2

∣∣∣∣
q′
<
∂2πL,i

∂t′2

∣∣∣∣
q′′

implying that any two profit curves cross at most twice. Finally, note also

that, as q′ increases, for any t′, the first integral term in (1) is unchanged;

the second integral term increases; the investment cost becomes larger; and

the continuation value may either increase or decrease. Hence, in general, it

is not possible to order πL with respect to q′. In particular, the continuation

values may change non-monotonically with respect to q′, as the continuation

equilibrium path may vary non-trivially with the continuation state.

On the other hand, the profits player −i gets for following when player i

invests q′ at time t′ are strictly increasing:

∂πF,−i

∂t′
= e−ρ(t

′−t0) (p(q0, t
′)− p(q′, t′)) q−i0 > 0 (4)

∂2πF,−i

∂t′2
= −ρ∂π

F,−i

∂t′
+ e−ρ(t

′−t0) (pt(q0, t
′)− pt(q′, t′)) q−i0 (5)

where q′−i = q−i0 as player −i does not invest; ∂
2πF,i

∂t′2
= ∂πF,i

∂t′ (−ρf(t) + f ′(t)) ≤
0 if pt

p = f ′(t)
f(t) ≤ r, which holds by assumption. In words, given that the other

player is next to invest, the later this occurs, the better: the non-investing

player prefers the price drop associated with new capacity to be delayed.23 I

also illustrate some πF -curves in Figure 2. Note that limt′→T π
F is independent

of q′ and equal to the profits obtained if no further investment is undertaken.

The solution is similarly straightforward in the case of simultaneous invest-

ment, i.e. if the investment subsequent to the next is immediate, or t∗q′,t′ = t′+κ

(recall that after any investment, the time period advances by one). As κ→ 0,

then, t∗q′,t′ → t′; I will henceforth only consider this limit. The sequence of

investments at a given moment results in state (q′′, t′). Thereafter the following

investment occurs a strictly positive interval of time later: t∗q′′,t′ > t′.

For simultaneous investments, the profit curve πS is given by (1), with q′

replaced by q′′, and the investment costs for both players given by the sum

of the costs of their respective investments in the sequence.24 Quasiconcavity

23The model thus departs from the framework of Hoppe and Lehmann-Grube (2005), who
only consider cases such that profits for following decrease over time.

24One might think that simultaneous investments always feature exactly one investment
by each player, as this would minimise total costs given the total capacity increment by each
player. Due to the sequential timing assumptions, this is difficult to demonstrate analytically.
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t′

πk

πL(t′, q1)

πL(t′, q3) πL(t′, q2)

πF (t′, q4)

πF (t′, q5)

t′

π−k

πL(t′, q4)

πL(t′, q5)

Figure 2: The profits for leading, as function of time, are given by the upper
envelope (thick line) of the πL-curves (dashed lines) for different investment
quantities. For the top player, curves displaying profits for different lead quan-
tities chosen by the other player (dotted lines) are also shown. The actual
πF -curve (solid line) may be discontinuous at points at which the other player’s
lead quantity changes.

holds by the same arguments used previously. Finally, fix any q′, and denote by

t̃ the point such that, in a neighbourhood of t̃, t∗q′,t > t for t < t̃, but t∗q′,t = t for

t > t̃. That is, t̃ is a point at which, given an investment quantity, the outcome

switches from the subsequent investment being delayed (unilateral investment)

to immediate subsequent investment (simultaneous investment). Then

lim
t↑t̃

πL,iq0,t0(q′, t) = lim
t↓t̃

πS,iq0,t0(q′, t)

lim
t↑t̃

∂πL,iq0,t0(q′, t)

∂t′
< lim

t↓t̃

∂πS,iq0,t0(q′, t)

∂t′
.

In words, at the moment at which investment becomes simultaneous, the πL-

and πS-curves join up but there is an upward kink.

However, numerical experiments have not revealed outcomes in which multiple investments
are made by one player at a given moment in time.
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3.4 Subgame-perfect equilibrium

I will now describe the subgame-perfect equilibrium to the game. Existence

of such an equilibrium holds trivially, by Zermelo’s Theorem (Fudenberg and

Tirole, 1991). The equilibrium also seems to be generically unique.25

Note that the timing structure I utilise here, together with the finite horizon,

rules out self-defensive equilibria, unlike various continuous-time or simultaneous-

move formulations (Gilbert and Harris, 1984; Fudenberg and Tirole, 1985; Katz

and Shapiro, 1987). The timing assumptions in the present paper—in particu-

lar, the sequential move order—ensure that Pareto-dominated equilibria to any

subgame are never played (in the limit as κ→ 0).26

The construction of the subgame perfect equilibrium is not difficult, if a

little tedious. Equilibrium investments can be characterised and interpreted in

a relatively tidy fashion. I will here only enumerate and intuitively describe the

various types of equilibrium investment; the formal characterisation is relegated

to Appendix B.

3.4.1 Unilateral investment

Given the state (q0, t0), consider unilateral equilibrium investment, that is, in-

vestment such that the subsequent investment takes place only after a strictly

positive interval of time: t∗2 > t∗1. Any such outcome can be classified as belong-

ing to one of seven different types. These types are illustrated in Figure 3, in

terms of the two players’ respective profit curves πk,L and πk,F . These points

are equilibrium candidates only; the actual equilibrium outcome is determined

from the exact sequence of such points by backward induction (see Section 4 for

25At each decision node, a player will have exactly two choices: investing at the optimal
quantity, or letting the game continue, with the continuation payoff obtained by backward
induction. The optimal quantity is uniquely determined. Firm i investing on any given date
t′ will choose to invest at a quantity which maximises πL,i(q′, t′), i.e. its profits for leading.
Two or more values of q′i yield the same profits, by definition, at a crossing of the respective
πL,i-curves. As decision moments are discrete, the date t′ coincides with such an intersection
only by chance. Such a coincidence would not be robust to a small perturbation in any key
parameter, e.g. the period length.

This heuristic argument is based on the failure to find any a priori mechanisms system-
atically causing such equalities to hold, or any numerical examples in which they do hold.
Should the argument fail, uniqueness could be ensured by adding a very small stochastic per-
turbation to e.g. the cost functions. The magnitude of such a perturbation would have to fall
sufficiently rapidly with the period length to ensure the perturbation would never outweigh
any approximation errors, so that the continuous-time approximation would still hold.

26Of course, in a simultaneous-move game, coordination on a self-defensive Pareto-
dominated equilibrium in a particular subgame might be used as a threat strategy; I do
not imply that the equilibrium picked out by my assumptions might be Pareto-dominant for
the full game.
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the algorithm to determine the equilibrium investment outcome).

The first three cases consider equilibrium investments in situations in which

both players’ optimal actions are continuous, that is, neither player’s optimal

lead quantity is about to change. The next three cases describe equilibrium

investment driven by a change in this optimal lead quantity. The last case

completes the list. I will refer to the two players as ’top’ and ’bottom’, with

reference to Figure 3.

(i) Preemption. (Figure 3, top left.) This is most basic case: bottom

(weakly) prefers to lead, while top is indifferent between following and

leading. Note that any potential equilibrium in which investment were to

occur a short time later would unravel by the desire of both players to

preempt the other. If top strictly prefers to lead, she will get to invest.

If both players are indifferent between following and leading, the player

who moves first invests at the first moment following the crossing of the

two curves.

(ii) Unilateral investment without preemption. (Figure 3, top right.)

In this case top prefers leading to following, while bottom prefers following

to leading. Further, top’s πL-curve has a local maximum, that is, top can

choose an interior optimum, with constraints imposed by preemption not

binding.

(iii) Forced investment. (Figure 3, middle left.) Bottom prefers following to

leading or continuation, and wants to force top to invest; top would prefer

to continue, but would rather lead than follow. In other words, bottom

faces a second-mover advantage, and top a first-mover advantage; but top

would prefer for the game to continue.27 Bottom can force top to invest

at the point at which bottom’s profits from leading are just about to fall

below the value she obtains from continuing the game. At this point,

bottom’s profits from leading have to be decreasing; otherwise bottom

could leave the threat until a while later and get even higher profits for

following. Investment is determined by the fact that, a moment later, the

threat to force investment would no longer be credible.

(iv) Symmetric forced investment. (Figure 3, middle right.) This case

occurs, generically, only when the players both have equal capacity, at

27Note that when discussing first- and second-mover advantage here, I refer to whether the
players would like to ’invest first’, (i.e. lead), or to ’invest second’ (follow). In particular,
these terms do not refer to the move order in any particular period.
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a moment at which the optimal lead quantity changes.28 Both players

would prefer the other player to lead with the quantity optimal running

up to the investment point. Following this point, both prefer leading to

following, and preemption forces immediate investment. In other words,

both players face a situation with second-mover advantage, about to ex-

pire. Thus, the player who moves last just before the crossing is forced to

invest; the player who moves first has the first option to decline to invest.

Note that the πL-curves might also be decreasing.

(v) Preemption with discontinuity. (Figure 3, bottom left.) This case

is the standard preemption case, except that bottom’s πF -curve crosses

her πL-curve discontinuously, due to top’s optimal investment quantity

changing. The threat of impending preemption means top invests at the

last possible moment before the curves cross.

(vi) Forced investment with discontinuity. (Figure 3, bottom right.)

This case is like the forced investment case; top strictly prefers following

to leading, and leading to continuing. However, in the previous case,

investment is forced by the expiration of the threat’s credibility. Here,

the threat itself expires; a moment later, bottom would rather follow than

lead, and can so no longer be threatened into investing.

(vii) Immediate investment. Given the date t0, i.e. the start of the sub-

game, it is always possible that the optimal investment occurs immedi-

ately.

I will make a few comments about the potential equilibrium investment

dates. Types (i) and (ii) were investigated by Katz and Shapiro (1987). For

type (iii), their assumptions on timing (simultaneous moves) and tie-breaking

(a coin flip) led to non-existence of equilibrium; in the present paper, with

sequential moves, the equilibrium exists. The discontinuous cases have not, to

my knowledge, been previously considered in the literature.

Case (iv) may seem odd: the firms are symmetric, but both would rather

follow than lead. In this, the equilibrium resembles a war of attrition (Hendricks

et al., 1988). Numerical examples demonstrate that such cases are not impos-

sible. In such a case, both firms want someone to invest, as continuation would

eventually (or immediately) lead to higher ultimate capacity. However, both

would still strictly prefer the other firm to be the first investor, knowing they

28With unequal capacities, the case in which both players’ optimal actions change at the
same moment is not robust to a small perturbation of the model parameters.

20



will be allowed into the market later in the subsequent equilibrium, possibly

with higher capacity and saving the opportunity cost of investment funds for

the time being.

Per-period randomisation of the move order is important here. With a fixed

move order, the firm moving first would have a first-mover advantage in any sym-

metric pre-emptive investment outcomes, but its opponent would hold a second-

mover advantage in a symmetric forced investment case. Such persistence and

asymmetry of the infinitesimal advantage would alter the continuation payoffs,

and thus lead to a very different equilibrium. I feel it is unrealistic to assume

one of the firms is able to consistently hold on to a very small (dis-)advantage.

3.4.2 Simultaneous investment

In the case of simultaneous investment, the profits from leading and following

can be calculated as outlined above. The equilibrium types are thus as above,

except that the profit curves for the other player leading first (equivalent to

’following’) may now also decrease. One particular special case deserves high-

lighting.

Suppose there is some time t′ at which the players optimally make one invest-

ment each simultaneously. Denote the optimal investment quantities by players

1 and 2, respectively, by q′ and q′′, the corresponding unilateral investment

vectors by q′ ≡ (q′, 0) and q′′ ≡ (0, q′′), and the corresponding next states by

q′ ≡ q + q′ and q′′ ≡ q + q′′. Suppose now that the optimal responses to these

investments are q∗q′,t′ = q′′ and q∗q′′,t′ = q′, respectively. Then, irrespective of

who invests first, the continuation state is going to be q + q′ + q′′, and both

players get the same profits irrespective of whether they follow or lead.

Over an interval on which this holds, both players’ profits from simultaneous

investment, leading, coincide with her profits from simultaneous investment,

following. On such an interval, equilibrium investment takes place at the earliest

moment on which the slope of either player’s profit curve is (weakly) negative.

In other words, it may be that under simultaneous investment, the players

both delay investment, as in the joint adoption outcome described by Fudenberg

and Tirole (1985). Note that the presence of such an outcome—both players

tacitly delaying and then investing at the same time—depends crucially on the

incentives for any active players to let its competitor enter or expand capacity.

Without such incentives, such a tacitly collusive outcome would not exist; either

player would have an incentive to preempt, by building q′+ q′′ units just before
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Figure 3: Equilibrium candidates. Black (white/grey) dot indicates equilibrium
profit for leading (following/continuation). (top left) Preemptive investment.
(top right) Investment without preemption. (center left) Forced investment due
to a credible threat. (center right) Symmetric forced investment. (bottom left)
Preemption with an asymmetric discontinuity. (bottom right) Forced investment
with an asymmetric discontinuity.
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the equilibrium investment date.29

4 Numerical examples

In this section, I present a simple numerical algorithm which is used to solve

the model, and some computed examples.

4.1 The computational algorithm

The model can be solved using a straightforward computational algorithm. Take

any q such that the equilibrium is known for all q̃ with higher aggregate capacity

(i.e. q̃ > q). I partition the timeline [0, T ] into a collection T of disjoint intervals,

with the elements separated:

• at points at which optimal lead quantities change;

• at critical points of the πL-curves; and

• at all the points at which the continuation outcome changes (either chang-

ing from delayed investment to immediate subsequent investment, or,

with immediate subsequent investment, changing from one quantity to

another).

The backward induction algorithm will further keep partitioning the time inter-

vals as the continuation value changes; this is explained below. The functional

assumptions made allow the number of crossings of any two πk-curves, or of πk

and a constant, to be determined analytically, with some crossing points solved

in closed-form and others numerically.30

In this way, I obtain a sequence of disjoint time intervals, ordered in time.

Each of these elements of T can be classified in terms of: a) the ordering of πk,L,

πk,F and the continuation value V k,C ; and b) the slope of πk,L. The optimal

29Fudenberg and Tirole (1985), by assumption, restrict cumulative investment to one unit
each for both players as they consider technology adoption rather than capacity build-up.
This is why their model can have simultaneous, or clustered, investments. Argenziano and
Schmidt-Dengler (forthcoming) show that clustering can occur for an alternative mechanism
for three or more players. Mills (1990) also obtains clustering for some cases, but only because
the maximum investment size in his model is capped at 2. The mechanism presented here,
also demonstrated by Boyer et al. (2012) in a subtly different context, is different to any of
these.

30As decisions are taken at discrete intervals, it is immaterial to which element the cutting
point is assigned.
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Figure 4: Equilibrium strategies for state (0, 1) for a particular instance of the
model (T = 100, n = 25). The strategies are shown only for t ∈ [85, 100]. The
red dotted line indicates a period of waiting until the end, at which point player
2 invests with q2 = 2. Clearly strategies are difficult to characterise intuitively.

Figure 5: (left) Equilibrium capacity paths for an instance of the model (T =
100, n = 25); red and blue indicate capacities of individual firms, with black
indicating aggregate capacity. In this case, firms immediately invest in one unit
each, then wait until t = 91 before investing in four additional units each. Tacit
collusion ensures aggregate capacity remains well below n. (right) A deviation
by one firm to build two units a time t = 0 leads the competitor to catch up
with also two units at t = 12. A further five units each are built at t = 86. The
attempt to capture the market backfires as both firms tend to overinvest later.
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strategies and equilibrium outcomes on all of these intervals are straightforward

to classify (see Appendix B).

Close to the end of the game, investment is no longer profitable, so the default

candidate equilibrium from which to start iterating is tC = T , qC = (0, 0), with

the continuation values given by the abstention profits: V k,C = πk,A. Take the

last element of T , and denote by t the starting point of this element.

Then:

1. Based on the ordering of πkL, πkF and V k,C , and the slope ∂πk,L

∂t′ , determine

the equilibrium strategies for the players in this interval. If the equilibrium

outcome is continuation, go to step 4.

2. Update the candidate investment time tC and values V k,C .

3. For both players, project V k,C backwards from tC to determine the point

at which it crosses the πk,L-curve, or max{t ∈ [0, t] : ∀τ ∈ [t, t), πk,L ≤
V k,C}. Partition the corresponding element at this point.

4. If t > 0, move to the next (earlier) interval element, updating t. Otherwise

stop.

The outer nest of the algorithm will simply backward induct with respect to

aggregate capacity. I have shown above that there exists a cap n to aggregate

capacity. I can then solve for the equilibrium for all q×[0, T ] such that q = n−1,

and so work backward all the way to q = 0.

4.2 Results

I specify the demand function to take the isoelastic form, growing exponentially:

f(t) = eγt, p0(q) ≡ Aq−
1
σ , with σ > 1, γ < ρ. The scaling parameter A is, in

principle, redundant and could be eliminated by a convenient choice of units.

Demand is thus isoelastic, with elasticity greater than unity, with the level of

demand growing at rate γ until T , after which the market disappears.

For arbitrary specifications of the model, the equilibria can become quite

complex. All of the different equilibrium investment types characterised above

can be observed. Typical equilibrium outcomes involve tacit collusion, so that

the first firm to enter will later allow the competitor into the market. Clustering

of investments—both firms investing at the same moment—is common. In many

cases, the equilibrium outcome is perfectly symmetric so that both firms make

equal investments at the same moment.
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I illustrate the potential complexity in Figure 4. In general, for aggregate

quantities close to n (equal to 25 in this example) the equilibrium strategies are

relatively simple and intuitive. However, the complexity is compounded as the

algorithm proceeds backwards through the state tree, as points of discontinuity

in the strategies start to add up. It becomes difficult to draw general conclusions

from the results; I illustrate equilibrium strategies for one particular vector of

capacities. Figure 5 illustrates the equilibrium path for this instance of the

model, and one possible deviation to show how tacit collusion pays off. Note

that along the equilibrium path ultimate capacities remain at around 40% of

n. The attempt by one player to capture a larger share of the market is simply

followed by aggressive catching up by the hungry entrant; later, both firms

invest in even more capacity as they care less for the resulting price decreases.

This deviation leads to ultimate capacity reaching almost 60% of n.

4.3 Preemptive CO2 pipeline investment

Finally, I present a little illustrative experiment related to duopolistic supply

of carbon storage capacity. This experiment considers CO2 storage under the

North Sea and the required expansion of pipeline capacity to transport the

pollutant (Jaakkola, 2013). Storage capacity is the product being sold here,

with demand for storage capacity arising from the presence of a climate policy

which prices carbon. The firms here represent Norway and Scotland, the two

parties with very large undersea storage potential in northwestern Europe.

I offer two illustrative numerical experiments, under somewhat ad hoc as-

sumptions regarding CO2 storage demand. The parameters are as follows. Re-

source demand is now parameterised with σ = 1.3 (1.5 in the alternative exper-

iment), A = 15 (50 similarly), γ = .29, T = 80. The cost function is given by

parameters α1 = 1.066, α2 = .038, with capacity measured in millions of tonnes

of CO2 (MtCO2) transported per annum. The discount rate is ρ = .03. I offer

extended justification for these parameters in Jaakkola (2013), except for the

demand specification.31

The equilibrium paths of the experiments are shown in Figure 6. I use

pipeline increments of 20 MtCO2 per annum. In the top case, elasticity of

demand is low (σ = 1.3). The equilibrium features preemption, with both firms

waiting until t = 4.5, at which point both want to invest into a 100 MtCO2

pipeline. Only one of these investments takes place; no further investments are

31A calibration for the CO2 storage demand curve is work-in-progress.
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made, and both firms make zero profits. The socially optimal outcome is to

immediately build an 80 MtCO2 pipeline, followed by a further 180 MtCO2 of

capacity at time t = 38. A monopolist would build a very small, 40 MtCO2

pipeline immediately and refrain from further investment. Thus, in this case,

preemption holds; all profits are zero, and only one firm is active in the market.

Nevertheless, total capacity is held back compared to the efficient case as the

duopolists do not consider consumers’ surplus in their decisions.

With more elastic demand (σ = 1.5), and also a higher implicit carbon price,

so that a social planner’s cumulative investment would reach 580 MtCO2, the

equilibrium outcome features tacit collusion with a second-mover advantage.

That is, both firms want a 100 MtCO2 pipeline to be built at time t = 11, but

moreover both prefer this pipeline to be built by the other firm. The firm which

follows on the first investment then enters by building 140 MtCO2 of capacity at

time t = 34. The firm forced to make the first investment is the one who moves

second at the last instant before the investment date. Immediately following this

date, it would be optimal to lead by building a much larger capacity pipeline,

with no further investments in equilibrium. Neither firm wants to take their

chances under this preemptive outcome as they worry they will be the one

left outside the market. Both firms make positive profits; in particular, the

firms’ roles in the market are reversed along the equilibrium path, with the

initial incumbent ending up smaller than its competitor, and also making lower

profits. Thus, rent equalisation does not hold. Following the first investment,

it will not make sense for the incumbent to preempt the second entrant as a

very large pipeline is required to keep the other firm permanently out of the

market, with ultimate capacities rising to q(T ) = 360, instead of q(T ) = 220 as

in equilibrium.

5 Conclusions

Many industrial sectors involve capital-intensive production technologies. Sub-

stantial economies of scale imply capital investments in production plants tend

to be lumpy. In such a context, oligopolistic competition may lead to firms seek-

ing to preempt each other whenever profitable investment opportunities arise.

Previous literature has emphasised the possibility that such competition may

involve very aggressive strategies: if firms always expect their competitors to

invest aggressively, the best response is to respond in kind. Such tough compe-
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Figure 6: Comparison of the preemptive investment schedule (dashed : blue with
crosses, red with circles: individual firms, black : aggregare), with the socially
optimal (solid) and monopolistic (dotted) outcomes. The two graphs differ with
respect to demand elasticity and the implicit carbon price: the bottom case
involves more elastic demand, but also a higher carbon price, in the sense of
leading to higher cumulative investment. As the top example features preemp-
tion under duopoly, only aggregate capacity is shown.
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tition may end up wasting a large fraction of the available rents.

In the present paper, I have shown that such races need not lead to exces-

sively competitive outcomes. In fact, if firms recognise that their opponents are

not likely to behave in such an overly aggressive manner, they can themselves

also relax a little. Without employing threat strategies, the firms are able to

coordinate on a tacitly collusive outcome which ensures ultimate capacity is

held back. This ultimately relies on a recognition that, in this setting, capaci-

ties are strategic complements: building less capacity tempers competing firms’

desire to build capacity themselves. Other authors (in particular, Boyer et al.,

2012) have previously demonstrated similar results. As their model introduces

multiple modifications of the models used in previous literature, it has not been

clear what has driven these results. I have shown that similar results obtain in

the canonical framework of Gilbert and Harris (1984); all that is required is a

focus on an alternative equilibrium.

I have then extended the model to account for economies of scale in the

amount of capacity added. This makes the size of plants central: investment

can be triggered by the intention of the other firm to start planning larger or

smaller plants. In particular, unlike in previous literature, this implies that in-

vestment races may sometimes not be about who gets to invest first, but rather

who is forced to invest first. Such a possibility, observed in my numerical results,

may mean that rent equalisation—a ubiquitous feature in previous models of

preemptive competition—may not hold. The present paper has also shown that

the ultimate distribution of capacity may be dependent on the model particu-

lars, in some cases tending towards domination by a large incumbent, in others

towards more equally divided capacities.

This paper has demonstrated the existence of new types of equilibria in

capacity expansion games. However, at present there is little to say regarding

the economic significance of such equilibria. Ongoing work, both analytical

and numerical, will seek to provide insight into the key determinants of these

equilibria; to evaluate the welfare effects of tacit collusion, and any inefficiencies

related to suboptimal plant sizes (as well as investment timings) when scale

economies are present; and to identify clear testable predictions from the model

and compare these with empirical observations.
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Appendices

A Continuous-time approximation

In the main text, I claim that the discrete-time equilibrium can, as the time

period becomes very small, be characterised by the continuous-time description

of the various equilibrium points. More precisely, I claim that the equilibrium

investment times and quantities are given, in the limit, by the crossing points

of the various continuous-time profit curves.

Lemma 1. In the approximation of the discrete-time framework by the continuous-

time formulae, the approximation errors in πkq0,t0(q′, t′) are linear in the period

length κ (as the period length becomes sufficiently small).

Proof. Take the continuous-time approximation of the πk-curves as the bench-

mark; for any κ, the values at the decision points do not lie exactly on this

curve. I want to establish a bound on the difference επ between the values in

the discrete-time formulation and the continuous-time formulation, and show

that this value goes to zero as κ→ 0.

Take any initial state (q0, t0). Assume that, as we change κ, the sequence of

states in the rest of the game does not change. I will later show how to ensure

this is the case.

As time has been defined to run continuously, any integrals between two

dates t̃1 and t̃2 hold exactly. Thus, there are two sources of approximation

error in (1). The first is the continuation value term e−ρ(t
∗
q′,t′−t0)V k(q′, t∗q′,t′)

(here described before the subsequent investment), in which the value of the

subsequent state is approximate, and the subsequent investment date t∗q′,t′ is

not constrained to lie on the grid of decision points (as it is in the true, discrete-

time model). Call the total error εV+. The second source is the error in the

second revenue term; the upper limit of integration is given by t∗q′,t′ , which

carries an error of magnitude εt+. Call the second error εR. In reality, the

two terms offset each other, but I conservatively add them up when obtaining

error bounds. Both error terms are a function of κ, but, given κ, constant with

respect to t′. Thus, this error implies that, for any κ,

πkTRUE(q′, t′) = πk(q′, t′) + εV+(κ) + εR(κ)

i.e. the true profits are given by a sequence of points which has the shape of
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the continuous-time approximation, but has been shifted up or down. As I have

argued in the text that the continuous-time curves have at most two crossings,

so the shifted curves also cross at most twice—and thus the true values also.

These vertical shifts induce an error on the crossing point. Furthermore,

there is an additional source of error: the true discrete-time formulation requires

the equilibrium to lie on the grid of decision points. In fact, the equilibrium

point itself may not be in the node immediately next to the crossing, but in the

next one, that is, a distance of up to 2κ from the true crossing point. Hence,

the approximation error in the investment timing εt, for small κ, is bounded by

|εt| < 2κ+

∣∣εV+(q1;κ)
∣∣+
∣∣εV+(q2;κ)

∣∣∣∣∣ dπk(q1)
dt′

∣∣∣+
∣∣∣ dπk(q2)

dt′

∣∣∣
in which the continuation error terms refer to the two curves whose crossing

we are considering (these could be from following, leading or simultaneous in-

vestment). The denominator contains the slopes of the curves at the crossing;

with small enough κ, the curves are close to linear and the above establishes an

upper bound on the error term.32

Note that if the terms εV+ are linear in κ, so is the bound on the tim-

ing error εt. Suppose that this is the case, and also that the approximation

error εt+ is similarly linear. With the initial state still (q0, t0), denote by

t
∗
j ≡ max(t∗j , t

∗
j,TRUE) the latter of the continuous-time crossing date and the

true investment date for the jth equilibrium investment, and, correspondingly,

by t∗j the earlier. Then the error in the optimal value for a state, εV , is also

bounded and this bound is linear in κ:

∣∣∣πk − πkTRUE

∣∣∣ ≤ ∣∣∣∣∣
∫ t
∗
1

t∗1

e−ρ(t−t0)
(
p(q, t)qk − p(q′, t)q′k

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ t
∗
1

t∗2

e−ρ(t−t0)
(
p(q′, t)q′k

)
dt

∣∣∣∣∣
+
(
e−ρ(t

∗
1−t0) − e−ρ(t

∗
1−t0)

)
c(q′k) + εV+

≤ e−ρ(t
∗
1−t0)

∣∣p(q, t∗1)qk − p(q′, t∗1)q′k − c(q∗1)
∣∣ εt

+ εV+ + e−ρ(t
∗
2−t0)p(q′, t

∗
2)q′kεt+

The final step is to observe that, for any state and investment quantity such

32The case in which both slopes were zero would not be a crossing of interest, as the
πL-envelope would not change at this point.
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that the following state yields no further investment in equilibrium, the errors

in the continuation value, continuation timing and current timing are |εV+| = 0,

|εt+| = 0, |εt| < 2κ. By induction on the state space, all approximation errors

are then linear in κ.

The sequence of states following any given (q0, t0) given by the continuous-

time approximation coincides with the discrete-time approximation, provided

the period length is small enough so that no potential equilibrium investment

point is ’jumped over’ and that the approximation errors are made sufficiently

small. It is straightforward to establish this argument formally by induction.

Based on the above Lemma, it is apparent that the continuous-time equilib-

rium gives an arbitrarily good approximation to the discrete-time equilibrium as

the period length becomes infinitesimal. The characterisation of the equilibrium

below makes it clear that equilibrium points are determined by intersections of

the various πk-curves, and the equilibrium strategies hinge on various inequal-

ities between πL, πF and the continuation value V C . These quantities will be

correctly ordered provided that κ is small enough. The only potential problem

in the limit would be if the continuous-time approximations of two of these

quantities would be exactly equal: then approximation errors could result in

the discrete-time equilibrium not converging as κ → 0. However, such a case

would be a knife-edge case, not robust to a small perturbation of e.g. the cost

parameters.

B Characterisation of candidate equilibrium in-

vestments

Observe first that any point t′ at which the πL-curves are continuous for both

players can only be an equilibrium if πk,F > πk,L for at least one k; otherwise

preemption unravels the equilibrium (unless t′ = t0, the starting moment of

the game under consideration). Investment will occur only for cases (i)-(iii); if

the conditions described do not hold, then the investing player always has an

incentive to either bring investment forward or to delay it.

The only other moments at which equilibrium investment can take place

involve discontinuities in one player’s optimal lead quantity. I do not consider

cases in which both players have discontinuous lead quantities at the same mo-

ment as these are not robust to a perturbation in model parameters, except in
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the case in which the players both have equal capacity.

To characterise potential equilibrium investments at a point of discontinu-

ity, I classify possible equilibrium candidates by: the continuation value V k,C ,

relative to πk,L, for both k; the slopes of the πk,L-curves for both players; the

ordering of π−i,L, limt↑t′ π
k,F and limt↓t′ π

k,F for the noninvesting player −i. I

go through these candidates one by one to rule out all scenarios which cannot

be an equilibrium. Many of these are easy to rule out. For example, no equilib-

rium investment can (obviously) take place at which both players get a higher

payoff by continuation to the next candidate. Similarly, no investment can take

place where the identity of the next investor is known with certainty, and that

player’s πL-curve is decreasing.

The remaining candidates have to be worked through one by one. As an

example, cases (v) and (vi) are illustrated in Figure 7. The lines are given by

the continuous-time approximations of the profit curves, which are very close

to the true values. I show a few decision moments around the continuous-

time ’equilibrium point’. Each period, the black dot gives the value at the

beginning of the period if top moves first; the circle gives the value if bottom

moves first. These are easy to confirm by constructing the decision tree in both

cases. The diamond illustrates the expected continuation value in the previous

period, which is just the mean between the two outcomes. It is straightforward

to work through these examples to confirm that the discrete-time equilibrium

investment takes place at the earliest depicted timestep (in the upper case, top

invests just before the crossing; in the lower case, bottom does so but at the

second step before the crossing).

This process results in a set of conditions for equilibrium candidates (the can-

didates have been more intuitively described in the main text). Take some can-

didate moment for equilibrium investment t̃∗. Denote the limiting optimal lead

quantities in the neighbourhood of t̃∗ by q′k− ≡ limt↑t̃∗ arg maxq′k;q′−k=0 π
k,L(t, q′),

q′k+ ≡ limt↓t̃∗ arg maxq′k;q′−k=0 π
k,L(t, q′). Denoting the investing player with

i, and evaluating all profit functions at the optimal lead quantities, equilibrium

candidates then satisfy one of the following conditions:

(i) t̃∗ > t0, q′k− = q′k+, ∀k ∈ {1, 2}: a) ∂πi,L

∂t′ ≥ 0, b) π−i,L − π−i,F = 0, and

c) ∂π−i,L

∂t′ ≥ 0;

(ii) t̃∗ > t0, q′k− = q′k+, ∀k ∈ {1, 2}: a) ∂πi,L

∂t′ = 0, b) π−i,L − π−i,F ≤ 0, and

c) ∂π−i,L

∂t′ ≥ 0 if (i-b) holds with equality;
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(iii) t̃∗ > t0, q′k− = q′k+, ∀k ∈ {1, 2}: a)33 πi,L − πi,F > 0 and ∂πi,L

∂t′ ≥ 0, b)
∂π−i,L

∂t′ ≤ 0 and π−i,L − π−i,F < 0, and c) π−i,L = limτ↓t̃∗ V
−i,C(x, τ);

(iv) t̃∗ > t, qk0 = q−k0 , q′∗ = q′k− 6= q′k+, for i, k ∈ {1, 2}: a) limt↑t̃∗ π
k,L −

πk,F < 0 and limt↓t̃∗ π
k,L − πk,F > 0, and b) limt↓t̃∗ V

k,C(q0, t) < πk,L;

(v) t̃∗ > t, q′∗ = q′k− 6= q′k+: a) limt↑t̃∗
∂πi,L

∂t′ ≥ 0, b) πi,L − πi,F >

0, limt↑t̃∗ π
−i,L − π−i,F < 0 and limt↓t̃∗x,t π

−i,L − π−i,F > 0, and c)

limt↓t̃∗ V
k,C(q0, t) < πk,L for k ∈ {1, 2};

(vi) t̃∗ > t, q′∗ = q′k− 6= q′k+: a) limt↑t̃∗
∂πi,L

∂t′ ≥ 0 and limt↑t̃∗
∂π−i,L

∂t′ ≤ 0, b)

limt↑t̃∗ π
i,L − πi,F > 0, limt↓t̃∗ π

i,L − πi,F < 0, and π−i,L − π−i,F < 0; c)

limt↓t̃∗ V
i,C(q0, t) > πi,L and limt↓t̃∗ V

−i,C(q0, t) < π−i,L; or

(vii) t̃∗ = t0.

Note that these conditions simply summarise the formal conditions which are

discussed more intuitively in the main text.

B.1 Numerical equilibrium types

The numerical algorithm considers intervals [t, t] along which, for each player: a)

the ordering of πk,L, πk,F and V k,C are constant, where the continuation value

refers to continuation beyond the interval in question; b) the slope dπk,L

dt′ does

not change sign; c) the optimal lead quantity arg maxq′ π
k,L(q′, t′) is constant;

d) the equilibrium strategies for the continuation state are constant.

Note that if V k,C > πk,L for both k, then the equilibrium outcome for each

player is to continue. Thus, at least one player must have the opposite hold for

investment to take place. I characterise the equilibrium outcomes in Table 1

below.
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tom) leads in a given period. The diamonds denote the expected continuation
payoffs in the previous period.
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πL > V C > πF πL > πF > V C πF > πL > V C

πL > V C > πF

πL > πF > V C
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Row / Col (equal prob), t. Col, tMAX.

V C > πF > πL
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Row, tMAX. Col, tMAX.

πF > πL > V C Row/Col (equal prob), t
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