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Abstract

This paper examines signalling when the sender exerts effort and
receives benefit over time. Receivers only observe a noisy public signal
about effort, which has no intrinsic value.

Time introduces novel features to signalling. In some equilibria, a
sender with a higher cost of effort exerts strictly more effort than his
low-cost counterpart. Noise leads to robust predictions: pooling on no
effort is always an equilibrium, while pooling on positive effort cannot
occur. Whenever pooling is not the unique equilibrium, informative
equilibria with a simple structure are shown to exist.
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1 Introduction

Most signalling situations involve noisy observation of the sender’s effort.
In many, effort is exerted over time. For example, a politician may be a
(relatively) honest or a corrupt type, and can signal honesty by following the
law to the letter (paying taxes in full, refraining from speeding and bribe-
taking). The cost of abiding by the law is incurred at all times. Voters learn
of low effort only when some random events, such as scandals occur.

Novel dynamics appear. For example, there exist equilibria in which the
high-cost type exerts strictly more effort initially than the low-cost type.
Intuition from the previous literature may thus be misleading. Despite the
richness, some results are robust across noise structures. Pooling on zero
effort is always an equilibrium, while pooling on positive effort cannot occur.
There are always prior beliefs at which pooling is the unique equilibrium.
When pooling is not unique, simple informative equilibria exist. The rich
dynamics are due to the multiple opportunities for exerting effort, while the
robust features are driven by the noise.

The environment is the natural adaptation of Spence (1973). The players
are a sender and a competitive market of receivers. The sender is either a
high-cost or a low-cost type. Type is private information. Receivers share
a common prior belief about the type. The sender continuously chooses his
effort level. Receivers observe a noisy public signal about the effort, rather
than the effort itself. The signal is modelled either as a Poisson or a Brownian
process. Effort either increases the intensity of the Poisson process (this is
called the good news case), or decreases it (bad news). The types only differ
in their flow cost of effort. The sender derives a flow benefit directly from the
posterior belief of the receivers. Attention is restricted to Markov stationary
equilibria.

Some features are common to the Poisson and Brownian models. Pool-
ing on no effort is an equilibrium for general noise structures. A sufficient
condition is that whenever the receivers expect the sender’s effort to be type-
independent, beliefs stay constant regardless of signals. If beliefs do not re-
spond to signals, then effort provides no benefit to the sender. This makes
both types switch to zero effort to minimize cost. The preceding reasoning
can also be used to rule out pooling on positive effort.

Pooling is the unique equilibrium when the benefit of signalling is too
small to incentivize the low-cost type to signal. The cost of signalling is
the same for all prior beliefs, while the benefit depends on the difference
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between the posterior beliefs after different signals. This difference is smaller
for extreme beliefs, for a given imperfectly revealing signal structure. There
are always prior beliefs high or low enough to make the benefit smaller than
the cost.

Whenever pooling is not the unique equilibrium, informative equilibria
with a simple structure exist. The high-cost sender never exerts effort. The
low-cost sender initially exerts maximum effort, switching to zero effort when
the belief becomes high or low enough.

When the sender’s benefit is concave in the receivers’ belief, the high-cost
sender strictly prefers pooling to any informative equilibrium. This is because
in an informative equilibrium, the posterior belief has positive variance, and
the high-cost type expects this belief to become less favourable on average
over time.

Each of the three models has unique features. In the bad news model,
the high-cost sender exerts more effort than the low-cost in some equilib-
ria. To describe such equilibria, recall the example of a politician who can
exert effort to obey the law. Lawful behaviour decreases the frequency of
scandals. The equilibria with higher effort by the corrupt type display four
regimes, referred to as early career, insider, scrutiny and tainted. Play starts
in the early career, during which the corrupt type exerts positive effort and
the honest type no effort. If no scandal occurs by a given time, then the
politician becomes an insider, which means that the voters ignore scandals
and the politician no longer exerts effort. If instead a scandal occurs in the
early career, then scrutiny results. Under scrutiny, the honest type exerts
maximum effort and the corrupt type none. Under scrutiny, a scandal leads
to a tainted reputation: voters are certain that the politician is corrupt and
the politician exerts no effort.

In the good news and Brownian models, the high-cost sender exerts no
more effort (at any belief) than the low-cost in all equilibria. The good news
model most closely resembles Spence (1973). For example, the high-cost
sender prefers pooling to all other equilibria. This is true even when the
benefit is convex in the receivers’ belief (so that learning has positive value).
The reason is that when the equilibrium effort of the high-cost type is less
than the maximum, then by the linearity of the cost and signal structure,
the high-cost type is indifferent between equilibrium effort and no effort. No
effort means no signals. By indifference, the equilibrium payoff of the high-
cost type must be the same as in the absence of signals. In the absence
of signals, belief drifts down under good news when the high-cost sender
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is expected to exert less effort than the low-cost. Flow benefit increases in
belief, so a downward drift in belief lowers the payoff to the sender.

In the Brownian model, belief is bounded away from certainty in all equi-
libria, unlike in the Poisson models. There need not exist a ‘most informa-
tive’ equilibrium for a given prior. More precisely, for a given equilibrium,
define the signalling region as the set of beliefs at which the low-cost type
of the sender exerts maximal effort and the high-cost type minimal and out-
side which neither type exerts effort. Two signalling regions corresponding
to equilibria at the same parameters might intersect without their union (or
any set of beliefs containing the union) being an equilibrium signalling region.
The two signalling regions cannot be ranked by informativeness.

Many authors have mentioned the relevance of time (Weiss, 1983; Ad-
mati and Perry, 1987) and noise (Matthews and Mirman, 1983) in signalling
contexts.

Continuous time signalling with Brownian noise is considered in Daley
and Green (2012b), Gryglewicz (2009) and Dilme (2012). In all three, the
benefit of signalling is received in a lump sum when the sender decides to
stop the game. In Daley and Green (2012b), the signal process is exogenous.
In Gryglewicz (2009), one type of the sender is a commitment type. In
the present paper, the benefit is a flow, both types are strategic and effort
controls the signal process.

The results for repeated noiseless signalling games of Kaya (2009) and
Roddie (2012) resemble those of Spence (1973) and differ from the current
paper in that pooling on positive effort is always an equilibrium and informa-
tive equilibria always exist. An overview of Kaya (2009) is given in the online
appendix. More distantly related repeated noiseless models are Nöldeke and
van Damme (1990) and Swinkels (1999), in which the sender receives the
benefit upon stopping signalling.

One-shot noisy signalling in a limit pricing context is studied in Matthews
and Mirman (1983). Carlsson and Dasgupta (1997) select equilibria in noise-
less one-shot games that are the limits of equilibria in noisy games as noise
vanishes. They assume the receiver only has two actions. Daley and Green
(2012a) look at perfectly observable effort together with a noisy exogenous
signal about the type in a one-shot model. A more detailed discussion of the
literature is deferred to Section 4.1.
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2 Poisson signalling

This section turns to the main model where effort changes the intensity of
a Poisson signal process. Both the good news and the bad news cases are
considered, but first the setup of the model is described.

Time is continuous and the horizon is infinite. There is a strategic sender
and a competitive market of receivers. The sender has two types, H and
L, with initial log likelihood ratio1 l0 ∈ R that is common knowledge. The
sender knows his type, the receivers do not. A generic log likelihood ratio l
is an element of R = R ∪ {∞,−∞}. The log likelihood ratio corresponding
to Pr(H) = 1 is l =∞ and corresponding to Pr(H) = 0 is l = −∞.

The sender has action set [0, 1] (endowed with the natural Borel σ-
algebra) at each instant of time. The action 0 is interpreted as no effort
of signalling and the action 1 as maximal effort. Effort e costs type θ sender
cθe, with cL > cH > 0. Effort benefits the sender via its effect on the signal
process, which drives the market’s log likelihood ratio l. This in turn de-
termines the flow payoff. Before describing this benefit, the signal process,
strategies and market expectations must be defined.

The signal is binary, with values in {0, 1}. The signal 1 occurs at a Poisson
rate, and in its absence the signal is 0. In the good news (breakthrough) case,
the rate of signal 1 is etλ at time t. The parameter λ ∈ (0,∞) is interpreted
as the informativeness of effort and et denotes the effort at t. The intensity
increases in the sender’s effort, so the occurrence of the signal is good news
about the sender. In the bad news (breakdown) case, the rate of 1 is (1−et)λ,
which decreases in effort. Note that zero effort in the good news case or
maximal effort e = 1 in the bad news case ensures no signals occur. Given
that the values of the signal are fixed, a realization of the signal process is
described by the times at which 1 occurs. The receivers observe the public
signals, but not the sender’s effort. Since the signal is public, the l it leads
to is common to all receivers.

A signal sequence is a sequence (τk)
∞
k=1 of signal times satisfying 0 = τ0 <

τ1 < τ2 < · · · and having no accumulation points. The set of signal sequences
H∞ is endowed with the σ-algebra generated by cylinders. An n-signal public
history is a finite sequence (τ1, . . . , τn, t) satisfying τ1 < · · · < τn < t, with

1Throughout this paper, log likelihood ratio l is used instead of belief Pr(H) = exp(l)
1+exp(l) ,

as formulas simplify significantly in the dynamic models to follow. There is a one-to-one
map from log likelihood ratio to belief, so all results can be stated in terms of beliefs.
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t ∈ (0,∞). The set of n-signal histories is Hn. It inherits the σ-algebra
from H∞. The set of nonterminal public histories is H = ∪n∈N∪{0}Hn. H
inherits a σ-algebra from {Hn} and is a Borel space (Yushkevich, 1980). The
terminal public histories are the signal sequences. The truncation of a history
h = (τ1, . . . , τn, t) to time s ≤ t is hs = (τ1, . . . , τm, s), with τm < s. The
notation τk ∈ h means that under history h, a signal occurs at time τk.

A pure public strategy is a pair of measurable maps e = (eH , eL) from
H into the action set [0, 1]. Throughout the paper, only public strategies
are considered. In this section, the focus is on pure strategies. Denote the
strategy the market expects by e∗ = (e∗H , e

∗
L). This notation is also used for

equilibrium strategies.
Some sets of histories that are used in defining the updating rule for the

log likelihood ratio are defined next. These consist of histories in which a
signal occurs at a time at which the strategy expected from the sender is
such that the signal is perfectly informative about the type. In the good
news case,

Hg
max(e

∗) = {h ∈ H : ∃τk ∈ h, e∗H(hτk) > 0, e∗L(hτk) = 0} ,
Hg

min(e∗) = {h ∈ H : ∃τk ∈ h, e∗H(hτk) = 0, e∗L(hτk) > 0} ,

and in the bad news case,

Hb
max(e

∗) = {h ∈ H : ∃τk ∈ h, e∗H(hτk) < 1, e∗L(hτk) = 1} ,
Hb

min(e∗) = {h ∈ H : ∃τk ∈ h, e∗H(hτk) = 1, e∗L(hτk) < 1} .

The updating of the market’s log likelihood ratio is described next, start-
ing with the response to signal 1. If the strategy the market expects is e∗,
signal 1 occurs at time t, and at t the log likelihood ratio is lt, then in the
good news case the log likelihood ratio jumps to

jg(lt) =

{
lt + ln

(
e∗H(ht)

e∗L(ht)

)
(with 0

0
= 1) if ht /∈ Hg

max(e
∗) ∪Hg

min(e∗),

lt if ht ∈ Hg
max(e

∗) ∪Hg
min(e∗).

In the bad news case the log likelihood ratio jumps to

jb(lt) =

{
lt + ln

(
1−e∗H(ht)

1−e∗L(ht)

)
(with 0

0
= 1) if ht /∈ Hb

max(e
∗) ∪Hb

min(e∗),

lt if ht ∈ Hb
max(e

∗) ∪Hb
min(e∗).
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Two refinements are built into the j(l) formulas. First, if the efforts expected
from the types at the time a signal occurs are such that the signal rate is
zero, then by the 0

0
= 1 assumption, the log likelihood ratio does not respond

to the signal. Second, signals are ignored when there is certainty about the
type (a perfectly informative signal occurred in the past).

Definition 1. Under good news, the log likelihood ratio at t is

lt = l0 − λ
∫ t

0

e∗H(hs)− e∗L(hs)ds+
n∑
k=1

jg(lτk), (1)

and under bad news, it is

lt = l0 + λ

∫ t

0

e∗H(hs)− e∗L(hs)ds+
n∑
k=1

jb(lτk), (2)

where (e∗H , e
∗
L) is the strategy the market expects and h = (τ1, . . . , τn, t) is

the history up to t.

Given a signal sequence, the solution to (1) is the log likelihood ratio
process (lt)t≥0 under good news, and the solution to (2) is the process under
bad news.

The integrals in (1) and (2) are uniquely defined, because eL, eH are
bounded and measurable in the σ-algebra of histories, which contains single-
tons. Fixing a signal sequence, a history is determined by its length t, so
eL, eH are measurable functions from time to actions.

A Markov stationary strategy is a public strategy measurable w.r.t. the
log likelihood ratio process. A Markov stationary strategy can be written as
a pair of functions (eL, eH) : R → [0, 1]2. Subsequently only pure Markov
stationary strategies are considered. To simplify the statements to follow,
attention is restricted to eL, eH piecewise continuous2 and at every disconti-
nuity, continuous from the left or the right. The state variable l is the left
limit lt− of the log likelihood ratio (with the convention l0− = l0), so jumps
are not anticipated by a strategy.

In this paper, l0 is treated as a parameter, not a variable, so the strategies
are a function of l0 in addition to l. This is to avoid discussion of log likelihood

2A piecewise continuous strategy is understood to have at most finitely many discon-
tinuities on R.
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ratios unreached in equilibrium after any deviation. Define the reachable set
of log likelihood ratios

L(e∗) =
{
l ∈ R : ∃h ∈ H ∃t ∈ R+ s.t. lt = l

}
,

where lt is given in Def. 1. The reachable set depends on the strategy the
market expects and on l0. Only behaviour on the reachable set is discussed
subsequently. Since no deviation can take l outside the reachable set, be-
haviour there can be arbitrary. Some l ∈ L(e∗) can only be reached by
deviating, not by following the equilibrium strategy. For example, L cannot
reach l = ∞ in the good news case by following e∗L(l) = 0 ∀l ∈ L(e∗) and
H cannot reach l = −∞ in the bad news case by following e∗H(l) = 1 in the
interior of the reachable set. To specify behaviour in these cases, assume
e∗L(∞) = 0 and e∗H(−∞) = 0.

Now that strategies and the log likelihood ratio process have been de-
scribed, the sender’s payoff can be defined. The sender is assumed to derive
flow benefit β(l) directly from the market’s log likelihood ratio l.3

The sender’s flow utility from effort e and the market’s log likelihood ratio
l is β(l)− cθe, where β is assumed strictly increasing, bounded and continu-
ously differentiable. Denote the flow benefit from l = ∞ (corresponding to
Pr(H) = 1) by βmax and from l = −∞ by βmin.

Given the strategy e∗ = (e∗L, e
∗
H) the market expects, the payoff of type

θ from the effort function eθ(·) and the log likelihood ratio process (lt)t≥0 is
the expected discounted sum of flow payoffs

Jeθl0 (e∗) = Eeθ
[∫ ∞

0

exp(−rt)[β(lt)− cθeθ(lt)]dt|lt=0 = l0

]
, (3)

where the expectation is over the stochastic process (lt)t≥0, given eθ. The
discount rate is r > 0. Except for jumps, l evolves deterministically given the
market expectations (e∗L, e

∗
H). The jumps occur at Poisson times. Given l at

the time of a jump, the size of the jump is deterministic. The expectation
in (3) is thus over the jump times of the Poisson signal process induced by
eθ(·).

3This can be microfounded by assuming that each receiver has a unique one-shot best
response a∗(l) to each log likelihood ratio l ∈ R. Since each receiver is infinitesimal, their
current action does not influence the future, so in any equilibrium each receiver must play
the one-shot best response. The sender is then assumed to derive flow benefit βa(a∗(l))
from the receivers’ action a∗(l).
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Since l0 is a parameter, the payoff starting at l0 need not in general equal
the continuation value from l0 on when starting at some l̂0 6= l0. However,
if the strategy the market expects is Markov stationary, then every time l is
reached, the continuation value of type θ from l is well defined and is denoted
Vθ(l).

4

Lemma 1. VH(l) ≥ VL(l) ∀l0 ∈ R ∀e∗ ∀l ∈ L(e∗), with strict inequality
if under the optimal (eL, eH) starting at l, there is a positive probability of
reaching some l̂ with eL(l̂) > 0. βmin

r
≤ Vθ(l) ≤ βmax

r
, with strict inequalities

if l ∈ R.

All proofs omitted from the text are in Appendix A.

Definition 2. A Markov stationary equilibrium consists of a Markov sta-
tionary strategy e∗ = (e∗H , e

∗
L) of the sender and a log likelihood ratio process

(lt)t≥0 s.t.

1. given (lt)t≥0, e
∗
θ maximizes (3) over eθ,

2. given e∗, (lt)t≥0 is derived from (1) under good news and (2) under bad
news.

The definition implies that on the reachable set, behaviour is optimal from
any point on. Therefore the equilibrium concept could also be called Markov
perfect. Henceforth equilibrium means a pure Markov stationary equilibrium.
Call an equilibrium extremal when the equilibrium efforts only take values in
{0, 1}. These are analogous to pure equilibria, because the cost and the signal
rate are linear in effort. The extremal efforts will be shown to imply that in
an interval of log likelihood ratios, H exerts maximal effort, and outside the
interval zero effort, while L never exerts effort. Exerting effort initially and
then potentially stopping can be interpreted as reputation building by H. A
pooling equilibrium is an equilibrium in which e∗L(l) = e∗H(l) ∀l ∈ L(e∗).

Lemma 2. Assume the updating rule satisfies ∀l ∈ L(e∗) ∀t ≥ 0 ∀s > 0 if
e∗H(l) = e∗L(l) and lt = l, then lt+s = lt. Then

(a) eθ(l) = 0 is the unique best response to e∗H(l) = e∗L(l) for θ = H,L,

(b) the pooling equilibrium with e∗L(l0) = e∗H(l0) = 0 exists for any l0 ∈ R,

4The dependence of Vθ(l) on e∗ and l0 is suppressed in the notation.
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(c) in any equilibrium for any l ∈ L(e∗), e∗L(l) = e∗H(l) > 0 cannot occur.

Proof. If e∗H(l) = e∗L(l) and lt = l imply lt+s = lt, then upon reaching any

l̂ ∈ R with e∗H(l̂) = e∗L(l̂), l remains at l̂ forever regardless of effort, thus there
is no benefit to signalling. Signalling is costly, so zero effort is the unique
best response for both types.

If both types are expected to exert no effort at l0, then zero effort is the
unique best response. This proves the existence of the pooling equilibrium
with e∗L(l0) = e∗H(l0) = 0.

If for some l ∈ L(e∗), the receivers expect e∗L(l) = e∗H(l) > 0, then both
types choose no effort at l. This rules out e∗L(l) = e∗H(l) > 0 in equilibrium.

Lemma 2 covers a variety of noise structures, including the Poisson (with
the refinements described above) and the Brownian signal structures of this
paper. Lemma 2 shows that an extremal equilibrium always exists, because
pooling on zero effort is an extremal equilibrium.

Pooling is the unique equilibrium if the benefit of signalling is low enough
relative to the cost. It is proved below (Propositions 5 and 9) that if pooling
is not the unique equilibrium, then there exists a continuum of nonpooling
extremal equilibria.

Proposition 3. Pooling is the unique equilibrium ∀l0 ∈ R if βmax−βmin

r
≤ cH

λ
.

The conditions for the existence of an informative equilibrium have the
same intuition in the Brownian and the one-shot cases as in the Poisson
model: for some initial log likelihood ratio, the benefit to signalling when
the receivers expect H to signal and L not to signal has to be high enough
to incentivize H to signal. Then an l0 can be found at which the benefit of
signalling is low enough for L not to imitate H, but high enough for H to
signal.

Given e∗, the pooling region is defined as

P(e∗) = {l ∈ L(e∗) : e∗H(l) = e∗L(l) = 0} .

Due to the assumptions that at l = −∞ and ∞, the log likelihood ratio
does not respond to signals and e∗L(∞) = e∗H(−∞) = 0, we have −∞,∞ ∈
P(e∗) ∀e∗.
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It is intuitive that when the sender’s benefit is concave in the receivers’
posterior belief,5 then L always prefers the pooling equilibrium to any other
equilibrium. This is because for L in an informative equilibrium the expected
posterior is lower than the prior, and with a concave benefit, the variance in
the posterior is not beneficial. Lemma 16 in Appendix A states this formally.
The result holds in all the signalling models discussed in this paper.

2.1 The bad news case

In the bad news model, there exist equilibria in which for some beliefs of
the receivers the L type exerts higher effort than H, despite the uniformly
higher marginal cost of effort. This distinguishes the bad news case from the
previous literature on signalling. The result is reminiscent of the countersig-
nalling of Feltovich, Harbaugh, and To (2002), but the mechanism is quite
different. In the bad news model, it is the threat of signalling being required
in the future that incentivizes L to signal. This threat is not as severe for H
whose signalling cost is lower.

Some effort patterns cannot occur in equilibrium. Lemma 2 ruled out
e∗L(l) = e∗H(l) > 0. Lemma 4 shows that e∗L(l) > e∗H(l) cannot occur under
some conditions, e.g. when the jump j(l) lands in the pooling region.

Lemma 4. In equilibrium, the following cannot occur ∀l0 ∈ R ∀l ∈ L(e∗):

(a) e∗L(l) > e∗H(l) and pooling at j(l),

(b) 0 < e∗L(l) < e∗H(l) = 1.

The intuition of the proof of (a) is as follows. The value after a jump is the
same for both types, so due to VH ≥ VL, the benefit of the jump is larger (or
the loss is smaller) for L than for H, regardless of whether Vθ(j(l)) > Vθ(l)
or not. The cost of avoiding the jump is larger for L, so it cannot be that
L chooses a greater effort to avoid jumps than H. For (b), it is proved that
VL is strictly increasing in the region where 0 < e∗L(l) < e∗H(l) = 1. If L is
taking interior effort and H is taking maximal effort, then the jumps go to
l = −∞. Given that VL is strictly increasing, L is indifferent to the jumps

5β(l) is linear in the posterior belief if it has the form k1
exp(l)

1+exp(l) + k2, with k1 > 0,

because the probability corresponding to log likelihood ratio l is exp(l)
1+exp(l) . The function

k1
exp(l)

1+exp(l) + k2 is convex for l < 0 and concave for l > 0.
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Early career Insider
no signal

Scrutiny

signal no signal

Tainted
signal

Figure 1: The four regimes in an equilibrium in which e∗L > e∗H .

at most at a single point, so cannot be taking interior effort over a range of
l.

Lemma 4 does not rule out e∗L > e∗H occurring in equilibrium, as shown in
Example 1. Both j(l) > l and j(l) < l are possible, because if e∗L(l) > e∗H(l),
then j(l) > l. The effort pattern e∗L > e∗H is counterintuitive, because the
benefit from a higher log likelihood ratio is the same for the types, but L has
a higher marginal cost of signalling.

After the example, the set of extremal equilibria is characterized. There
exist equilibria in which e∗H(l) ∈ (0, 1) and e∗L(l) = 0 for some reachable l.
This is shown in Lemma 17 in Appendix A. These equilibria can be found
numerically, but cannot be solved for in closed form.

Example 1. Take cH = 0.1, cL = 1.14, r = 1, λ = 2, β(l) = exp(l)
1+exp(l)

, l0 = 2−ε2,
ε ∈ (0, 1). Then Proposition 18 in Appendix A provides sufficient conditions
for the existence of an equilibrium in which e∗L ∈ (0, 1) and e∗H = 0 over the
interval (2− ε, l0]. In the interval [2,∞), the efforts are e∗L = 0 and e∗H = 1.
Elsewhere, the efforts are zero.

The play in this equilibrium is illustrated in in Figure 1. The initial
regime is early career, which in the absence of a signal eventually transitions
to insider, but after a signal transitions to scrutiny. Under scrutiny, another
signal takes the play to the tainted regime. The incentive for L to exert
higher effort in the early career regime is created by the payoff difference
between the insider and scrutiny regimes (the insider regime has a higher
payoff). The payoffs to both types from the insider regime are equal, but
the payoff from scrutiny is lower for L. The difference between insider and
scrutiny is larger for L, so L can be incentivized to positive effort while H
takes zero effort. The incentive for initial signalling is provided by the threat
of future expectation of signalling.

In the log likelihood ratio space, the four regimes are depicted in Figure 2.
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l
−∞ e∗L = e∗H = 0 e∗L > e∗H

no signal

e∗H = 1, e∗L = 0

no signal

signal

signal

Figure 2: The log likelihood ratios in an equilibrium in which e∗L > e∗H .

2.1.1 Extremal equilibria

In the class of extremal equilibria, it is w.l.o.g. to consider only the ones in
which e∗L ≡ 0 and e∗H(l) = 1 if l ∈ [l0, l) for some l ∈ R, with e∗H(l) = 0
otherwise. The interval [l0, l) is called the signalling region. The reason
why extremal equilibria must take an interval form is as follows. Pooling on
positive effort (e∗H(l) = e∗L(l) = 1) cannot occur. Maximal effort by L cannot
occur, because with e∗L(l) = 1 > e∗H(l), the jumps go to l = ∞, which is
absorbing and gives the maximal payoff. This makes L deviate to zero effort.
The log likelihood ratio cannot drift across a region on which e∗L = e∗H = 0
and if e∗H(l) = 1, e∗L(l) = 0, then j(l) = −∞, so there are no jumps into
another region where e∗L = 0 and e∗H = 1. The interval [l0, l) is assumed open
at l for three reasons. At l = ∞, beliefs do not respond to signals, so both
types will choose e = 0. Singleton intervals are ruled out by the assumption
that e∗L, e

∗
H are piecewise continuous and continuous from the left or the right

at jumps. Nonsingleton closed intervals of finite length can be replaced with
intervals open on the right without changing the results.

Next, the value functions of the types in extremal equilibria are cal-
culated. After that, bounds on the set of signalling regions are provided,
the existence of nonpooling extremal equilibria is proved if the condition in
Proposition 3 fails, and finally comparative statics are reported.

At l, the value functions of both types are Vθ(l) = β(l)
r

. The boundary l

can be infinite. In [l0, l), the value functions are solved for using Hamilton-
Jacobi-Bellman (HJB) equations and a verification theorem (Theorem 4.6
in Presman, Sonin, Medova-Dempster, and Dempster (1990) as modified for
the discounted case in Yushkevich (1988)) is used to check that the solutions
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coincide with the value functions. The HJB equation of type θ is

rVθ(l) = β(l) + λV ′θ (l) + max
e

{
λ(1− e)

[
βmin

r
− Vθ(l)

]
− cθe

}
.

After reaching l, incentives are trivial. In the signalling region, type θ
chooses eθ = 1 if −λ[βmin

r
−Vθ(l)]− cθ ≥ 0. Rearranging this, one obtains the

incentive constraints (ICs)

cH
λ

+
βmin

r
≤ VH(l),

cL
λ

+
βmin

r
≥ VL(l), (4)

which must hold for every l in the signalling region. These restrict the set of
possible signalling regions and must be checked after solving for the candidate
value functions.

To solve for the candidate value functions, substitute the equilibrium
strategies e∗H = 1 and e∗L = 0 into the HJB equations of H and L. The
HJB equations become the ordinary differential equations (ODEs) rVH(l) =
β(l) − cH + λV ′H(l) and rVL(l) = β(l) + λV ′L(l) + λβmin

r
− λVL(l). In the

absence of a signal, the log likelihood ratio rises continuously to l. Assume
l is finite (the case l = ∞ is discussed after solving the l < ∞ case). Then

value matching gives liml→l Vθ(l) = Vθ(l) = β(l)
r

, which provides the boundary
condition for the ODEs. The solutions of the ODEs are

VH(l) = exp

(
−r l − l

λ

)
β(l)

r
+

∫ l

l

β(z)− cH
λ

exp

(
−rz − l

λ

)
dz,

VL(l) = exp

(
−(r + λ)

l − l
λ

)
β(l)

r
(5)

+

∫ l

l

[
β(z)

λ
+
βmin

r

]
exp

(
−(r + λ)

z − l
λ

)
dz.

These are continuously differentiable on (l0, l), with a right derivative at l0
and a left derivative at l, so by the verification theorem in Yushkevich (1988),
they coincide with the candidate value functions. The ICs must be checked
to confirm that the candidate value functions are indeed the value functions.

If l = ∞, then both types get benefit β(l) forever. In addition, L has a
flow rate λ of jumps to βmin

r
and H pays a flow cost cH forever. The candidate
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value functions are

VH(l) =

∫ ∞
l

β(z)− cH
λ

exp

(
−rz − l

λ

)
dz, (6)

VL(l) =

∫ ∞
l

[
β(z)

λ
+
βmin

r

]
exp

(
−(r + λ)

z − l
λ

)
dz.

For every ε > 0 there exists l̂ ∈ R s.t. βmax − β(l̂) < ε, which implies

|βmax−cH
r
− VH(l̂)| < ε

r
and | β(l̂)

r+λ
+ λβmin

r(r+λ)
− VL(l̂)| < ε

r
.

Bounds on the set of signalling regions [l0, l) for which the incentive con-
straints (4) are satisfied are provided next. The maximal upper boundary
max l that an equilibrium signalling region can have must satisfy the incen-

tive constraint liml→max l− VL(l) ≤ βmin

r
+ cL

λ
. The limit equals β(l)

r
for l finite

and equals βmax

r+λ
+ λβmin

r(r+λ)
for l =∞. The benefit to signalling is avoiding the

bad signal, so the larger the difference between βmin

r
and VL(l), the greater

the incentive of L to imitate H. Since VL is increasing, the L type incentive
constraint determines the log likelihood ratio above which signalling cannot
continue.

The minimal l0 at which signalling can start is determined by VH , which
depends on l. Denote the minimal lower boundary given l by l0(l). This
is finite, because −∞ is in the pooling region by Def. 1. The incentive
constraint liml→l0(l) VH(l) ≥ βmin

r
+ cH

λ
must hold with equality at l0(l). Since

VH is strictly increasing, if the IC for H holds at l, then it holds at all l̂ > l.
There exists an informative extremal equilibrium if the condition in Propo-

sition 3 for pooling to be the unique equilibrium fails.

Proposition 5. Suppose βmax−βmin

r
> cH

λ
. Then ∃l0 ∈ R ∃ε > 0 s.t. there

exists a extremal equilibrium with signalling region [l0, l0 + ε).

The intuition for Proposition 5 is that if the jumps from∞ to −∞ strictly
incentivize H to signal, then there is an l0 large enough s.t. jumps from l0
to −∞ do so as well. In that case there exists a extremal equilibrium with
signalling region [l0, l0 + ε).

If there exists one extremal equilibrium with a nonempty signalling region
[l0, l), then there is a continuum of such equilibria, each corresponding to a

particular l
′ ∈ (l0, l].

Comparative statics are the final item discussed in this section. Welfare
is defined as W (l) = exp(l)

1+exp(l)
VH(l)+ 1

1+exp(l)
VL(l), because the receivers form a
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competitive market, so their payoff is zero in any equilibrium. Based on (5),
VL(l) and VH(l) are infinitely differentiable in l, r, λ, cH , cL for any l ∈ L(e∗),
so derivatives can be used for comparative statics. Changing l changes e∗

and therefore L(e∗). In that case, the comparison is between payoffs at an l
that is in the reachable set both before and after changing l.

Proposition 6. If l ∈ R, then

(a) dVL(l)

dl
> 0 iff β′(l)− β(l) + βmin > 0,

(b) dVH(l)

dl
> 0 iff β′(l)

r
− cH

λ
> 0,

(c) dW (l)

dl
> 0 iff exp(l)

[
β′(l)− cHr

λ

]
+ β′(l)− β(l) + βmin > 0.

Proof. The proof is by taking the appropriate derivatives.

The condition for dVL(l)

dl
> 0 holds when β(l) =

(
exp(l)

1+exp(l)

)n
, n ∈ N,

n ≥ 2, l < ln(n− 1). The effects of raising l on VL are a higher payoff upon
reaching l (the β′(l) term), but a lower chance of reaching it (the −β(l) term)
and a higher chance of jumping to l = −∞. If β′(l) − β(l) + βmin > 0 as
l → l0, then an informative equilibrium yields a higher VL(l0) than pooling.
If β′(l)− β(l) + βmin ≤ 0 for all l > l0, then pooling maximizes the payoff of

L. This is the case if β(l) = exp(l)
1+exp(l)

(the benefit from the receivers’ belief is

linear in the belief).

If the condition for dVH(l)

dl
> 0 holds as l → l0, then an informative

equilibrium gives H a higher payoff than pooling. If the condition fails at
all l > l0, then pooling maximizes the payoff of H. The interpretation of
the condition is that increasing l increases the payoff upon reaching l at a
rate β′(l) and increases the time during which the signalling cost is paid.
Whether VH increases or decreases in l depends on which effect dominates.

The effect of increasing l on welfare is a combination of the effects on H
and L, with a weight exp(l) on the payoff of H and a weight 1 on L.

2.2 The good news case

The results about the good news model are presented next. The L type
always prefers the pooling equilibrium under good news, even when the flow
benefit from the receivers’ log likelihood ratio is convex. This is reminiscent
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of L preferring pooling to any separating equilibrium in noiseless models, but
differs from the other noisy models considered in this paper.

Some preliminary observations about the equilibrium efforts are collected
in the following lemma. Since the lemma rules out e∗L > e∗H , the log likelihood
ratio can only jump up: j(l) ≥ l in the good news case.

Lemma 7. ∀l0 ∈ R ∀l ∈ L(e∗), the equilibrium efforts satisfy e∗L(l) = e∗H(l) =
0 or e∗L(l) < e∗H(l). Moreover, if e∗L(l) = 0 < e∗H(l), then e∗H(l) = 1.

Some equilibria with e∗L(l), e∗H(l) ∈ (0, 1) at some l ∈ L(e∗) can also be
ruled out, as shown in Lemma 19 in Appendix A.

Restricting attention to extremal equilibria,6 Lemma 7 implies that in
equilibrium the only possible effort combinations are e∗H = e∗L = 0 and e∗H =
1, e∗L = 0. An extremal equilibrium must therefore be an interval of log
likelihood ratios (l, l0] on which e∗H = 1, e∗L = 0 and outside which e∗H = e∗L =
0.7 The lower boundary of the interval can be infinite. The upper boundary
is finite, as shown in Lemma 8.

Lemma 8. ∀l0 ∈ R ∃l̂ ∈ R s.t. in any equilibrium ∀l ∈ L(e∗) ∩ [l̂,∞],
e∗H(l) = e∗L(l) = 0.

As in the bad news case, the value functions are calculated first. Then
bounds on the set of signalling regions are discussed, followed by the existence
of informative extremal equilibria. Comparative statics are derived at the end
of the section.

Outside (l, l0], the value functions of both types are Vθ(l) = β(l)
r

. In (l, l0],
the value functions are solved for using the HJB equation and a verification
theorem. The HJB equation for type θ is

rVθ(l) = β(l)− λV ′θ (l) + max
e
e

{
λ

[
βmax

r
− Vθ(l)

]
− cθ

}
.

6Focussing on extremal equilibria is a restriction. There exist equilibria where e∗L ∈
(0, 1) and e∗H = 1, as shown in Lemma 20 in Appendix A.

7It is w.l.o.g. to consider only one interval, because l cannot drift across a region where
e∗H = e∗L = 0 and if e∗H = 1, e∗L = 0, then jumps are to l = ∞. The interval is open at
l, because e∗H , e

∗
L are piecewise continuous and continuous from the left or the right at

jumps. This rules out singleton intervals. The interval [−∞, l0] cannot be an equilibrium,
because beliefs do not respond to signals at l = −∞, so both types will choose zero effort
there.
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In the pooling region, incentives are trivial. At every l in the signalling
region, the incentive constraints

λ

[
βmax

r
− VH(l)

]
− cH ≥ 0, λ

[
βmax

r
− VL(l)

]
− cL ≤ 0

must be satisfied in order forH to choose eH(l) = 1 and L to choose eL(l) = 0.
These incentive constraints restrict the set of possible signalling regions and
must be checked after solving for the candidate value functions.

The constraints have a simple interpretation: the marginal benefit of an
increase in effort is the increased probability of jumping to l =∞ and getting
βmax forever instead of the current value Vθ(l). The probability increases
with effort at rate λ. The marginal cost of effort is cθ. If marginal cost minus
marginal benefit is positive, type θ chooses e = 1, otherwise e = 0.

To solve for the candidate value functions, substitute the equilibrium
strategies e∗H = 1 and e∗L = 0 into the HJB equations of H and L. The
HJB equations become the ODEs λV ′H(l) + (λ+ r)VH(l) = β(l) + λβmax

r
− cH

and λV ′L(l) + rVL(l) = β(l). In the absence of a signal, the log likelihood
ratio falls continuously to l. For l > −∞, the value matching condition
liml→l Vθ(l) = Vθ(l) = β(l)

r
holds, because close to l, reaching it is likely and

a jump to another value unlikely. The limit gives the boundary condition
Vθ(l) = β(l)

r
for the ODEs. The case where l = −∞ is discussed after solving

the l > −∞ case.
The solutions of the ODEs are

VH(l) = exp

(
− (r + λ)

l − l
λ

)
β(l)

r

+

∫ l

l

[
β(z)− cH

λ
+
βmax

r

]
exp

(
− (r + λ)

l − z
λ

)
dz, (7)

VL(l) = exp

(
−r l − l

λ

)
β(l)

r
+

∫ l

l

β(z)

λ
exp

(
−r l − z

λ

)
dz.

The solutions to the HJB equations of the types are continuously differen-
tiable on (l, l0), with a right derivative at l and a left derivative at l0, so by
the verification theorem in Yushkevich (1988), the solutions are the candi-
date value functions. If the ICs are satisfied in (l, l0], then VH , VL are the
value functions.

Next, the signalling regions with l = −∞ are discussed. Type L has
no chance of a jump and gets the discounted flow benefit forever, so L’s
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candidate value is

VL(l) =

∫ l

−∞

β(z)

λ
exp

(
−r l − z

λ

)
dz.

Since β is bounded, for any ε > 0 there exists l̂ ∈ R s.t. β(l̂) − βmin < ε,
which implies VL(l̂) − βmin

r
< ε

r
. Therefore liml→−∞ VL(l) = βmin

r
. The term

β(l) = βmin does not appear in the VL(l) expression, because it takes an
infinite time to reach l = −∞ and, as can be seen from (7), the discounting
then makes the (finite) β(l) vanish.

Type H has a constant rate λ of jumps to l =∞ and pays a flow cost cH
forever, in addition to getting the flow benefit. The candidate value of H is

VH(l) =

∫ l

−∞

[
β(z)− cH

λ
+
βmax

r

]
exp

(
−(r + λ)

l − z
λ

)
dz.

The limiting value is liml→−∞ VH(l) = βmin−cH
r+λ

+ λβmax

r(r+λ)
. The RHS is greater

than βmin

r
iff βmax−βmin

r
≥ cH

λ
.

The signalling regions (l, l0] for which the incentive constraints are satis-
fied can now be characterized. Due to V ′L > 0, if VL(l) ≥ βmax

r
− cL

λ
holds at l,

then it holds for all l̂ > l. If L is deterred from imitating H at l, then L is also
deterred at all l̂ > l, because the benefit to imitation is the difference between
the payoff of being believed to be the H type and the current value. The
higher l, the higher the current value, so the lower the incentive to exert effort.
Since l drifts down in the absence of a signal, the L type incentive constraint
determines the log likelihood ratio below which signalling must stop. The
minimal lower boundary min l ≥ −∞ that an equilibrium signalling region
can have must satisfy the incentive constraint liml→min l+ VL(l) ≥ βmax

r
− cL

λ
,

where liml→min l+ VL(l) = β(l)
r

and β(−∞) = βmin. If the expectation was for
signalling to continue at min l, then L would deviate to e = 1.

The maximal initial log likelihood ratio at which signalling can start is
determined by VH , which depends on l. Due to V ′H > 0, if the incentive

constraint VH(l) ≤ βmax

r
− cH

λ
holds at l, then for all l̂ < l we have VH(l̂) <

βmax

r
− cH

λ
. If H is incentivized to signal at l, then H is also incentivized at all

l̂ < l, because the benefit to signalling is the difference between the payoff of
being believed to be the H type and the current value. Since l drifts down in
the absence of a signal, the H type incentive constraint determines the log
likelihood ratio l0(l) above which signalling cannot start. If the expectation
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was for signalling to start above l0(l), then H would deviate to e = 0. By
Lemma 8, l0(l) <∞ for any l.

The parameter values for which there exists an informative extremal equi-
librium are given in Proposition 9.

Proposition 9. Suppose βmax−βmin

r
> cH

λ
. Then ∃l0 ∈ R ∃ε > 0 s.t. there

exists an extremal equilibrium with signalling region [l0, l0 + ε).

If there exists one extremal equilibrium with a nonempty signalling region
(l, l0], then there is a continuum of such equilibria, each corresponding to a
particular l′ ∈ [l, l0).

Comparative statics of extremal equilibria are presented next. Based
on (7), VH(l) and VL(l) are infinitely differentiable in l, r, λ, cH , cL for all
l ∈ L(e∗), so derivatives can be used for comparative statics. Changing l
changes e∗ and therefore L(e∗). In that case, the comparison is between
payoffs at an l that is in the reachable set both before and after changing l.

Proposition 10. If l ∈ R, then

(a) dVL(l)
dl

> 0,

(b) dVH(l)
dl

> 0 iff β′(l)− βmax + β(l) + cHr
λ
> 0,

(c) dW (l)
dl

> 0 iff exp(l)
[
β′(l)− βmax + β(l) + cHr

λ

]
+ β′(l) > 0.

Proof. The proof is by taking the relevant derivatives.

Comparing extremal equilibria, dVL(l)
dl

> 0, so pooling always gives L the
highest payoff. This holds even when the benefit from the receivers’ log
likelihood ratio is arbitrarily convex. The reason is that e∗L = 0 in extremal
equilibria, so L never receives good signals. In informative equilibria, there
is a downward drift in l, which lowers VL below pooling.

The result that pooling always gives L the highest payoff in the good
news model holds not just for extremal equilibria. By Lemma 7, a non-
extremal equilibrium must feature e∗L ∈ (0, 1) in the signalling region, i.e.
L is indifferent to receiving good signals and paying the signalling cost. In
that case, e = 0 is still a best response for L, so VL is unchanged if the
chosen action of L is switched to 0, keeping expectations e∗L, e

∗
H equal to

the equilibrium strategies. In other words, the payoff of L in an informative
equilibrium is the same as it would be without good signals and with zero
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signalling cost. Due to the downward drift of l, this is lower than the pooling
payoff.

If the condition for dVH(l)
dl

> 0 holds at every l < l0, then pooling gives
H the highest payoff. If the condition fails as l → l0, then an informa-
tive equilibrium gives H a higher payoff than pooling. The condition has a
straightforward interpretation. Increasing l increases the payoff upon reach-
ing l at a rate β′(l), lowers the chance of jumping to l =∞ (the −βmax term),
increases the chance of reaching l (the β(l) term) and reduces the time dur-
ing which the signalling cost is paid. The balance of these effects determines
whether VH increases or decreases in l.

The condition for welfare to increase in l holds when β(l) = exp(l)
1+exp(l)

, so
pooling gives the highest welfare when the sender’s benefit from the receivers’
belief is linear. The condition for welfare to increase in l is a combination of
the effects on the payoffs of H and L. The initial exp(l) multiplier is a weight
on the payoff of H. The weight increases in the probability that the sender’s
type is H. The term in the square brackets is the effect of increasing l on the
payoff of H, which is discussed above. The final term β′(l) (with a weight
of 1) is positive and describes L’s benefit from an increase in l, namely that
the payoff upon reaching l is larger.

2.3 Final remarks on the Poisson model

Some of the restrictive assumptions in the Poisson games considered above
are relaxed in the online appendix. Including both good and bad news in
the game, with good signals occurring at rate λge and bad signals at rate
λb(1−e), the set of extremal equilibria is similar to the good news case when
λg > λb and similar to the bad news case when λg < λb. If λg = λb, then
the log likelihood ratio stays constant in the absence of signals and jumps
when a signal occurs. Adding a small positive rate of bad news to the good
news model does not change the result that L always prefers pooling. The
set of extremal effort equilibria remains similar to the case with only good
news. A small positive rate of good news in the bad news model does not
significantly affect extremal equilibria.

The assumption that zero effort in the good news case and maximal effort
in the bad news case ensure the absence of signals is rather stark. However,
as shown in the online appendix, a low Poisson intensity ε > 0 of signals
even with zero effort in the good news case or with maximal effort in the
bad news case does not qualitatively change the set of extremal equilibria.
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The positive lower bound on the signal rate in the good news model does
overturn the result that L always prefers pooling.

3 Signalling with Brownian noise

The Poisson signalling game corresponds to an environment where informa-
tion is revealed by rare and significant events. There are situations in which a
gradual and continuous information revelation is more realistic. This section
turns to the gradual information revelation case and models the signal pro-
cess as a Brownian motion. In this model, the union of equilibrium signalling
regions need not be an equilibrium signalling region. The union would mean
the receivers expect ‘too much’ signalling, which induces one of the types to
deviate. An analogous result holds in the one-shot noisy signalling model in
the online appendix, where for some parameter values an equilibrium with
e∗L = 0, e∗H = 1 exists iff the initial log likelihood ratio belongs to one of two
disjoint finite intervals. The expectation of ‘too much’ signalling between
these intervals induces L to imitate.

The setup in the Brownian case is similar to the Poisson model. The
sender’s effort process (et)t≥0 now controls the drift of a signal process (Xt)t≥0
given by

dXt = etdt+ σdBt,

where X0 ∈ R is a given parameter, Bt is standard Brownian motion and
σ > 0. Denote the filtration generated by (Xt)t≥0 by (Ft)t≥0. The receivers
at time t observe (Xτ )τ∈[0,t], but not the sender’s type or present or past
actions. Based on the signal, the receivers update their log likelihood ratio.
The log likelihood ratio process (lt)t≥0 is adapted to (Ft)t≥0.

The flow utility of a sender of type θ from action e ∈ [0, 1] and the
receivers’ log likelihood ratio l is β(l)− cθe. Assume β is bounded, Lipschitz,
strictly increasing and twice continuously differentiable on R.

A pure public strategy of the sender is a pair of random processes (eL, eH),
each taking values in [0, 1] and adapted to (Ft)t≥0. A Markov stationary
strategy of the sender is a pure public strategy measurable w.r.t. the log
likelihood ratio process (lt)t≥0. It can be written as a pair of measurable
functions (eL, eH) : R → [0, 1]2. The state variable is the receivers’ log
likelihood ratio l. Henceforth, strategy is understood as a Markov stationary
strategy.
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Given the initial log likelihood ratio l0 ∈ R and the strategy (e∗L, e
∗
H)

expected from the sender, the receivers update the log likelihood ratio8

dlt = σ−2(e∗H(lt)− e∗L(lt))[dXt −
1

2
e∗H(lt)dt−

1

2
e∗L(lt)dt]. (8)

The initial log likelihood ratio l0 is a parameter, so a strategy is a function
of l0 in addition to l. The reachable set of log likelihood ratios is

L(e∗) =
{
l ∈ R : ∃t ∈ R+ ∃ a path of lt s.t. lt = l

}
,

where lt is defined in (8). Only behaviour on the reachable set is discussed
subsequently. Behaviour outside L(e∗) can be arbitrary, because no deviation
can take l there.

Definition 3. A Markov stationary equilibrium consists of a strategy (e∗H , e
∗
L)

and a log likelihood ratio process (lt)t≥0 s.t.

1. given (lt)t≥0, e
∗
θ solves

sup
eθ(·)

Eeθ
[∫ ∞

0

exp(−rt) [β(lt)− cθeθ(lt)] dt|lt=0 = l0

]
,

where the expectation is over the process (lt)t≥0,

2. given (e∗H , e
∗
L) and l0, the process (lt)t≥0 is derived from Bayes’ rule (8).

Given e∗, the pooling region is

P(e∗) = {l ∈ L(e∗) : e∗H(l) = e∗L(l)} .

The complement of the pooling region in L(e∗) is called the signalling region.
The pooling equilibrium where e∗H = e∗L ≡ 0 always exists by Lemma 2. A
nonpooling equilibrium exists if the sender is patient enough. The proof is
postponed to Proposition 15.

Since l0 is a parameter, the payoff starting at l0 need not in general equal
the continuation value from l0 after starting at l̂ 6= l0. However, if the strategy
the market expects is Markov stationary, then every time l is reached, the
continuation value Vθ(l) of type θ from l on is well defined. Some observations
about the value functions are formalized in the following lemma.

8The updating rule for the log likelihood ratio is derived from the continuous time
Bayes’ rule for probability (Liptser and Shiryaev (1977) Theorem 9.1) using Itō’s formula.
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Lemma 11. VH(l) ≥ VL(l) ∀l0 ∈ R ∀e∗ ∀l ∈ L(e∗), with strict inequality
if under the optimal (eL, eH) starting at l, there is a positive probability of
reaching some l̂ with eL(l̂) > 0. βmin

r
≤ Vθ(l) ≤ βmax

r
, with strict inequalities

if l ∈ R. Vθ is strictly increasing.

The results in Lemma 11 hold more generally. The fact that VH(l) ≥ VL(l)
is independent of the signal structure and the cost function—it only needs
that each effort level costs less for H than for L. The value functions are
bounded independently of the signals and costs. The strict monotonicity of
Vθ does not carry over to the Poisson case, but it holds whenever the paths
of the l process are continuous for any strategy expected or chosen.

Equilibrium strategies are partially characterized in the following lemma.
If L is expected to take higher effort than H, then a higher signal lowers the
log likelihood ratio. With increasing Vθ this implies both types optimally
choose 0. This result holds whenever the signal is such that the paths of the
l process are continuous.

Lemma 12. Fix l0 ∈ R. In any equilibrium, @l ∈ L(e∗) satisfying e∗L(l) =
e∗H(l) > 0 or e∗L(l) > e∗H(l).

It is clear from (8) that once the log likelihood ratio process reaches the
pooling region, l stays constant forever, so signalling must occur in an interval
of l containing l0. Starting inside the interval, if the l process reaches the
boundary, then in the next instant it enters the pooling region due to the
rapidly varying Brownian motion driving l. For this reason, it is w.l.o.g.
to consider only open signalling regions. In light of this and Lemma 12,
it is w.l.o.g. to consider only equilibria in which outside an interval of log
likelihood ratios (l, l), both types choose action 0 and inside that interval,
e∗L < e∗H .

The subsequent focus of this section is on extremal equilibria. It can be
shown that if effort only takes values zero and one, then outside an interval
of log likelihood ratios (l, l) 3 l0, both types choose action 0 and inside that
interval, e∗L = 0, e∗H = 1. In (l, l), the l process is a simple Brownian motion
with drift either 1

2
or −1

2
, depending on whether the sender’s chosen action

is e = 1 or 0.
The value functions are calculated next, using the HJB equations and

a verification theorem. Payoff comparisons readily apparent from the value
functions are noted while deriving the value functions. Necessary conditions
for equilibrium are derived. After that, the existence of informative extremal
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equilibria is proved, followed by comparative statics, which are mostly nu-
merical.

It is clear that for β̂(µ) = β(ln µ
1−µ) concave in µ (the receivers’ belief),

L prefers pooling to any other equilibrium, because the expected posterior is
lower than the prior and the variance in the posterior does not increase the
payoff. The concavity of β̂ in µ implies the condition in Proposition 13 that
is sufficient for L to prefer pooling. If pooling gives the highest payoff to L,
then in the class of extremal equilibria, L’s payoff is higher in an equilibrium
with a smaller signalling region.

Proposition 13. If β (ln (z)) is concave in z, then VL is higher in pooling
than in any extremal equilibrium. In that case if VL2 is the value of L in
an equilibrium with signalling region (l2, l2) and VL1 is the value of L in an
equilibrium with signalling region (l1, l1) ⊂ (l2, l2), then VL1(l) ≥ VL2(l) for
all l ∈ (l1, l1). If β (ln (z)) is convex in z, then VL is lower in pooling than in
any extremal equilibrium and VL1(l) ≤ VL2(l) for all l ∈ (l1, l1).

The idea of the proof is to transform the l process into a zero-drift pro-
cess f(l) by an increasing transformation f using Itō’s lemma. The benefit
function β is simultaneously transformed by the inverse of f . Pooling gives L
a higher payoff than an informative extremal equilibrium iff the transformed
benefit function is concave in f(l). It turns out f(l) is the likelihood ratio
exp(l).

An example where L prefers pooling has β(l) =
(

exp(l)
1+exp(l)

)n
, n ≥ 2 and

l ≤ ln n−1
2

.
Next, the HJB equations are solved and a verification theorem is used

to check that the solutions of the HJB equations coincide with the value
functions. The HJB equation of type θ is

rVθ(l) = β(l) + max

{
−cθe+ V ′θ (l)σ

−2
(
e− 1

2

)}
+

1

2
V ′′θ (l)σ−2.

Given the signalling region (l, l) the receivers expect, the optimal strategy of
type θ is to choose

eθ(l) =

{
1 {−cθ + V ′θ (l)σ

−2 ≥ 0} if l ∈ (l, l),

0 if l /∈ (l, l).
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The incentive constraints for H to choose eH(l) = 1 and L to choose eL(l) = 0
in the signalling region are

V ′H(l) ≥ cHσ
2, V ′L(l) ≤ cLσ

2. (9)

Call these ICH and ICL. After finding the candidate equilibrium, it must be
verified that the ICs hold at every point in the signalling region.

Set the chosen actions equal to the equilibrium actions. The HJB equa-
tions become the pair of linear second-order ODEs

rVH(l) = β(l)− cH +
1

2
V ′H(l)σ−2 +

1

2
V ′′H(l)σ−2,

rVL(l) = β(l)− 1

2
V ′L(l)σ−2 +

1

2
V ′′L (l)σ−2.

This is where using the log likelihood ratio instead of the belief is helpful—
with belief, the ODEs do not have constant coefficients. After solving the
ODEs for VL, VH , the ICs as well as the smoothness conditions for the veri-
fication theorem must be checked at every point in the signalling region.

The solutions Vθ to the ODEs are the sum of the general solution Cθ1yθ1+
Cθ2yθ2 of the homogeneous equation and a particular solution yθp of the
inhomogeneous equation. The general solutions for H and L respectively are

CH1 exp

(
l
−1−

√
1 + 8rσ2

2

)
+ CH2 exp

(
l
−1 +

√
1 + 8rσ2

2

)
,

CL1 exp

(
l
1−
√

1 + 8rσ2

2

)
+ CL2 exp

(
l
1 +
√

1 + 8rσ2

2

)
.

Using d’Alembert’s method, the particular solutions are

yHp = −cH
r

+
2σ2

√
1 + 8rσ2

exp

(
l
−1−

√
1 + 8rσ2

2

)∫
β(l) exp

(
l
1 +
√

1 + 8rσ2

2

)
dl

− 2σ2

√
1 + 8rσ2

exp

(
l
−1 +

√
1 + 8rσ2

2

)∫
β(l) exp

(
l
1−
√

1 + 8rσ2

2

)
dl,
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yLp =

2σ2

√
1 + 8rσ2

exp

(
l
1−
√

1 + 8rσ2

2

)∫
β(l) exp

(
l
−1 +

√
1 + 8rσ2

2

)
dl

− 2σ2

√
1 + 8rσ2

exp

(
l
1 +
√

1 + 8rσ2

2

)∫
β(l) exp

(
l
−1−

√
1 + 8rσ2

2

)
dl,

where the integrals are nonelementary even for simple functional forms of
β, e.g. for β(l) = exp(l)

1+exp(l)
, which describes linear benefit from the receivers’

belief.
Imposing the boundary conditions Vθ(l) = β(l)

r
and Vθ(l) = β(l)

r
, the con-

stants in the general solution for H are

CH1 =
yH2(l)[

β(l)
r
− yHp(l)]− yH2(l)[

β(l)
r
− yHp(l)]

yH1(l)yH2(l)− yH2(l)yH1(l)
,

CH2 =
−yH1(l)[

β(l)
r
− yHp(l)] + yH1(l)[

β(l)
r
− yHp(l)]

yH1(l)yH2(l)− yH2(l)yH1(l)
.

The constants for L are determined by a similar expression, replacing the H
subscripts with L.

Now that all components of the solutions of the HJB equations have
been found, it can be verified that they coincide with the candidate value
functions. The ICs remain to be checked.

Lemma 14. The solutions VH , VL of the HJB equations equal the candidate
value functions in the signalling region. The Markov controls for the HJB
equations maximize the candidate value functions.

Based on the candidate value function expressions, the signalling region
depends on r and σ2 only through their product rσ2. Closed form compara-
tive statics results are not available for parameters other than cL due to the
complexity of the Vθ expressions. Numerical simulations will be used instead.
As to cL, the LHS of ICL in (9) does not contain cL, so there exists ĉL s.t.
for cL < ĉL, ICL fails and for cL ≥ ĉL, ICL holds.

Before turning to numerics, the conditions for the existence of nontrivial
extremal equilibria are provided. The intuition of the conditions is similar
to the Poisson case—an informative equilibrium exists iff the maximal ben-
efit from signalling is large enough to incentivize H to signal. To see the
similarity, consider σ2 analogous to 1

λ
in the Poisson models.
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Proposition 15. If ∃l ∈ R with β′(l)
r

> cHσ
2, then ∃l0 ∈ R contained in

the signalling region of an extremal equilibrium. If @l ∈ R with β′(l)
r
≥ cHσ

2,
then pooling is the unique equilibrium.

The idea of the proof is that the slopes of the value functions are close to
the slope of β for small signalling intervals. If the slope of the benefit function
is high enough at some point l to incentivize H to signal at l (provided the
receivers expect e∗L(l) = 0, e∗H(l) = 1), then there exists another point l0
with β′(l0) low enough not to incentivize L to signal, but high enough to still
incentivize H. An informative extremal equilibrium can then be constructed
with a signalling interval containing l0.

It is clear that for any l ∈ R, σ2 > 0, cL > cH > 0 and strictly increasing
β(l), there exists r ∈ (0,∞) that makes the sufficient condition in Proposi-
tion 15 hold. One can always find a level of patience for a nontrivial extremal
equilibrium to exist.

Numerical comparative statics on the set of signalling regions are pre-
sented next. As in the Poisson signalling game, for some initial log likelihood
ratios there is a continuum of informative equilibria. Until the end of this
section, it is assumed that β(l) = exp(l)

1+exp(l)
, so the sender’s benefit from the

receivers’ belief equals the belief. The figures to follow depict signalling in-
tervals (l, l) as points on a plane, with the x-coordinate of the point equalling
l and the y-coordinate equalling l.

For cH = 0.1, cL = 0.24 and r = σ2 = 1, the region where the ICs hold is
depicted in panel (c) of Figure 3 as the shaded area. Panel (a) shows the area
where ICH holds and panel (b) the area where ICL holds. The shaded area
on panel (c) is the intersection of panels (a) and (b). The disconnectedness of
the set of equilibrium signalling regions is in part due to restricting attention
to extremal equilibria.

The effect of increased patience or reduced noise on the ICs is shown in
Figure 4, where cH = 0.1, cL = 0.24, r = 1 and σ2 = 0.5. Note the different
scale of the axes compared to Figure 3. Since r and σ2 affect the ICs only
through their product, reducing σ2 by half has the same effect as reducing r
by half.

There need not exist a signalling region containing all others. Such a
signalling region is the point at the upper left corner of the shaded area
of panel (c), i.e. a point that is simultaneously at maximal horizontal and
vertical distance from the diagonal. Figure 5 shows that for cH = 0.15,
cL = 0.28 and r = σ2 = 1, a higher l permits a higher l for a signalling
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(a) ICH holds (b) ICL holds

(c) Both ICs hold

Figure 3: Region where ICs hold (shaded) for cH = 0.1, cL = 0.24 and
r = σ2 = 1.
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(a) ICH holds (b) ICL holds

(c) Both ICs hold

Figure 4: Region where ICs hold (shaded) for cH = 0.1, cL = 0.24, r = 1 and
σ2 = 0.5.
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region. Therefore the union of two equilibrium signalling regions need not be
an equilibrium signalling region. This distinguishes the game with Brownian
noise from the Poisson signalling game, the repeated noiseless game and the
one-shot noisy and noiseless games.

(a) ICH holds (b) ICL holds

(c) Both ICs hold

Figure 5: Region where ICs hold (shaded) for cH = 0.15, cL = 0.28, r = 1
and σ2 = 1.

In a given informative equilibrium, the H type payoff can be higher or
lower than the pooling payoff exp(l)

r(1+exp(l))
for different log likelihood ratios.

This is illustrated in Figure 6, where VH is strictly higher than exp(l)
r(1+exp(l))

for

l ∈ (−1.5,−0.2) and strictly lower for l ∈ (−0.2, 3). In this equilibrium,
the comparison of informative equilibrium and pooling payoffs of H accords
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well with Spence (1973), where for a higher fraction of H in the population,
the payoff difference (separating minus pooling) for H is lower. In Spence’s
model, the reason is that for a higher l0 there is less scope for the log likeli-
hood ratio to rise (l = ∞ after the high action). In the present model this
mechanism does not work, because the rise in belief after a good signal is
highest for intermediate l0. Correspondingly the Spence intuition does not
always hold in the continuous time model. Close to the upper bound of the
signalling region, the payoff from the informative equilibrium rises to the
pooling one as l0 increases, so in that region, the informative equilibrium
payoff minus the pooling payoff rises in l.

Figure 6: VH for signalling region (−1.5, 3) (the curve that is lower on the

right), and exp(l)
r(1+exp(l))

. The parameters are cH = 0.1 and r = σ2 = 1.

For the signalling region (0, 3), with cH = 0.1 and r = σ2 = 1, the
informative equilibrium payoff of H is below pooling in the whole signalling
region. Close to the upper bound, the informative equilibrium payoff minus
the pooling payoff rises in l, while close to the lower bound, it falls in l.
This pattern is reversed in the informative equilibrium with signalling region
(−3, 0), cH = 0.1 and r = σ2 = 1. In that case, the informative equilibrium
payoff is above pooling in the whole signalling region. Within the signalling
region of a given informative equilibrium, there is always a region where
the payoff difference with pooling moves in the opposite direction to the
prediction of Spence (1973). Comparing equilibria with l ≤ 0 to those with
l ≥ 0, the Spence pattern holds—shifting the signalling region up raises the
informative equilibrium payoff minus the pooling payoff.

In numerical simulations, as r or σ2 increases, the payoff of H from an
informative equilibrium minus the pooling payoff falls. Intuitively, patience
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favours signalling and noise favours pooling. Across values of r and σ2,
the payoff difference between an informative equilibrium and pooling can be
positive or negative.

For the L type, as r increases, the payoff from an informative equilibrium
minus the pooling payoff rises. Since in the signalling region, L expects the
receivers’ log likelihood ratio (and L’s own future payoff) to fall, the more
the future payoff matters, the worse off the occurrence of signalling makes L.
As σ2 increases, L’s payoff from an informative equilibrium increases—noise
is good for L, since the receivers learn about the types more slowly.

So far, only equilibria with effort zero or one have been considered. Other
kinds of equilibria also exist: one class is where e∗H ∈ (0, 1) and e∗L = 0,
another class has e∗H = 1 and e∗L ∈ (0, 1). These interior effort equilibria are
more difficult to work with than the equilibria where e∗θ ∈ {0, 1} and fewer
results are available. They are discussed in the online appendix. For some
parameter values, there exists a continuum of interior effort equilibria.

As in the one-shot noisy signalling game, a natural question arising in
the above Brownian model is whether the results are driven by the linear
cost. The online appendix solves a Brownian signalling game with quadratic
cost. There is a continuum of equilibrium signalling intervals and on each
signalling interval, a continuum of equilibrium effort profiles. The reason why
many effort profiles on a given interval constitute equilibria is that the first
order conditions are linearly dependent. This is a feature of the quadratic
cost and does not generalize to other convex cost functions.

4 Discussion

4.1 Literature

There are many papers that bear similarities to this one. This is not surpris-
ing, because the fact that in many cases signalling takes time was pointed
out in Weiss (1983) and Admati and Perry (1987) already. Noisy signalling,
on the other hand, was studied in Matthews and Mirman (1983).

Discrete-time repeated signalling is studied in Kaya (2009) and Roddie
(2012). They differ from the present paper by the absence of noise in the
observation of the sender’s action. Kaya (2009) focusses on least-cost sepa-
rating equilibria. Roddie (2012) provides general conditions for reputation
effects to arise. Neither in Kaya (2009) nor in Roddie (2012) do the existence
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and payoffs of separating equilibria depend on the prior (an overview of Kaya
(2009) is given in the online appendix). In the present paper, the existence
of informative equilibria depends on the prior.

Signalling over time has also been studied in continuous time. Daley and
Green (2012b), Gryglewicz (2009) and Dilme (2012) use Brownian noise to
model imperfect observation of the sender’s action, similarly to the Brownian
signalling model of this paper. In Dilme (2012), the sender (an entrepreneur)
decides how much costly effort to exert over time, as well as when to stop
the game (sell the firm) and receive a final benefit. This contrasts with
the present paper, in which benefit accumulates continuously. In Daley and
Green (2012b), the uninformed traders receive information (observations of
a diffusion process) exogenously over time and the informed trader decides
when to stop the game (execute the trade) and receive a final payoff. Gry-
glewicz (2009) looks at limit pricing over time. The low-cost incumbent is
a commitment type and the high-cost incumbent decides when to stop im-
itating the low-cost type. Unlike in Daley and Green (2012b), the signal is
endogenous in the present paper, and unlike Gryglewicz (2009), both types
are strategic.

Less closely related works on repeated noiseless signalling are Nöldeke
and van Damme (1990) and Swinkels (1999). In these, the sender pays
the signalling cost first, and receives the benefit only upon deciding to stop
signalling forever. An example is completing a traditional education—the
salary is received only after graduating. In the current paper, the benefit is
received concurrently with the payment of the cost, as when a worker takes
continuing education courses while being employed, or a firm advertises while
selling its product. Nöldeke and van Damme (1990) find a unique informative
equilibrium. Using different informational assumptions, Swinkels (1999) finds
a unique pooling equilibrium. The models in the current paper have many
informative equilibria and one pooling equilibrium.

The benefit of signalling accrues at the end also in the models of Kremer
and Skrzypacz (2007) and Hörner and Vieille (2009), where the signalling
action is delaying trade. The signaller could be selling a house or a car,
and the buyers can interpret quick agreement as a signal of low quality. In
this paper, the sender does not choose whether to trade or not, but exerts a
signalling effort, e.g. a firm advertises a product that is already on the shelves
of retailers.

One-shot noisy signalling has been studied by Matthews and Mirman
(1983), Carlsson and Dasgupta (1997) and Daley and Green (2012a). These
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models describe one-shot interactions (e.g. the seller of a used car offers a
warranty to a buyer). The current paper addresses long-term relationships,
such as a politician deciding each year how much to cheat on taxes, and voters
remembering all past scandals involving the politician. The motivation for
adding noise in Matthews and Mirman (1983) and Daley and Green (2012a)
is to better describe real-life signalling situations. Carlsson and Dasgupta
(1997) use noise to eliminate unintuitive equilibria in the noiseless model.
Another motivation for adding noise in the present paper is to remove equi-
libria featuring pooling on positive effort, which exist in Spence (1973).

Noise interfering with the inference process of the receivers is reminiscent
of the signal-jamming literature following Fudenberg and Tirole (1986). In
signal-jamming, the incumbent tries to prevent the entrant from learning the
entrant’s profitability. The present paper describes a situation in which the
incumbent tries to convince the entrant that the incumbent is the low-cost
type.

Career concerns models (starting with Holmström (1999)) feature noisy
effort over time, similarly to repeated signalling models. However, in most
of the career concerns literature, the sender does not know his own type and
the receivers care about the sender’s future actions, not only the type. The
present paper focusses on pure signalling, in which the sender knows his type
and the action is unproductive. The receivers’ utility depends only on the
sender’s type, not the action. Career concerns describe why a manager gets
a raise after working hard at his job—the employer cares about both effort
and talent. Signalling describes why a manager who completes a (for the
sake of the argument, unproductive) MBA gets a raise—the employer only
cares about the talent.

A variety of reputation models, starting with Kreps and Wilson (1982)
and Milgrom and Roberts (1982) share features of dynamic signalling. Costly
actions are taken to influence the beliefs of observers, which provide future
benefit. An important difference is that most of the reputation literature
focusses on private values. That is, the receivers care about the future actions
of the sender, not about the type directly. This is precisely the opposite of
signalling, where type matters to the receivers, but future actions do not.
Furthermore, in this paper, all types are strategic. Most reputation models
use commitment types.

The extremal equilibria of the dynamic signalling models of this paper can
be interpreted as the low-cost type exerting effort to build a reputation for
having low cost. Once signalling stops, belief stops changing, so reputations
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are in a sense permanent. On the other hand, for beliefs in the signalling re-
gion, reputation must constantly be supported at a cost, otherwise it is likely
to deteriorate. Therefore in the signalling region, reputation is transitory.

Cripps, Mailath, and Samuelson (2004) show that in a wide class of re-
peated games, reputation for behaviour that is not an equilibrium of the
complete information stage game is temporary and the type must eventually
be learned. In the Brownian signalling model of the present paper, both
types have positive probability of acquiring a ‘false’ permanent reputation,
in the sense that when signalling stops, belief about H may be lower than the
prior and belief about L may be higher. In expectation, beliefs move in the
direction of the sender’s type, but mistakes have positive probability. After
signalling stops, an equilibrium of the incomplete information stage game is
played forever. In the Poisson models, in extremal equilibria in which the
signalling region is infinite, the type is perfectly learned in the limit. This is
similar to the result of Cripps, Mailath, and Samuelson (2004).

4.2 Extensions

The environment this paper focusses on is pure signalling, in which effort
has no direct benefit. A natural question is how the results would change
with productive effort. Formal models of productive effort in the frameworks
used in this paper are left for future research, but this section discusses some
anticipated results.

If the receivers value the signal the effort generates (e.g. work results) in
addition to the type, then there is a benefit to signalling even when pooling on
no effort is expected. If this benefit is small, the equilibrium set is similar to
the case where it is zero. The only change is that signalling can be sustained
for a slightly larger set of log likelihood ratios. If the reward the receivers
offer the sender for a high signal is large enough, then both types are induced
to signal and pooling on positive effort results. The receivers valuing current
effort instead of the signal leads to the same conclusions as when the signal
is valued directly, provided the effort is unobserved and the signal observed.

If the receivers value the future effort they expect from the sender, as
in career concerns models, then the flow benefit to the sender depends not
only on the current log likelihood ratio, but also on the strategy the receivers
expect. Suppose the receivers expect higher future effort from H than from
L. Then under good news the log likelihood ratio drifts down in the absence
of a signal. The effort expected from the sender and the expected type fall
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in l. The sender then has a lower benefit from a lower log likelihood ratio,
so the qualitative properties of the pure signalling model are preserved. In
the bad news case, the future effort expected from either type may fall in l
if pooling is expected at high l. If the weight the receivers place on future
effort is large enough, the flow benefit of the sender may decrease as l rises
towards the pooling region. This does not incentivize H to signal, so pooling
on zero effort is the unique equilibrium. The same effect operates in the
Brownian model close to the upper boundary of the signalling region, so the
same result obtains.

A Proofs omitted from the text

Proof of Lemma 1. Vθ(l) is bounded above by
∫∞
0

exp(−rt)βmaxdt = βmin

r
∈

R and below by βmin

r
∈ R.

VH(l) is greater than the payoff to H from imitating an optimal strategy
of L after reaching l for the first time. An optimal strategy gives L the
continuation value VL(l) after l. H can imitate an optimal strategy of L at a
lower cost, getting the same benefit, so the imitation payoff to H is greater
than VL(l).

Due to the piecewise continuity of the strategies, if ∃l̂ s.t. eL(l̂) > 0, then
there exists an open interval (l1, l2) 3 l̂ s.t. eL(l′) > 0 ∀l′ ∈ (l1, l2). If the set
of histories where reaching some l̂ satisfying eL(l̂) > 0 has positive probability
after l under the optimal strategy, then H can imitate L at a strictly lower
cost, getting the same benefit.

Proof of Proposition 3. If l = −∞ and a signal occurring at rate eλ changes
l to ∞ or if l =∞ and a signal occurring at rate (1− e)λ changes l to −∞,
then the marginal benefit of effort is λ

[
βmax

r
− βmin

r

]
. The marginal cost to

H is cH . At l = −∞ or l = ∞, l does not respond to signals. For l ∈ R,
βmin

r
< Vθ(l) <

βmax

r
, so the marginal benefit of effort at any l ∈ R is strictly

lower than λ
[
βmax

r
− βmin

r

]
. Both types have the unique best response e = 0

in this situation.

Lemma 16. If β̂(µ) = β
(

ln µ
1−µ

)
is concave in µ, then for any equilibrium

e∗ and for all l ∈ L(e∗), VL(l) ≤ β(l)
r

in the good or the bad news model.

Proof. In the pooling equilibrium, VL(l) = β(l)
r
∀l ∈ L(e∗). In an informative

equilibrium, the receivers’ posterior probability µ that the sender’s type is
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H drifts down in expectation for L. The flow benefit is increasing in the
posterior: β̂′(µ) > 0. The posterior has positive variance, which for a concave
β̂ does not raise the payoff of L. Therefore the continuation payoff from l on
in an informative equilibrium starting is below the pooling payoff β(l)

r
when

starting at l.

Proof of Lemma 4. If e∗L(l) > e∗H(l), then L weakly prefers e = 1 and H
weakly prefers e = 0. If VH(j(l)) = VL(j(l)) = k, then due to VH ≥ VL, the
jump in value k − Vθ(l) after a signal is higher for L. The cost of avoiding
jumps is strictly larger for L, because cL > cH . It cannot be that L prefers
to avoid jumps and H prefers to allow them. When pooling occurs after the
jump, then VH(j(l)) = VL(j(l)) = β(l)

r
.

If 0 < e∗L(l) < e∗H(l) = 1, then j(l) = −∞. It is enough to show VL is
strictly increasing in the region in which 0 < e∗L < e∗H = 1, because then
indifference to the jump at one l implies the absence of indifference at any
l̂ 6= l in the region. Efforts are continuous from the left or right, which rules
out the situation where 0 < e∗L(l) < 1 at one point, with e∗L = 0 or 1 at
neighbouring points.

Since e∗L < 1, VL is unchanged by switching eL to 0 throughout the region
(l, l) in which 0 < e∗L < e∗H = 1. Then the flow rate of jumps and the flow
cost are constant in the region, while the flow benefit is strictly increasing.
The only influence that might make VL decreasing is the continuation value
at l. If l = ∞, then VL is strictly increasing in the 0 < e∗L < e∗H = 1 region.
With l finite and pooling at l, VL(l) > VL(l) for l in the 0 < e∗L < e∗H = 1
region, because at l the probability of jumping to l = −∞ is zero, the flow
benefit is strictly higher and the flow cost is the same as at l. Again, VL
is strictly increasing in the 0 < e∗L < e∗H = 1 region. If at l, a region
where e∗L > e∗H starts, then l cannot drift into that region, because l drifts
down when e∗L > e∗H . Therefore l must stay at the boundary l. As shown
previously, it cannot be that e∗L(l) = 1 at some l in equilibrium, so e∗L(l) < 1.
Then eL can be switched to 0 at l without changing VL. The flow benefit is
higher than in the 0 < e∗L < e∗H = 1 region, the flow cost and jump rate are
the same and the jumps go to a value higher than βmin

r
. A higher l means

a shorter time until reaching VL(l), so again VL is strictly increasing in the
0 < e∗L < e∗H = 1 region.

If at l, a region where e∗L = 0, e∗H > 0 starts, then the union of that and
the 0 < e∗L < e∗H = 1 region can be taken and the preceding reasoning can
be applied at the upper boundary of the union.
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Lemma 17. In the bad news model, if βmax−βmin

r
> cH

λ
, then there exist

equilibria in which for some l ∈ L(e∗), e∗H(l) ∈ (0, 1) and e∗L(l) = 0.

Proof. Take l0 ∈ R such that β(l0)−βmin

r
> cH

λ
. An equilibrium in which

e∗H(l) ∈ (0, 1) and e∗L(l) = 0 on [l0, l) ⊂ R will be constructed. Assume
l− l0 = ε > 0 for ε small. The probability of reaching l from [l0, l) is close to

1, so the payoffs of the types on [l0, l) are close to β(l)
r
> β(l0)

r
.

If the market expects e∗H(l) = 1, e∗L(l) = 0 (which implies that l jumps to
j(l) = −∞ when a signal occurs at l ∈ [l0, l)), then H has the unique best
response e = 1 at l. If the market expects e∗H(l) = e∗L(l) = 0 (which implies
that j(l) = l when a signal occurs at l ∈ [l0, l)), then H has the unique best
response e = 0 at l. By the continuity of β(·) and j(·), there exists ê ∈ (0, 1)
s.t. when the market expects e∗H(l) = ê, e∗L(l) = 0, then H is indifferent
between e = 1 and e = 0 at l. The same reasoning holds for all points in
[l0, l), with slightly different ê.

If H is indifferent between e = 1 and e = 0, then L strictly prefers
e = 0.

Proposition 18. If the following hold

(a) liml→l1+ VH(l)− βmin

r
≥ cH

λ
,

(b) liml→∞ VL(l)− βmin

r
≤ cL

λ
,

(c) β(l)
r
− liml′→l1+ VH(l′) < cH

λ
,

(d) β(l)
r
− liml′→l1+ VL(l′) > cL

λ
,

(e) β(l)
r
− liml′→∞ VL(l′) < cL

λ
,

where −∞ < l < l0 < l1 and VH , VL are given in terms of primitives in (6),
then there exists an equilibrium in which

• e∗L(l) > e∗H(l) if l ∈ (l, l0],

• e∗L(l) = 0, e∗H(l) = 1 if l ∈ [l1,∞),

• e∗L(l) = e∗H(l) = 0 if l /∈ (l, l0] ∪ [l1,∞).
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Proof. The candidate value functions of the types are continuous and strictly
increasing on [l1,∞) according to (6).

For H to optimally choose e = 1 in [l1,∞), it is necessary and sufficient
that VH(l)− βmin

r
≥ cH

λ
for all l ∈ [l1,∞). Since VH is strictly increasing, the

inequality holds for all l ∈ [l1,∞) iff liml→l1+ VH(l) − βmin

r
≥ cH

λ
. A lower

bound on liml→l1+ VH(l) is
β(l1)−cH

r
.

For L to optimally choose e = 0 in [l1,∞), it is necessary and sufficient
that VL(l)− βmin

r
≤ cL

λ
for all l ∈ [l1,∞). Since VL is strictly increasing, the

inequality holds for all l ∈ [l1,∞) iff liml→∞ VL(l) − βmin

r
≤ cL

λ
. The limit is

liml→∞ VL(l) = βmax

r+λ
+ λβmin

r(r+λ)
.

In (l, l0] in the absence of a signal l drifts down and eventually reaches l
with positive probability. For any l, l′ ∈ [l, l0] s.t. l′ < l, the probability of
reaching l′ from l approaches 1 as l − l′ → 0, therefore for any ε1 > 0 there
exists ε2 > 0 s.t. l0 − l < ε2 implies |Vθ(l) − β(l)

r
| < ε1 for all l ∈ (l, l0] and

θ = 1, 2.
For all l ∈ (l, l0], take e∗H(l) = 0 and e∗L(l) ∈ (0, 1) such that j(l) ∈ [l1,∞),

where j(l) = l + ln
1−e∗H(l)

1−e∗L(l)
.

For H to optimally choose e = 0 at l ∈ (l, l0], it is sufficient that VH(l)−
VH(j(l)) < cH

λ
. Sufficient for this is VH(l) − liml′→l1+ VH(l′) < cH

λ
. Choose

ε2 s.t. |β(l)
r
− VH(l)| ≤ ε1 ≤ cH

λ
− VH(l) + liml′→l1+ VH(l′). Then sufficient

conditions for H to choose e = 0 are l0−l < ε2 and β(l)
r
−liml′→l1+ VH(l′) < cH

λ
.

For L to optimally choose eL ∈ (0, 1) at l ∈ (l, l0], it is necessary and
sufficient that VL(l)−VL(j(l)) = cL

λ
. By continuity of VL on [l1,∞), sufficient

for this are VL(l)−liml′→l1+ VL(l′) > cL
λ

and VL(l)−liml′→∞ VL(l′) < cL
λ

. Then
by reasoning similar to the H case in the previous paragraph, sufficient for
eL ∈ (0, 1) are l0−l < ε2,

β(l)
r
−liml′→l1+ VL(l′) > cL

λ
and β(l)

r
−liml′→∞ VL(l′) <

cL
λ

.

Proof of Proposition 5. If βmax−βmin

r
> cH

λ
, then ∃l0 for which an informative

extremal equilibrium can be constructed. Define y by

y =

{
∞ if βmax−βmin

r
≤ cL

λ
,

β−1
(
βmin

r
+ cL

λ

)
if βmax−βmin

r
> cL

λ
.

Take l ∈
(
β−1

(
βmin

r
+ cH

λ

)
, y
)

in the extremal equilibrium, so that H has

a strict incentive to signal at l and L has a strict incentive not to signal

(recall that VH(l) = VL(l) = β(l)
r

). By continuity and strict increasingness of
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VH , VL, ∃ε > 0 s.t. VH(l − ε) ≥ βmin

r
+ cH

λ
and VL(l − ε) ≤ βmin

r
+ cL

λ
, so H

has an incentive to signal at l− ε and L has an incentive not to signal. Take
l0 = l − ε. This completes the construction of the extremal equilibrium.

Proof of Lemma 7. If e∗L = e∗H , then the log likelihood ratio stays constant
regardless of the occurrence or absence of signals. Then both types optimally
choose eθ = 0 to avoid the effort cost. This rules out e∗L = e∗H > 0 occurring
in equilibrium.

Three steps are needed to rule out e∗L > e∗H . First, in equilibrium L
always has a best response that avoids jumps up. Second, in the region
where e∗L > e∗H , VL(l) is bounded below by β(l)

r
. Third, in the absence of

jumps, VL is increasing. If VL is increasing, then L optimally does not exert
effort to make l jump down.

Step 1. If e∗L > e∗H , then jumps go down. If e∗L < e∗H , then jumps go up,
but e∗L < 1, so e = 0 is a best response for L. No jumps occur with e = 0.

Step 2. In the region where e∗L > e∗H , the log likelihood ratio drifts up
and jumps down. Taking e = 0 avoids jumps and the flow cost. Starting at
l, the flow benefit is at least β(l) due to the upward drift.

Step 3. Consider l̂ < l′, with l′ in the region where e∗L > e∗H . At l̂, L

has a best response that avoids jumps. At l′, VL is at least β(l′)
r

, which is the

payoff to a strategy that avoids jumps. If the paths of l starting at l̂ and l′

never cross, then the flow benefit starting from l̂ is always strictly below β(l′)
and the cost is weakly higher. In that case VL(l̂) < V (l′). If the paths of l
starting at l̂ and l′ cross, then starting from l′, the strategy that takes e = 0
until the paths cross and reverts to the optimal strategy thereafter yields a
strictly higher payoff than the optimal strategy starting from l̂. Before the
crossing, the flow benefit starting from l′ is strictly higher and the flow cost
weakly lower than starting from l̂. After the crossing, the payoffs are the
same. As before, VL(l̂) < VL(l′). This concludes ruling out e∗L(l) > e∗H(l).

To rule out e∗L = 0 < e∗H < 1, consider an interval (l1, l0] in which
e∗L = 0 < e∗H < 1 is expected. Type H must be indifferent, so switching type
H’s choice from e∗H to 0 in the whole (l1, l0] does not change VH . If e = 0,
then l drifts down deterministically to l1 and, if l1 > −∞, reaches it and
stops there forever. Consider l′, l′′ ∈ (l1, l0], with l′ > l′′. Starting at l′ or
l′′ yields flow cost zero. Starting at l′ yields initially a strictly higher flow
benefit than starting at l′′, and later (when l1 is reached) a weakly higher
flow benefit. So VH is strictly increasing in (l1, l0].
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The jumps from (l1, l0] go to l = ∞, due to e∗H > e∗L = 0. So if H is
indifferent between e > 0 and e = 0 at some l∗ ∈ (l1, l0], he is not indifferent
at any l 6= l∗ in (l1, l0]. This rules out e∗L = 0 < e∗H < 1 occurring over
intervals of positive length in equilibrium. Efforts are continuous from the
left or right in l, so the situation where e∗L(l) = 0 < e∗H(l) < 1 at one point,
with e∗H either 0 or 1 at neighbouring points cannot occur.

Lemma 19. ∀l0 ∈ R ∀l ∈ L(e∗), the following cannot occur:

(a) e∗L(l), e∗H(l) ∈ (0, 1) ∀l ∈ (l, l0], with l > −∞ and e∗L(l) = e∗H(l) = 0,

(b) e∗L(l), e∗H(l) ∈ (0, 1) ∀l ∈ (l, l0], with e∗L(j(l)) = e∗H(j(l)) = 0 for some
l ∈ (l, l0].

Proof. Lemma 7 ruled out e∗L(l) = e∗H(l) > 0 and e∗L(l) > e∗H(l), so e∗L(l), e∗H(l) ∈
(0, 1) implies e∗L(l) < e∗H(l) and j(l) > l. By Lemma 1, VH(j(l)) ≥ VL(j(l)).

(a) For every ε > 0, there exists ε2 > 0 s.t. |l − l| < ε2 implies that the
probability of reaching l from l is 1−ε. For every ε3 > 0, there exists ε > 0 s.t.
if the probability of reaching l from l is 1−ε, then |Vθ(l)−Vθ(l)| < ε3. Due to

pooling at l, VH(l) = VL(l) = β(l)
r

. Combining this with VH(j(l)) ≥ VL(j(l))
and cH < cL, it is clear that VH(j(l))−VH(l) = cH

λ
implies VL(j(l))−VL(l) <

cL
λ

. Both types cannot simultaneously be indifferent to signalling at l close
to l.

(b) If e∗L(j(l)) = e∗H(j(l)) = 0 and e∗L(l), e∗H(l) ∈ (0, 1), then the indif-

ference condition at l is β(j(l))
r
− Vθ(l) = cθ

λ
for θ = H,L. Both types are

indifferent between their equilibrium effort and zero effort, so payoffs are
unchanged by switching the chosen effort to zero, keeping expectations con-
stant. The payoff functions Vθ thus obtained are

Vθ(l) = exp

(
−
∫ l

l

rdz

λ(e∗H(z)− e∗L(z))

)
Vθ(l) (10)

+

∫ l

l

β(x)

λ(e∗H(x)− e∗L(x))
exp

(
−
∫ l

x

rdz

λ(e∗H(z)− e∗L(z))

)
dx

if l > −∞, and

Vθ(l) =

∫ l

−∞

β(x)

λ(e∗H(x)− e∗L(x))
exp

(
−
∫ l

x

rdz

λ(e∗H(z)− e∗L(z))

)
dx. (11)
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if l = −∞. The expressions (10) and (11) satisfy the ODE rVθ(l) = β(l) −
λ(e∗H(l) − e∗L(l))V ′θ (l), which is derived from the HJB equation using the

indifference condition λ[β(j(l))
r
− Vθ(l)]− cθ = 0.

Take l1, l2 ∈ (l, l0] with l1 < l2 and e∗θ(j(l1)) = e∗θ(j(l2)) = 0 for θ = H,L.
Due to piecewise continuity of the strategies, if there is one point in (l, l0]
satisfying e∗θ(j(l)) = 0 for θ = H,L, then there is a continuum. Since l
drifts down in the absence of signals and l1 is reachable from l2, Vθ(l1) is
a continuation value from the perspective of l2. Based on (10) and (11),
Vθ(l2) = αVθ(l1) + k, with α ∈ (0, 1) and k ∈ R. Specifically, for both types,

α = exp

(
−
∫ l2

l1

rdz

λ(e∗H(z)− e∗L(z))

)
,

k =

∫ l2

l1

β(x)

λ(e∗H(x)− e∗L(x))
exp

(
−
∫ l2

x

rdz

λ(e∗H(z)− e∗L(z))

)
dx.

Now it can be shown that the indifference conditions for both types for
l1, l2 contradict each other: subtracting λ[β(j(l1))

r
− VL(l1)] − cL = 0 from

λ[β(j(l1))
r
−VH(l1)]−cH = 0, we get λ[−VH(l1)+VL(l1)] = cH−cL. Subtracting

λ[β(j(l1))
r
− αVL(l1)− k]− cL = 0 from λ[β(j(l1))

r
− αVH(l1)− k]− cH = 0, we

get λα[−VH(l1) + VL(l1)] = cH − cL. This contradicts α ∈ (0, 1), λ > 0,
cL > cH > 0, which proves (b).

Lemma 20. In the good news model, if βmax−βmin

r
> cL

λ
, then there exist

equilibria in which for some l ∈ L(e∗), e∗H(l) = 1 and e∗L(l) ∈ (0, 1).

Proof. Take l0 ∈ R such that βmax−β(l0)
r

> cL
λ

. An equilibrium in which
e∗H(l) = 1 and e∗L(l) ∈ (0, 1) on (l, l0] ⊂ R will be constructed. Assume
l0− l = ε > 0 for ε small. The probability of reaching l from (l, l0] is close to

1, so the payoffs of the types on (l, l0] are close to β(l)
r
< β(l0)

r
.

If the market expects e∗H(l) = 1, e∗L(l) = 0 (which implies that l jumps
to j(l) = ∞ when a signal occurs at l ∈ (l, l0]), then L has the unique best
response e = 1 at l. If the market expects e∗H(l) = e∗L(l) = 1 (which implies
that j(l) = l when a signal occurs at l ∈ (l, l0]), then L has the unique best
response e = 0 at l. By the continuity of β(·) and j(·), there exists ê ∈ (0, 1)
s.t. when the market expects e∗L(l) = ê, e∗H(l) = 1, then L is indifferent
between e = 1 and e = 0 at l. The same reasoning holds for all points in
[l0, l), with slightly different ê.

If L is indifferent between e = 1 and e = 0, then H strictly prefers
e = 1.
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Proof of Lemma 8. If l =∞ or l = −∞, then l does not respond to signals,
so clearly neither type will take positive effort.

The drift in l is finite and the discount rate r is positive, so for any ε > 0
∃T > 0 s.t. the flow payoff after time T contributes less than ε to total payoff.
For any ε > 0 and T > 0 ∃l̂ ∈ R s.t. starting at l̂, after drifting down at rate λ
for length of time T , the log likelihood ratio l reached satisfies |β(l)−βmax

r
| < ε.

The quantity VH(l̂) is bounded below by the payoff from taking e = 0 forever,
which makes the rate of jumps zero. The payoff from taking e = 0 forever
starting at l̂ is bounded below by β(l)

r
− ε, where l is reached from l̂ after

length of time T . Therefore |VH(l̂)− βmax

r
| < 2ε.

Type H’s cost of choosing e = 1 over a time interval ∆ is cH∆ and,
starting at l̂, the benefit is bounded above by |VH(l̂)− βmax

r
|[1− exp(−λ∆)].

Thus at l̂ there exists ε > 0 s.t. the optimal choice of H is e = 0. If e∗H(l) > 0

is expected for l ≥ l̂, then H will deviate to e = 0.
If the expectations are e∗L ∈ (0, 1), e∗H = 1, then jumps end at some

j(l) < ∞, which implies a smaller benefit to signalling than in the e∗L = 0,
e∗H = 1 case. The previous reasoning still holds, with an even stronger

incentive not to signal above l̂.

Proof of Proposition 9. VH is bounded above by βmax

r
and below by βmin

r
. If

βmax−βmin

r
≤ cH

λ
, then even jumps from l = −∞ to l = ∞ at rate λ do not

provide enough benefit to outweigh the cost for H. Thus H will not signal in
this case. For any l ∈ (−∞,∞], jumps from VH(l) to βmax

r
are smaller than

the jumps from βmin

r
to βmax

r
.

If βmax−βmin

r
> cH

λ
, then for some l0 an interval equilibrium can be con-

structed. Define y as follows. If βmax−βmin

r
≤ cL

λ
, then set y = −∞, otherwise

set y = β−1
(
βmax

r
− cL

λ

)
. Take l ∈

(
y, β−1

(
βmax

r
− cH

λ

))
in the interval equi-

librium, so that H has a strict incentive to signal at l and L has a strict
incentive not to signal (recall that VH(l) = VL(l) = β(l)

r
). By continuity

and strict increasingness of VH , VL, ∃ε > 0 s.t. VH(l + ε) ≤ βmax

r
− cH

λ
and

VL(l + ε) ≥ βmax

r
− cL

λ
, so H has an incentive to signal at l + ε and L has an

incentive not to signal. Take l0 = l + ε. This completes the construction of
an interval equilibrium.

Proof of Lemma 11. Due to the boundedness of β(l) and eθ, discounting en-
sures that Vθ is finite—even without the expectation, the integral in the
definition of Vθ is finite for any path of l and any control eθ.
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It is clear that VH ≥ VL in the signalling region, because H can follow
L’s strategy at a lower cost than L. Outside the signalling region, VH(l) =

VL(l) = β(l)
r

.

If there is positive probability of reaching l̂ with the optimal eL(l̂) > 0,
then H can follow L’s strategy at a strictly lower cost.

To prove Vθ is strictly increasing, a standard coupling argument is used.
Consider two diffusion processes: the l process with optimal effort start-
ing from l1 and the l process under zero effort starting from l2 > l1. Call
the former process le

∗
and the latter l0. Define the stopping time τ ∗ =

inf
{
t > 0 : l0t − le

∗
t = 0

}
. The receivers expect the optimal strategy in both

cases.
Starting at l2, the strategy s =“play 0 until τ ∗ and the optimal strategy

thereafter” yields a weakly lower payoff than Vθ(l2), the payoff to the opti-
mal stationary strategy starting from l2. This holds even though s is not
stationary, because if the receivers expect a stationary strategy, then among
the optimal strategies for the sender there is a stationary one. The argument
is standard—the competitive receivers always play a static best response,
which depends on their belief about the type, but not the sender’s strategy,
so if at some l, a sender action ê is optimal at one point in time, then ê is
optimal at that l at another point in time.

Starting at l2, the strategy s yields a strictly higher payoff than Vθ(l1), the
payoff to the optimal strategy starting from l1. This is because the revenue
β(l0) is strictly higher than β(le

∗
) before τ ∗ and the same in expectation

after τ ∗. The cost of l0 is zero while the cost of le
∗

is positive before τ ∗.
The costs of the two strategies are the same in expectation after τ ∗. Overall,
Vθ(l2) > Vθ(l1) for l1, l2 in the signalling region.

If both l1, l2 are outside the signalling region, then since β was assumed
strictly increasing, the payoffs are ordered Vθ(l2) = β(l2)

r
> β(l1)

r
= Vθ(l1).

If l2 is above the signalling region while l1 is in the signalling region, then
the expected benefit is strictly higher from l2 onwards and the expected cost
is the lowest possible from l2 onwards, so Vθ(l2) > Vθ(l1). If l2 is in the
signalling region while l1 is below the signalling region, then Vθ(l2) is higher
than the payoff to the strategy of taking zero effort forever starting from l2.
The cost of this strategy is the same as the cost of the optimal strategy from
l1 onwards, while the benefit is strictly greater, so again Vθ(l2) > Vθ(l1).

Proof of Lemma 12. If e∗H(l) = e∗L(l), then the signal is statistically uninfor-
mative about the type, so the log likelihood ratio does not respond to the
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signal. Given this, both types will optimally choose eθ(l) = 0. Therefore in
equilibrium, it cannot be that e∗L(l) = e∗H(l) > 0 for some l.

A higher expected signal is more costly to both types. If e∗L(l) > e∗H(l)
is expected, then based on (8), l falls in response to a higher signal. The
flow benefit β(l) strictly increases in l. By Lemma 11, Vθ(l) increases in l. If
e∗L(l) > e∗H(l) is expected, then a higher signal leads to a lower flow benefit,
lower continuation value and higher cost, so both types optimally choose
eθ(l) = 0.

Proof of Proposition 13. L takes no effort in any extremal equilibrium, in-
cluding pooling, so the flow cost is the same in both cases. The flow benefit
comparison is unaffected if β(l) is written as β(f−1(f(l))) for some strictly
increasing smooth f . Use Itō’s rule to derive the process f(l):

df =

[
σ−2(e∗H − e∗L)

(
eL −

1

2
(e∗H + e∗L)

)
df

dl
+

1

2σ2
(e∗H − e∗L)2

d2f

dl2

]
dt

+
e∗H − e∗L

σ

df

dl
dBt.

The drift of f is zero iff d2f
dl2

= −2
eL− 1

2
(e∗H+e∗L)

e∗H−e
∗
L

df
dl

. Impose the equilibrium

condition eL = e∗L and recall that in interval equilibria, e∗H = 1 and e∗L = 0.

This leads to d2f
dl2

= df
dl

. Using the normalization f(0) = 1, f ′(0) = 1, we get
f(l) = exp(l) and f−1(z) = ln(z).

If β(ln(z)) is concave in z, which has zero drift, then the expectation of
β(ln(z)) decreases in the variance of z. The variance of z is strictly increasing
in the variance of l. In the pooling equilibrium, l is constant, but in informa-
tive equilibria, it has positive variance. A similar reasoning establishes that
if β(ln(z)) is convex in z, then the payoff of L in any informative equilibrium
is above the pooling payoff. Analogous reasoning shows H prefers pooling to
other extremal effort equilibria iff β(− ln z) is convex in z.

For l ∈
{
l1, l1

}
, it follows from the above that VL1(l) = β(l)

r
≥ VL2(l).

From any point in (l1, l1), the log likelihood ratio process has positive
probability of hitting l1 and positive probability of hitting l1. The flow cost
to L is zero in all extremal equilibria for all l. For the same l, the flow benefit
to L is the same in all extremal equilibria. The distribution over paths of l up
to hitting l1 or l1 starting from l0 ∈ (l1, l1) is the same in the two equilibria
with signalling regions (l1, l1) and (l2, l2), because in both equilibria in the
region (l1, l1), H takes action 1 and L takes 0. Therefore the continuation
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value comparisons VL1(l1) ≥ VL2(l1) and VL1(l1) ≥ VL2(l1) determine the
payoff comparison VL1(l) ≥ VL2(l) for any l ∈ (l1, l1).

Proof of Lemma 14. For any signalling region (l, l), the solutions of the ODEs
are differentiable at least as many times as β on (l, l) and continuous on [l, l].
Since β was assumed twice continuously differentiable, VL and VH are as
well. Given the signalling region, VH , VL are bounded for any path of l and
control eθ. Therefore VH(l), VL(l) are integrable in the probability law of the
l process that starts from l0 and is controlled by eθ, uniformly over Markov
controls eθ. So by Theorem 11.2.2 of Øksendal (2010), VL, VH coincide with
the value functions VL, VH .

Under the previous conditions, Theorem 11.2.3 of Øksendal (2010) shows
that the optimal Markov control does as well as the optimal nonanticipating
control, so if the receivers expect Markov strategies, then both types of the
sender have a Markov best response among their best responses. This does
not imply that the payoffs of all non-Markov equilibria can be attained with
Markov equilibria, since in a non-Markov equilibrium the receivers expect
non-Markov strategies.

Proof of Proposition 15. The proof first shows that if there exists l ∈ R
s.t. β′(l)

r
> cHσ

2, then there exists l0 ∈ R s.t. cLσ
2 > β′(l0)

r
> cHσ

2. An
informative extremal equilibrium is constructed with a length-ε signalling
region (l, l) 3 l0. For this, the ICs are verified on (l, l) by showing V ′H(l), V ′L(l)

are close to β′(l0)
r

. First, the average slope of β(l)
r

over (l, l) is close to β′(l0)
r

.

Second, the average slope of VL, VH over (l, l) equals the average slope of
β(l)
r

. Third, at any l close to l0, V
′
H(l), V ′L(l) are close to the average slope of

VL, VH over (l, l).
β ∈ C2 and bounded, so liml→−∞ β

′(l) = 0 = liml→∞ β
′(l). We know that

at some l ∈ R, β′(l) > cHrσ
2. By the Mean Value Theorem ∃δ > 0, ∃l0 ∈ R

s.t. cHrσ
2 + 2δ < β′(l0) < cLrσ

2 − 2δ. By β′ ∈ C1, the average slope
of β over a small interval containing l0 is close to β′(l0). Formally, there
exists ε > 0 s.t. for any l, l satisfying l < l0 < l and l − l < ε, we have

cHσ
2 + δ

r
< β(l)−β(l)

r(l−l) < cLσ
2 − δ

r
.

The candidate value functions VL, VH calculated in the main text are in-
finitely differentiable on the signalling interval (l, l), continuous on R and sat-

isfy the boundary conditions VH(l) = VL(l) = β(l)
r

and VH(l) = VL(l) = β(l)
r

.

By the Mean Value Theorem, there exist l̂L, l̂H ∈ (l, l) satisfying V ′L(l̂L) =
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V ′H(l̂H) = β(l)−β(l)
r(l−l) .

By the smoothness of V ′H , V
′
L, if the ICs are satisfied at some l̂L, l̂H ∈ (l, l),

then for a small enough (l, l), the ICs are satisfied at all l ∈ (l, l). Formally,
for any δ > 0 there exists ε3 > 0 s.t. if l − l < ε3, then

max
l∈(l,l)

∣∣∣∣V ′L(l)− β(l)− β(l)

r(l − l)

∣∣∣∣+

∣∣∣∣V ′L(l)− β(l)− β(l)

r(l − l)

∣∣∣∣ < δ

r
.

Take l, l satisfying l < l0 < l and l − l < min {ε3, ε}, then for all l ∈ (l, l),
we have cHσ

2 < V ′H(l), V ′L(l) < cLσ
2. The ICs are satisfied, so (l, l) is the

signalling region of an interval equilibrium, with l0 ∈ (l, l).
If @l ∈ R satisfying cHrσ

2 ≤ β′(l), then there is no signalling interval
on which ICH can be satisfied at every point. The average slope of VH over
any interval is less than cHσ

2, so at some l in the interval, V ′H(l) < cHσ
2.

The maximal benefit to signalling at l occurs when the expectations of the
market are e∗H(l) = 1, e∗L(l) = 0. If H cannot be incentivized to signal at
these expectations, then no other expectations incentivize H to signal either.
Pooling is then the unique equilibrium.
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