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Abstract

This paper studies a model of reputation in which reputation is modeled as a capital

stock accumulated by past investments and can have persistent effects on future payoffs.

The setting is a class of discrete-time stochastic games between a long-run firm and

a sequence of short-run buyers under different transition rules. If reputation is only

influenced by the firm, reputation dynamics is cyclically built and exploited. In the

reputation building phase, the buyers buy the product with positive probability to

provide the firm with the incentives to invest and the firm plays a mixed strategy

to make the buyers indifferent between buying and not buying. In the reputation

exploitation phase, the reputation is so high that it is a dominant strategy for the buyers

to buy, and as a consequence there is no incentives for the firm to build reputation any

more. If reputation can also be affected by the buyers, it is possible that the firm is

deprived of the chance of building reputation by the buyers and reputation is stagnant.

1 Introduction

Reputation plays an important role in the creation of inter-temporal incentives in a long-term

relationship. We interpret reputation as a capital stock accumulated by the past investments

which can generate better future payoffs. For instance, firms build reputation for high quality

and popularity, government for low taxation, and workers for productive capacity. Reputation

comes from not just today’s effort but also from the past. Firms’ investments in R&D and

marketing improve future product quality and consumer satisfaction. Governments avoid
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short-sighted high taxation because of its long-run adverse effect on economic growth (Romer,

1986, 1989; Jones and Manuelli, 1990; King and Rebelo, 1990). Workers usually receive costly

on-the-job training and learning-by-doing to increase their human capital because they are

concern about their future careers (Camargo and Pastorino, 2001).

If reputation is treated as a capital stock, there are some features that can be captured

by the following real-life example of firm reputation. Toyota is famous for producing high-

quality cars by its continuous investments in quality. However, in 2010, millions of Toyotas

were recalled with accelerator or brake problems. But Thomas, a researcher from University

of Iowa thinks that “Toyota will escape long-term damage to reputation because the problem

is a design flaw, not a mistake in the manufacturing”.1 The first feature is that a firm’s one-

time low effort depreciates but does not eliminate the accumulated reputation. The design

flaw was believed to be ”the result of the company growing too big, too quickly in its quest

to become the largest car company in the world”.1 The second feature is that a firm is more

likely to make low effort and exploit its reputation when reputation is high enough. Now

Toyota hasn’t just bounced back, with one of the strongest reputations among automakers in

the U.S. It is the most highly regarded auto-sector company in the U.S.2 The third feature is

that a firm usually has a second chance of recovery from the depreciated reputation if enough

effort is made. As a consequence, reputation can be maintained in the long run.

In the literature, reputation is typically modeled as as the belief held by the customers over

non-opportunistic firms. In the perfect monitoring environment, an opportunistic behavior

will totally ruin the reputation instead of merely depreciating it. Under imperfect monitoring,

even though opportunistic behavior does not totally ruin the reputation, the type is eventually

learned, so reputation is a short-term phenomenon (Cripps, Mailath and Samuelson, 2007)

and the firm has no chance of rebuilding the reputation unless there is exogenous replacement

of types (Holmstrom, 1999; Mailath and Samuelson, 2001; Phelan, 2006; Ekmekci, Gossner

and Wilson, 2012) or erasing of history (Liu and Skrzypacz, 2009; Liu, 2011; Ekmekci, 2011).

However, in many situations, permanent reputation exists because the firm has the ability

of endogenously improving their reputation. Board and Meyer-ter-Vehn (2013) and Dilme

1http://news-releases.uiowa.edu/2010/february/020510toyota-researcher.html
22013 Harris Poll Reputation Quotient (RQ), from Harris Interactive
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(2012) model reputation as a belief of product quality which can be changed by firm’s past

investments. Bohren (2012) interprets reputation as a stock which is stochastically influenced

by past effort. But her study relies on the existence of absorbing states in which reputation is

eventually trapped and long-run incentives vanishes, thus reputation cycles are not possible.

Motivated by the above examples, this paper models reputation as a state variable in a

setting of discrete-time stochastic games in which a long-run firm interacts with a sequence of

short-run buyers. The firm’s current investment decisions have an impact on the reputation

which influences future payoffs of the buyers. We investigate stationary Markov equilibria

under different transition rules and determine when the firm builds its reputation and when it

decides to exploit the reputation. Furthermore, we study how the short-run players’ purchase

behavior provide incentives for the firm to build reputation.

We establish that under the transition rules that reputation is only influenced by the

firm, reputation dynamics is cyclic, characterized by reputation building and exploitation.

In the reputation building phase where the reputation is not high enough, the buyers buy the

product with positive probability to provide the firm with the incentives to invest. Moreover,

the firm plays a mixed strategy to make the buyers indifferent between buying and not buying.

In the reputation exploitation phase, the reputation is so high that it is the dominant strategy

for the buyers to buy. Therefore, there is no incentive for the firm to build reputation any

more.

Sometimes the future state of a long-term relationship can be impacted also by the decision

of the short-run players, not only by the long-run players. For example, a firm’s word-of-

mouth advertisement today may not effectively improve its reputation if the consumers do

not buy the product, experience the good and give high customer ratings to influence the

decision of future customers. A worker has no chance of learning-by-doing without being

hired in the first place. Therefore, it is useful to investigate reputation building if the buyers

also have the power of controlling reputation. In this case, it is possible that reputation is

stagnant at low levels since the firm is deprived of the chance of building reputation by the

buyers.
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1.1 Overview of results

In section 2.1, we consider the one step transition rule. In the one-step transition rule, the

firm’s one-time investment leads to a one-step upward shift of reputation and no investment

causes a probability 1−p of one-step decrease of reputation and a small probability p of one-

step increase of reputation. For small time interval, reputation dynamics is characterized by

a reputation building phase and a reputation exploitation phase. In the reputation building

phase, the firm plays the mixed strategy to make the buyers indifferent and buyers’ purchase

behavior can be characterized by a second order difference equation. In the reputation

exploitation phase, the buyers buy the product for sure and the firm does not invest. A

limiting result when time interval converges to 0 is deduced. The buyers’ purchase behavior

needs to increase exponentially as the reputation increases in the reputation phase.

In section 2.2, we generalize the one-step transition rule to stochastic one-step transition

rule in which the firm’s one-time investment may lead to one-step decrease of reputation

with a small probability q. When time interval is small enough, reputation dynamics is

similar to that in the one-step transition rule for states not too close to the lower bound.

Furthermore, we can solve the unique stationary Markov equilibrium in the limit when time

interval converges to 0. The limiting results suggest that higher noise p and q lower the

buyer’s probability of buying the product in each state, which means that it is more difficult

for the firm to build reputation.

In section 2.3, we study the lower bound transition rule in which that no investment leads

to a non-absorbing lower bound and investment results in a one-step increase of reputation

with small noises. For any fixed time interval and high discount factor, reputation dynamic is

also cyclic. In the reputation building phase, the buyers buy with positive probability in an

increasing order with respect to reputation and the buyers’ purchase behavior is characterized

by a first order difference equation. The firm plays a mixed strategy so that the buyers are

different between buying or not buying. The result of no investment is a high probability to

ruin the reputation to the lowest level. After the ruin, the firm will start over and continue

to build the reputation. In the reputation exploitation phase, the buyers buy the product for

certain and the firm does not invest. We show that larger noises lower the buyer’s probability

of buying the product in each state, which means that it is more difficult for the firm to build
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reputation.

In section 2.4, we study a transition rule that can also influenced by the buyers. It is

relatively difficult for the firm to build reputation. If the lower bound of the reputation is

high enough, reputation is still cyclic between building and exploitation. If the lower bound

of the reputation is not high enough, reputation is not a long-term phenomenon. There

are three phases in reputation dynamics: reputation stagnation, reputation building and

reputation exploitation. Players behave the same as before in the last two phases. However,

if the reputation is very low, the firm is deprived of the chance of building reputation by

the buyers. Eventually, reputation goes down to the phase of stagnation after a sequence of

unlucky draws and stays there forever.

In section 2.5, we extend our model to a more general setting that the firm has multiple

investment choices rather than binary choices: investment or no investment. We propose

a setting in which there is a stationary Markov equilibrium in which the firm only chooses

between no investment and an ”efficient” investment level with the smallest marginal cost

relative to marginal benefit. In the reputation building case, the firm mixes between no

investment and the ”efficient” investment so that the buyers is indifferent between buying

and not buying. In the reputation exploitation phase, the buyers buy for sure and the firm

has no incentive to invest. However, there may be other equilibria as well.

1.2 Literature

The paper relates to the reputation papers which try to explain permanent reputation and

deliver reputation cycles. Liu and Skrzypacz (2013) introduce limit record-keeping ability

of the short-run players. The state variable is the clean history: the number of the most

recent reputation-building behavior. The long-run player’s exploitation will drive the clean

history to a non-absorbing lower bound: zero. Liu (2011) provides a model where the limit

record is endogenously determined because of costly information acquisition. Phelan (2006)

analyzes the reputation model where the type of the long-run player is replaced with certainty

probability in each round. The state variable is the belief of the long-run player’s being a

commitment type. If the long-run player refuses to build reputation, the belief will move to a

non-absorbing lower bound: the belief that a long-run player is replaced with a commitment
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type. All above models show that the reputation dynamics has two phases as in this paper: a

reputation-building phase and a reputation-exploitation phase. In the first phase, investment

leads to an increase of the updated belief (Phelan, 2006) or a better record of history (Liu

and Skrzypacz, 2013; Liu, 2011). The long-run player has the exact incentive to mix between

investing and not investing and the short-run players will mix between trust and distrust in

an increasing order to provide the long-run player with the exact incentive to mix between

investment and no investment. In the latter phase, the long-run player has incentive to exploit

the reputation because he can not create cleaner history (Liu and Skrzypacz, 2013; Liu, 2011)

or the belief of commitment type is high enough for the trust behavior is a dominant strategy

for the short-run player, who has no room to provide incentive to build reputation (Phelan,

2006). My model under the lower bound transition rule delivers similar reputation cycles

as papers above except that we allow for the existence of noise. More importantly, we can

characterize the reputation cycles when a low effort only leads to a depreciation but not a

ruin of reputation under one-step transition rule.

Other explanations of permanent reputation also involve the incomplete record of history

such as the information censoring in Ekmekci (2011) and the bounded memory in Monte

(2013). In both papers, there exists a finite set of ratings and a transition rule that can

explain permanent reputation. In the equilibrium, each rating represents a belief of non-

opportunistic type (reputation). The transition rule gets rid of the restriction that a bad

behavior leads to reputation vanishing and allows richer transitions. My paper tries to explore

the reputation dynamic under different exogenously given transition rules.

As mentioned before, this paper is set up in a stochastic game framework, which is

related to Bohren (2011). Bohren studies a continuous-time model with persistent actions and

imperfect monitoring (Brownian information) and identifies the conditions for the existence

of Markov equilibria, and conditions for the uniqueness of a Markov equilibrium in the class of

all perfect public equilibria. We analyze the Markov equilibria of a discrete-time model with

persistent actions, sub-modular payoff structure and various transition rules. We establish

the uniqueness of a Markov equilibrium among all Markov equilibria under different transition

rules in the limit where time interval converges 0. Firstly, this paper allows for an explicit

characterization of equilibrium continuation payoffs and actions in the discrete-time setting
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under the assumption of submodularity. Secondly, Bohren needs Brownian information and

uniqueness of the static Nash equilibrium of the auxiliary game considering the long-run

incentives. The sub-modular stage game which is typical in the reputation literature does

not satisfy this assumption. We can study the sub-modular stage game without assuming

Brownian information. Thirdly, in order to guarantee uniqueness of a Markov equilibrium,

Bohren (2011) assumes that boundaries of the state space are absorbing points. Therefore,

the agency’s incentive constraint is reduced to the myopic optimization of its instantaneous

flow payoffs at the boundary points and the state will eventually converge to the lower bound.

In this paper, the lower bound of the state space is not absorbing state. In the equilibrium

the long-run player still has incentive to build reputation at the lower bound and leaves the

lower bound. Finally, we only study the Markov equilibria and there are no results for non-

Markov equilibria. However, in the continuous-time model with Brownian information, there

are only Markov equilibria.

Our work is also conceptually related to Board and Meyer-ter-Vehn (2013) and Dilme

(2012). Board and Meyer-ter-Vehn (2013) models reputation as a belief of product quality

which can be high or low and reputation can be changed by past investment. Consumers

learn about product quality through Poisson noisy signal so that the reputation is smoothly

drifted and accompanied with reputation jumps. For a class of imperfect Poisson learning

processes and low investment costs, they show that there exists a work-shirk equilibrium in

which firm invests when its reputation lies below some cutoff and does not invest above the

cutoff. Dilme (2012) models the reputation as a moral-hazard phenomenon. The firm can

switch its product quality at each period by paying a switching cost. Therefore, quality can

be interpreted as a stock, so the cost of achieving a given stock next period depends on the

current period’s stock level. Under perfect good news, there exists an ergodic reputation

cycle in which the low firm is willing to switch its product to high quality when reputation

is low enough and the high firm wants to switch to a low type when reputation is very high.

In the intermediate level, there is no switching decision. Under certain imperfect monitoring

conditions, both papers have similar reputation cycles as in our paper: reputation dynamics

is ergodic and cyclic between reputation building phase and reputation exploitation phase.
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2 Model

There is a long-run player 1 who plays with a infinite sequence of short-run players 2 in time

period 0, 1, . . . ,∞. A short-run player 2 who arrives at time t plays one stage game with

player 1 and exits the game. In the stage game, two players move simultaneously. There

are two pure actions for player 1: I and NI, which represent investment and no investment.

a ∈ [0, 1] is the mixed strategy of player 1: the probability of playing I. a can be interpreted

as the degree of investment. Player 2 chooses between two actions in each period: B and

NB, which represents buying the product and not buying the product. Player 2 choose a

mix strategy y ∈ [0, 1] which is the probability of playing B.

Consider the following framework of a stochastic game. The state variable X is called

reputation. The state variable X ∈ {0,∆, 2∆, . . .}. Reputation can only been built smoothly

in the sense that any increase of reputation is proportional to the time interval. The past

actions of player 1 influence X on which player 2’s future payoffs depend. Denote g1(a, y)

as player 1’s stage game expected payoff and g2(a, y,X) as player 2’s stage game expected

payoff. We assume that the reputation only has a direct impact on short run player 2’s

future payoff. The time length is ∆. Player 1 discounts the future payoff by β = e−b∆

and maximizes the expected sum of discounted payoffs. Each player 2 maximizes his stage

game payoffs. Without loss of generality, assume that g1(0, 0) = g2(0, 0) = 0. We make the

following assumptions on the stage game.

Assumption 1 (Myopic incentive of player 1 ): g1(0, y) > g1(1, y) for any 0 < y ≤ 1.

g1(a, 1) > g1(a, 0) for any 0 ≤ a ≤ 1.

Assumption 2 (Submodularity of player 1): g1(0, 0)− g1(1, 0) < g1(0, 1)− g1(1, 1).

Player 1 has a myopic incentive not to invest and the incentive is highest when player

2 buys the product for sure. Think about the situation that if a short-run buyer 2 refuses

to buy the product, player 1 gets nothing independent of the investment decision. However,

there is a cost to invest if the product is bought by the player 2.

Assumption 3 (Myopic incentive of player 2 ): g2(1, y,X) > g2(0, y,X) for any 0 <

y ≤ 1. g2(1, 1, X) > g2(1, 0, X).

Assumption 4 (Reputation is valuable for player 2): g2(a, y,X) is strictly increasing
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in X.

Assumption 5 (Buy for sure for high reputation): There is X∗ such that if X ≥ X∗

then g2(0, 1, X) ≥ g2(0, 0, X). Otherwise, g2(0, 1, X) < g2(0, 0, X).

Assumption 5 tells us that if X ≥ X∗, it is strictly dominant strategy for player 2 to play

B. If X < X∗, then there is a mixed strategy π(X) ∈ (0, 1) of playing I for player 1 to make

player 2 indifferent between B and NB. It is reasonable to assume that player 2 will buy the

product for sure independent of player 1’s current behavior if player 1 has done good enough

in the past.

An example of the stage game payoff matrix in my mind is

B NB

I 1,λ+ (1− λ)X 0,0

NI 2,−λ+ (1− λ)X 0,0

In this example, we can show that π(X) = 1
2
− 1−λ

2λ
X and X∗ = λ

1−λ .

At last, we need to specify the transition rule of state variable to tell how the past actions

have an impact on the future payoffs of player 2. The transition rule is important because it

provides player 1 the long-run incentive to make an investment in the current period, versus

the myopic incentive not to invest duet to the short-term cost. We will study the Stationary

Markov equilibrium and reputation dynamics under different transition rules. Denote the

tradition rule as X ′ = F (a, y,X).

In this paper, the short-run player 2 plays a stationary Markov strategy if his actions

only depend on state variable X, not on other past history and calendar time. In the

equilibrium, it is without loss of generality to assume that player 1 also plays stationary

Markov strategy since player 1 is best response to player 2’s stationary Markov strategy. We

pay attention to stationary Markov strategy for several reasons. Firstly, Markov strategy

only depends on payoff relevant variables to specify incentives. In this paper, we wants to

isolate and study the role of the action persistence in creating a channel for effective inter-

temporal incentive provision. Secondly, stationary strategy is a more appropriate concept

if we focus on behaviors in the long-run. Thirdly, Markov stationary strategy is simple

and in reality the short-run player may not be able or not be willing to get access to all

past history of the game, but only one simple state variable: reputation. At last, we can
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reach tractable solution of Markov stationary equilibrium and show its uniqueness among all

Markov stationary equilibria under some assumptions.

Definition 1: (a(X), y(X), V (X)) is a stationary Markov Equilibrium if a(X) and y(X) are

best response to each other in each state X and state variable X is subject to the transition

rule. V (X) is player 1’s continuation payoff at state X.

V (X) = max
a∈[0,1]

g1(a, y(X)) + βV (X ′)

a(X) ∈ arg maxa∈[0,1] g1(a, y(X)) + βV (X ′)

s.t. X ′ = F (a, y,X)

y(X) ∈ arg maxy∈[0,1] g2(a(X), y,X)

2.1 One-step transition rule

In one-step transition rule, the domain of next state is either one-step up or one-step down.

Compared with investment I, no investment NI is less likely to reach a higher reputation in

the next period. However, the consequence of one-period no investment is not so severe as

in the lower bound transition rule. Specifically, if the outcome of player 1’s action is I, then

the next state X ′ is X + ∆ for certain.

P (X ′|I) =

 1 X ′ = X + ∆

0 X ′ = max{X −∆, 0}

If the outcome of player 1’s action is NI, then the probability that X ′ = max(X −∆, 0) is

1− p and the probability that X ′ = X + ∆ is p.

P (X ′|NI) =

 1− p X ′ = max{X −∆, 0}

p X ′ = X + ∆

p = 0 corresponds to the determinate case where not investing certainly leads to a one-

step depreciation of reputation and investment implies a one-step increase of reputation for

sure.

Assumption 1.1: g1(1, 0) = g1(0, 0) = 0.
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Assumption 1.1 is mainly for simplicity and can be relaxed in the later sections. However,

it is a proper assumption because in the product-choice game, if the short-run player does

not buy the product, the long-run player will get nothing independent of the investment

decision. Define A = g1(1,1)
g1(0,1)

, Ap = A(1−p)
1−Ap and ε = 1

2β
(1− Ap +

√
(1− Ap)2 + 4Apβ2). Define

K such that K∆ > X∗ and (K − 1)∆ ≤ X∗. In other words, K = [X
∗

∆
] + 1.

Assumption 1.2 : K = [X
∗

∆
] + 1 > 3 +

log ε−1
Ap

log
Ap
ε

.

Assumption 1.2 is satisfied if time interval ∆ is small enough. We can characterize the

stationary Markov equilibria when time interval ∆ is small enough.

Theorem 1: Under Assumption 1-5 and Assumption 1.1-1.2, the stationary Markov equi-

libria display reputation cycles as below:

(1) In state X ∈ {0, 2∆, 3∆, . . . , (K − 1)∆}, player 1 plays mixed strategy a(k∆) = π(k∆).

Player 2 also plays strict mixed strategy y(X) ∈ (0, 1). y(k∆) is characterized by a second-

order difference equation:

y((k + 1)∆) =
1

β
(1− Ap)y(k∆) + Apy((k − 1)∆) ∀1 ≤ k ≤ K − 2

(2) Under the condition that strict mixed strategy by player 1 in state ∆ leads to a solution

satisfying y(∆) > 1, then in state 1, player 1 plays strictly prefers I: a(X) = 1 and player 2

buys for sure: y(∆) = 1. Otherwise, player 1 plays mixed strategy a(∆) = π(∆) and player

2 plays strict mixed strategy y(∆) ∈ (0, 1).

(3) State k∆ ≥ K∆ is a reputation-exploitation phase. In state k∆, player 1 plays NI for

sure and player 2 plays B for sure, i.e. y(k∆) = 1 and a(k∆) = 0.

Reputation dynamics is characterized by a reputation building phase and a reputation

exploitation phase. In the reputation building phase, player 2 mixes between buying or not

buying in order to provide player 1 with the incentive to invest. Player 1 plays a mixed

strategy so that player 2 will buy with positive probability. In the reputation exploitation

phase, it is dominant strategy for player 2 to buy the product. Therefore, player 2 can not

reward player 1, so there is no incentive for player 1 to build reputation any more.

Next, consider the limiting equilibrium when ∆ → 0. We can deduce an analytic solu-
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tion of the stationary Markov equilibrium. For X > 0, define y(X) = lim∆→0,k∆→X y(k∆),

a(X) = lim∆→0,k∆→X a(k∆), V (X) = lim∆→0,k∆→X V (k∆).

Proposition 1 : Under Assumption 1-6 and Assumption 1.1, in the limit where ∆ → 0,

there is a unique stationary Markov equilibrium.

If X = 0, then y(X) = 1+(1−2p)A
2−2p

e−b
1−A

1+(1−2p)A
X∗

, a(X) = π(X).

If 0 < X < X∗, then y(X) = e−b
1−A

1+(1−2p)A
(X∗−X), a(X) = π(X).

If X ≥ X∗, then y(X) = 1,a(X) = 0.

V (X) =


1+(1−2p)A

2−2p
e−b

1−A
1+(1−2p)A

(X∗−X)g1(0, 1) 0 ≤ X < X∗(
1− (1−A)(1−2p)

2−2p
e−

b
1−2p

(X−X∗)
)
g1(0, 1) X ≥ X∗

Proposition 1 gives an explicit analytic solution of the stationary Markov equilibrium. In

the reputation building phase, the value function V (X) and trust behavior y(X) is convex,

which means that player 2 needs to provide higher incentive for player 1 as player 1’s reputa-

tion increases. Furthermore, the investment behavior a(X) is decreasing because it is easier

for player 1 to make player 2 to trust as reputation increases.

Moreover, when player 1 cares less about future (large b) and the cost of reputation

building is higher (small A), player 2 need to provide more incentive in the future, a high

growth rate in trust y(X) and a lower level of trust at each state X.

2.2 Stochastic one-step transition rule

In this section, we generalize the transition rule such that a one-period investment may cause

reputation to go one-step down with small probability q > 0. Specifically, if the outcome of

player 1’s action is I, then the probability that the next state X ′ = X + ∆ is 1− q and the

probability that X ′ = X −∆ is q.

P (X ′|I) =

 1− q X ′ = X + ∆

q X ′ = max{X −∆, 0}
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If the outcome of player 1’s action is NI, then the probability that X ′ = max(X −∆, 0) is

1− p and the probability that X ′ = X + ∆ is p.

P (X ′|NI) =

 1− p X ′ = max{X −∆, 0}

p X ′ = X + ∆

Make a few definitions:

M = 3 + log(β(ε−1)/ε)
log(Apq/ε)

, Apq = (1−p)A−q
1−q−Ap , ε = 1

2β
(1− Apq +

√
(1− Apq)2 + 4Apqβ2).

x1 =
1−
√

1−4β2q(1−q)
2β(1−q) < 1, x2 =

1+
√

1−4β2q(1−q)
2β(1−q) > 1. D =

( 1−A
β(1−p−q) )(1−β(1−q)x1)

(
q(1−A)β
1−p−q +A(1−β))(x2−x1)

.

Assumption 2.1 : A > q
1−p and 1−A

1−q−Ap > q.

Assumption 2.1 means that the noise p and q can not be too large.

Assumption 2.2 : K −M > (
log( 2

2+β
)

log(Apq)
+ 2)( log(D(x2−1))

log(x1)
+ 3).

Assumption 2.2 is satisfied if ∆→ 0.

The stationary Markov equilibria also display reputation cycles, but the equilibrium be-

havior around state 0 is not characterized and may not be unique. When the state is away

from 0, both players play mixed strategy as in the transition rule where q = 0. K∆ is still

the threshold of reputation building phase and reputation exploitation phase.

Theorem 2 : Under Assumption 1-5 and Assumption 1.1, 2.1 and 2.2, the stationary Markov

equilibria display reputation cycles as below:

(1) In state X ∈ {0,M∆, (M + 1)∆, . . . , (K− 1)∆}, player 1 plays cutoff strategies a(k∆) =

π(k∆). Player 2 also plays strict mixed strategy y(X) ∈ (0, 1). y(k∆) is characterized by a

second-order difference equation:

y((k + 1)∆) =
1

β
(1− Apq)y(k∆) + Apqy((k − 1)∆) ∀1 ≤ k ≤ K − 2

(3) State k∆ ≥ K∆ is a reputation-exploitation phase. In state k∆, player 1 plays NI for

sure and player 2 plays B for sure, i.e. y(k∆) = 1 and a(k∆) = 0.

Proposition 2 : Under Assumption 1-5 and Assumption 1.1, in the limit where ∆ → 0,

there is a unique stationary Markov equilibrium.

If X = 0, then y(X) = 1−2q+(1−2p)A
2(1−p−q) e−b

1−A
1+(1−2p)A

X∗
, a(X) = π(X).

If 0 < X < X∗, then y(X) = e−b
1−A

1−2q+(1−2p)A
(X∗−X), a(X) = π(X).
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If X ≥ X∗, then y(X) = 1,a(X) = 0.

V (X) =


1−2q+(1−2p)A

2(1−p−q) e−b
1−A

1−2q+(1−2p)A
(X∗−X)g1(0, 1) 0 ≤ X < X∗(

1− (1−A)(1−2p)
2(1−p−q) e−

b
1−2p

(X−X∗)
)
g1(0, 1) X ≥ X∗

Proposition 2 tells that as noise p and q becomes larger, the incentive in the future

is weakened because a one-time no investment can cause the reputation to increase with

probability p rather than a certain depreciation of reputation and a one-time investment

can cause the reputation to decrease with probability q rather than a certain increase of

reputation Therefore, player 2 needs to compensate the weakening of incentive by increasing

the growth rate of purchase probability. Since y(X) reaches 1 at state X, a higher growth

rate leads to a lower level of y(X) in each state X. In all, a higher noise p and q makes it

more difficult to build reputation.

2.3 Lower bound transition rule

The lower bound of the state space is 0. In lower bound transition rule, the domain of next

state is either one-step up or 0. The consequence of no investment is a higher probability to

reach a complete ruin of reputation to the lowest level. Specifically, if the outcome of player

1’s action is I, then the probability that next state X ′ = 0 is q and the probability that

X ′ = X + ∆ is 1− q:

P (X ′ = 0|I) = q, P (X ′ = X + ∆|NI) = 1− q

If the outcome of player 1’s action is NI, then the probability that X ′ = 0 is 1− p and the

probability that X ′ = X + ∆ is p:

P (X ′ = 0|NI) = 1− p, P (X ′|NI) = X + ∆|NI) = p

p = q = 0 corresponds to the determinate case where no investment certainly leads to a

complete milking of reputation and investment implies a one-step increase of reputation for

sure. Define A = g1(1,1)−g1(1,0)
g1(0,1)−g1(0,0)

, γ = g1(0,0)−g1(1,0)
g1(0,1)−g1(0,0)

.

Assumption 3.1 :

A >
q

1− p
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Assumption 3.2 (High discount factor):

β >
1− A+ γ

1− q − pA
Under Assumption 2.1, 1−A+γ

1−q−pA ∈ (0, 1) and Assumption 2.2 is well defined. Note that

both assumptions still include a large amount of possibility of imperfect monitoring and

discount factor.

Next, we characterize the reputation dynamics under lower bound transition rule. In

this section, we find out that the characterization works for all fixed time intervals and high

discount factors. Without loss of generality, fix the time interval at ∆ = 1 and use integer

number k to denote reputation. Denote K ≡ [X∗]+1. Furthermore, player 2’s trust behavior

is strictly increasing in reputation.

Theorem 3: Under Assumptions 1-5 and Assumption 2.1-2.2, the stationary Markov equi-

librium is unique and displays a reputation cycle as below:

(1) The state k ∈ {0, 1, 2, . . . , K − 1} forms a reputation building phase in which player

1 plays mixed strategy a(k) = π(k) in state k . Player 2 also plays strict mixed strategy

y(k) ∈ (0, 1) where y(k) is strictly increasing in k.

y(k) =


η3+η2ηK1

η3+ηK1 (1−η1−η3)
− η1+η2+η3−1

η3+ηK1 (1−η1−η3)
ηk1 0 ≤ k ≤ K − 1

1 k ≥ K

where η1 = 1−A
β(1−q−pA)

, η2 = γ(1−βp)
β(1−q−pA)

, η3 = 1−p−q
1−q−pA .

(2) Any state k ≥ K belongs to a reputation exploitation phase. In state k ≥ K, player 1

plays NI for sure and player 2 plays B for sure, i.e. y(k) = 1 and a(k) = 0.

Similar the one-step transition rule, there is also a reputation cycle with a reputation

building phase and a reputation exploitation phase. In the reputation building phase, player

2 buys the product with increasing probability with respect to reputation to provide player

1 with the incentives to invest. Player 1 plays a mixed strategy so that player 2 will be

indifferent between B and NB. The result of a bad outcome is a high probability to ruin the

reputation to the lowest level. After the ruin, player 1 will start over and continues to build

the reputation. In the reputation exploitation phase, it is dominant strategy for player 2 to

buy for sure. Therefore, player 2 can not reward player 1, so there is no incentives for player

1 to build reputation any more.
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Proposition 3: Consider the limit case where K → +∞,

y(k) = 1− η1 + η2 + η3 − 1

η3

ηk1 ∀k ≥ 0

∂y(k)

∂p
< 0,

∂y(k)

∂q
< 0 ∀k ≥ 0

When a noise p and q is introduced, the incentive in the future is weakened because a one-

time no investment can cause the reputation to increase with probability p rather than a

ruin of reputation for sure and a one-time investment can lead to the ruin of reputation with

probability q instead of an increase of reputation for certain. Therefore, player 2 needs to

compensate the weakening of incentive by increasing the growth rate of purchase probability,

thus lowers purchase probability y(k) in each state k.

Claim 1: If Assumption 3.1 does not hold, the stationary Markov equilibrium in the limit

∆→ 0 is

y(k) = 0 ∀ 0 ≤ k ≤ [k∗]

y(k) = 1− (1− y∗)ηk1 ∀ k ≥ [k∗] + 1

where k∗ = log(1−y∗)
log 1/η1

> 0 and y∗ = A(1−p)−γ−q
1−p−q < 0

However, if the noise p and q is too large and the cost of building reputation is too

high (small A), player 2 can not provide enough incentive for player 1 to build reputation if

reputation is very small. When 0 ≤ k ≤ [k∗], player 1 will not invest and player 2 will not

trust player 1 until a sequence of good luck may push reputation to a high level such that

k ≥ [k∗] + 1 and player 1 starts to build reputation and player 2 starts to trust player 2.

2.4 A transition rule also influenced by player 2

In previous sections, player 2 has no impact on the accumulation of reputation. In reality,

this is not always a proper assumption. For example, a firm’s marketing strategy today may

not effectively improve its reputation if the consumers do not buy the product, experience

the good and give high customer ratings. Therefore, in the situation of word-of-mouth
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advertisement, it is appropriate to model the transition rule that can be influence also by

the short-run players. In all, it is useful to analyze the reputation dynamics if the decisions

of player 2 have an impact on the transition of the states. In particular, if player 2 chooses

NB in state X, then the state will remain the same no matter what player 1 does.

P (X ′ = X|I,NB) = P (X ′ = X|NI,NB) = 1

If player 2 chooses B, then investment I of the long-run player will bring the state one-step

up and no investment NI will bring the state one-step down.

P (X ′ = X + ∆|I, B) = 1, P (X ′ = max(X −∆, 0)|NI,B) = 1

There are two type of equilibria. Absorbing equilibrium: The short-run player 2 strictly

prefers NB at state 0: y0 = 0. Non-absorbing equilibrium: The short-run player weakly

prefer B at state 0: 0 < y0 < 1.

Next, we characterize the unique stationary Markov Equilibrium under any interval and

discount factor. Define K̂ = [1+A
1−A

β
1−β −

1
1+β

] + 1 and K = [X
∗

∆
] + 1. Define K∗ = K if K is

even and K∗ = K + 1 if K is odd.

Theorem 4: Under Assumption 1-5 and Assumption 1.1, the stationary Markov equilibrium

is unique.

Non-absorbing equilibrium: K ≤ K̂ − 1.

If 0 ≤ k ≤ max(K∗ − 2[ β2

1−β2 ]− 2, 0), 0 < y(k) < 1 and a(k) = π(k).

If max(K∗ − 2[ β2

1−β2 ]− 2, 0) ≤ k ≤ K∗ − 1, y(k) = a(k) = 1 for odd k, 0 < y(k) < 1 and

a(k) = π(k) for even k.

If k ≥ K∗, then yk = 1 and a(k) = 0.

Absorbing equilibrium: K ≥ K̂.

If 0 ≤ k ≤ K − K̂, y(k) = 0 and a(k) ≤ π(k).

If K − K̂ + 1 ≤ k ≤ K − 1, 0 < y(k) < 1 and a(k) = π(k)

If k ≥ K, y(k) = 1 and a(k) = 0.

If K ≤ K̂ − 1, then it is easy for player 1 to build reputation from nothing (y=0) to

everything (y=1). There is a unique non-absorbing equilibrium characterized by two stages:
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reputation building and reputation exploitation. In the reputation building phase, the the

probability of buying needs to be increasing for all odd states and increasing for all even

states. And The probabilities of buying in the odd states are relatively higher than in the

even states. If reputation is close to K∗∆, player 2 buys for sure and player 1 invests for sure

in odd states. In the reputation exploitation stage when state is larger than K∗∆, player 1

has no reward of building reputation since player 2 will buy for sure in all states larger than

K∗∆.

If K ≥ K̂, then it is difficult for player 1 to build reputation from nothing (y=0) to

everything (y=1). There is a unique absorbing equilibrium characterized by three stages:

reputation stagnation, reputation building and reputation exploitation. There will be a

threshold level (K − K̂)∆ at which the future continuation payoff is just not enough for

player 1 to build reputation. For all states below this threshold (reputation stagnation stage),

reputation remains constant because of coordination failure. In state X, player 2 does not

buy the product because he knows that player 2 in state X + 1 won’t buy the product so

that player 1 in state X has no incentive to build reputation. For all states larger than

the threshold and less than K∆ (reputation building stage), player 2 will buy with positive

probability in an increasing order to provide player 1 the incentives to build reputation and

player 1 will play a mix strategy to make player 2 just indifferent between B and NB. In

the reputation exploitation stage when state is larger than K∆, player 1 has no reward of

building reputation since player 2 will buy for sure in all states larger than K∆.

We can deduce an analytic solution when ∆ converges to 0.

Proposition 4 : Under Assumption 1-6 and Assumption 1.1, the stationary Markov equi-

librium in the limit ∆→ 0 is characterized as:

Non-absorbing equilibrium: bX∗ ≤ 1+A
1−A .

If 0 ≤ X ≤ max(X∗ − 1
b
, 0), then

(a(X), y(X)) =

 (π(X), (1+A)−b(1−A)(X∗−X)
2

) X = lim∆→0(2k + 1)∆

(π(X), (1+A)−b(1−A)(X∗−X)
2A

) X = lim∆→0 2k∆

If max(X∗ − 1
b
, 0) < X ≤ X∗, then
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(a(X), y(X)) =

 (1, 1) X = lim∆→0(2k + 1)∆

(π(X), 1+A−b(1−A)(X∗−X)
1+A+b(1−A)(X∗−X)

) X = lim∆→0 2k∆

If X ≥ X∗, (a(X), y(X)) = (0, 1)

Absorbing equilibrium: bX∗ > 1+A
1−A .

If 0 ≤ X ≤ X∗ − 1+A
b(1−A)

, y(X) = 0 and a(X) ≤ π(X).

If X∗ − 1+A
b(1−A)

< X ≤ X∗, (a(X), y(X)) = (π(X), 1− 1−A
1+A

b(X∗ −X)).

If X ≥ X∗, (a(X), y(X)) = (0, 1)

2.5 Multiple investment levels

In the basic model, we assume that the long-run player has only two choices: investment

I and no investment NI. In this section, we relax the assumption that there is only one

investment choice. Instead, there are n investment choices: {Ii}ni=1 and a no investment

choice NI ≡ I0. Assume that in the next period, reputation can only go one-step up or

down. ci is the cost of investment Ii. Therefore, if the short-run player 2 chooses B and the

long-run player chooses Ii. Denote gi(Ii, B) (gi(Ii, NB)) as player i’s stage game payoff if

investment Ii and B(NB) are chosen.

Assumption 5.1 (Myopic incentive of player 1 ): g1(Ii, B) > g1(Ij, B), g1(Ii, NB) ≥

g1(Ij, NB) for any i < j.

Assumption 5.2 (Submodularity of player 1): g1(I0, NB)− g1(Ii, NB) < g1(I0, NB)−

g1(Ii, NB) for any 1 ≤ i ≤ n.

Assumption 5.3 (Myopic incentive of player 2 ): g2(Ii, B,X) > g2(Ii, NB,X) for any

1 ≤ i ≤ n.

Assumption 5.4 (Reputation is valuable for player 2): g2(Ii, B,X) and g2(Ii, NB,X)

is strictly increasing in X.

Assumption 5.5 (Buy for sure for high reputation): There is X∗ such that if X ≥ X∗

then g2(I0, B,X) ≥ g2(I0, NB,X). Otherwise, g2(I0, B,X) < g2(I0, NB,X).

Assumption 5 tells us that if X ≥ X∗, it is strictly dominant strategy for player 2 to play

B. If X < X∗, then there is a mixed strategy πi(X) ∈ (0, 1) of playing Ii and 1 − πi(X) of

playing I0 to make player 2 indifferent between B and NB. It is reasonable to assume that
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player 2 will buy the product for sure independent of player 1’s current behavior if player 1

has done good enough in the past.

Assumption 5.6: g1(Ii, NB) = g1(Ij, NB) for any 0 ≤ i ≤ n.

Next, define the transition rule. p ∈ (0, 1) is the probability of one-step increase of

reputation in the next period if no investment I0 is chosen and qi ∈ (1−p, 1) is the probability

of one-step decrease of reputation in the next period if investment Ii is chosen:

P (X ′|Ii) =

 1− qi X ′ = X + ∆

qi X ′ = max(X −∆, 0)

Define ci = g1(I0, B)−g1(Ii, B) as the cost of investment Ii. We assume that 1−qi > 1−qj
for i > j because an investment with large cost will lead to a higher probability of one-step

increase of reputation in the next period. Denote i∗ = arg mini≥1{ ci
q0−qi}. Therefore, ci∗ is

the most ”efficient” investment level in the sense that the marginal cost is minimized relative

to marginal benefit. We can show that there is a stationary Markov equilibrium that player

1 ignores investments different from Ii∗ .

Proposition 5 : Under Assumption 5.1-5.6, there is a stationary Markov equilibrium as

below:

(1) In state X ∈ {0, 2∆, 3∆, . . . , (K− 1)∆}, player 1 puts probability πi∗(k∆) on Ii∗ and 1−

πi∗(k∆) on I0. Player 2 also plays strict mixed strategy y(X) ∈ (0, 1). y(k∆) is characterized

by a second-order difference equation:

y((k + 1)∆) =
1

β
(1− Ai)y(k∆) + Aiy((k − 1)∆) ∀1 ≤ k ≤ K − 2

where Ai = q0A−qi
1−qi∗−A(1−q0)

and A = g1(Ii∗ ,B)
g1(I0,B)

.

(3) State k∆ ≥ K∆ is a reputation-exploitation phase. In state k∆, player 1 plays I0 for

sure and player 2 plays B for sure, i.e. y(k∆) = 1 and a(k∆) = 0.

3 Conclusion

In this paper, we study the reputation dynamics in a setting of stochastic games in which

reputation is modeled as a state variable. The key feature distinguishing our paper from
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classical models of reputation is that reputation is a function of past investments rather

than current effort. Under a rich class of transition rules, stationary Markov equilibria can

be characterized as reputation cycles with a reputation building phase and a reputation

exploitation phase.

An important assumption which gives us the equilibrium results is submodularity. This

assumption is common in dynamic setups and in the reputation literature (Liu, 2011; Liu

and Skrzypacz, 2014; Phelan, 2006 ). Intuitively, we study submodularity because we are

interested in situations where two parties have severe conflicting interests. However, it is

possible that there are examples where supermodularity or fixed investment cost should be

assumed. We will work on it in the future research. Another key assumption is that both

players have a binary choice. The implicit assumption is that player 1’s stage game payoff is

linear in investment. In section 2.5, we extend the model to multiple investment choices and

establish stationary Markov equilibrium in which player 1 pays attention to a binary choice.

However, it remains to investigate the existence of other equilibria.

There are several interesting ways to extend this model. Faced with competition, a firm

builds reputation because it wants to differentiate its product from other firms. Therefore, we

can study the industry dynamics when there are multiple firms in the market. It is interesting

to investigate firms’ exit and entry decisions and the stationary distribution of reputation in

a steady-state equilibrium. Furthermore, a car company may have multiple sub-brands to

sell or may have only a brand to sell but consumers care about different dimensions of the

car quality: performance, reliability or appearance. As a sequence, it is useful to study how

a car company to allocate its resource on R&D in order to optimally manage its reputation

for different qualities. In a companion paper, we establish that in a model of two dimensions

of reputation, a firm will focus on a certain dimension with higher reputation and build this

dimension to a very high level and then starts to allocate resource to a new dimension because

a low effort is enough to maintain the reputation of the old dimension.
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4 Appendices

Appendix 1

In Appendix 1, V (k) and yk denoteV (k∆) and y(k∆).

Lemma 1.1: 0 < y0 < 1.

Proof. If y0 = 1, then V (0) = g1(1, 1)+βV (1) ≥ g1(0, 1)+β(pV (1)+(1−p)V (0)). Therefore,

(1− p)(V (1)− V (0)) ≥ g1(0, 1)− g1(1, 1) > 0, so V (1) > V (0).

∴ V (0) ≥ g1(0, 1) + β(pV (1) + (1− p)V (0)) > g1(0, 1) + βV (0)

Therefore, V (0) ≥ g1(0,1)
1−β , a contradiction to the fact that g1(0,1)

1−β is the upper bound of the

continuation payoff.
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If y0 = 0, then V (0) = g1(0, 0) + β(pV (1) + (1− p)V (0)) ≥ g1(1, 0) + βV (1). Therefore,

V (1) ≤ V (0) = 0, thus V (1) = 0.

∴ 0 = V (1) ≥ g1(0, y1) + β(pV (2) + (1− p)V (0)) = g1(0, y1) + βpV (2)

Therefore, V (2) = 0 and y1 = 0.

By induction, assume that V (i+ 1) = 0 and yi = 0 for some i ≥ 1.

0 = V (i+ 1) = g1(0, yi+1) + β(pV (i+ 2) + (1− p)V (i)) = g1(0, yi+1) + βpV (i+ 2)

So, V (i+2) = 0 and yi+1 = 0. Therefore, V (i+1) = 0 and yi = 0 for all i ≥ 1, a contradiction

to yT = 1.

Lemma 1.2: yk > 0 for all 0 ≤ k ≤ K − 1.

Proof. By lemma 1, we have 0 < y0 < 1. Therefore, V (0) = g1(0, y0) + β(pV (1) + (1 −

p)V (0)) = g1(1, y0) + βV (1). Then, V (1) > V (0). Assume y1 = 0, then V (1) = g1(0, 0) +

β(pV (2) + (1− p)V (0)) ≥ g1(1, 0) + βV (2). Then, V (2) ≤ V (0).

∴ V (1) = g1(0, 0) + β(pV (2) + (1− p)V (0)) ≤ g1(0, 0) + βV (0) < V (0)

a contradiction. Therefore, y1 > 0. Prove by induction and assume that yt > 0 for all t ≤ k.

V (k − 1) = g1(1, yk−1) + βV (k)

V (k) = g1(1, yk) + βV (k + 1) ≥ g1(0, yk) + β(pV (k + 1) + (1− p)V (k − 1))

∴ β(V (k + 1)− V (k − 1)) ≥ 1

1− p
(g1(0, yk)− g1(1, yk))

Assume that yk+1 = 0, then

V (k + 1) = g1(0, 0) + β(pV (k + 2) + (1− p)V (k)) ≥ g1(1, 0) + βV (k + 2)

Therefore, V (k + 2) ≤ V (k) and V (k + 1) ≥ g1(0, 0) + βV (k) = βV (k).

∴ (1− β2)V (k) ≤ g1(1, yk)
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Furthermore,

V (k) ≥ g1(0, yk) + βV (k − 1) + βp(V (k + 1)− V (k − 1))

≥ g1(0, yk) + βg1(1, yk−1) + β2V (k) +
p

1− p
(g1(0, yk)− g1(1, yk))

∴ g1(1, yk) ≥ (1− β2)V (k) ≥ g1(0, yk) + βg1(1, yk−1) +
p

1− p
(g1(0, yk)− g1(1, yk))

∴ 0 ≥ 1− A
1− p

yk + βAyk−1

a contradiction. Therefore, yk+1 > 0. In all, we have shown that yk > 0 for all 0 ≤ k ≤ K−1.

Lemma 1.3: It is impossible to have two consecutive complete trust: yk = yk+1 = 1 for

some 1 ≤ k ≤ K − 2.

Proof. If yk = yk+1 = 1 for some 0 ≤ k ≤ K − 2, then

V (k) = g1(1, 1) + βV (k + 1) ≥ g1(0, 1) + β(pV (k + 1) + (1− p)V (k − 1))

V (k + 1) = g1(1, 1) + βV (k + 2) ≥ g1(0, 1) + β(pV (k + 2) + (1− p)V (k))

Assume that player 1 is indifferent between I and NI at period k + 2, then

V (k + 2) = g1(1, yk+2) + βV (k + 3) = g1(0, yk+2) + β(pV (k + 3) + (1− p)V (k + 1))

∴ V (k + 3)− V (k + 1) =
1

β(1− p)
(g1(0, yk+2)− g1(1, yk+2))

<
1

β(1− p)
(g1(0, 1)− g1(1, 1)) = V (k + 2)− V (k)

∴ V (k+2) = V (k+1)+(V (k+2)−V (k+1)) ≥ g1(0, 1)+β(pV (k+2)+(1−p)V (k))+(V (k+2)−V (k+1))

= g1(0, 1) + βV (k) + (V (k + 2)− V (k + 1)) + βp(V (k + 2)− V (k))

> g1(0, 1) + βV (k + 1) + βp(V (k + 3)− V (k + 1))

= g1(0, 1) + β(pV (k + 3) + (1− p)V (k + 1))
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where we use the fact that V (k+ 1)−V (k) = β(V (k+ 2)−V (k+ 1)) < V (k+ 2)−V (k+ 1).

Therefore, player 1 strictly prefers NI to I at period k + 2, a contradiction. Since the long-

run player weakly prefers I to NI for any t ≥ 0 by lemma 2 and he can not be indifferent

between C and N at period k + 2, then

V (k + 2) = g1(1, 1) + βV (k + 3) > g1(0, 1) + β(pV (k + 3) + (1− p)V (k + 1))

By induction, we have shown that

V (t) = g1(1, 1) + βV (t+ 1) ≥ g1(0, 1) + β(pV (t+ 1) + (1− p)V (t− 1)) ∀t ≥ k

Since {V (t)}t≥k is a strictly increasing and bounded sequence, there is a limit V ∗ such

that V ∗ = g1(1, 1) + βV ∗. Therefore, V (t + 1) < V ∗ = g1(1,1)
1−β for any t ≥ k. However,

V (t+ 1) > V (t) = g1(1, 1) + βV (t+ 1) and hence V (t+ 1) > g1(1,1)
1−β , a contradiction.

Lemma 1.4 : (1) If yk < 1 and yk+1 < 1, then yk+1 = 1
β
(1− Ap)yk + Apyk−1.

(2) If yk+1 = 1, then yk+1 ≤ 1
β
(1− Ap)yk + Apyk−1.

(3) If yk+1 = 1 and V (k+2) = g1(0, yk+2)+βV (k+1), then yk+2 ≥ 1
β
(1−Ap)yk+1 +Apyk.

Proof. We know that yk > 0 for all 0 ≤ k ≤ K − 1. Therefore, V (k) = g1(1, yk) + βV (k + 1)

for all 0 ≤ k ≤ K − 1.

(1) yk < 1 and yk+1 < 1.

V (k − 1) = g1(1, yk−1) + βV (k)

V (k) = g1(1, yk) + βV (k + 1) = g1(0, yk) + β(pV (k + 1) + (1− p)V (k − 1))

V (k + 1) = g1(1, yk+1) + βV (k + 2) = g1(0, yk+1) + β(pV (k + 2) + (1− p)V (k))

∴ (1− β2)V (k) = g1(0, yk) + βg1(1, yk−1) + βp(V (k + 1)− V (k − 1))

∴ (1− β2)V (k) = g1(1, yk) + βg1(0, yk+1) + β2p(V (k + 2)− V (k))

∴ g1(0, yk) + βg1(1, yk−1) +
p

1− p
(g1(0, yk)− g1(1, yk))

= g1(1, yk) + βg1(0, yk+1) + β
p

1− p
(g1(0, yk+1)− g1(1, yk+1))
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∴ yk+1 =
1

β

1− A
1− Ap

yk +
A(1− p)
1− Ap

yk−1

∴ yk+1 =
1

β
(1− Ap)yk + Apyk−1

(2) yk+1 = 1.

By lemma 1.2, we have yk < 1.

V (k − 1) = g1(1, yk−1) + βV (k)

V (k) = g1(1, yk) + βV (k + 1) = g1(0, yk) + βV (k − 1) + βp(V (k + 1)− V (k − 1))

V (k + 1) = g1(1, yk+1) + βV (k + 2) ≥ g1(0, yk+1) + βp(V (k + 2)− V (k))

∴ (1− β2)V (k) = g1(0, yk) + βg1(1, yk−1) + βp(V (k + 1)− V (k − 1))

∴ (1− β2)V (k) ≥ g1(1, yk) + βg1(0, yk+1) + β2p(V (k + 2)− V (k))

∴ g1(0, yk) + βg1(1, yk−1) +
p

1− p
(g1(0, yk)− g1(1, yk))

≥ g1(1, yk) + βg1(0, yk+1) + β
p

1− p
(g1(0, yk+1)− g1(1, yk+1))

∴ yk+1 ≤
1

β

1− A
1− Ap

yk +
A(1− p)
1− Ap

yk−1

∴ yk+1 ≤
1

β
(1− Ap)yk + Apyk−1

(3) yk+1 ≤ 1 and V (k + 2) = g1(0, yk+2) + β(pV (k + 3) + (1− p)V (k + 1)).

V (k) = g1(1, yk) + βV (k + 1) = g1(0, yk) + βV (k − 1)

V (k + 1) = g1(1, yk+1) + βV (k + 2) ≥ g1(0, yk+1) + βV (k) + βp(V (k + 2)− V (k))

V (k + 2) = g1(0, yk+2) + βV (k + 1) + βp(V (k + 3)− V (k + 1))

∴ (1− β2)V (k + 1) = g1(1, yk+1) + βg1(0, yk+2) + β2p(V (k + 3)− V (k + 1))

∴ (1− β2)V (k + 1) ≥ g1(0, yk+1) + βg1(1, yk) + βp(V (k + 2)− V (k))

∴ g1(1, yk+1) + βg1(0, yk+2) + β
p

1− p
(g1(0, yk+2)− g1(1, yk+2))

≥ g1(0, yk+1) + βg1(1, yk) +
p

1− p
(g1(0, yk+1)− g1(1, yk+1))

∴ yk+2 ≥
1

β

1− A
1− Ap

yk+1 +
A(1− p)
1− Ap

yk
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∴ yk+2 ≥
1

β
(1− Ap)yk+1 + Apyk

Lemma 1.5: If K > 3 +
log ε−1

Ap

log
Ap
ε

, then the long-run player strictly prefers to play N in state

K, 0 < yk < 1 for all 2 ≤ k ≤ K − 1. ε = 1
2β

(1− Ap +
√

(1− Ap)2 + 4Apβ2).

Proof. Step 1 : If the long-run player strictly prefers to play NI in state K and yK−1 < 1,

then 0 < yk < 1 for all 2 ≤ k ≤ K − 2.

By lemma 1.4(3), yK ≥ 1
β
(1 − Ap)yK−1 + ApyK−2. If yK−2 = 1, then yK−1 ≤ β. Since

yK−2 = 1, yK−3 < 1 by lemma 1.3. By lemma 1.4(2) , yK−2 ≤ 1
β
(1 − Ap)yK−3 + ApyK−4 ≤

1
β
(1− Ap)yK−3 + Ap. Then, yK−3 ≥ β. By lemma 1.4(3), yK−1 ≥ 1

β
(1− Ap)yK−2 + ApyK−3,

yK−1 > yK−3 ≥ β, a contradiction. In all, we have shown that yK−2 < 1.

Show that 0 < yk < 1 for all 2 ≤ k ≤ K − 2 by induction. Assume yt < 1 for all t ≥ k.

Assume yk−1 = 1, then yk−2 < 1. By lemma 1.4(2), yk−1 ≤ 1
β
(1 − Ap)yk−2 + Apyk−3 ≤

1
β
(1 − Ap)yk−2 + Ap. Then, yk−2 ≥ β. By lemma 1.4(3), yk ≥ 1

β
(1 − Ap)yk−1 + Apyk−2,

yk > yk−2 ≥ β. Therefore, yk+1 = 1
β
(1−Ap)yk +Apyk−1 > 1, a contradiction. In all, we have

show that 0 < yk < 1 for all 2 ≤ k ≤ K − 2.

Step 2 : The long-run player strictly prefers to play NI in state K.

Assume that player 1 weakly prefers to play C in state K. By the same logic of lemma

1.3, player 1 strictly prefers to play N in state K + 1. By lemma 1.4(3), yK+1 ≥ 1
β
(1 −

Ap)yK + ApyK−1. Then, yK−1 ≤
1− 1

β
(1−Ap)

Ap
.

If yK−2 < 1, then by the same argument of step 1, we have 0 < yk < 1 for all 2 ≤ k ≤ K−2.

Then, we can estimate yK−1:

yK − εyK−1 ≤ (−Ap
ε

)K−2(y2 − εy1)

∴ yK−1 ≥
1

ε
− (

Ap
ε

)K−2

If yK−2 = 1, then by lemma 1.3, we have yK−3 < 1. By the same argument of step 1,

0 < yk < 1 for all 2 ≤ k ≤ K − 3. By lemma 1.4(3), yK−1 ≥ 1
β
(1− Ap)yK−2 + ApyK−3.

∴ yK−1 − εyK−2 ≥ (−Ap
ε

)K−3(y2 − εy1)
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∴ yK − εyK−1 ≤ (−Ap
ε

)(yK−1 − εyK−2) ≤ (−Ap
ε

)K−2(y2 − εy1)

∴ yK−1 ≥
1

ε
− (

Ap
ε

)K−2

In all, we have yK−1 ≥ 1
ε
− (Ap

ε
)K−2.

∵ yK−1 ≤
1− 1

β
(1− Ap)
Ap

=
1

ε
− ε− 1

Ap

∴
ε− 1

Ap
≤ (

Ap
ε

)K−2

a contradiction to K > 3 +
log ε−1

Ap

log
Ap
ε

. In all, the long-run player strictly prefers NI in state K.

Step 3 : yK−1 < 1.

Assume that yK−1 = 1. We have shown in step 2 that player 1 strictly prefer NI in state

K. Therefore, yK ≥ 1
β
(1− Ap)yK−1 + ApyK−2. Then, yK−2 ≤

1− 1
β

(1−Ap)

Ap
.

If yK−3 < 1, then by the same argument of step 1, 0 < yk < 1 for all 2 ≤ k ≤ K − 3. We

can estimate yK−2:

yK−1 − εyK−2 ≤ (−Ap
ε

)K−3(y2 − εy1)

∴ yK−2 ≥
1

ε
− (

Ap
ε

)K−3

If yK−3 = 1, then by lemma 1.3, we have yK−4 < 1. By the same argument of step 1,

0 < yk < 1 for all 2 ≤ k ≤ K − 4.

∵ yK−2 ≥
1

β
(1− Ap)yK−3 + ApyK−4

∴ yK−2 − εyK−3 ≥ (−Ap
ε

)K−4(y2 − εy1)

∴ yK−1 − εyK−2 ≤ (−Ap
ε

)(yK−2 − εyK−3) ≤ (−Ap
ε

)K−3(y2 − εy1)

∴ yK−2 ≥
1

ε
− (

Ap
ε

)K−3

In all, yK−2 ≥ 1
ε
− (Ap

ε
)K−3.

∵ yK−2 ≤
1− 1

β
(1− Ap)
Ap

=
1

ε
− ε− 1

Ap
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∴
ε− 1

Ap
≤ (

Ap
ε

)K−3

a contradiction to K > 3 +
log ε−1

Ap

log
Ap
ε

. In all, yK−1 < 1.

Step 4 : Player 1 strictly prefers NI in state t > K.

Assume that player 1 weakly prefers C in state K+ i where i ≥ 1. By the same argument

of lemma 1.3, player 1 strictly prefers N in state K + i+ 1.

∴ V (K + i+ 1) = g1(0, 1) + β(pV (K + i) + (1− p)V (K + i− 2))

∵ V (K + i) = g1(1, 1) + βV (K + i+ 1) ≥ g1(0, 1) + β(pV (K + i+ 1) + (1− p)V (K + i− 1))

∴ (1− β2)V (K + i) = g1(1, 1) + βg1(0, 1) + β2p(V (K + i)− V (K + i− 2))

∵ V (K + i− 1) ≥ g1(1, 1) + βV (K + i)

∴ (1− β2)V (K + i) ≥ g1(0, 1) + βg1(1, 1) + βp(V (K + i+ 1)− V (K + i− 1))

∵ βp(V (K + i+ 1)− V (K + i− 1)) =
p

1− p
(g1(0, 1)− g1(1, 1))

≥ βp(V (K + i)− V (K + i− 2)) ≥ β2p(V (K + i)− V (K + i− 2))

∴ g1(1, 1) + βg1(0, 1) ≥ g1(0, 1) + βg1(1, 1)

a contradiction.

Proof of Theorem 1:

Proof. We have shown that the long-run player strictly prefers to play NI in state K, 0 <

yk < 1 for all 2 ≤ k ≤ K − 1. There are two cases for us to consider: y1 = 1 and y1 < 1.

Case 1 : y1 < 1.

By lemma 1.4(1), there is a system of equations:

y1 = (
1

β
(1− Ap) + 1)y0

yk+1 =
1

β
(1− Ap)yk + Apyk−1 ∀1 ≤ k ≤ K − 1

yk = 1 ∀k ≥ K
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The solution is

y0 =
1

εK + (1− Ap
ε

)
εK−(−Ap

ε
)K

ε+
Ap
ε

yk =
εk + (1− Ap

ε
)
εk−(−Ap

ε
)k

ε+
Ap
ε

εK + (1− Ap
ε

)
εK−(−Ap

ε
)K

ε+
Ap
ε

∀1 ≤ k ≤ K − 1

In order to satisfy y1 < 1, we need

ε+ 1− Ap
ε

εK + (1− Ap
ε

)
εK−(−Ap

ε
)K

ε+
Ap
ε

< 1

Case 2 : y1 = 1.

If
ε+1−Ap

ε

εK+(1−Ap
ε

)
εK−(−

Ap
ε )K

ε+
Ap
ε

> 1, then we can not have solution like in case 1, otherwise y1 > 1,

a contradiction. The only choice is that the long-run player strictly prefers I in state 1.

Then, we have a system of equations:

y2 =
1− Ap + β + Apβ

2

β2
y0 −

Ap
β

y1 = 1

yk+1 =
1

β
(1− Ap)yk + Apyk−1 ∀2 ≤ k ≤ K − 1

The solution is

y0 =
β2y2 + Apβ

1− Ap + Apβ2 + β

y1 = 1

yk = εk−1 + (1− εK−1)
εk−1 − (−Ap

ε
)k−1

εK−1 − (−Ap
ε

)K−1
∀2 ≤ k ≤ K

If
ε+1−Ap

ε

εK+(1−Ap
ε

)
εK−(−

Ap
ε )K

ε+
Ap
ε

= 1, player 1 is indifferent between I and NI and y1 = 1.

Proof of Proposition 1:

Proof. Step 1: When p = 0, we know that

1 = yK =
1

β
(1− Ap)yK−1 + ApyK−2
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The ending condition for the second-order difference equation yi = 1
β
(1−Ap)yi−1 +Apyi−2 is

yK = 1.

Step 2: When p > 0, we need to figure out yK−1 in the limit.

∵ V (k) = g1(0, 1) + β(pV (t+ 1) + (1− p)V (k − 1)) ∀k ≥ K

∴ W (k) = β(pW (k + 1) + (1− p)W (k − 1)) ∀k ≥ K + 1

∴ W (k + 1) =
1

βp
W (k)− 1− p

p
W (k − 1) ∀k ≥ K + 1

∴ W (k) = λ1x
k
1 + λ2x

k
2 ∀k ≥ K

where λ1, λ2 are constants, x1 < 1 and x2 > 1 are the roots of the characteristic function:

x2 − 1

βp
x+

1− p
p

= 0

∴ x1 =
1−

√
1− 4β2p(1− p)

2βp
, x2 =

1 +
√

1− 4β2p(1− p)
2βp

Because {W (t)}∞t=K is a bounded sequence and x2 > 1, λ2 = 0. Therefore, W (t) = λ1x
t
1 for

all k ≥ K.

∴
W (K + 1)

W (K)
= x1

∵ V (K − 1) = g1(1, yK−1) + βV (K), V (K) = g1(0, 1) + β(pV (K + 1) + (1− p)V (K − 1))

∴ βp(V (K + 1)− V (K − 1)) = (1 + β)(V (K)− V (K − 1))− (g1(0, 1)− g1(1, yK−1))

1 + β(1− p) =
g1(0, 1)− g1(1, yK−1)

V (K)− V (K − 1)
+ βp

V (K + 1)− V (K)

V (K)− V (K − 1)
=
g1(0, 1)− g1(1, yK−1)

V (K)− V (K − 1)
+ βpx1

∴ V (K)− V (K − 1) =
1

1 + β(1− p)− βpx1

(g1(0, 1)− g1(1, yK−1))

∴ βp(V (K + 1)− V (K − 1) =
βp+ βpx1

1 + β(1− p)− βpx1

(g1(0, 1)− g1(1, yK−1))

In order to satisfy the optimal condition that the long-run player strictly prefers N at

state K,

βp(V (K + 1)− V (K − 1) <
p

1− p
(g1(0, 1)− g1(1, 1))

∴
βp+ βpx1

1 + β(1− p)− βpx1

(1− AyK−1) <
p

1− p
(1− A)

∴ yK−1 > 1− 1− A
A(1− p)

1− βx1

β(1 + x1)
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Because lim∆→0 βx1 = 1, then lim∆→0 yK−1 = 1. Therefore, in the limit, the ending condition

for the second-order difference equation is yK−1 = 1.

Step 3: Show that K > 3 +
log ε−1

Ap

log
Ap
ε

is always satisfied when ∆→ 0.

Because ε = 1
2β

(1− Ap +
√

(1− Ap)2 + 4Apβ2), lim∆→0 εe
−b∆ = 1.

∴ lim
∆→0

log ε−1
Ap

log Ap
ε

∆ = lim
∆→0

log eb∆−1
Ap

logAp
∆ = lim

∆→0

(log b
Ap

+ log ∆)∆

logAp
= 0

lim
∆→0

(K − 3)∆ = X∗ > 0

∴ lim
∆→0

(K − 3)∆ > lim
∆→0

log ε−1
Ap

log Ap
ε

∆

Step 4: Take the limit ∆→ 0 and use the fact that lim∆→0, k∆→X ε
k = eb

1−A
1+(1−2p)A

X , we can

get the limiting result.

Appendix 2

Lemma 2.1: If player 1 weakly prefers NI at state t ≥ K, then he will strictly prefer NI

from t on.

Proof. Assume that k ≥ t + 1 is the smallest state in which player 1 weakly prefers I.

Therefore, player 1 plays NI at state k − 1.

V (k − 1) = g1(0, 1) + β(pV (k) + (1− p)V (k − 2)) ≥ g1(1, 1) + β(qV (k − 2) + (1− q)V (k))

V (k) = g1(1, 1) + β(qV (k− 1) + (1− q)V (k+ 1)) ≥ g1(0, 1) + β(pV (k+ 1) + (1− p)V (k− 1))

∴ V (k)−V (k−1) ≤ g1(1, 1)+β(qV (k−1)+(1−q)V (k+1))−(g1(1, 1)+β(qV (k−2)+(1−q)V (k)))

= β(V (k + 1)− V (k)) + βq((V (k)− V (k − 2))− (V (k + 1)− V (k − 1)))

∵ V (k)− V (k − 2) ≤ 1

β(1− p− q)
(g1(0, 1)− g1(1, 1)) ≤ V (k + 1)− V (k − 1)

∴ V (k)− V (k − 1) ≤ β(V (k + 1)− V (k))

Step 1: The long-run player strictly prefers I at state k + 1.
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Assume that player 1 weakly prefers NI at state k + 1, then

V (k + 1) = g1(0, 1) + β(pV (k + 2) + (1− p)V (k)) ≥ g1(1, 1) + β(qV (k) + (1− q)V (k + 2))

∴ V (k + 1)− V (k − 1) = β(p(V (k + 2)− V (k)) + (1− p)(V (k)− V (k − 2))

However, V (k + 1) − V (k − 1) ≥ 1
β(1−p−q)(g1(0, 1) − g1(1, 1)) ≥ (V (k + 2) − V (k)) and

V (k + 1) − V (k − 1) ≥ 1
β(1−p−q)(g1(0, 1) − g1(1, 1)) ≥ (V (k) − V (k − 2)), a contradiction.

Therefore, player 1 strictly prefers I at state k + 1.

Step 2: V (k + 2)− V (k + 1) > V (k + 1)− V (k).

∴ V (k + 1) = g1(1, 1) + β(qV (k) + (1− q)V (k + 2)) > g1(0, 1) + β(pV (k + 2) + (1− p)V (k))

∴ V (k + 2)− V (k + 1) =
1

β(1− q)
(V (k + 1)− V (k))− q

1− q
(V (k)− V (k − 1))

∵ V (k)− V (k − 1) ≤ β(V (k + 1)− V (k))

∴ V (k + 2)− V (k + 1) ≥ (
1

β(1− q)
− qβ

1− q
)(V (k + 1)− V (k)) > V (k + 1)− V (k)

Step 3: The long-run player strictly prefers I at state k + 2.

Assume that the long-run player weakly prefers NI at period k + 2, then

V (k+2) = g1(0, 1)+β(pV (k+3)+(1−p)V (k+1)) ≥ g1(1, 1)+β(qV (k+1)+(1−q)V (k+3))

∴ V (k + 3)− V (k + 1) ≤ 1

β(1− p)
(g1(0, 1)− g1(1, 1)) ≤ V (k + 2)− V (k)

∵ V (k + 1) > g1(0, 1) + β(pV (k + 2) + (1− p)V (k))

∴ V (k+2) = V (k+1)+(V (k+2)−V (k+1)) > g1(0, 1)+β(pV (k+2)+(1−p)V (k))+(V (k+2)−V (k+1))

= g1(0, 1) + βV (k) + (V (k + 2)− V (k + 1)) + βp(V (k + 2)− V (k))

> g1(0, 1) + βV (k + 1) + βp(V (k + 3)− V (k + 1))

where we use the fact that V (k + 2)− V (k + 1) > V (k + 1)− V (k) and V (k + 2)− V (k) ≥

V (k + 3)− V (k + 1). Therefore, player 1 strictly prefers I at period k + 2, a contradiction.

Step 4: Player 1 strictly prefers NI from t on.
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Keep using the argument of Step 3, player 1 strictly prefers I at all state t ≥ k + 1.

∴ V (t) = g1(1, 1)+β(qV (t−1)+(1−q)V (t+1)) > g1(0, 1)+β(pV (t+1)+(1−p)V (t−1)) ∀t ≥ k+1

Since {V (t)}t≥k is a strictly increasing and bounded sequence, there is a limit V ∗ such that

V ∗ = g1(1, 1) + β(qV ∗ + (1− q)V ∗). Therefore, V ∗ = g1(1,1)
1−β . However, V (t+ 1)− V (t− 1) ≥

1
β(1−p−q)(g1(0, 1)− g1(1, 1) implies that 0 = limt→+∞ V (t+ 1)−V (t− 1) ≥ 1

β(1−p−q)(g1(0, 1)−

g1(1, 1), a contradiction.

Therefore, the long-run player strictly prefers NI at state t + 1. By induction, player 1

strictly prefers NI from t on.

Proof of Theorem 2:

Proof. Prove by contradiction. Assume k as the smallest i to satisfy M ≤ i ≤ K and

a(i) = yi = 1. Therefore, ak = yk = 1, ai = π(i) and 0 < yi < 1 for all M ≤ i ≤ k − 1.

Step 1: Figure out the upper bound of yk−1.

(1) 0 < yk+1 < 1.

By lemma 1.4(3), yk+1 ≥ 1
β
(1− Apq)yk + Apqyk−1.

∴ yk−1 ≤
1− 1

β
(1− Apq)
Apq

(2) Player 2 strictly prefers B and player 1 weakly prefers I until state k + i + 2: for some

i ≥ 0, at > 0, yt = 1 for k + 1 ≤ t ≤ k + i + 1. Moreover, ak+i+2 = 0, yk+i+2 = 1 or

ak+i+2 = π(k + i+ 2), 0 < yk+i+2 < 1.

∴ V (k + 1)− V (k − 1)− β(1− q)(V (k + 2)− V (k)) =
q

1− p− q
(1− A)yk−1 + A(1− yk−1)

∴ V (k+i+2)−V (k+i)−β(1−p)(V (k+i+1)−V (k−i+1)) ≤ βp(V (k+i+3)−V (k+i+1)) <
p(1− A)

1− p− q
We know that

V (k+ i+ 1)−V (k+ i− 1) = βq(V (k+ i)−V (k+ i− 2)) + β(1− q)(V (k+ i+ 2)−V (k+ i))

It is true that V (k + i)− V (k + i− 2) > V (k + i+ 2)− V (k + i).

∴ V (k+i+1)−V (k+i−1) <
β(1− q)

1 + β(1− q)
(V (k+i+2)−V (k+i))+

1

1 + β(1− q)
(V (k+i)−V (k+i−2))
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∴ V (k + i+ 1)− V (k + i− 1)− β(1− q)(V (k + i+ 2)− V (k + i))

< V (k + i)− V (k + i− 2)− β(1− q)(V (k + i+ 1)− V (k + i− 1))

By induction,

∴ V (k + i+ 1)− V (k + i− 1)− β(1− q)(V (k + i+ 2)− V (k + i))

< V (k + 1)− V (k − 1)− β(1− q)(V (k + 2)− V (k))

=
q

1− p− q
(1− A)yk−1 + A(1− yk−1)

∴ (1− β(1− q))(V (k + i+ 2)− V (k + i)) + (1− β(1− p))(V (k + i+ 1)− V (k + i− 1))

<
p(1− A)

1− p− q
+
q(1− A)

1− p− q
yk−1 + A(1− yk−1)

∴ (1− β(1− q) + 1− β(1− p)) 1− A
β(1− p− q)

<
p(1− A)

1− p− q
+
q(1− A)

1− p− q
yk−1 + A(1− yk−1)

∴ yk−1 ≤ 1− 2(1− β)(1− A)

β(A(1− p)− q)
Step 2: If yk−2 ≤ yk−1, then we reach a contradiction.

By the same argument as lemma 4(2), 1 ≤ 1
β
(1−Apq)yk−1+Apqyk−2, where Apq = A(1−p)−q

1−q−pA .

∴ yk−1 ≥
1

1
β
(1− Apq) + Apq

= 1− (1− β)(1− Apq)
1− Apq + Apqβ

= 1− (1− β)(1− A)

1− A+ (A(1− p)− q)β

If 0 < yk+1 < 1, then yk−1 ≤
1− 1

β
(1−Apq)
Apq

. Therefore, 1
1
β

(1−Apq)+Apq
<

1− 1
β

(1−Apq)
Apq

, a contradic-

tion.

Player 2 strictly prefers B and player 1 weakly prefers I until state k + i + 2, then

yk−1 ≤ 1− 2(1−β)(1−A)
β(A(1−p)−q) by step 1.

∴
(1− β)(1− A)

1− A+ (A(1− p)− q)β
>

2(1− β)(1− A)

β(A(1− p)− q)

∴ 2(1− A) + β(A(1− p)− q) < 0

a contradiction.

Step 3: If 0 < yi < 1 for all i ≤ k − 1, then we can show by solving the second-order

difference equation that yk−2 ≤ yk−1 by the definition of M .
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Step 4: For any M + 1 ≤ i ≤ K − 2, if yi−1 = 1, then it is impossible that 0 < yi+1 < 1,

0 < yi < 1.

(1)0 < yi−2 < 1

If yi < 1 and yi+1 < 1, then

yi + βAyi−1 +
p(1− A)

1− p− q
yk − β2q(V (i)− V (i− 2))

= Ayi + βyi+1 + β
p(1− A)

1− p− q
yk+1 −

q(1− A)

1− p− q
yi

∴ yi+1 =
1

β

1− A
1− q − Ap

yi +
A(1− p− q)
1− q − Ap

− βq(1− p− q)
1− q − Ap

(V (i)− V (i− 2))

∵ V (i) = g1(0, yi) + β(pV (i+ 1) + (1− p)V (i− 1))

∵ V (i− 2) = g1(1, yi−2) + β(qV (k − 3) + (1− q)V (k − 1))

∴ V (i)− V (i− 2) = yi − Ayi−2 + βp(V (i+ 1)− V (i− 1)) + βq(V (i− 1)− V (i− 3))

= (1 +
p(1− A)

1− p− q
)yi − (A− q(1− A)

1− p− q
)yi−2

∴ yi+1 = (
1

β

1− A
1− q − Ap

− βq)yi +
A(1− p− q)
1− q − Ap

+
βq(A(1− p)− q)

1− q − Ap
yi−2

If 1
β

1−A
1−q−Ap − βq > 0, then yi > yi−2 ≥ β implies that

∴ yi+1 > (
1

β

1− A
1− q − Ap

− βq)β +
A(1− p− q)
1− q − Ap

+
βq(A(1− p)− q)

1− q − Ap
β

=
(1− β2q)(1− A)

1− q − Ap
+
A(1− p− q)
1− q − Ap

> 1

a contradiction.

(2) yi−2 = 1.

yi + βAyi−1 +
p(1− A)

1− p− q
yi − β2q(V (i)− V (i− 2))

= Ayi + βyi+1 + β
p(1− A)

1− p− q
yi+1 −

q(1− A)

1− p− q
yi

Assume that yt = 1 for j ≤ t ≤ i− 2 and 0 < yj−1 < 1. We can show that

V (i)− V (i− 2)− βq(V (i− 1)− V (i− 3)) =
1− q

1− p− q
(1− A)yi − A(1− yi)

V (j + 1)− V (j − 1)− β(1− q)(V (j + 2)− V (j)) =
q

1− p− q
(1− A)yj−1 + A(1− yj−1)
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∵ V (i−1)−V (i−3)−β(1−q)(V (i)−V (i−2)) < V (j+1)−V (j−1)−β(1−q)(V (j+2)−V (j))

∴ (1− β(1− q))(V (i)− V (i− 2)) + (1− βq)(V (i− 1)− V (i− 3))

<
1− A

1− p− q
yi + (

q(1− A)

1− p− q
− A)(yj−1 − yi)

∵ V (i)− V (i− 2) < V (i− 1)− V (i− 3)

∴ V (i)− V (i− 2) <
1

2− β
(

1− A
1− p− q

yi + (
q(1− A)

1− p− q
− A)(yi−3 − yi))

∴ yi+1 >
1

β

1− A
1− q − Ap

yi +
A(1− p− q)
1− q − Ap

− βq(1− p− q))
(2− β)(1− q − Ap)

(
1− A

1− p− q
yi + (

q(1− A)

1− p− q
− A)(yi−3 − yi))

∴ yi+1 > (
1

β

1− A
1− q − Ap

− βq

2− β
)yi +

A(1− p− q)
1− q − Ap

+
βq

2− β
A(1− p)− q
1− q − Ap

yi−3

If 1
β

1−A
1−q−Ap −

βq
2−β > 0, then yi > yi−3 ≥ β implies that

yi+1 > (
1− A

1− q − Ap
− β2q

2− β
) +

A(1− p− q)
1− q − Ap

+
β2q

2− β
A(1− p)− q
1− q − Ap

=
1− Ap− Aq
1− q − Ap

− β2

2− β
q(1− A)

1− q − Ap
>

1− Ap− Aq
1− q − Ap

− q(1− A)

1− q − Ap
= 1

a contradiction.

Step 5: Show that yi = 1 for all M ≤ i ≤ k − 2.

We know 0 < yk−1 < 1. Assume that 0 < yk−2 < 1. By step 3, there exists i ≤ k− 2 such

that yi = 1. Let i∗ be the largest one to satisfy the above condition. Then, 0 < yi∗+1 < 1,

0 < yi∗+2 < 1 and yi∗ = 1, a contradiction to step 4. Therefore, yk−2 = 1. By the definition

of k, yi = 1 for all M ≤ i ≤ k − 2.

Step 6: There is a sequence k − 1 = k0 < k1 < . . . < kN ≤ K − 1 such that 0 < yki < 1

and yj = 1 for any M ≤ j ≤ K − 1 and j /∈ {ki}Ni=0.

Define k0 = k − 1. Construct a sequence {ki} as below. For each i ≥ 0, let ki+1 be the

smallest t ≥ ki + 1 such that 0 < yt < 1, then by step 4, yki+1+1 = 1. Therefore, we have

shown that there is a sequence k − 1 = k0 < k1 < . . . < kN ≤ K − 1 such that 0 < yki < 1

and yj = 1 for any k − 1 ≤ j ≤ K − 1 and j /∈ {ki}Ni=0. Combined with step 5, we get the

result.

Step 7: Show that it is impossible to have more than log(D)
log(x1)

+ 2 consecutive complete trust

and player 1 weakly prefer I.
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Prove by contradiction. Define n = i1 − i0. For all i0 ≤ i ≤ i1,

V (i) = g1(1, 1) + β(qV (i− 1) + (1− q)V (i+ 1)) ≥ g1(1, 1) + β(qV (i− 1) + (1− q)V (i+ 1))

Define W (i) = V (i)− V (i− 2), then W (i) > W (i+ 1) for all i0 + 1 ≤ i ≤ i1 − 1.

W (i+ 1) =
1

β(1− q)
W (i)− q

1− q
W (i− 1)

∴ W (i) = λ1x
i−i0
1 + λ2x

i−i0
2

where x1 =
1−
√

1−4β2q(1−q)
2β(1−q) < 1 and x2 =

1+
√

1−4β2q(1−q)
2β(1−q) > 1. We know that λ1x

n−1
1 +

λ2x
n−1
2 > λ1x

n
1 + λ2x

n
2 . Therefore,

xn−1
1 >

(λ1x
n−1
1 + λ2x

n−1
2 )(x2 − 1)

λ1(x2 − x1)

Next, figure out the upper bound of λ1. Assume that 0 < yi0−1 < 1, then yi0−1 ≥ β.

∵ W (i0) = β(1− q)W (i0 + 1) +
q(1− A)

1− p− q
yi0−1 + A(1− yi0−1)

∴ λ1 + λ2 ≤ β(1− q)(λ1x1 + λ2x2) +
q(1− A)β

1− p− q
+ A(1− β)

Because λ > 0 and β(1− q)x2 − 1 < 0, then

λ1 <

q(1−A)β
1−p−q + A(1− β)

1− β(1− q)x1

Because λ1x
n−1
1 + λ2x

n−1
2 > 1−A

β(1−p−q) , then

xn−1
1 >

( 1−A
β(1−p−q))(x2 − 1)

q(1−A)β
1−p−q +A(1−β)

1−β(1−q)x1
(x2 − x1)

≡ D

∴ i1 − i0 + 1 = n+ 1 <
log(D)

log(x1)
+ 2

Step 8: Show that N >
log( 2

2+β
)

log(Apq)
as ∆→ 0.

Assume that N ≤ log( 2
2+β

)

log(Apq)
. Therefore, there are K −M − N − 1 complete trust yi = 1

for M ≤ i ≤ K − 1. Because there are N + 1 incomplete trust, then there exists a sequence

of consecutive complete trust with the number at least K−M−N−1
N+2

. By step 7, K−M−N−1
N+2

≤
log(D)
log(x1)

+ 2.

∴ K −M < (N + 2)(
log(D)

log(x1)
+ 3) < (

log( 2
2+β

)

log(Apq)
+ 2)(

log(D)

log(x1)
+ 3)
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a contradiction when ∆→ 0.

Step 9: yki+1
> 2−β

β
(1−Apq) +Apqyki and yk0 ≥ β. Then, it is trivial to show that ykN > 1,

a contradiction.

2− β
β
− ykN < ANpq(

2− β
β
− yk0) ≤ ANpq(

2− β
β
− β)

∴ ykN >
2− β
β
− ANpq(

2− β
β
− β) > 1

The last inequality holds since N >
log( 2

2+β
)

log(Apq)

Appendix 3

Lemma 3.1: If player 1 weakly prefers action I in state k ≥ K and V (k) ≥ V (k+1), then in

each state i = 0, 1, . . . , k−1, we have (1) player 1 weakly prefers action I; (2) y(i) = y(k) = 1;

and (3) V (i− 1) ≥ V (i).

Proof. We know that y(k) = 1 for each t ≥ K. Assume, for induction, that, for i =

k + 1, . . . , t, the three properties hold. Consider i = k. Prove (2) by contradiction, assume

that y(k) < y(k + 1) = 1.

Case 1: a(k) > π(k).

In this case, it is optimal for player 2 to choose B, so y(k) = 1, a contradiction.

Case 2: a(k) ≤ π(k).

∴ V (k) = g1(0, y(k)) +β((1− p)V (0) + pV (k+ 1)) ≥ g1(1, y(k)) +β((1− q)V (k+ 1) + qV (0))

By submodularity,

g1(0, y(k))− g1(1, y(k)) < g1(0, 1)− g1(1, 1)

∴ g1(0, 1) + β((1− p)V (0) + pV (k + 1)) > g1(1, 1) + β((1− q)V (k + 1) + qV (0))

∴ V (k + 1) = g1(0, 1) + β((1− p)V (0) + pV (k + 2))

= g1(0, 1) + β((1− p)V (0) + pV (k + 1)) + βp(V (k + 2)− V (k + 1))

> g1(1, 1) + β((1− q)V (k + 1) + qV (0)) + βp(V (k + 2)− V (k + 1))

≥ g1(1, 1) + β((1− q)V (k + 2) + qV (0))
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The last inequality uses the fact that (1− p− q)(V (k+ 1)−V (k+ 2)) ≥ 0. Therefore, player

1 strictly prefers NI in state k + 1, a contradiction. Therefore, we have proved (2). Then,

(1) and (3) holds trivially,

Corollary 3.1: If V (t) ≥ V (t + 1), then player 1 strictly prefers action NI in state t ≥ K

and a(t) = 0.

Proof. If player 1 weakly prefers action I in state t ≥ K and V (t) ≥ V (t+1), then by Lemma

3.1, y(i) = 1 for i = 1, 2, . . . , t− 1. It is obvious that y(i) = 1 for i ≥ t, because i ≥ t ≥ K.

In all, y(i) = 1 for all state i. Therefore, player 2’s strategy does not depend on the history

of the game. As a result, player 1 would strictly prefer action NI, a contradiction.

Lemma 3.2: If V (t) < V (t+ 1), then player 1 strictly prefers action NI in state t ≥ K and

a(t) = 0.

Proof. Assume that player 1 weakly prefer I at t ≥ K and V (t) < V (t+ 1).

Case 1: V (i) < V (i+ 1) for all i ≥ t.

Then, {V (i)}+∞
i=t is a strictly increasing and bounded sequence and assume the limit is

V ∗. Furthermore,

V (i) = g1(1, 1) + β((1− q)V (i+ 1) + qV (0)) ∀i ≥ t

∴ V ∗ = g1(1, 1) + β((1− q)V ∗ + qV (0))

∴ V ∗ =
g1(1, 1) + βV (0)

1− β + βq
, V (i) < V (i+ 1) <

g1(1, 1) + βV (0)

1− β + βq
∀i ≥ t

∵ V (i) = g1(1, 1) + β((1− q)V (i+ 1) + qV (0)) > g1(1, 1) + β((1− q)V (i) + qV (0))

∴ V (i) >
g1(1, 1) + βV (0)

1− β + βq

This is a contradiction.

Case 2: V (i) ≥ V (i+ 1) for some i > t.

Assume i∗ is the smallest i > t such that V (i) ≥ V (i+ 1). Therefore, V (t) < V (t+ 1) <

. . . < V (i∗).

If player 1 weakly prefer I at i∗ and V (i∗) ≥ V (i∗ + 1), by lemma 3.1, we know that

V (i) ≥ V (i+ 1) for all i ≤ i∗, a contradiction to V (t) < V (t+ 1).
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If player 1 strictly prefer NI at i∗, then

V (i∗) = g1(0, 1) + β((1− p)V (0) + pV (i∗ + 1)) > g1(1, 1) + β((1− q)V (i∗ + 1) + qV (0))

Because player 1 weakly prefer I at t ≥ K,

V (t) = g1(1, 1) + β((1− q)V (t+ 1) + qV (0)) ≥ g1(0, 1) + β((1− p)V (0) + pV (t+ 1))

∴ V (i∗ + 1) < V (t+ 1)

Since V (t) < V (i∗), then V (t+ 1) < V (i∗ + 1), a contradiction.

In all, we have shown that if V (t) < V (t+ 1), then player 1 strictly prefers action NI in

state t ≥ K and a(t) = 0.

Corollary 3.2: Player 1 strictly prefers action NI in state t ≥ K and V (t) = V (K) for all

t ≥ K.

Proof. By Corollary 3.1 and lemma 3.2, Player 1 strictly prefers action NI in state t ≥ K.

Furthermore, V (t) = V (K) = g1(0, 1) + β((1− p)V (0) + pV (K)).

Lemma 3.3: If for some j < K, y(j + 1) > 0, then they are strictly increasing for all i such

that j ≤ i ≤ K.

Proof. Firstly, show that y(K − 1) < y(K).

If y(K− 1) = 0, then y(K− 1) < y(K) holds. Furthermore, V (K− 1) = g1(0, 0) +β((1−

p)V (0)+pV (K)) and V (K) = g1(0, 1)+β((1−p)V (0)+pV (K)). Therefore,V (K−1) < V (K).

If y(K − 1) > 0, then a(K − 1) ≥ π(K − 1) > 0.

∴ g1(1, y(K − 1)) + β((1− q)V (K) + qV (0)) ≥ g1(0, y(K − 1)) + β((1− p)V (0) + pV (K))

Since player 1 strictly prefers NI in state K,

V (K) = g1(0, y(K)) + β((1− p)V (0) + pV (K)) > g1(1, y(K)) + β((1− q)V (K) + qV (0))

∴ g1(0, y(K))− g1(1, y(K)) > g1(0, y(K − 1))− g1(1, y(K − 1))
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By submodularity, y(K − 1) < y(K).

∴ V (K−1) = g1(1, y(K−1))+β((1−p)V (K)+pV (0)) ≤ g1(1, y(K))+β((1−q)V (K)+qV (0)) < V (K)

Prove by contradiction. Suppose that y(i) > 0 and y(i) ≤ y(i−1). Let i∗ be the largest state

such that 0 < y(i∗) ≤ y(i∗ − 1). Since y(i∗) < y(i∗ + 1), y(i∗) < 1. Therefore, a(i∗) = π(i∗)

and a(i∗ − 1) ≥ π(i∗ − 1). Furthermore, y(i) > 0 for any i ≥ i∗ means that a(i) ≥ π(i) for

any i ≥ i∗. Therefore, for any i ≥ i∗, we have

V (i) = (g1(1, y(i))+βqV (0))+. . .+(β(1−q))K−i−1(g1(1, y(K−2))+βqV (0))+(β(1−q))K−iV (K−1)

V (i+1) = (g1(1, y(i+1))+βqV (0))+. . .+(β(1−q))K−i−1(g1(1, y(K−1))+βqV (0))+(β(1−q))K−iV (K)

∴ V (i) < V (i+ 1) ∀i ≥ i∗

V (i∗−1) = g1(1, y(i∗−1))+β((1−q)V (i∗)+qV (0)) ≥ g1(0, y(i∗−1))+β((1−p)V (0)+pV (i∗))

V (i∗) = g1(1, y(i∗)) +β((1− q)V (i∗+ 1) + qV (0)) = g1(0, y(i∗)) +β((1− p)V (0) + pV (i∗+ 1))

∴ g1(0, y(i∗ − 1))− g1(1, y(i∗ − 1)) ≤ β(1− p− q)(V (i∗)− V (0))

< β(1− p− q)(V (i∗ + 1)− V (0)) = g1(0, y(i∗))− g1(1, y(i∗))

By submodularity, y(i∗ − 1) < y(i∗), a contradiction.

Lemma 3.4: If β > 1−A+γ
1−q−Ap , then 0 < y(Xi) < 1 and a(i) = π(i) for each i ≤ K − 1 and

{y(i)}Ki=0 is strictly increasing in i.

Proof. Assume, by contradiction, that y(0) = 0, then a(0) ≤ π(0) < 1

∴ V (0) = g1(0, 0) + β((1− p)V (0) + pV (1)) ≥ g1(1, 0) + β((1− q)V (1) + qV (0))

∴ V (1) ≤ V (0) +
g1(0, 0)− g1(1, 0)

β(1− p− q)

∴ V (0) ≤
g1(0, 0) + βpg1(0,0)−g1(1,0)

β(1−p−q) + βpV (0)

1− β + βp

∴ V (0) ≤ g1(0, 0)

1− β
+

p

1− p− q
g1(0, 0)− g1(1, 0)

1− β
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Because β > 1−A+γ
1−q−Ap and y(K) = 1, we can show that

g1(0, 1) + β((1− p)V (0) + p
g1(1, 1) + βV (0)

1− β(1− q)
) <

g1(1, 1) + βV (0)

1− β(1− q)

Therefore, V (K) = g1(1,1)+βV (0)
1−β(1−q) which means that V (K) = g1(1, 1)+β((1−q)V (K)+qV (0)),

a contradiction to the fact that player 1 will strictly prefer NI in state K.

Next, assume, by contradiction, that y(1) = 0. Then, a(1) ≤ π(1) < 1, so NI is an

optimal choice for player 1 in state 1.

∴ V (1) = g1(0, 0) + β((1− p)V (0) + pV (2)) ≥ g1(1, 0) + β((1− q)V (2) + qV (0))

∴ V (2)− V (0) ≤ g1(0, 0)− g1(1, 0)

(1− p− q)β
y(0) > 0 implies a(0) ≥ π(0) > 0, so I is an optimal choice for player 1 in state 0,

∴ V (0) = g1(1, y(0)) + β((1− q)V (1) + qV (0)) ≥ g1(0, y(0)) + β((1− p)V (0) + pV (1))

∴ V (1)− V (0) ≥ g1(0, y(0))− g1(1, y(0))

(1− p− q)β
≥ g1(0, 0)− g1(1, 0)

(1− p− q)β
∴ V (2) ≤ V (1)

∴ V (0) = g1(1, y(0)) + β((1− q)V (1) + qV (0)) ≤ g1(1, y(0)) + βV (1)

= g1(1, y(0)) + βg1(0, 0) + β2((1− p)V (0) + pV (2))

≤ g1(1, y(0)) + βg1(0, 0) + β2((1− p)V (0) + pV (1))

< g1(0, y(0)) + βg1(0, 0) + β2((1− p)V (0) + pV (1))

< g1(0, y(0)) + βg1(0, y(0)) + β2((1− p)V (0) + pV (1))

= g1(0, y(0)) + βg1(0, y(0)) + β2((1− p)V (0) + pV (1))

≤ g1(0, y(0)) + βV (0) ≤ V (0)

This is a contradiction.

By Lemma 3.3, y(1) > 0 implies that {y(i)}Ki=0 is strictly increasing in i. Therefore,

y(i) > 0 for each i < K. Because y(K) = 1 and {y(i)}Ki=0 is strictly increasing in i, y(i) < 1

for each i < K. Therefore, 0 < y(i) < 1 for each i < K implies that a(i) = π(i) for each

i < K.
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Proof of Theorem 3:

Proof. It is obvious that y(t) = 1 for each t ≥ K. By Corollary 3.2, player 1 strictly prefers

action NI in state t ≥ K. Then, we have proved (2). Lemma 3.4 proved (1). Then, let’s

characterize y(k) for 0 ≤ k ≤ K − 1.

∵ V (k) = g1(0, y(k)) +β((1− p)V (0) + pV (k+ 1)) = g1(1, y(k)) +β((1− q)V (k+ 1) + qV (0))

∴ V (k + 1)− V (0) =
g1(0, y(k))− g1(1, y(i))

β(1− p− q)
∴ V (k)− V (0) = g1(0, y(k))− (1− β)V (0) + βp(V (k + 1)− V (0))

∴
g1(0, y(k − 1))− g1(1, y(k − 1))

β(1− p− q)
= g1(0, y(k))− g1(0, y(0)) + βp

g1(0, y(i))− g1(1, y(k))

β(1− p− q)
∴ y(k) = η1y(k − 1) + η3y(0) + η2

Then, all the results follow if we let y(k) = 1 for all k ≥ K.

Proof of Proposition 3:

Proof. It is trivial to show that

y(0) =
1− η1 − η2

η3

y(k) = 1− ηk1(1− y(0)) ∀k ≥ 0

∵ y(0) =
1− η1 − η2

η3

=
(1− βp)(g1(1, 1)− g1(0, 0))− (1− β(1− q))(g1(0, 1)− g1(0, 0))

β(1− p− q)(g1(0, 1)− g1(0, 0))

∴
∂y(0)

∂p
=
−(1− β(1− q))(g1(0, 1)− g1(1, 1))

β(1− p− q)2(g1(0, 1)− g1(0, 0))
< 0

∴
∂y(0)

∂q
=
−(1− βp)(g1(0, 1)− g1(1, 1))

β(1− p− q)2(g1(0, 1)− g1(0, 0))
< 0

Furthermore, it is true that ∂η1

∂p
> 0 and ∂η1

∂q
> 0.

∵ y(k) = 1− ηt1(1− y(0)) ∀k ≥ 0

∴
∂y(k)

∂p
< 0,

∂y(k)

∂q
< 0

Proof of Claim 1:
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Proof. Assume that y(0) > 0, then we have shown that in the limit case,

y(0) =
(1− βp)(g1(1, 1)− g1(0, 0))− (1− β(1− q))(g1(0, 1)− g1(0, 0))

β(1− p− q)(g1(0, 1)− g1(0, 0))

=
g1(1, 1)− g1(0, 0)− ((g1(1, 1)− g1(1, 0))p+ (g1(0, 1)− g1(0, 0))q)

(1− p− q)(g1(0, 1)− g1(0, 0))

If assumption 3.1 is violated, then y(0) ≤ 0, a contradiction. Therefore, y(0) = 0 in the limit

case.

Appendix 4

Lemma 4.1 : Show that the short run player strictly prefer NI at all t ≥ K + 1.

Proof. There are no two consecutive states t ≥ K and t + 1 ≥ K such that the long-run

player weakly prefers I. Otherwise,

V (t) = g1(1, 1) + βV (t+ 1) ≥ g1(0, 1) + βV (t− 1)

V (t+ 1) = g1(1, 1) + βV (t+ 2) ≥ g1(0, 1) + βV (t)

∴ V (t+2) = V (t+1)+(V (t+2)−V (t+1)) > g1(0, 1)+βV (t)+β(V (t+1)−V (t)) = g1(0, 1)+βV (t+1)

where we use the fact that V (t+ 2)− V (t+ 1) = 1
β
(V (t+ 1)− V (t)) > β(V (t+ 1)− V (t)).

V (t+ 2) = g1(1, 1) + βV (t+ 3) > g1(0, 1) + βV (t+ 1)

By induction,

V (i) = g1(1, 1) + βV (i+ 1) ≥ g1(0, 1) + βV (i− 1) ∀i ≥ t

a contradiction. Therefore, V (t+ 1) = g1(1, 1) + βV (t+ 2) ≥ g1(0, 1) + βV (t) implies that

V (t) = g1(0, 1) + βV (t− 1) > g1(1, 1) + βV (t+ 1)

V (t+ 2) = g1(0, 1) + βV (t+ 1) > g1(1, 1) + βV (t+ 3)

∴
1

β
(g1(0, 1)− g1(1, 1)) < V (t+ 2)− V (t) = β(V (t+ 1)− V (t− 1)) < g1(0, 1)− g1(1, 1)

a contradiction.
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Lemma 4.2: If K ≥ K̂, then there is a unique absorbing equilibrium. Furthermore, the

necessary condition for the existence of absorbing equilibrium is K ≥ K̂.

Proof. Step 1: If 0 < yi < 1 for 1 ≤ i ≤ K − 1, then we need T ∗ = T̂ .

By lemma 4.1, a(i) = 0 for all i ≥ K + 1. Firstly, assume that a(K) = 1 and check the

equilibrium.

y0 = V0 = 0

g1(0, 1) + βV0 > g1(1, 1) + βV1

Vi = (1− yi)βVi + yi(g1(1, 1) + βVi+1) = (1− yi)βVi + yi(g1(0, 1) + βVi−1) ∀1 ≤ i ≤ K − 1

Vi = g1(0, 1) + βVi−1 > g1(1, 1) + βVi+1 ∀i ≥ K

Because g1(0, 1) + βV0 = g1(1, 1) + βV2, V2 = 1
β
(g1(0, 1)− g1(1, 1)).

Find the restriction on y1. Because V1 = (1− y1)βV1 + y1(g1(0, 1) + βV0) = (1− y1)βV1 +

g1(0, 1)y1, g1(0,1)βy1

1−β+βy1
= βV1 < g1(0, 1)− g1(1, 1), then y1 <

1−β
β

1−A
A

.

Solve for yi. Firstly, solve for V1

y1
and V2

y2
. We have shown that

V1 =
g1(0, 1)y1

1− β + βy1

,
V1

y1

=
g1(0, 1)

1− β + βy1

∵ V2 = (1− y2)βV2 + y2(g1(0, 1) + βV1)

∴ y2 =
1− β
β

1− A
A

1− β + βy1

1− β + (1 + 1/A)βy1

,
V2

y2

=
(A+ (1+A)βy1)

1−β )g1(0, 1)

1− β + βy1

Then, show that Vi+2

yi+2
= Vi

yi
for any 1 ≤ i ≤ K−1. Vi = (1− yi)βVi + yi(g1(1, 1) +βVi+1)) and

Vi+2 = (1−yi+2)βVi+2 +yi+2(g1(0, 1) +βVi+1) implies that (1−β)(Vi+2

yi+2
− Vi

yi
) +β(Vi+2−Vi) =

g1(0, 1) − g1(1, 1). We know that β(Vi+2 − Vi) = g1(0, 1) − g1(1, 1) for any 1 ≤ i ≤ K − 1.

Therefore, Vi+2

yi+2
= Vi

yi
.

∴ y2i+1 = y2i−1 +
(1− β + βy1)(1− A)

β
, y2i+2 = y2i +

(1− β + βy1)(1− A)

β(A+ (1+A)βy1)
1−β )

Define c1 = (1− β + βy1)(1− A) and c2 = (1−β+βy1)(1−A)

A+
(1+A)βy1

1−β

∴ y2i+1 = y1 +
c1

β
i, y2i =

c2

β
i

We have the boundary end condition yK = 1.
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Case 1: K is an odd number.

Then we can solve y1 by backward induction.

1 = y1 +
c1

β

K − 1

2
= y1 +

(1− β + βy1)(1− A)

β

K − 1

2

∴ y1 =
2β

1−A − (1− β)(K − 1)

β(K + 2
1−A − 1)

∴ c1 =
2

K + 2
1−A − 1

, c2 =
2(1− β)

2(1+A)β
1−A − (1− β)(K − 1+A

1−A)

In order for yK−1 ≤ 1, we need c2
β
K−1

2
≤ 1.

∴ (1− β)K ≤ 1 + A

1− A
β +

1− β
1 + β

Check the optimality at state K. We need β(V (K + 1)− V (K − 1)) < g1(0, 1)− g1(1, 1).

∴ β(g1(0, 1) + g1(0, 1)β − (1− β2)V (K − 1)) = β(V (K + 1)− V (K − 1)) < g1(0, 1)− g1(1, 1)

∴ V (K − 1) >
g1(0, 1)

1− β
− g1(0, 1)− g1(1, 1)

β(1− β2)

Because V (K − 1) = (K−1)(1−A)
2β

g1(0, 1), then

(K − 1)(1− A)

2β
>

1

1− β
− 1− A
β(1− β2)

∴ (1− β)K ≤ 1 + A

1− A
β − 1− β

1 + β

In all,
1 + A

1− A
β − 1− β

1 + β
< K <

1 + A

1− A
β +

1− β
1 + β

∴ K = [
1 + A

1− A
β

1− β
− 1

1 + β
] + 1

Case 2: K is an even number.

Then, we can solve y1 by backward induction.

1 =
K

2

c2

β

y1 =
(1− β)(K(1− β)− 2A

1−Aβ)
2(1+A)

1−A β2 −Kβ(1− β)
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c1 =
2β(1− β)

2(1+A)
1−A β −K(1− β)

, c2 =
2β

K

In order for yT ∗−1 ≤ 1, we need y1 + c1
β
K−2

2
≤ 1.

∴ (1− β)K ≤ 1 + A

1− A
β + β

1− β
1 + β

Check the optimality at state K. We need β(V (K + 1)− V (K − 1)) < g1(0, 1)− g1(1, 1).

∴ β(g1(0, 1) + g1(0, 1)β − (1− β2)V (K − 1)) = β(V (K + 1)− V (K − 1)) < 1

∴ V (K − 1) >
g1(0, 1)

1− β
− g1(0, 1)− g1(1, 1)

β(1− β2)

Because V (K − 1) = y1g1(0,1)
1−β+βy1

+ (K−2)(1−A)
2β

g1(0, 1), then

y1

1− β + βy1

+
(K − 2)(1− A)

2β
>

1

1− β
− 1− A
β(1− β2)

∴ (1− β)K >
1 + A

1− A
β − β 1− β

1 + β

In all,

∴
1 + A

1− A
β − β 1− β

1 + β
< (1− β)K <

1 + A

1− A
β + β

1− β
1 + β

∴ K = [
1 + A

1− A
β

1− β
− β

1 + β
] + 1

We define that

K̂ ≡ [
1 + A

1− A
β

1− β
− β

1 + β
] + 1 = [

1 + A

1− A
β

1− β
− 1

1 + β
] + 1

Define X̂ ≡ lim∆→0 K̂∆. Then, bX̂ = 1+A
1−A .

In the limit, if X∗ = X̂, then lim∆→0
c1
∆

= lim∆→0
c2
∆

= 2b(1−A)
1+A

.

∴ yX =
b(1− A)

1 + A
X, a(X) = π(X) ∀0 ≤ X ≤ X∗

yX = 1, a(X) = 0 ∀X ≥ X∗

Next, show that it is impossible that VK = g1(1, 1) + βVT ∗+1 ≥ g1(0, 1) + βVK−1. Prove

by contradiction. Therefore, V (K + 1) = g1(0,1)+βg1(1,1)
1−β2 and V (K) = g1(1,1)+βg1(0,1)

1−β2 . Then,

there exists 1 ≤ m ≤ K − 1 such that ym = 1 and 0 < y(i) < 1 for all 1 ≤ i ≤ m− 1.
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(1) K is even.

g1(1, 1) + βg1(0, 1)

1− β2
= V (K) > V (2) +

(K − 2)(g1(0, 1)− g1(1, 1))

2β
=

(g1(0, 1)− g1(1, 1))K

2β

∴ (1− β)K <
1 + A

1− A
β − β 1− β

1 + β

a contradiction to K = K̂.

(2) K is odd.

g1(1, 1) + βg1(0, 1)

1− β2
= V (K) = V (1)+

(K − 1)(g1(0, 1)− g1(1, 1))

2β
<

(K + 1)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K + 1) >
1 + A

1− A
β − β 1− β

1 + β

g1(0, 1) + βg1(1, 1)

1− β2
= V (K+1) > V (2)+

(K − 1)(g1(0, 1)− g1(1, 1))

2β
=

(K + 1)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K + 1) <
1 + A

1− A
β + β

1− β
1 + β

∴ K + 1 = K̂

a contradiction to K = K̂.

Step 2: K < K̂.

Show that there is no absorbing equilibrium. Otherwise, there exists k ≥ 0 such that

yi = 0 for all 0 ≤ i ≤ k and yj > 0 for all j ≥ k + 1. If we assume that 0 < yj < 1 for all

k+1 ≤ j ≤ K−1, then by step 1, we need K = k+K̂, a contradiction to K < K̂. Therefore,

there is k + 1 ≤ m ≤ K − 1 such that ym = 1 and 0 < y(i) < 1 for all k + 1 ≤ i ≤ m − 1.

Step 4 proves that there is no absorbing equilibrium.

Step 3: K > K̂.

Then, state K − K̂ plays the same role as state 0 in step 1:

yi = Vi = 0 ∀0 ≤ i ≤ K − K̂

Vi = (1−yi)βVi+yi(g1(1, 1)+βVi+1) = (1−yi)βVi+yi(g1(0, 1)+βVi−1) ∀K−K̂+1 ≤ i ≤ K−1

Vi = g1(0, 1) + βVi−1 > g1(1, 1) + βVi+1 ∀i ≥ K

In the limit,

y(X) = 0 ∀0 ≤ X ≤ X∗ − X̂

50



y(X) = 1 +
b(1− A)

1 + A
(X −X∗) ∀ X∗ − X̂ ≤ X ≤ X∗

y(X) = 1, a(X) = 0 ∀X ≥ X∗

Step 4 shows that this is the only absorbing equilibrium.

Step 4: Show that the following is impossible: there exists 1 ≤ k + 1 ≤ m ≤ K − 1 where

K − k 6= K̂ or K < T̂ such that (1) ym = 1, (2) yi = 0 for all 0 ≤ i ≤ k − 1, (3) 0 < yi < 1

for all k ≤ i ≤ m− 1.

We can show that ym+2i = 1 and 0 < ym+2i+1 < 1, where m + 2i,m + 2i + 1 < K.

Furthermore, V (k + 1) < 1
β

and V (k + 2) = 1
β
.

Case 1: V (K) = g1(1, 1) + βV (K + 1) ≥ g1(0, 1) + βV (K − 1).

Therefore, V (K + 1) = g1(0,1)+βg1(1,1)
1−β2 and V (K) = g1(1,1)+βg1(0,1)

1−β2 .

(1) K − k is even.

V (K) = V (k + 2) +
(K − k − 2)(g1(0, 1)− g1(1, 1))

2β
=

(K − k)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k) =
1 + A

1− A
β − β 1− β

1 + β

However, this is not generically true since K − k is an integer number.

(2) K − k is odd.

V (K) = V (k + 1) +
(K − k − 1)(g1(0, 1)− g1(1, 1))

2β
<

(K − k + 1)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k + 1) >
1 + A

1− A
β − β 1− β

1 + β

V (K + 1) > V (k + 2) +
(K − k − 1)(g1(0, 1)− g1(1, 1))

2β
=

(K − k + 1)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k + 1) <
1 + A

1− A
β + β

1− β
1 + β

∴ K − k + 1 = K̂

We need K̂ is even. It is easy to show that K − m is even since yK = 1 and ym = 1.

Furthermore, K − k is odd implies that m− k is odd.

∴ V (m+ 1) = V (k + 2) +
(m− k − 1)(g1(0, 1)− g1(1, 1))

2β
=

(m− k + 1)(g1(0, 1)− g1(1, 1))

2β
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Because V (i+ 1)− V (i− 1) = g1(0,1)−g1(1,1)
β2 for m+ 3 ≤ i ≤ K

V (K + 1) = V (m+ 1) +
(K −m)(g1(0, 1)− g1(1, 1))

2β2

=
(m− k + 1)(g1(0, 1)− g1(1, 1))

2β
+

(K −m)(g1(0, 1)− g1(1, 1))

2β2

However, this is not generically true since K −m and m− k + 1 are integer numbers.

Case 2: V (K) = g1(0, 1) + βV (K − 1) > g1(1, 1) + βV (K + 1).

Therefore, V (K) = g1(0,1)+βg1(1,1)
1−β2 and V (K − 1) = g1(1,1)+βg1(0,1)

1−β2 .

(1) K − k is even.

V (K) > V (k + 2) +
(K − k − 2)(g1(0, 1)− g1(1, 1))

2β
=

(K − k)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k) <
1 + A

1− A
β + β

1− β
1 + β

V (K − 1) = V (k + 1) +
(K − k − 2)(g1(0, 1)− g1(1, 1))

2β
<

(K − k)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k) >
1 + A

1− A
β − β 1− β

1 + β

∴ K − k = K̂

a contradiction to K − k 6= K̂ and K < K̂.

(2) K − k is odd.

V (K − 1) = V (k + 2) +
(K − k − 3)(g1(0, 1)− g1(1, 1))

2β
=

(K − k − 1)(g1(0, 1)− g1(1, 1))

2β

∴ (1− β)(K − k − 1) =
1 + A

1− A
β − β 1− β

1 + β

However, this is not generically true since K − k − 1 is an integer number.

Lemma 4.3 There is a unique non-absorbing equilibrium and the necessary condition for

the existence of non-absorbing equilibrium is K ≤ K̂ − 1.

Assume that K is even.

Step 1: It is impossible that V (K) = g1(1, 1) + βV (K + 1) ≥ g1(0, 1) + βV (K − 1).
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Prove by contradiction, then 0 < yK−1 < 1 and V (K+1) = g1(0, 1)+βV (K) > g1(1, 1)+

βV (K + 1) by Lemma 3.1. If 0 < yK−2 < 1, then 0 < yi < 1 for all 0 ≤ i ≤ K − 2 and

V (K−2)
yK−2

= V (0)
y0

= g1(0,1)
1−β . However,

(1− β)(V (K)− V (K − 2)

yK−2

) ≥ β(V (K − 1)− V (K − 3))− β(V (K)− V (K − 2)) = 0

∴ V (K) >
V (K − 2)

yK−2

=
g1(0, 1)

1− β
a contradiction. Therefore, yK−2 = 1, thus 0 < yK−3 < 1. If 0 < yK−4 < 1, then, 0 < yi < 1

for all 0 ≤ i ≤ K − 4 and V (K−4)
yK−4

= V (0)
y0

= g1(0,1)
1−β . However,

(1− β)(V (K − 2)− V (K − 4)

yK−4

) > β(V (K − 3)− V (K − 5))− β(V (K − 2)− V (K − 4)) = 0

∴ V (K − 2) >
V (K − 4)

yK−4

=
g1(0, 1)

1− β
a contradiction. Therefore, yK−4 = 1, thus 0 < yK−5 < 1. Use this argument repeatedly, we

reach a contradiction.

Step 2: K ≤ 2[ β2

1−β2 ].

Show that yK−1 = 1. If 0 < yK−1 < 1, then V (K−2)
yK−2

= V (K) and 0 < yK−2 < 1.

By induction, V (t−2)
yt−2

= V (t) and 0 < yt−2 < 1 for all t ≤ K. However, we know that

V (0)
y0

= g1(0,1)
1−β . Therefore, V (K) = V (0)

y0
= g1(0,1)

1−β , a contradiction to the fact that g1(0,1)
1−β is the

highest continuation payoff. In all, yK−1 = 1.

∴ V (K) =
g1(0, 1) + βg1(1, 1)

1− β2

V (K − 2)

yK−2

= V (K) +
g1(0, 1)− g1(1, 1)

β
=
g1(0, 1) + βg1(1, 1)

1− β2
+
g1(0, 1)− g1(1, 1)

β

Since we can not have two consecutive complete trust: yt = yt+1 = 1 for t ≤ K − 1. Then,

0 < yK−2 < 1. If 0 < yK−3 < 1, then we can show that V (t−2)
yt−2

= V (t) and 0 < yt−2 < 1 for all

t ≤ K−1. Therefore, V (K−2)
yK−2

= V (0)
y0

= g1(0,1)
1−β . As long as g1(0,1)+βg1(1,1)

1−β2 + g1(0,1)−g1(1,1)
β

< g1(0,1)
1−β ,

a contradiction. Therefore, yK−3 = 1 and

V (K − 4)

yK−4

=
V (K − 2)

yK−2

+
1

β
=
g1(0, 1) + βg1(1, 1)

1− β2
+

2(g1(0, 1)− g1(1, 1))

β

Because K ≥ 2[ β2

1−β2 ] + 2, then for all k ≤ K
2

, g1(0,1)+βg1(1,1)
1−β2 + k(g1(0,1)−g1(1,1))

β
< g1(0,1)

1−β .
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By induction, we get that for all 1 ≤ k ≤ K
2

, yK−2k+1 = 1 and 0 < yK−2k < 1. Specifically,

for all k ≤ K
2

,

V (K − 2k + 2)

yK−2k+2

=
g1(0, 1) + βg1(1, 1)

1− β2
+

(k − 1)(g1(0, 1)− g1(1, 1))

β

V (K − 2k + 2) =
g1(0, 1) + βg1(1, 1)

1− β2
− (k − 1)(g1(0, 1)− g1(1, 1))

β2

∴ yK−2k+2 =
β2(1 + Aβ)− (1− β2)(k − 1)(1− A)

β2(1 + Aβ) + (1− β2)β(k − 1)(1− A)

Next, figure out y0:

∵
V0

y0

=
g1(0, 1)

1− β

∵ (1− β)(
V2

y2

− V0

y0

) = (g1(0, 1)− g1(1, 1))− β(V2 − V0)

∴ y0 = (
1 + Aβ

1 + β
−(1− A)(K − 2)(1− β)

2β2
)+

1− β
β

(
(1− A)(K − 2)(1− β)

2β
−(1− A)(1 + 2β)

1 + β
)

∴ lim
∆→0

y0 =
1 + A− b(1− A)X∗

2

For all 0 ≤ X ≤ X∗ and i ≥ 1,

lim
∆→0, 2i∆→X

y2i∆ =
1 + A− b(1− A)(X∗ −X)

1 + A+ b(1− A)(X∗ −X)

lim
∆→0, (2i+1)∆→X

y(2i+1)∆ = 1

Step 3: K ≥ 2[ β2

1−β2 ] + 2.

Therefore, g1(0,1)+βg1(1,1)
1−β2 + K(g1(0,1)−g1(1,1))

2β
< g1(0,1)

1−β . Denote k∗ < K
2

as the largest integer

k such that g1(0,1)+βg1(1,1)
1−β2 + k(g1(0,1)−g1(1,1))

β
< g1(0,1)

1−β . By the same argument as before, we get

that for all 1 ≤ k ≤ k∗, yK−2k+1 = 1 and 0 < yK−2k < 1.

∴ yK−2k+2 =
β2(1 + Aβ)− (1− β2)(k − 1)(1− A)

β2(1 + Aβ) + (1− β2)β(k − 1)(1− A)

Denote K̃ = K − 2k∗ − 2. Because k∗ = [ β2

1−β2 ], then K̃ = K − 2[ β2

1−β2 ]− 2.

(1) Show that yK̃+1 = 1. Prove by contradiction by assuming 0 < yK̃+1 < 1, then 0 < yi < 1

and V (i−1)
yi−1

= V (i+1)
yi+1

for all 0 ≤ i ≤ K̃ + 1. Specifically, V (K̃+2)
yK̃+2

= V (0)
y0

= g1(0,1)
1−β .

∵ (1− β)(
V (K̃ + 4)

yK̃+4

− V (K̃ + 2)

yK̃+2

) = g1(0, 1)− g1(1, 1)− β(V (K̃ + 4)− V (K̃ + 2))
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∵ V (K̃ + 1) < g1(1, 1) + βV (K̃ + 2), V (K̃ + 3) = g1(1, 1) + βV (K̃ + 4)

∴ β(V (K̃ + 4)− V (K̃ + 2)) < V (K̃ + 3)− V (K̃ + 1) =
g1(0, 1)− g1(1, 1)

β

∴ (1− β)(
V (K̃ + 4)

yK̃+4

− V (K̃ + 2)

yK̃+2

) > (1− 1

β
)(g1(0, 1)− g1(1, 1))

∴
g1(0, 1)

1− β
=
V (K̃ + 2)

yK̃+2

<
V (K̃ + 4)

yK̃+4

+
g1(0, 1)− g1(1, 1)

β
=
g1(0, 1) + βg1(1, 1)

1− β2
+
k∗(g1(0, 1)− g1(1, 1))

β

a contradiction to the definition of k∗.

(2) Show that 0 < yi < 1 for all i ≤ K̃ − 1.

Because yK̃+1 = 1, 0 < yK̃ < 1. If we assume yK̃−1 = 1, then

V (K̃)

yK̃
=
g1(0, 1) + βg1(1, 1)

1− β2
+

(k∗ + 1)(g1(0, 1)− g1(1, 1))

β
>
g1(0, 1)

1− β

a contradiction. Therefore, 0 < yK̃−1 < 1 and 0 < yK̃ < 1. This implies that 0 < yi < 1 for

all 0 ≤ i ≤ K̃ − 1.

(3) Show the analytic solution of {yi}K̃−1
i=0 .

Because V (0) = β(1 − y0)V (0) + y0(g1(0, 1) + βV (0)), V (0)
y0

= g1(0,1)
1−β . Since V (1) =

β(1− y1)V (1) + y1(g1(1, 1) + βV (1)) and V (2) = V (1), V (1)
y1

= g1(1,1)
1−β .

∴
V (2i)

y2t

=
g1(0, 1)

1− β
∀ 0 ≤ 2i ≤ K̃

∴
V (2i+ 1)

y2t+1

=
g1(1, 1)

1− β
∀ 0 ≤ 2i+ 1 ≤ K̃ + 1

∴ y2i = y0 +
(1− β)(1− A)

β
i, y2i+1 = y1 +

(1− β)(1− A)

βA
i

Figure out the boundary condition yK̃ . We know that V (K̃)
yK̃

= g1(0,1)
1−β and

(1− β)(
V (K̃ + 2)

yK̃+2

− V (K̃)

yK̃
) = g1(0, 1)− g1(1, 1)− β(V (K̃ + 2)− V (K̃))

Furthermore, we know V (K̃ + 2) and yK̃+2,

∴ yK̃ = (
1 + Aβ

1 + β
−(1− A)(K − K̃ − 2)(1− β)

2β2
)+

1− β
β

(
(1− A)(K − K̃ − 2)(1− β)

2β
−(1− A)(1 + 2β)

1 + β
)

Denote X̃ = lim∆→0 K̃∆. Then, b(X∗ − X̃) = 1, thus X̃ = X∗ − 1
b
.
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In the limit, yK̃ → 1. Because V (1)
Ay1

= V (0)
y0

= g1(0,1)
1−β and β(V (1)−V (0)) = g1(0, 1)−g1(1, 1),

then y1 = 1
A
y0 + 1−β

β
1−A
A

.

∴ yK̃−1 =
1

A
y0 +

(1− β)(1− A)

βA
(K̃ − 1) =

yK̃
A

Therefore, yK̃−1 → A.

If 0 ≤ X ≤ X∗ − 1
b
, then

(a(X), y(X)) =

 (π(X), (1+A)−b(1−A)(X∗−X)
2A

) X = lim∆→0(2k + 1)∆

(π(X), (1+A)−b(1−A)(X∗−X)
2

) X = lim∆→0 2k∆

If X∗ − 1
b
< X ≤ X∗, then

(a(X), y(X)) =

 (1, 1) X = lim∆→0(2k + 1)∆

(π(X), 1+A−b(1−A)(X∗−X)
1+A+b(1−A)(X∗−X)

) X = lim∆→0 2k∆

Step 4: Show that K ≤ K̂ + 1.

Because k∗ < β2

1−β2 and K − K̃ − 2 = 2k∗,

∴
1− β
β

(
(1− A)(K − K̃ − 2)(1− β)

2β
− (1− A)(1 + 2β)

1 + β
) ≤ −(1− β)(1− A)

β

∴ yK̃ ≤ (
1 + Aβ

1 + β
− (1− A)(K − K̃ − 2)(1− β)

2β2
)− (1− β)(1− A)

β

Furthermore, 0 ≤ y0 = yK̃ −
(1−β)(1−A)

β
K̃
2

implies that yK̃ ≥
(1−β)(1−A)

β
K̃
2

.

∴
(1− β)(1− A)

β

K̃ + 2

2
≤ 1 + Aβ

1 + β
− (1− A)(K − K̃ − 2)(1− β)

2β2

∴
(1− β)(1− A)

β

K

2
≤ 1 + Aβ

1 + β
− k∗(1− A)(1− β)2

β2

Eventually, we can show that

∴ (1− β)K <
1 + A

1− A
β − β 1− β

1 + β

∴ K ≤ K̂ − 1

Step 5: If K is odd, then denote K∗ = K + 1. It can be show that K∗ plays the same role

as K in previous steps in which K is even. In all, all the results in the previous steps hold

for K∗, if we denote K∗ = K + 1 if K is odd and K∗ = K if K is even.

Proof of Theorem 4 and Proposition 4:
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Proof. If K ≥ K̂, then by lemma 4.3, there is no non-absorbing equilibrium. By lemma

4.2, there is a unique absorbing equilibrium. In all, there is a unique stationary Markov

equilibrium and it is an absorbing equilibrium.

If K ≤ K̂ − 1, then by lemma 4.2, there is no absorbing equilibrium. Therefore, the

equilibrium needs to a non-absorbing equilibrium. By lemma 4.3, there is only a unique

non-absorbing equilibrium. In all, there is only a unique stationary Markov equilibrium and

it is a non-absorbing equilibrium.

The limiting result where ∆→ 0 is characterized in lemma 4.2 and lemma 4.3.

Appendix 5

Proof of Proposition 5:

Proof. We have shown in section 2.2 that if player 1 only has binary choices Ii∗ and I0, then

the stationary equilibrium can be characterized by a reputation building phase X < X∗ and

a reputation exploitation phase X ≥ X∗.

Look at the equilibrium behavior of player 1 in state X < X∗ when player 2 plays mixed

strategy 0 < y(X) < 1. We show that it is an equilibrium that player 1 only puts positive

probability on Ii∗ and I0.

∵ g1(Ii∗ , B)y(X)+β((1−qi∗)V (X+1)+qi∗V (X−1)) = g1(I0, B)y(X)+β((1−q0)V (X+1)+q0V (X−1))

Furthermore, by the definition of i∗: i∗ = arg mini{ ci
q0−qi}, it is easy to show that

g1(Ii, B)y(X)+β((1−qi)V (X+1)+qiV (X−1)) < g1(I0, B)y(X)+β((1−q0)V (X+1)+q0V (X−1))

Therefore, player 1 puts zero probability on investment other than Ii∗

Look at the equilibrium of player in state X ≥ X∗ where play 2 buys the product for

sure: y(X) = 1. We can show that it is an equilibrium that player 1 exploits the reputation

by playing I0 for sure.

∵ g1(Ii∗ , B)+β((1−qi)V (X+1)+qiV (X−1)) < g1(I0, B)y(X)+β((1−q0)V (X+1)+q0V (X−1))
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By the definition of i∗: i∗ = arg mini{ ci
q0−qi}, it is easy to show that for any i ≥ 1,

∵ g1(Ii, B)+β((1−qi)V (X+1)+qiV (X−1)) < g1(I0, B)y(X)+β((1−q0)V (X+1)+q0V (X−1))

Therefore, player 1 plays I0 for sure at X ≥ X∗.
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