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Abstract

This paper explores the evolutionary foundations of belief formation in
strategic interactions. The framework is one of best response dynamics in
normal form games where the revising agents form stochastic beliefs about
the actual strategy distribution in the population. The shares of agents
drawing from the same belief distribution are subject to the replicator
dynamics. The basic idea is that beliefs translate into behavior, behavior
translates into fitness, and fitness then determines the evolutionary success
of a belief distribution. A belief distribution is called replicator dynamics
stable if – given that all agents in the population draw their beliefs from
that distribution – any small share of an intruding belief distribution is
crowded out again. We show how this notion relates to the traditional
replicator stability of strategies, and how the framework can be applied to
study the evolutionary stability of sampling procedures, and the stability
of mixed equilibria in asymmetric normal form games.
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1 Introduction

The rational choice paradigm explains strategic behavior by means of prefer-
ences, beliefs, and actions: Agents consistently choose from the actions available
in order to maximize their utility given the belief that they hold about the action
choice of others. Economic theorists engaged in analyzing the evolutionary
foundations of strategic behavior have so far mainly focused on preferences,
and actions. However, there is no reason to think that the third component of
the paradigm, that is, beliefs that agents hold, or the way agents come to hold
their beliefs should not be subject to evolutionary forces, either.

This paper sketches a route to analyze evolutionary stable beliefs in strategic
interactions, and to characterize the behavior that these beliefs induce. The basic
idea is similar to the idea in the indirect evolutionary approach that is usually
applied to preferences (cf. Güth & Yaari 1992): Beliefs determine behavior,
behavior determines fitness, and fitness in turn determines the evolutionary
success of the beliefs. Other than in the classical approach that employs a static
evolutionary concept, however, we analyze this causal chain by spelling out an
explicit model of both the dynamics describing how agents arrive at equilibrium
play given their beliefs, and of the evolutionary dynamics describing how the
beliefs in the population evolve.

We assume a best response dynamics framework: Individual agents of a unit
mass population are repeatedly and randomly matched in a 2× 2 normal form
game. Agents myopically play best response to their belief about the current
strategy distribution in the population, but from time to time, a subset of the
agents gets the opportunity to revise their belief. Other than in the standard best
response dynamics where the revised belief corresponds to the actual strategy
distribution at the time of revision (cf. Gilboa & Matsui 1991), we here assume
that revising agents draw a stochastic belief about the strategy distribution from
a belief distribution that is conditional on the actual strategy distribution. The
conception of random beliefs is motivated by the observation that perception –
being the device that generates an agents beliefs about his environment – is a
partly random process (cf. Kahneman & Tversky 1996).

Randomness in perception brings about an indeterminacy to the best re-
sponse dynamics in the sense that any strategy distribution can be chosen to
be a steady state of the best response dynamics with appropriately specified
conditional belief distributions. This observation motivates our model’s second
building block. We resort to evolution as a selection device between belief distri-
butions. We present a model in which differing belief distributions from a given
family of possible belief distributions compete within a population: We divide
the population into two sub-populations, let agents of a given sub-population
draw from the same belief distribution, and put the standard replicator dynam-
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ics on the sub-population shares. Under this dynamics, the sub-population share
of those agents drawing their beliefs from a distribution that yields a fitness
level that is higher than the population average fitness level grows, whereas
sub-population share of those agents drawing their beliefs from a distribution
that yields a fitness level that is lower than the population average fitness level
shrinks. We focus on states with belief-monomorphic populations – i.e. states
where all agents in a population draw from the same belief distributions – and
analyze the behavior of the system after an intrusions by a tiny share of agents
drawing from a different belief distribution.

The key to our analysis lies in understanding the dynamical system com-
prising the best response dynamics and the replicator dynamics as a slow-fast
system. Slow-fast systems are characterized by two different time-scales. The
variables subject to the faster time-scale are taken together in what is called the
fast node, and the others in the slow node, respectively (c.f. Berglund & Gentz
2006 for an introduction). In the context of this paper, we will understand the
best response process as the fast, and evolution as the slow node.

Two-speed dynamics have been employed in models of preference evolution,
albeit only implicitly: For example, Sandholm (2001b), Dekel, Ely & Yilankaya
(2007), or Alger & Weibull (2013) deal with the limit case of play adapting
infinitely fast to changes in the distribution of preferences. They do so by
assuming that agents are aware of the changing nature of the preferences, and
always play equilibrium given the current distribution of preferences.1 In this
paper, we resort to a well-known result in the context of slow-fast systems
known as Tykhonov’s Theorem (cf. Kokotovic 1984, Theorem 2.1), that states
sufficient conditions to approximate the behavior of the slow-fast system by the
solution of a reduced system, and thus allows the analysis of the less extreme
cases where the adaptation of play is explicitly modeled and, crucially, does not
happen infinitely fast.

Motivated by Tykhonov’s Theorem, we say that a belief distribution is stable
under the replicator dynamics at a strategy distribution, if in a state with all
agents of the population drawing their beliefs from the same distribution and
the best response dynamics at rest yielding that strategy distribution, there is
no other belief distribution yielding a differing distribution of actions that can
intrude beyond possibly a tiny share whose size vanishes in the speed of the
best response dynamics. Tykhonov’s Theorem yields conditions both on the
best response dynamics as well as a on the replicator dynamics such that a
belief distribution is replicator dynamics stable. These separate conditions are

1Sandholm (2001b) discusses relaxing the assumption of infinitely fast adapting play in his
setup. See the literature section for a more thorough discussion of his approach and how it
relates to ours.
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very convenient as the full slow-fast system is analytically intractable. We also
briefly discuss the close connection of our notion of stability to the classical
notion of replicator dynamics stability of strategies (cf. Weibull 1997).

We present two applications of our approach: First, we look at beliefs that
are generated by random strategy sampling in the population. By this, we
mean that when agents revise their belief about the current population state,
they do so by randomly sampling agents from the population and therefrom
deducing a point estimate by looking at the strategy distribution in the sample.
We can show that in games of the Hawk-Dove variety, sampling procedures that
lead to replicator dynamics stable belief distributions are generically biased. In
a second application, we extend the framework to asymmetric 2× 2-normal
form games, and look at games of the Matching Pennies variety. Here, we can
show that the unique population state brought about by replicator dynamics
stable belief distributions corresponds to the (unique) mixed strategy Nash
equilibrium distribution.

The paper is organized as follows: Section 2 presents the basic model for
symmetric 2× 2-normal form games, and sets up the dynamics to be analyzed.
Section 3 elaborates on the stability criterion, states the main result giving
conditions for stability, and relates our notion of stability to the classical notion
of replicator dynamics stability of strategies. In Section 4, we look at a the
special class of belief distributions generated by random sampling. In Section
5, the main theorem is applied to a generalized 2× 2 matching pennies game.
Section 6 discusses the relation to the literature, and the last section concludes.

2 The Basic Model

We consider the following setup: There is one population whose agents are
repeatedly randomly pairwise matched in a symmetric 2×2-normal form game.
We label the two strategies by strategy 1, and 2, respectively. We write z ∈ [0, 1]
for the share of agents playing strategy 1, and call it the population state. The
expected utility in a match to an agent playing strategy i ∈ 1,2 is given by
Ui(z). As the dynamics to be set up only depend on payoff difference between
strategies, and these differences are invariant to shifts in the utilities for a
given opponent strategy, we can normalize these payoffs as follows (cf. p.40 in
Weibull 1997): U1(z) = az, and U2(z) = b(1− z), where a, b ∈ R.

We restrict attention to cases of sgn(a) = sgn(b). With a, b > 0, we have
a game of the Coordination Game variety; with a, b < 0, we have a game of
the Hawk-Dove variety. The reason for the sign-restriction is the following:
With a > 0 > b, or with a < 0 < b (corresponding to games of the Prisoner’s
Dilemma variety) we have a strictly dominant strategy, and hence the belief
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about the other players’ strategy choices (which is the main interest in this
paper) is irrelevant.

Agents hold individual beliefs ẑ ∈ [0, 1] about the current population state
z. We assume that agents take their environment for stationary, that is, they
neither update their belief based on the history of play, nor do they take into
account what influence their choice of action might have on the action choice
others. In every match, the agents play a best response to their beliefs. We
assume that an agent plays strategy 1 whenever this yields a weakly higher
utility than strategy 2.2 Accordingly, we callB ≡ {z : U1(z)≥ u2(z)} the best
response set of the agents. The set B contains those population states z to
which agents have strategy 1 as a best response. Agents with a belief ẑ ∈ B
play strategy 1, whereas agents with a belief ẑ ∈ [0,1] \ B play strategy 2.
That is, if a, b < 0, we have B = [0, b/(a+ b)], and if a, b > 0, we have
B = [b/(a+ b), 1].

From time to time, agents get the opportunity to revise their belief about the
current population state. For each agent, these opportunities occur according
to a Poisson process, and arrive with rate λ > 0. That is, as we look at ever
shorter time intervals of length dτ > 0, the probability that an agent receives
an opportunity to revise his beliefs in the period [t, t + dτ) is given by λdτ.
A revising agent forms a new belief ẑ about the current population state, and
plays best response to that belief until the next opportunity to revise arises.

The revision stage is modeled in the following reduced way: An agent
revising at a current population state z ∈ [0, 1] forms a revised belief ẑ that is
a draw from a conditional cumulative distribution function F(.|z) : [0,1]→
[0,1]. If F(.|z) has a density, we denote it by f (.|z). If F(.|z) is discrete, we
accordingly interpret f (.|z) as a probability. The belief distribution F belongs
to the family F of possible belief distributions which is a subset of the set of
all distribution functions on [0,1] that are conditional on z ∈ [0,1]. While
the specific characterization of F will depend on the respective application
considered, we make two assumptions aboutF that hold throughout the paper:

Assumption 1 (Differentiability). It holds for all members F of F that, ∀x , z ∈
[0,1], F(x |z) is continuously differentiable in z.

Throughout the paper, we say that a function is differentiable on a closed
convex subset of the Euclidean space if the respective one-sided derivatives
exist at all boundary points of the set. The assumption guarantees that the
beliefs of agents do not change too abruptly when the actual population state
changes. On a technical level, differentiability of F in z is required in order that
the vector field of the dynamics to be set up is differentiable.

2The tie-breaking rule in case of indifference is not important. All the results go through for
any (probabilistic) tie-breaking rule.

5



Assumption 2 (Richness). For every u, v, z ∈ [0, 1], ∃F ∈ F such that u = F(v|z).

This assumption states that at any population state z and for any arbitrary
u, v ∈ [0,1], we always have at least one distribution F ∈ F under which the
probability that the belief is below v is given by u. This will ensure that any
population state z can be supported as a steady-state of the dynamics to be set
up.

In the general description of the model, we are not interested in the way the
belief distributions inF come about. Nevertheless, it is perhaps natural to think
that there are underlying information gathering and processing procedures that
yield specific characterizations of the members of F . One example of such a
procedure, that we refer to repeatedly in the following and discuss in some
more detail in Section 4, is random sampling:

Example 1 (Random Sampling). Under random sampling, the revising agent
draws a finite random sample of players from the population, observes the
strategies played by the agents in the sample, and then forms a point estimate
of the current state z. Let the sample size be M ∈ N++, and let m≤ M be the
number of strategy 1 agents observed in the sample. The belief about z is then
given by ẑ = m/M . The belief ẑ is binomially distributed, and a typical member
of the family F induced by such sampling procedures is given by

F(x |z) =
bM ·xc
∑

i=1

�

M
i

�

z i(1− z)M−i

with x , z ∈ [0,1], and with bxc denoting the floor operator that returns the
highest integer weakly below x . Note that a family F that merely contains
belief distributions F that are generated by random sampling with finite sample
sizes is not rich. In Section 4, we suitably extend the sampling procedure to
what we call generalized sampling, which will guarantee that the resulting
family F of belief distributions is indeed rich.

In order to set up the dynamics, we divide the population in two sub-
populations labeled 1 and 2. The sub-populations differ in the belief distri-
butions that revising agents draw new beliefs from. We denote the belief
distribution of sub-population q = 1, 2 by Fq ∈ F . The mass of sub-population
1 is denoted by ϕ ∈ [0,1]. We call the population distribution-monomorphic
if ϕ ∈ {0, 1}: The value ϕ = 0 corresponds to the case where all agents in the
population draw from belief distribution F2, while ϕ = 1 corresponds to the
case where all agents draw from belief distribution F1. Strategy shares within
sub-populations are denoted by µq ∈ [0,1], such that the current population
state z is given by z = ϕµ1 + (1−ϕ)µ2. We sometimes write z as a function
z(µ,ϕ), µ= (µ1,µ2), in order to emphasize its dependence on (µ,ϕ).
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2.1 Best Response Dynamics

We first look at the best response dynamics of the population state z for a fixed
sub-population share ϕ ∈ [0, 1]. To set up the dynamics, we start with discrete
time, and then take the continuous time limit. Let

ζq(z)≡
∫

ẑ∈B

dFq(ẑ|z)

be the reaction function of an agent of sub-population q = 1,2 that specifies
the probability that an agent chooses strategy 1 after revision at a population
state z ∈ [0, 1] when drawing a belief from a distribution Fq. Note that ζq(z) is
differentiable in z because Fq(x |z) is differentiable in z by Assumption 1.

We twice resort to a standard abuse of the law of large numbers, and
assume (i) that the fraction of agents revising their belief in a short time period
of length dτ > 0 is given by δdτ, and (ii) that the fraction of revising agents
in sub-population q choosing strategy 1 at population state z can be written
as ζq(z). This then allows us to write the sub-population strategy shares in
sub-population q at time t + dτ as µq(t + dτ) = (1−λdτ)µq(t) +λdτζq(z(t)).
Taking the continuous time limit, that is, letting dτ→ 0, the dynamics of the
sub-population strategy shares can be written as:

dµq(t)

dt
= λ

�

ζq(z(t))−µq(t)
�

, q = 1, 2 (1)

Letting ζ = (ζ1,ζ2) be the vector of the reaction functions of the sub-populations,
we re-express the best response process compactly as

dµ(t)
dt

= λ [ζ (z(µ(t),ϕ(t)))−µ(t)]≡ g (µ(t),ϕ(t)) , µ ∈ [0,1]2 (2)

We refer to system (2) as the best response node. The following lemma estab-
lishes existence of at least one fixed point of the best response node for any
two belief distributions F1, F2 ∈ F and any share ϕ of belief distributions in the
populations:

Lemma 1. Fix F1, F2 ∈ F . Then, ∀ϕ ∈ [0,1], the set of roots µ ∈ [0,1]2 of
g(µ,ϕ),

Υ ∗(ϕ)≡
�

µ ∈ [0, 1]2 : µ= ζ (z(µ,ϕ))
	

, (3)

is non-empty.
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Proof. By definition, z(µ,ϕ) is linear in the elements of µ, and hence continuous
in µ. From Assumption 1 it follows that ζ is differentiable, and hence continuous
in z. Hence, for any fixed ϕ, ζ continuously maps the compact and convex set
[0, 1]2 into itself, and we can apply Brouwer’s fixed point theorem to the map
ζ (z(µ,ϕ)).

Fix a root µ∗(ϕ) ∈ Υ ∗(ϕ), and let z∗(ϕ) ≡ ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ) be the

population state played at ϕ. Then, the Jacobi Cµ∗(ϕ) ≡ ∂µg(µ∗(ϕ),ϕ) for
ϕ ∈ [0,1] is given by

Cµ∗(ϕ) =
�

ζ′1 (z
∗(ϕ))ϕ − 1 ζ′1 (z

∗(ϕ)) (1−ϕ)
ζ′2 (z

∗(ϕ))ϕ ζ′2 (z
∗(ϕ)) (1−ϕ)− 1

�

Later, we will be mainly interested in stable roots at the belief-monomorphic
state ϕ = 1 where the eigenvalues of Cµ∗(ϕ) all have strictly negative real
parts. The next lemma characterizes such stable roots. Let Bδ(x)≡ {y ∈ [0, 1] :
‖x − y‖< δ} for x ∈ [0, 1]. Then we have:

Lemma 2. Fix ϕ̃ = 1 a profile {F1, F2} ∈ F ×F , and take any root µ∗(ϕ) with
µ∗(ϕ̃) ∈ Υ ∗(ϕ̃). If Cµ∗(ϕ) has strictly negative real eigenvalues, then there exists
δ > 0 such that

(a) µ∗(ϕ) is differentiable ∀ϕ ∈ Bδ(ϕ̃), and
(b) C∗(ϕ) has eigenvalues with negative real parts bounded away from zero
∀ϕ ∈ Bδ(ϕ̃).

The proof is found in Appendix A.1. For later purpose we note (i) that
the first element µ∗1(ϕ̃) of µ∗(ϕ̃) only depends on ζ1, and (ii) that the eigen-
values of Cµ∗(ϕ̃) only depend on the reaction function ζ1 of agents in sub-
population 1. The latter follows as neither the trace tr(Cµ∗(ϕ̃)) nor the de-
terminant det(Cµ∗(ϕ̃)) depend on ζ2, and the two eigenvalues λ1,λ2 satisfy
λ1+λ2 = tr(Cµ∗(ϕ̃)) and λ1λ2 = det(Cµ∗(ϕ̃)). Hence, the stability of any µ∗(ϕ̃)
only depends on F1 ∈ F . The converse holds, of course, for the roots µ∗(ϕ) at
ϕ = 0.

So far, we have not specified what particular belief distribution F ∈ F we
might expect agents to draw from. This indeterminacy of the belief distribution
translates in an indeterminacy of the best response rest point. The reason for
this is that the rest point of the best response node largely depends on the
particular belief distributions that agents draw from, whereas the underlying
payoff structure only has a very coarse influence. The next example makes this
more explicit:
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Example 2. Let F be the family of belief distributions generated by random
sampling as described in Example 1, and consider a simple hawk-dove game
with payoffs U1(z) = −(1+ ε)z and U2 = −(1− z) with ε > 0. This game has a
unique Nash equilibrium z∗ = 1/(2+ ε)< 1/2. That is, an agent with a belief
ẑ > z∗ chooses strategy 2, whereas an agent with a belief ẑ ≤ z∗ chooses strategy
1. Let the arrival rate of revision opportunities be λ = 1, assume for the sake of
clarity that all agents of the population draw from the same belief distribution,
and that hence we can take the population state z itself to be subject to the best
response dynamics. Take first the case of agents sampling exactly M = 1 other
agent when revising their beliefs. Under such a sampling regime, an agent will
play strategy 1 iff the sample contains a strategy 2 encounter. This happens
with probability 1− z. The dynamics are then given by ż = 1− 2z. For M = 1
the rest point is given by z̃ = 1/2 6= z∗. For M = 2, an agent chooses strategy
1 only when he has two strategy 2 agents in his sample, so the dynamics are
given by ż = (1− z)2− z, and hence it holds at the rest-point z̃ that z̃ = (1− z̃)2.
Obviously, the z̃ that satisfies this conditions is neither equal to the mixed Nash
equilibrium strategy share z∗, nor is it equal to the rest-point under M = 1. The
rest point changes when we change the sampling procedure and hence change
the belief distribution.

Consequently, in order that the rest point of the best response dynamics is
not totally arbitrary, we need to introduce a selection device between belief
distribution. This is done next.

2.2 Evolution

In this section, we describe the dynamics of the sub-population share ϕ. We
assume the dynamics to be evolutionary in the sense that the sub-population
share of those agents receiving a higher average sub-population utility increases,
whereas the share of those agents receiving the lower average sub-population
utility shrinks. To model the growth rate ofϕ, we adapt the idea of the replicator
dynamics (cf. Taylor & Jonker 1978). The average sub-population utility in
sub-population q = 1,2 is given by

Uq(µ,ϕ)≡ µqU1(z(µ,ϕ)) + (1−µq)U2(z(µ,ϕ))

The time of evolution is denoted by s. We write the evolution node as

dϕ(s)
ds

= ϕ(s) (1−ϕ(s))
�

U1 (µ(s),ϕ(s))− U2 (µ(s),ϕ(s))
�
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or, equivalently as

dϕ(s)
ds

= ϕ(s) (1−ϕ(s)) (µ1(s)−µ2(s)) (U1 (z(µ(s),ϕ(s)))− U2 (z(µ(s),ϕ(s))))

≡ h (µ(s),ϕ(s))

with ϕ ∈ [0, 1]. This expression has a natural interpretation: As long as we are
not in a belief-monorphic state with ϕ ∈ {0, 1}, the share ϕ of belief distribution
F1 grows if either strategy 1 yields a higher utility than strategy 2 and the sub-
population drawing beliefs from F1 has currently a higher fraction of agents
choosing strategy 1, or if strategy 2 yields a higher utility than strategy 1 and
the sub-population drawing beliefs from F1 has currently a higher fraction of
agents choosing strategy 2.

2.3 Time-scales

The time-scale of the evolutionary dynamics (s) differs from the time-scale of
the best-response dynamics (t). In particular, we assume that evolution runs on
a slower time-scale than the best response dynamics, that is, we have s/t = ε
with 0< ε≤ 1. The parameter ε stands for the ratio of the speed of evolution
over the speed of the best response dynamics.

In the following, we analyze the case of small, but positive ε values. For
small ε values, the replicator dynamics determining the belief distribution share
ϕ is much slower compared to the best response dynamics determining the
strategy distributions µ. In the limit of ε → 0, the best response dynamics
becomes infinitely fast, that is, behavior adapts instantaneously to changes in
the belief distribution shares.

We use the dot-notation as in µ̇ to denote derivatives with respect to the
slow time s. We have

µ̇q =
dµq(t)

ds
=

dµq(t)

dt
dt
ds
=

dµq(t)

dt
1
ε
=

1
ε
δ
�

ζq(z(µ(t),ϕ(t)))−µq(t)
�

,

and hence we can rewrite the joint dynamics of the best response dynamics
and the replicator dynamics as

εµ̇ = g(µ,ϕ), µ ∈ [0,1]2

ϕ̇ = h(µ,ϕ), ϕ ∈ [0, 1] (4)

The dynamical system (4) is at the center of interest in this paper. Resorting
to the terminology of slow-fast systems, we call ϕ ∈ [0,1] the slow variable,
and the components of µ ∈ [0, 1]2 the fast variables. Alternatively, the latter is
called the best response node, whereas the former is called the evolution node.
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Note that the two nodes are uncoupled when ε= 0: The fast node variables µ
are at rest for any ϕ, and the slow node is thus dependent on ϕ alone (once
through the rest-point of the replicator dynamics determined by ϕ and once
through ϕ directly). In the following analysis, we derive conditions under
which the behavior of (µ,ϕ) at ε = 0 can be taken as a good approximation for
the behavior of (µ,ϕ) for small ε > 0.

3 Stability

We restrict attention to belief-monomorphic rest points (µ̃, ϕ̃) of system (4)
with ϕ̃ = 1 and with the Jacobi ∂µg(µ̃, ϕ̃) having only strictly negative real
eigenvalues. That is, we look at a situation where we have a resident population
of agents drawing revised beliefs from F1 ∈ F yielding stable root µ∗(ϕ̃) = µ̃,
and a candidate mutant distribution F2 ∈ F . For our stability analysis, we fix
such a pair F1, F2 ∈ F of belief distributions, consider a perturbation (µ0,ϕ0)
of the rest point (µ̃, ϕ̃), and then look at the resulting trajectories (µt ,ϕt) of
the slow-fast system (4).

In order to describe the behavior of system (4) after the perturbation (µ0,ϕ0),
we resort to results which are originally due to Tikhonov, and are restated in
Kokotovic (1984). By Lemma 2, we know that there is a δ > 0 such that the
root µ∗(ϕ) ∈ Υ ∗(ϕ) with µ∗(ϕ̃) = µ̃ is differentiable ∀ϕ ∈ Bδ(ϕ̃). Hence, the
following reduced system is well defined on Bδ(ϕ̃):

ϕ̇ = h(µ∗(ϕ),ϕ), ϕ ∈ Bδ(ϕ̃) (5)

The reduced system (5) describes the evolution of the belief distribution
shares given that the best-response process adapts infinitely fast to changes in
the shares of belief distributions. For the following Theorem, we collect the
results, and in particular, Theorem 2.1 in Kokotovic (1984). Consider the slow-
fast system (4) with initial values (µ0,ϕ0) ∈ [0,1]3, and the reduced system
(5) with initial value ϕ0 = ϕ0, and solution trajectory ϕ t .

Theorem 1. Assume that the eigenvalues of the Jacobi C∗(ϕ t) = ∂µg(µ∗(ϕ t),ϕ t)
all have real parts that are strictly below some fixed negative number ∀t ∈ [0, T],
T > 0. Then, ∃ω> 0 such that if ‖µ0 −µ∗(ϕ0)‖ ≤ω there exists t0 > 0, t0 ≤ T,
with t0→ 0 as ε→ 0, such that

‖ϕt −ϕ t‖= O(ε), ∀t ∈ [0, T] (6)

‖µt −µ∗(ϕ t)‖= O(ε), ∀t ∈ [t0, T] (7)
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Given Theorem 1 applies, equation (6) states that the trajectory ϕ t of the
reduced system (5) is a good approximation for the behavior of the trajectory ϕt

of the full system (4) as long as t ∈ [0, T ], given we choose µ0 sufficiently close
to µ∗(ϕ0). Similarly, but only after some non-negative time t0, the trajectory
µt of the full system can be approximated by µ∗(ϕ t) until t = T . This is stated
with (7).

Theorem 1 is convenient for our analysis of the stability of belief distribution
as it suggests to consider initial conditions (µ0,ϕ0) that can be expressed in
terms of ϕ0 alone: Choose some ϕ0 in the domain Bδ(ϕ̃) where the reduced
system (5) is defined, and pick µ0 sufficiently close to µ∗(ϕ0) such that ‖µ0 −
µ∗(ϕ0)‖ ≤ωwithω as given in Theorem 1. Hence, when we talk about stability
in the following, we always only make explicit reference to ϕ0, but nevertheless
always implicitly assume µ0 to lie sufficiently close to µ∗(ϕ0). This conception
of a perturbation is agnostic about how the resident population reacts to a
sudden small change in the sub-population share ϕ. We merely assume that the
strategy shares are minimally and arbitrarily perturbed when mutants intrude.

3.1 Replicator Dynamics Stable Belief Distributions

The candidate mutant distribution F2 is assumed to be different from F1 in a
specific sense: Letting again Bδ(x) = {y ∈ [0,1] : ‖x − y‖< δ} for x ∈ [0,1],
we define:

Definition 1 (z-different belief distribution). F1 is z-different from F2, if ∃ω> 0
such that ‖ζ1(z′)− ζ2(z′)‖ 6= 0, ∀z′ ∈ Bω(z).

As we have differentiable reaction functions, a necessary and sufficient
conditions for two distributions F1 and F2 to be z-different is that ‖ζ1(z) −
ζ2(z)‖ 6= 0 holds. The notion of z-different belief distributions is important for
our stability criterion, as it excludes cases in which the dynamics get “stuck”
because the trajectory of (µt ,ϕt) at some time t passes (µ∗(ϕt),ϕt) with a
population state zt = z(µ∗(ϕt),ϕt) at which both the resident and the intruding
belief distributions yield the same strategy distributions. In particular, if for
ζ1(z̃) = ζ2(z̃) initial conditions ϕ0 6= ϕ̃ and µ0 = (z̃, z̃) are chosen3, then we
have h(µ0,ϕ0) = g(µ0,ϕ0), and the system is at rest right after the perturbation.

Having ruled out such cases, we consider a belief distribution F1 ∈ F , and
let z̃ = z(µ̃, ϕ̃) be the belief-monomorphic population state. As at ϕ̃ = 1, the
population state z̃ under any µ∗(ϕ̃) ∈ Υ ∗(ϕ̃) depends solely on F1, Theorem 1
motivates the following notion of stability:

3This is consistent with our notion of perturbation if ϕ0 is not too far from ϕ̃.
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Definition 2 (Replicator Dynamics Stable Belief Distribution). The belief distri-
bution F1 ∈ F is replicator dynamics stable at z̃, if for any belief distribution
F2 ∈ F that is z̃-different from F1, and for all ε > 0 small enough it holds that

(a) for every Σ > 0, there exists a ∆(Σ) > 0 such that if ‖ϕ0 − ϕ̃‖ ≤ ∆(Σ),
then ‖ϕt − ϕ̃‖ ≤ Σ+O(ε) for all t ≥ 0, and

(b) there exists a∆> 0 such that if ‖ϕ0−ϕ̃‖ ≤∆, then limt→∞ϕt ∈ BO(ε) (ϕ̃)

This definition establishes a belief distribution as stable under the replicator
dynamics at population state z̃, if the intrusion of a small share of any belief
distribution that yields a differing reaction function at z̃ cannot be successful in
the sense that, in the long run, the mutants – beyond possibly a small fraction
that vanishes in the speed of the best-response dynamics – are crowded out
again. The qualification of stability at a given state z̃ is important, as the belief
distribution F1 might yield multiple roots µ∗(ϕ̃).

With ε = 0, Definition 2 reads like a definition of asymptotic stability for
ϕ̃. This is no surprise as with ε= 0 the evolution and the best response node
are uncoupled, and the behavior of ϕt is equivalent to the behavior of the
trajectory ϕ t of the reduced system. The relation to the reduced system holds
for ε > 0, too, as the following main result of this section shows. As at ϕ̃ = 1,
the eigenvalues of Cµ∗(ϕ̃) under any µ∗(ϕ̃) ∈ Υ ∗(ϕ̃) depend solely on F1, it
follows from combining Theorem 1 and Lemma 2 that:

Theorem 2. LetF comply with Assumptions 1 (Differentiability) and 2 (Richness).
Consider a belief distribution F1 ∈ F that yields µ∗(ϕ̃) with µ∗1(ϕ̃) = z̃ and with
the eigenvalues of Cµ∗(ϕ̃) all having strictly negative real parts. Then, F1 is
replicator dynamics stable at z̃ if and only if ϕ̃ is an asymptotically stable rest
point of the reduced system (5) for any belief distribution F2 ∈ F that is z̃-different
from F1.

Proof. We first show the if-part of the statement. If ϕ̃ is asymptotically stable
on the reduced system, then we can always bound the neighborhood through
which the trajectory ϕ t passes by choosing ϕ0 close enough to ϕ̃. In particular,
we can choose ϕ0 such that ϕ t does not leave the neighborhood in which
C∗(ϕ) has eigenvalues with real part strictly bounded away from zero. Hence,
T =∞ and we have ‖ϕt − ϕ t‖ = O(ε) ∀t ≥ 0. Now, recall the definition
of asymptotic stability for ϕ̃ on the reduced system h: A rest-point ϕ̃ of h is
asymptotically stable (i) if for every γ > 0 there exists a δ = δ(γ)> 0 such that
if ‖ϕ0 − ϕ̃‖< δ, then ‖ϕ t − ϕ̃‖< γ, ∀t ≥ 0, and (ii) if there exists δ > 0 such
that if ‖ϕ0 − ϕ̃‖< δ, then limt→∞ ‖ϕ t − ϕ̃‖= 0. Together with the result that
‖ϕt −ϕ t‖= O(ε) ∀t ≥ 0, the statement then follows.
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To show the only if part of the statement, first suppose that ϕ̃ is not neutrally
stable on the reduced system. Then there exists an Σ such that for all Σ≤ Σ,
there is no ∆ > 0 such that ‖ϕ0 − ϕ̃‖ ≤ ∆ implies ‖ϕ t − ϕ̃‖ ≤ Σ, ∀t > 0.
Nevertheless, there is a T > 0, such that C∗(ϕ t) = ∂µg(µ∗(ϕ t),ϕ t) all have real
parts that are strictly below some fixed negative number ∀t ∈ [0, T ], and hence
‖ϕt −ϕ t‖ = O(ε) holds for those t ∈ [0, T]. Consequently, there is an ε > 0
small enough such that there exists an Σ such that for all Σ ≤ Σ, there is no
∆> 0 such that ‖ϕ0 − ϕ̃‖ ≤∆ implies ‖ϕt − ϕ̃‖ ≤ Σ+O(ε). Second, suppose
that ϕ̃ is neutrally stable but not asymptotically stable on the reduced system.
Again, if ϕ̃ is neutrally stable on the reduced system, then we can always bound
the neighborhood through which the trajectory ϕ t passes by choosing ϕ0 close
enough to ϕ̃. In particular, we can choose ϕ0 such that ϕ t does not leave the
neighborhood in which C∗(ϕ) has eigenvalues with real part strictly bounded
away from zero. Hence, it holds that T =∞, and we have ‖ϕt −ϕ t‖= O(ε)
∀t ≥ 0. As ϕ̃ is not asymptotically stable, we have limt→∞ϕ t 6= ϕ̃. Hence,
there is an ε > 0 small enough such that limt→∞ϕt /∈ BO(ε) (ϕ̃). As we can
repeat these two arguments for any ϕ0, we have the statement.

The result is useful as it directs our attention to the reduced system when
we want to establish replicator dynamic stability of F1 at some z̃. The reduced
system has the same number of dimensions as the evolutionary node. This
reduction in dimensions will become particularly useful when we extend the
setting to a two-population model with two strategies in Section 5. Already
with this simple extension, the system comprising both the best response and
the replicator dynamics turns out to be analytically untractable, whereas the
reduced system can still be analyzed.

3.2 Relation to Replicator Dynamics Stable Strategies

We now analyze how the belief distributions that are stable under the replicator
dynamics at some population state z̃ relate to the stable strategy distribution
z that obtains under the replicator dynamics in the traditional evolutionary
game theory approach (cf. Weibull 1997). In particular, we are interested in
how the relation is dependent on the assumptions that we make on F . The
section yields two results that we use later in the applications. The traditional
replicator dynamics on the strategy share z is given by

ż = z(1− z) [U1(z)− U2(z)]≡ z(1− z)k(z) (8)

A rest point z̃ of this dynamics is asymptotically stable iff there exists a neigh-
borhood around z̃ such that it holds that (z − z̃)k(z) < 0 for all z 6= z̃ in that
neighborhood. For z̃ = 1, this is equivalent to the condition that U1(z̃)> U2(z̃),
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and for z̃ = 0, this is equivalent to the condition that U1(z̃) < U2(z̃). If k is
differentiable in z – as it is in the case of normal form games – then for interior
z̃, this is equivalent to the condition that k′(z̃) < 0 (cf. Weibull 1997). If z̃ is
asymptotically stable in this sense, we call the strategy distribution z̃ replicator
dynamics stable.

We are interested in how the dynamics (8) relate to the slow-fast dynamics
as described in the last section. The reduced system (5) can be written as

ϕ̇ = ϕ(1−ϕ)(µ∗1(ϕ)−µ
∗
2(ϕ)) [U1(z

∗(ϕ))− U2(z
∗(ϕ))] , ϕ ∈ Bδ(ϕ̃) (9)

Comparing the replicator dynamics (8) abd the reduced system (9), we arrive
at the following first result:

Proposition 1. Let F comply with Assumptions 1 (Differentiability) and 2 (Rich-
ness). Consider a belief distribution F1 ∈ F that yields µ∗(ϕ̃) with µ∗1(ϕ̃) = z̃ and
with the eigenvalues of Cµ∗(ϕ̃) all having strictly negative real parts. Then, F1 is
replicator dynamics stable at z̃ iff z̃ is an asymptotically stable rest point of the
replicator dynamics (8).

The proof is found in Appendix A.2. We will use this result in Section 4
where we look at specific belief distributions that are brought about by random
sampling. Furthermore, in Section 5, we show that the equivalence result does
not hold for two-population games.

We next present a third assumption about the familyF of belief distributions
under which in games of the Hawk-Dove variety (1) the root µ∗(ϕ) is unique,
and (2) the eigenvalues of Cµ∗(ϕ̃) all have strictly negative real parts. The
assumption concerns the informativeness of the distribution, and we call a
family F that complies with it regular:

Assumption 3 (Regularity). It holds for any F ∈ F that for two strategy shares
u, v ∈ [0,1] with u> v, it follows that F(x |u)≤ F(x |v), ∀x ∈ [0,1], where the
inequality is strict for at least some x ∈ [0,1].

A belief distribution of a regular family F is informative in the following
specific sense: For all conditional belief distributions that are available to the
agents, the belief distribution conditional on an actual strategy 1 share u ∈ [0, 1]
stochastically dominates the distribution conditional on a share v < u. That is,
high signal become more likely as z grows.

The implications for the shape of the reaction functions ζq, q = 1,2 are
straight-forward: For Coordination Games with a, b > 0, we have ζ′q(z) ≥ 0,
∀F ∈ F , and for Hawk-Dove games, we have ζ′q(z)≤ 0, ∀F ∈ F . In the former
case, a higher share of strategy 1 players in the population goes along with
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higher probabilities that the signal is such that the updating agent chooses
strategy 1, too. In the latter case, the reverse holds true.

Note that from ζ′q(z)≤ 0 it follows immediately that µ∗(ϕ) is unique for any
ϕ ∈ [0, 1] in the Hawk-Dove game. Further, we get the following equivalence
result for games of the Hawk-Dove variety as a Corollary to Proposition 1:

Corollary 1. Suppose a, b < 0, and let F comply with Assumptions 1 (Differen-
tiability), 2 (Richness) and 3 (Regularity). Then any belief distribution F1 ∈ F
that yields µ∗(ϕ̃) with µ∗1(ϕ̃) = z̃ is replicator dynamics stable at z̃ iff z̃ is an
asymptotically stable rest point of the replicator dynamics (8).

Proof. By Proposition 1, we merely need to show that the assumption of reg-
ularity implies that C∗(ϕ̃) has eigenvalues whose real parts are strictly below
zero. If a, b < 0, then under regular belief distributions, we have ζ′(z)≤ 0 for
any F ∈ F . From the proof of Proposition 1 in Appendix A.2, it follows that
ζ′(z)≤ 0 implies that C∗(ϕ̃) has eigenvalues whose real parts are strictly below
zero. Hence, the result follows.

As only the mixed Nash equilibrium is replicator dynamics stable, it thus
follows for games of the Hawk-Dove variety that there exists a unique population
state that can be supported by a replicator dynamics stable belief distribution.
We will make use of this result in Section 4.2 where we look at random sampling
in games of the Hawk-Dove variety.

4 Application I: Generalized Random Sampling

We now look at the particular family of belief distributions that results from
random sampling as introduced in Example 1, and briefly discussed in Exam-
ple 2. The sampling model has some intuitive appeal as it provides a natural
description of how agents gather and process information. The idea is used,
for example, in the word-of-mouth learning literature (Ellison & Fudenberg
1993, Ellison & Fudenberg 1995, Banerjee & Fudenberg 2004), or in models of
consumer choice behavior (e.g. Spiegler 2006a, Spiegler 2006b). The best re-
sponse dynamics that emerge under random sampling are extensively analyzed
in Sandholm (2001a), and Oyama, Sandholm & Tercieux (forthcoming). In
contrast to the existing research that takes an unbiased sampling procedure as
given, we extend the basic notion of random sampling to generalized sampling
that allows for biased sampling probabilities. This will allow us to ask under
what circumstances unbiased sampling induces belief distributions that are
replicator dynamics stable in our sense.
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Let C 1
M([0, 1], [0, 1]) denote the space of continuously differentiable, mono-

tonically increasing functions from [0,1] to [0,1]. Adapting the definition
of unbiased sampling given in Example 1, we define generalized sampling as
follows:

Definition 3 (Generalized Sampling). A generalized sampling procedure is
described by (M , p)where M ∈ N++ is the sample size, and p ∈ C 1

M([0, 1], [0, 1])
returns the sampling probability p(z) of strategy 1 at a given strategy distribution
z ∈ [0,1].

Definition 4 (Locally Unbiased Sampling Rule). A sampling rule (M , p) is called
locally unbiased at z ∈ [0, 1] if p(z) = z.

A sampling rule with p(z) = z, ∀z ∈ [0,1], is accordingly called globally
unbiased. Let m≤ M be the number of strategy 1 agents in the sample. Then,
the empirical mean ẑ = n/M is the resulting belief about the strategy 1 share
in the population. The family of belief distributions generated by generalized
random sampling is denoted by FS. Beliefs ẑ under random sampling are
binomially distributed with cumulative distribution function

F(x |z) =
bM ·xc
∑

i=1

�

M
i

�

p(z)i(1− p(z))M−i

Note that we can rewrite this alternatively as

F(x |z) = I1−p(z)(M − bM · xc, bM · xc+ 1)

where Ix(α,β) denotes the cumulative distribution function of the beta dis-
tribution with coefficients α, β . We have used the fact that the value FX (x)
of the cumulative distribution function FX of a binomial variable X ∼ B(n, p)
evaluated at x is equal to the value FY (1− p) of the distribution function FY of
a beta-distributed variable Y ∼ Beta(n− x , x + 1) evaluated at 1− p (cf. Olver,
Lozier, Boisvert & Clark 2010).

Clearly, F(x |z) is differentiable in z, as Ix(α,β) is differentiable in x , and
p(z) is differentiable in z. Furthermore, the familyFS of distributions generated
by generalized sampling rules is rich, and its members F ∈ FS are regular, as
the next lemma asserts.

Lemma 3. Let F(x |z) ∈ FS. Then:

(a) For any u, v, z ∈ [0,1], ∃(M , p) such that u= F(v|z).
(b) For any u, v, x ∈ [0, 1], u> v, it follows that F(x |u)≤ F(x |v).
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Proof. (a): Write u = F(v|z) = I1−p(z)(M − bM vc, bM vc + 1). Fix v ∈ [0,1],
M ∈ N++. As we have I0(., .) = 0, I1(., .) = 1 and 0 < ∂ Ix/∂ x < ∞, we
can choose p(z) ∈ [0,1] such that u = I1−p(u)(., .). As we can do this for any
v ∈ [0, 1], and M ∈ N++, we have the claim. (b): This follows directly from the
fact that p(z) is increasing in z, and I1−p(z)(., .) is decreasing in p(z).

With these preliminary comments, we now look at the two varieties a, b > 0,
and a, b < 0 separately.

4.1 Coordination Games

We first analyze the case of a, b > 0. Let z ≡ b/(a + b). Assuming that the
agents plays strategy 1 whenever strategy 1 is a weak best reply to their belief
ẑ, we have for agents of sub-population q using a sampling rule (M , p):

ζq(z) =
M
∑

i=dM ·ze

�

M
i

�

p(z)i(1− p(z))M−i (10)

As the two pure strategy equilibria z∗ ∈ {0, 1} are the only strategy distributions
that are stable under the replicator dynamics, it follows immediately from
Proposition 1 that any F1 ∈ FS that yields µ∗(ϕ̃) with µ∗1(ϕ̃) = z̃ and Cµ∗(ϕ̃)
only having eigenvalues with strictly negative real parts is replicator dynamics
stable at z̃ iff z̃ ∈ {0, 1}. Focusing thus on z̃ ∈ {0,1}, we arrive at:

Proposition 2. For any z̃ ∈ {0,1}, ∃(M , p) that generates a belief distribution
which is replicator dynamics stable at z̃.

From (10), it immediately follows that any (M , p) that generates a belief
distribution which is replicator dynamics stable at z̃ ∈ {0, 1} is locally unbiased.

4.2 Hawk-Dove Games

The more interesting case is a, b < 0. Again, let z ≡ b/(a + b). As the belief
distributions are regular, we can apply Corollary 1 to conclude that the mixed
strategy equilibrium z is the unique strategy distribution that a belief distribution
in F can be replicator dynamics stable at. A sampling procedure (M , p) that
leads to a belief distribution which yields z as a rest point of the best response
node is henceforth called stable:

Definition 5 (Stable Sampling). A sampling procedure (M , p) is called stable
for z, if the sample size M and the sampling probability p are such that

z = I1−p(z)(M − bMzc, bMzc+ 1)
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Stable sampling is not always unbiased. The following proposition shows
that being locally biased at z is indeed generic to the set of stable sampling
procedures. We think of generic local biasedness as follows: Let the payoffs
a, b < 0 be drawn from some continuous distribution such that the equilibrium
z itself can be represented as a draw from a random variable Z ∈ (0,1) with
some continuous distribution function Z : (0,1) → [0,1]. Suppose that the
population has been cast into the game long ago, and evolution has selected a
belief distribution F1 ∈ FS that yields µ∗(ϕ̃) with µ∗1(ϕ̃) = z. Let

p∗M(z) = {x ∈ [0,1] : z = I1−x(M − bMzc, bMzc+ 1)}

be the sampling probability for population state z that renders a sampling
procedure with sample size M stable at z. We have the following result:

Proposition 3. Let z be a draw from a random variableZ ∈ (0, 1)with continuous
distribution function Z : (0,1)→ [0,1]. Then, for any bound M ∈ N++ on the
sample size, the set M0(z)≡ {M ≤ M : p∗M(z) = z} is empty with probability one.

The proof is in Appendix A.4. The proposition states that the probability of an
equilibrium z that can be supported by a replicator dynamics belief distribution
which is generated by an unbiased sampling procedure is zero. There is, with
probability one, no unbiased sampling rule that is stable. The reason for this
phenomenon is relatively simple: Sampling produces belief distributions F(x |z)
with discontinuities in x . Therefore, there are equilibria z ∈ (0, 1) that are not
stable under random beliefs generated by unbiased sampling rules. In fact, as
Proposition 3 shows, the set of such equilibria has measure 1. The sampling
probability p(z) is then needed to correct the induced belief distribution such
that the reaction functions yield z as a steady state of the best response node.

5 Application II: Matching Pennies

This section extends the framework to asymmetric 2× 2-normal form games,
and looks at varieties of the Matching Pennies game. Matching Pennies is of
particular interest since the unique Nash equilibrium of the game is not stable
under the replicator dynamics (cf. Ritzberger & Weibull 1995). Furthermore, it
is not generically selected under the best-response dynamics with stochastic
beliefs, either. Combining the two approaches, however, puts the unique mixed
Nash equilibrium back into focus. In particular, we can show that, if we assume
regularity of the family F , then the unique mixed strategy equilibrium is the
unique strategy profile at which a belief distribution F ∈ F can be replicator
dynamics stable. That is, the equivalence that we observe in symmetric 2× 2-
normal form games (cf. Proposition 1) does not carry over to asymmetric 2× 2
matching pennies games.
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5.1 The Setup

The game has two populations p = A, B whose agents are randomly pairwise
matched across populations in every round. Each population consists of two
sub-populations q = 1,2. In the following, the index −p always refers to
population p’s opponent population. As the strategy space is 2-dimensional
for both populations, we now write zp for the share of agents in population
p = A, B playing strategy 1, and let z = (zA, zB). The expected utility U p

i (z
−p)

in a match to an agent of population p playing strategy i = 1,2 at opponent
population state z−p is given by U p

1 (z
−p) = apz−p, and U p

2 (z
−p) = bp(1− z−p),

with ap, bp ∈ R satisfying aA, bA < 0, and aB, bB > 0. That is, the two populations
have distinct roles in this game: Agents from population B are the matchers
preferring the other agent to chose the same strategy as they do, whereas
agents from population A are the mismatchers preferring the opponent to play
the other strategy. Consequently, there is no Nash equilibrium in pure strategies.
The unique mixed strategy equilibrium is given by z∗ =

�

zA∗ , zB∗
�

with zp∗ =
b−p/(a−p + b−p), p = A, B.

Agents of Population p that revise their beliefs at a population state z−p

draw a belief ẑ−p from continuous distribution F(.|z−p) ∈ F that is differen-
tiable in z−p and has density f (.|z−p) ≥ 0 on [0,1]. F is the same for both
populations, and we denote the belief distribution of the agents of population
p, sub-population q, by F p

q ∈ F . We take Assumptions 1 (Differentiability), 2
(Richness) and 3 (Regularity) to hold for F .

Agents play strategy 1 whenever this is a best reply to their belief about the
state of the opponent population. Then, for q = 1, 2, the reaction functions are
given by

ζA
q

�

zB
�

= FA
q

�

zB∗
�

� zB
�

ζB
q

�

zA
�

= 1− F B
q

�

zA∗
�

� zA
�

We letϕp be the share of players in population p drawing from belief distribution
F p

1 , and write µp
q for the fraction of players choosing strategy 1 in sub-population

q of population p. Letting µ ∈ [0, 1]4 be the vector of strategy shares in the sub-
populations with typical element µp

q , ϕ ∈ [0,1]2 the vector of sub-population
shares ϕp, and z(µ,ϕ) ∈ [0,1]2 the vector of population states with typical
element zp(µ,ϕ)≡ ϕpµ

p
1 + (1−ϕ

p)µp
2, the best-response node can be written

as

ε







µ̇A
1
µ̇A

2
µ̇B

1
µ̇B

2






= λ ·







ζA
1(z

B(µ,ϕ))−µA
1

ζA
2(z

B(µ,ϕ))−µA
1

ζB
1(z

A(µ,ϕ))−µB
1

ζB
2(z

A(µ,ϕ))−µB
2






(11)
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As in the last section, let average sub-population utility in sub-population q of
population p be U

p

q(µ,ϕ)≡ µp
q U p

1 (z
−p(µ,ϕ)) + (1−µp

q)U
p
2 (z

−p(µ,ϕ)). Hence,
we write the evolution node as

�

ϕ̇A

ϕ̇B

�

=

 

ϕA
�

1−ϕA
�

�

U
A

1 (µ,ϕ)− U
A

2 (µ,ϕ)
�

ϕB
�

1−ϕB
�

�

U
B

1 (µ,ϕ)− U
B

2 (µ,ϕ)
�

!

(12)

As before, we combine the two nodes (11) and (12) to the following slow-fast
system:

εµ̇ = g(µ,ϕ), µ ∈ [0,1]4

ϕ̇ = h(µ,ϕ), ϕ ∈ [0, 1]2 (13)

5.2 Stability Condition

Let

µ∗(ϕ) ∈
�

µ ∈ (0,1)4 : µ= ζ (z(µ,ϕ))
	

be a root of g(µ,ϕ)with typical element µp∗
q (ϕ), and let Cµ∗(ϕ)≡ ∂µg(µ∗(ϕ),ϕ)

be the corresponding Jacobi of the best response node. Let now Bδ(x)≡ {y ∈
[0,1]2 : ‖x − y‖ < δ}. We again focus on belief-monomorphic steady states
with ϕ̃ = (1,1). It holds:

Lemma 4. Fix profile {FA
1 , FA

2 , F B
1 , F B

2 } and suppose Assumption 3 (Regularity)
holds. Then there is a unique root µ∗(ϕ̃), and there exists δ > 0 such that

(a) µ∗(ϕ̃) is differentiable on Bδ(ϕ̃),
(b) the eigenvalues of Cµ∗(ϕ′) all have real parts that are bounded away from

zero ∀ϕ′ ∈ Bδ(ϕ̃), and
(c) the elements (µA∗

1 (ϕ̃),µ
B∗
1 (ϕ̃)) of the root µ∗(ϕ̃) and Cµ∗(ϕ) depend on

{FA
1 , F B

1 } in {FA
1 , FA

2 , F B
1 , F B

2 } alone.

The proof is left to Appendix A.5. With Lemma 4, the following reduced
system is well defined on Bδ(ϕ̃):

ϕ̇ = h(µ∗(ϕ),ϕ), ϕ ∈ Bδ(ϕ̃)

As in the base model, we consider the effect of small a perturbation (µ0,ϕ0)
of the rest point (µ̃, ϕ̃) ∈ [0,1]6, and then look at the resulting trajectories
(µt ,ϕt) of the slow-fast system (13). Noting that Theorem 1 does not depend
on the particular dimension of (µ,ϕ), we invoke it again to characterize the
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trajectory (µt ,ϕt) by restricting attention to initial conditions (µ0,ϕ0) where
µ0 ∈ [0, 1]4 lies sufficiently close µ∗(ϕ0). That is, again, we look at perturbations
characterized by ϕ0 alone, and accordingly adapt the stability criterion from the
one-population case to the profile {FA

1 , F B
1 } of belief distributions. Let z̃ = z(µ̃, ϕ̃)

be the unique population state in the belief-monomorphic rest point. By Lemma
4 the rest-point z̃ solely depends on {FA

1 , F B
1 }. Then:

Definition 6 (Replicator Dynamics Stable Belief Distribution). We say that a
profile of belief distributions {FA

1 , F B
1 } is replicator dynamics stable at z̃, if for

all ε > 0 small enough it holds that

(a) for every Σ > 0, there exists a ∆(Σ) > 0 such that if ‖ϕ0 − ϕ̃‖ ≤ ∆(Σ),
then ‖ϕt − ϕ̃‖ ≤ Σ+O(ε) for all t ≥ 0, and

(b) there exists a∆> 0 such that if ‖ϕ0−ϕ̃‖ ≤∆, then limt→∞ϕt ∈ BO(ε) (ϕ̃)

for any profile of belief distribution {FA
2 , F B

2 } ∈ F × F with both F q
2 being

z̃-different from F q
1 .

Theorem 2 carries over to this setup, too, because its proof does not depend
on the particular dimension of (µ,ϕ). As the rest point of the best response
dynamics is unique, and the corresponding Jacobi Cµ∗(ϕ) depends on {FA

1 , F B
1 }

alone at ϕ̃ and has strictly negative real eigenvalues in a neighborhood of ϕ̃ by
Lemma 4, we have the following corollary:

Corollary 2. Consider generalized Matching Pennies, and let F comply with
Assumptions 1 (Differentiability), 2 (Richness) and 3 (Regularity). Then any
profile of belief distribution {FA

1 , F B
1 } that yields µ∗(ϕ̃) with (µA∗

1 (ϕ̃),µ
B∗
1 (ϕ̃)) = z̃

is replicator dynamics stable at z̃ iff ϕ̃ is an asymptotically stable rest point of the
reduced system (5) for any belief distribution profile {FA

2 , F B
2 } ∈ F ×F with both

F q
2 being z̃-different from F q

1 .

Consequently, we can restrict attention to the reduced system. This yields
the following main result of this section:

Proposition 4. Consider generalized Matching Pennies, and let F comply with
Assumptions 1 (Differentiability), 2 (Richness) and 3 (Regularity). The profile of
belief distribution {FA

1 , F B
1 } is replicator dynamics stable at z̃ iff z̃ = z∗.

Proposition 4 states that the Nash equilibrium z∗ is the only population
state at which a belief distribution can be replicator dynamics stable. The
proof of Proposition 4 involves several steps and is left to Appendix A.6. The
main idea of the proof is to show that a profile {FA

1 , F B
1 } of belief distributions

is replicator dynamics stable, if and only if for both p = A, B it holds that
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ζ
p
1(z
−p∗) = zp∗ . Thereby, the proof roughly proceeds as follows: Let zp∗(ϕ)

= ϕpµ
p∗
1 (ϕ) + (1−ϕ

p)µp∗
2 (ϕ). Then by linearizing the reduced system,

ϕ̇A = ϕA
�

1−ϕA
� �

µA∗
1 (ϕ)−µ

A∗
2 (ϕ)

� �

zB∗ (ϕ) aA−
�

1− zB∗ (ϕ)
�

bA

�

ϕ̇B = ϕB
�

1−ϕB
� �

µB∗
1 (ϕ)−µ

B∗
2 (ϕ)

� �

zA∗ (ϕ) aB −
�

1− zA∗ (ϕ)
�

bB

�

it can be shown that any two belief distributions not producing the Nash-
equilibrium share can never yield an asymptotically stable distribution-mono-
morphic rest point on the reduced system. In order to show this, two cases
need to be considered: Firstly, we have the case of two belief distributions
producing a rest point such that neither distribution-monomorphic population
plays the Nash equilibrium share. In this case, the rest-point is hyperbolic, and
hence instability is straightforward to establish. The second case has two belief
distributions that happen to produce a rest-point such that one but not both
populations play the Nash equilibrium share. Such a rest-point is non-hyperbolic
with a neutral and an unstable node. This proves the only if -part. For the if-part,
the linearisation approach fails all together: If we have two belief distributions
producing a rest point such that both populations play the Nash equilibrium
shares, then the Jacobi matrix of the rest point has only eigenvalues of zero.
Consequently, we need to look at higher order terms to establish the result.

An intuitive explanation for the if-part of the Proposition 4 goes as follows:
Assume that the system is in its steady state at the mixed Nash equilibrium,
and that this state is brought about by distribution-monomorphic populations.
Suppose then that in Population A a tiny fraction of agents having a different
belief distribution enters. Two scenarios are possible: Firstly, there is a higher
fraction of mutant agents drawing below-threshold level beliefs about zB than
there is among the incumbent agents drawing from the stable belief distribution.
That is, mutants play strategy 1 more often than incumbents. If so, the overall
share of players choosing strategy 1 in Population A increases. Given no intrusion
into Population B, the fraction of agents playing strategy 1 increases, too. In
such a situation, the superior belief distribution in Population A is the one
producing fewer strategy 1-choices. Since belief distributions are continuous in
the adversarial strategy share, there exists a small enough share of intruders such
that the agents drawing from the initial belief distribution have an advantage
after the intrusion and thus crowd the mutants out again. The second scenario
has the mutants in Population A draw below-threshold beliefs less often the
initially present agents. If so, the overall share of players choosing strategy 1
decreases, and the argument for this scenario unfolds analogously, although
with inverse signs. With intrusion on both sides, similar effects are at work to
return the system to its steady state.
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6 Relation to the Literature

6.1 Evolutionary Foundations of Behavior

While actions are the object of traditional evolutionary game theory (cf. Weibull
1997 for an introduction), preferences have come under scrutiny in what is now
known as the indirect evolutionary approach (the seminal paper is Güth & Yaari
1992): Preferences determine actions, actions determine biological fitness, and
this feeds back into the evolution of preferences.

In this indirect evolutionary fashion, the idea of having two processes at
two different speeds has been employed, for example, by Sandholm (2001a),
Dekel et al. (2007), or Alger & Weibull (2013), albeit only implicitly. These
papers assume that agents’ preferences over outcomes evolve slowly while
the the adaptation of equilibrium play, given the current preferences, happens
instantaneously. Both complete and incomplete information about preferences
are considered. In the latter two papers, the stability concept is essentially static.
That is, neither the evolutionary process governing the dynamics of preference
distributions nor the adoption of equilibrium play is explicitly modeled. In
contrast, Sandholm (2001b) explicitly models preference evolution in his base
model and discusses an extension that explicitely models the co-evolution
of beliefs and strategies. Thereby, the evolution of strategy distributions is
modeled in a separate node as we do in our model, but it is imposed that
the change in the strategy distributions be such that equilibrium play (given
the current distribution of preferences) always holds – except possibly after
points of discontinuity in the equilibrium distribution where some exogenously
defined speed limit is violated. Sandholm (2001b) then argues that the case of
infinitely fast adaptation can be understood as the limit of this extension with
the speed limit going to infinity. The analysis in this paper can be seen as a
variant to this argument in the sense that it, too, aims at modeling the strategy
adjustment process explicitly but does so neither by imposing equilibrium play
at every point nor by bounding the speed of strategy adaptation in absolute
terms. Rather, it gives an explicit two-speed model of the way agents arrive at
their strategies with evolution running slowly in the background.

6.2 Models of Learning

The idea of deducing an estimate about the population state from the observed
play of others as in the sampling procedure is reminiscent of the fictitious play
idea: Fictitious play models have agents who collect the whole or just the
individual history of play and deduce the current population state from this
growing sample by assuming stationarity. It is well known that fictitious play
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in zero-sum games under suitably chosen initial weights, although converging
to the mixed Nash equilibrium in empirical frequencies, leads to cycles in
intended play. In their seminal paper, Fudenberg & Kreps (1993) find that for
unperturbed games, intended play of the unique mixed Nash equilibrium is
stable if and only if the assessment and behavior rules are chosen in a particular
manner such that they produce intended equilibrium behavior at empirical
equilibrium frequencies. In order to avoid this problem, Fudenberg & Kreps
(1993) employ the idea of purifying mixed strategies by means of random payoff
shocks: Minimally disturbing payoffs, they find that agents eventually and
approximately learn to play the unique mixed strategy equilibrium and that the
convergence is global in 2× 2-normal form games. Ellison & Fudenberg (2000)
extend this analysis. Hofbauer & Sandholm (2002) and Hofbauer & Hopkins
(2005) establish global stability of fictitious play in n× n zero-sum as well as in
n× n partnership games for an arbitrary n by means of Lyapunov functions. By
keeping the belief stochastic, this paper follows a different path. Evolutionary
pressure on beliefs is presented as a different rationale for assessment rules
that produce the unique mixed strategy equilibrium.

Further, the sampling variant of the best-response process in this paper has
a loose similarity with the one found in word-of-mouth learning models as, for
example, in Banerjee & Fudenberg (2004). Their basic model is as follows:
Agents have two choices, one yielding a strictly higher utility than the other.
Agents receive a noisy signal of the utility received from their choice and report
it to new agents if asked. The new agents then update their information about
the state of the world, and act accordingly. Under relatively mild assumptions
on the word-of-mouth technology (a sampling rule with sample size M > 2),
the population of individuals ends up choosing the better option. Similar
models with agents using heuristics to learn about the state of the world include
the herding papers by Ellison & Fudenberg (1993) and Ellison & Fudenberg
(1995). Spiegler (2006a) and Spiegler (2006b) models consumers of a medical
treatment offered by service providers of unknown quality as using word-of-
mouth heuristics and analyzes optimal price-setting behavior. A common trait
of these models is that the object of learning is stationary. This makes a direct
comparison of the results difficult as the assumption of stationarity in the
environment stands in sharp contrast to the ideas presented in this paper, where
the state of the world might change over time, as it is dependent on the choices
made by others.

6.3 Models of Perception

The understanding of perception as a partly random process fits in well with
the long tradition of psychological research on the topic. There are two facts
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that seem to be undisputed: Firstly, human perception is prone to random
errors, and secondly, human beings use heuristics when forming beliefs about
their environment (cf. Kahneman & Tversky 1996). People using heuristics
take less information than there is actually available into account and apply
rules-of-thumb to their information subsets. Assuming that the subsets are
chosen randomly, this procedure produces beliefs that are stochastic and might
be systematically biased. Nevertheless, there is disagreement whether the
use of such heuristics is due to limitations in human cognitive computational
capacities, and may thus deemed a deficient phenomena (cf. Kahneman &
Tversky 1996) or whether they constitute procedures that may even be superior
to other procedures which take more information into account. Indeed, it is
argued, that heuristics may even produce beliefs that ar more accurate about
the environment (cf. Gigerenzer & Brighton 2009). One of the key assumptions
of this paper is that heuristics are neither deficient for computability reasons
nor optimal in the sense of producing the most accurate beliefs, but rather that
they are the product of evolutionary pressure.

In general, the fast growing literature at the boundary between economics
and psychology is driven by the underlying premises that individuals might
have non-standard beliefs as well as take non-standard actions – whereby the
standard refers to the rational choice paradigm (cf. DellaVigna 2009). With
the evolutionary perspective taken in this paper, the all-dominant question
of why the former kind of such deviations exist in the first place might be
addressed: They are stable under evolutionary pressure in interdependent
decision problems.

7 Conclusion

This paper is an attempt to analyze the evolutionary foundations of human
beliefs in strategic interactions: The context is one of best response dynamics
in population games with revising agents drawing a stochastic belief about the
current distribution of strategies. There is evolutionary pressure between belief
distributions that is modeled by the standard replicator dynamics. The model is
one of two differing time-scales: The best response dynamics runs considerably,
yet not infinitely, faster than the evolutionary dynamics.

We consider distribution-monomorphic population states with all agents in a
population drawing from the same belief distribution and derive a criterion for
the stability of belief distributions and the corresponding strategy distributions
that obtain in such states. We call a profile of belief distributions replicator
dynamics stable if there are no belief distributions that can enter in any of the
populations beyond possibly a small fraction whose whose size vanishes in the
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speed of the best response dynamics. Two applications, one with respect to
sampling procedures, and one extending the model to asymmetric 2×2-normal
form games, have been discussed.

The reading of the model as an attempt to capture the evolutionary foun-
dations of beliefs and perception calls for some more attention. The manifold
implications of the connection between payoff structure, utility functions and
stable belief distributions should be scrutinized in additional applications. Fu-
ture research could be directed to games of higher dimensional strategy spaces.

A Proofs

A.1 Proof of Lemma 2

Proof. Throughout the proof we fix ϕ̃ = 1. We start with a preliminary observa-
tion that we need later on: If the root µ∗(ϕ̃) is stable then ζ′1(µ

∗
1(ϕ̃))< 1. This

can be directly inferred from the strictly positive determinant det(Cµ∗(ϕ̃))) =
−(ζ′1(µ

∗
1(ϕ̃)))−1)> 0, and the strictly negative trace t r(Cµ∗(ϕ̃))) = ζ′1(µ

∗
1(ϕ̃))−

2< 0 at the stable root µ∗(ϕ̃).
We start by arguing that any root µ∗(ϕ) ∈ Υ ∗(ϕ) is differentiable at ϕ̃.

The idea is to look at an extended function g : R3 → R2 with g(µ,ϕ) =
g(µ,ϕ) on [0,1]3, and root µ∗(ϕ) solving g(µ∗(ϕ),ϕ) = 0. Define Cµ∗(ϕ) =
∂µg(µ∗(ϕ),ϕ). Then, Cµ∗(ϕ) = Cµ∗(ϕ) holds by assumption. By the implicit
function theorem, as Cµ∗(ϕ̃) is invertible, there is a function µ(ϕ) that is
continuously differentiable at ϕ̃ and satisfies g(µ∗(ϕ),ϕ) = 0 for all ϕ in a
neighborhood of ϕ̃.

To show that any µ∗(ϕ) ∈ Υ ∗(ϕ) is differentiable at ϕ̃, we now argue,
that for any root µ∗(ϕ) that is defined in a neighborhood of ϕ̃, it holds that
µ
∗(ϕ) = µ∗(ϕ) in the part of that neighborhood which is in [0, 1]. If this holds,

then the relevant one-sided derivatives of µ∗(ϕ) exist at ϕ̃. Hence, we must
show that ∃ε > 0 such that for all 0< ε < ε, we have µ∗(ϕ̃ − ε) ∈ [0,1]2. We
distinguish two cases

1. Suppose µ∗(ϕ̃) ∈ (0, 1)2. In this case it is clear, that ∃ε > 0 such that for
any 0< ε < ε, we have µ∗(ϕ̃−ε) ∈ [0, 1]2. Hence, we have µ∗(ϕ) = µ(ϕ)
for all ϕ in the part of neighborhood of ϕ̃ which is in [0,1], and hence
differentiability of µ∗(ϕ) at ϕ̃.

2. Suppose µ∗(ϕ̃) ∈ ∂
�

[0, 1]2
�

. If µ∗(ϕ̃) is in the boundary ∂
�

[0,1]2
�

of [0,1]2, we need to be more careful. Applying the implicit function
theorem on g(µ∗(ϕ),ϕ) = 0 at ϕ̃, and using the fact that µ∗(ϕ) = µ∗(ϕ)
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at ϕ̃, we get for q = 1,2

dµ∗q(ϕ)

dϕ

�

�

�

�

�

ϕ=ϕ̃

=
ζ′q(µ

∗
1(ϕ̃))(µ

∗
1(ϕ̃)−µ

∗
2(ϕ̃))

1− ζ′1(µ
∗
1(ϕ̃))

Now, observe that it must hold for any µ∗1(ϕ̃) ∈ (0,1) that

ζ1(1) = 1⇒ ζ′1(1)≥ 0

ζ1(0) = 0⇒ ζ′1(0)≥ 0

ζ2(µ
∗
1(ϕ̃)) = 1⇒ ζ′1(µ

∗
1(ϕ̃)) = 0

ζ2(µ
∗
1(ϕ̃)) = 0⇒ ζ′1(µ

∗
1(ϕ̃)) = 0

As we have ζ′1(µ
∗
1(ϕ̃))< 1 and both µ∗1(ϕ̃),µ

∗
2(ϕ̃)) ∈ [0, 1], it then follows

that
dµ∗q(ϕ)

dϕ

�

�

�

�

�

ϕ=ϕ̃

≥ 0 if µ∗q(ϕ̃) = 1, and
dµ∗q(ϕ)

dϕ

�

�

�

�

�

ϕ=ϕ̃

≤ 0 if µ∗q(ϕ̃) = 0.

Consequently, ∃ε > 0 such that ∀0 < ε < ε we have µ∗i (ϕ̃ − ε) ∈ [0,1],
and hence µ∗(ϕ̃− ε) ∈ [0, 1]2. Hence, we have µ∗(ϕ) = µ(ϕ) for all ϕ in
the part of neighborhood of ϕ̃ which is in [0, 1], and hence differentiability
of µ∗(ϕ) at ϕ̃.

Having established differentiability of µ∗(ϕ) at ϕ̃, we now first look at claim
(b). The trace and the determinant of Cµ∗(ϕ) for ϕ ∈ [0,1] are given by

det(Cµ∗(ϕ)) = 1−ϕζ′1
�

ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ)

�

− (1−ϕ)ζ2

�

ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ)

�

t r(Cµ∗(ϕ)) = ϕζ
′
1

�

ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ)

�

+ (1−ϕ)ζ′2
�

ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ)

�

− 2

Note that from the fact that both ζ′q, q = 1,2 are continuous by Assumption
1, and both µ∗q(ϕ), q = 1,2 are continuous at ϕ̃ by the preceding, it follows
that both the trace and the determinant are continuous at ϕ̃. Combined with
the fact that the trace t r(C∗(ϕ)) is strictly negative at ϕ̃, and the determinant
det(C∗(ϕ)) is strictly positive at ϕ̃, claim (b) then follows.

Now we turn to claim (a). We now look at ϕ′ ∈ (0,1) in a neighborhood
of ϕ̃. If µ∗(ϕ′) ∈ (0, 1)2 the claim follows immediately by the implicit function
theorem. When µ∗(ϕ′) is in the boundary of [0, 1]2, we need again to be more
careful. Let z∗(ϕ) = ϕµ∗1(ϕ) + (1−ϕ)µ

∗
2(ϕ). By the same argument as above,

we consider the extended version g of g, and arrive at

dµ∗q(ϕ)

dϕ

�

�

�

�

�

ϕ=ϕ′

=
ζ′q(z

∗(ϕ′))(µ∗1(ϕ
′)−µ∗2(ϕ

′))

1−ϕ′ζ′1(z∗(ϕ′))− (1−ϕ′)ζ
′
2(z∗(ϕ′)

(14)
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where the denominator is equal to det(Cµ∗(ϕ′)), and hence positive. Now,
observe that it must hold for z∗(ϕ′) ∈ (0, 1), q = 1,2,

ζq(z
∗(ϕ′)) ∈ {0,1} ⇒ ζ′q(z

∗(ϕ′)) = 0

It then follows that dµ∗q(ϕ)/dϕ
�

�

�

ϕ=ϕ′
= 0 whenever µ∗q(ϕ

′) ∈ {0,1}. Conse-

quently, ∃ε > 0 such that ∀ − ε < ε < ε we have µ∗i (ϕ
′ − ε) ∈ [0,1], and

hence µ∗(ϕ′ − ε) ∈ [0,1]2. Hence, we have µ∗(ϕ′) = µ(ϕ′) for all ϕ in the
neighborhood of ϕ′, and hence differentiability of µ∗(ϕ) at ϕ′. As we can repeat
the argument for all ϕ′ in a neighborhood of ϕ̃, the claim then follows.

A.2 Proof of Proposition 1

Proof. As we assume that C∗(ϕ̃) has eigenvalues that are strictly below zero, we
can focus on the reduced system by Theorem 2. We first look at pure strategy
profiles z̃ ∈ {0,1}. In order that the pure strategy z̃ = 1 (z̃ = 0) is stable
under the replicator dynamics, we must have that U1(z̃)− U2(z̃)> (<) 0. On
the other hand, in order that a belief distribution F1 is replicator dynamics
stable at z̃ = 1 (z̃ = 0), it follows from the reduced system (9) that we must
have −(µA∗(ϕ̃) − µB∗(ϕ̃)) [U1(z∗(ϕ̃))− U2(z∗(ϕ̃))] < 0. This is equivalent to
[U1(z∗(ϕ̃))− U2(z∗(ϕ̃))] > (<) 0 because µA∗(ϕ̃) = z̃ = 1 and µB∗(ϕ̃) < (>) z̃.
As µA∗(ϕ̃) = z∗(ϕ̃), the two requirements for stability are equal.

Next, we look at interior equilibria z̃ ∈ (0,1). We present two auxiliary
results from which the claim of the Proposition then follows:

Lemma 5. Suppose the eigenvalues of Cµ∗(ϕ̃) all have real parts strictly below
zero. If ζ1(µ∗1(ϕ̃))> (<) ζ2(µ∗1(ϕ̃)) then dz∗(ϕ)/dϕ > (<) 0 at ϕ̃.

Proof. Consider z∗(ϕ) = ϕµ∗1(ϕ) + (1−ϕ)µ
∗
2(ϕ). At ϕ = ϕ̃ we have

dz∗(ϕ)
dϕ

�

�

�

�

ϕ=ϕ̃

= µ∗1(ϕ̃)−µ
∗
2(ϕ̃) +

dµ∗1(ϕ)

dϕ

�

�

�

�

ϕ=ϕ̃

Applying the implicit function theorem on g(µ∗(ϕ),ϕ) = 0 at ϕ̃, we get

dµ∗1(ϕ)

dϕ

�

�

�

�

ϕ=ϕ̃

=
ζ′1(µ

∗
1(ϕ̃))(µ

∗
1(ϕ̃)−µ

∗
2(ϕ̃))

1− ζ′1(µ
∗
1(ϕ̃))

Consequently, we have

dz∗(ϕ)
dϕ

�

�

�

�

ϕ=ϕ̃

=
µ∗1(ϕ̃)−µ

∗
2(ϕ̃)

1− ζ′1(µ
∗
1(ϕ̃))

(15)
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As µ∗q(ϕ̃) = ζq(µ∗1(ϕ̃) and the denominator in (15) is positive because (by
the observation in the proof to Lemma 2) the eigenvalues of Cµ∗(ϕ̃) all have
negative real parts, the claim follows.

If a belief distribution F1 is replicator dynamics stable at z̃ ∈ (0, 1), it follows
from the reduced system (9) that ∃ϕ < 1 such that ∀ϕ ∈ [ϕ, 1), it holds that

ϕ(1−ϕ)(µ∗1(ϕ)−µ
∗
2(ϕ))[U1(z

∗(ϕ))− U2(z
∗(ϕ))]> 0 (16)

The next lemma is needed to complete the proof:

Lemma 6. Suppose Assumption 2 (Richness) holds. If a belief distribution F1 is
replicator dynamics stable at z̃ ∈ (0,1) is stable under random beliefs, it holds
that U1(z̃) = U2(z̃).

Proof. Suppose not, that is, suppose that a belief distribution F1 is replicator
dynamics stable at z̃ ∈ (0,1), but it holds that U1(z̃) > U2(z̃). As z∗(ϕ) is
continuous in ϕ, there exists (by Assumption 2) a µ∗2(ϕ)> µ

∗
1(ϕ) such that the

inequality in equation (16) is reversed. We have a contradiction. An analogous
argument establishes that U1(z̃)< U2(z̃) cannot hold.

Consequently, as Ui is differentiable, we need to look at the sign of U ′1(z)−
U ′2(z). We consider two cases: (1) µ∗1(ϕ̃)−µ

∗
2(ϕ̃)< 0, and (2) µ∗1(ϕ̃)−µ

∗
2(ϕ̃)>

0.

1. If µ∗1(ϕ̃)−µ
∗
2(ϕ̃)< 0, then z∗(ϕ)> z∗(ϕ̃) for all ϕ ∈ (ϕ, ϕ̃) by Lemma 5.

In order that (16) holds, it must hence hold that U ′1(z̃)− U ′2(z̃)< 0.

2. If µ∗1(ϕ̃)−µ
∗
2(ϕ̃)> 0, then z∗(ϕ)< z∗(ϕ̃) for all ϕ ∈ (ϕ, ϕ̃) by Lemma 5.

In order that (16) holds, it must hence hold that U ′1(z̃)− U ′2(z̃)< 0.

Hence, in order that a belief distribution F1 is replicator dynamics stable at
z̃ ∈ (0, 1) it must hold that U ′1(z̃)− U ′2(z̃)< 0. Note that this is exactly what is
required for replicator dynamics stability of an interior strategy distribution z̃.
Hence, we have the claim.

A.3 Proof of Proposition 2

Proof. We want to show that there exists F1 ∈ F such that the following jointly
holds:

(i) ζ1(z∗) = z∗

(ii) ζ′1(z
∗)< 1
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Note that these two points ensure replicator dynamics stability of F1 ∈ F at
z∗ ∈ {0, 1}: Point (i) ensures that z∗ is indeed a rest point of the best response
node in a rule-monomorphic population, and (ii) ensures that the eigenvalues of
C(µ∗(ϕ̃), ϕ̃) all have real parts strictly below zero. Replicator dynamics stability
of F1 ∈ F at z∗ ∈ {0,1} then follows by Proposition 1 (as z∗ is a replicator
dynamics stable strategy).

Because the space of belief distributions brought about by random sampling
is rich, point (i) is always satisfied. As z∗ ∈ {0,1}, it is easily seen from (10)
that we must have p(z∗) = z∗. Turning to point (ii), we write

ζ′1(z
∗) = p′(z∗)

M
∑

i=dM ·ze

�

M
i

�

p(z∗)i−1(1− p(z∗))M−i−1[i −Mz∗]

where we have, using the fact that p(z∗) = z∗,

ζ′1(0) = p′(z∗)





M
∑

i=dM ·ze

�

M
i

�

i0i−1



=

¨

0 if dM · ze> 1

p′(z∗)M if dM · ze ≤ 1

and

ζ′1(1) = p′(z∗)





M
∑

i=dM+·ze

�

M
i

�

[i −M]0M−i−1





=

¨

0 if dM · ze ≤ M − 1 ⇔ dM · (1− z)e ≥ 1

p′(z∗)M if dM · ze> M − 1 ⇔ dM · (1− z)e< 1

Hence, ζ′1(z
∗) is either equal to p′(z∗) ·M , or 0, depending on z∗ and z. Conse-

quently, for any M ∈ N++, there is a p with p′(z∗) sufficiently small, such that
ζ′1(z

∗)< 1 holds.

A.4 Proof of Proposition 3

Proof. We start with two preliminary observations: (1) For a.e. z, we have
bMzc invariant, and hence continuous, in z, and consequently (2) for a.e. z we
have I1−z(M − bMzc, bMzc+ 1) continuously decreasing in z. We then need the
following auxiliary lemma:

Lemma 7. Fix some M ∈ N++, and pick a z such that z = I1−z(M −bMzc, bMzc+
1). Then ∃δ > 0 such that ∀z′ satisfying ‖z′ − z‖< δ, there is no M ′ ≤ M such
that z′ = I1−z′(M ′ − bM ′z′c, bM ′z′c+ 1).
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Proof. Take any z ∈ [0,1], and suppose that there exist M , M ′ ≤ M , M 6= M ′,
such that

I1−z(M − bMzc, bMzc+ 1) = I1−z(M
′ − bM ′zc, bM ′zc+ 1) (17)

Since ∂ I1−z(M − bMzc, bMzc+ 1)/∂ z 6= ∂ I1−z(M ′ − bM ′zc, bM ′zc+ 1)/∂ z for
almost every z ∈ [0,1] (the derivative can be shown to exist for almost every
z), it follows that for almost every z, there exists ε > 0 such that for every
z′ ∈ Bε(z), it holds that

I1−z′(M − bMz′c, bMz′c+ 1) 6= I1−z′(M
′ − bM ′z′c, bM ′z′c+ 1)

This implies that for every pair M , M ′ ≤ M , M 6= M ′, there exist at most finitely
many z ∈ [0,1] such that (17) holds. Furthermore, as we only have finitely
many pairs M , M ′ ≤ M , M 6= M ′, there are only at most finitely many z such
that there exist M , M ′ ≤ M , M 6= M ′ such that (17) holds. Consequently,

min
M ′ 6=M

|I1−z(M − bMzc, bMzc+ 1)− I1−z(M
′ − bM ′zc, bM ′zc+ 1)|> 0

holds for almost every z. Together with the continuity of I1−z(M ′−bM ′zc, bM ′zc+
1) in z, the claim then follows.

Consequently, the set of population states z at which belief distributions
brought about by locally unbiased sampling rules can be replicator dynamics
stable consists entirely of singletons.

A.5 Proof of Lemma 4

Proof. Under Assumption 3, we have dζA
q(z

B)/dzB < 0, ∀zB ∈ [0,1] as well
as dζB

q (z
A)/dzA > 0, ∀zA ∈ [0,1]. From this, it follows that there exists a

unique root µ̃ = µ∗(ϕ̃) that is interior, i.e. in (0,1)4. Given that all ζp
q(.) are

differentiable and that the rest-point µ̃ is interior, differentiability follows from
an analogous argument as in the proof to Lemma 2.

We first look at claim (b). As described in the text, the best-response node
is given by µ̇1 = g(µ,ϕ) where we have

g(µ,ϕ) =







ζA
1(ϕ

BµB
1 + (1−ϕ

B)µB
2)−µ

A
1

ζA
2(ϕ

BµB
1 + (1−ϕ

B)µB
2)−µ

A
1

ζB
1(ϕ

AµA
1 + (1−ϕ

A)µA
2)−µ

B
1

ζB
2(ϕ

AµA
1 + (1−ϕ

A)µA
2)−µ

B
2






(18)
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Writing out the Jacobi matrix ∂µg(µ,ϕ), we see that it is of the form:

M =







−1 0 −a · x −a · (1− x)
0 −1 −b · x −b · (1− x)

c · y c · (1− y) −1 0
d · y d · (1− y) 0 −1







with a, b, c, d > 0 , and x , y ∈ [0,1]. To get the eigenvalues λ we write the
characteristic polynomial

det(M −λI) = det













−1−λ 0 −a · x −a · (1− x)
0 −1−λ −b · x −b · (1− x)

c · y c · (1− y) −1−λ 0
d · y d · (1− y) 0 −1−λ













= (−1−λ)4 + (c · x + d · (1− x)) · (a · y + b · (1− y))(−1−λ)2

(19)

Substituting λ̃≡ −1−λ, and c̃ ≡ (c · x + d · (1− x)) · (a · y + b · (1− y))> 0,
we see that the equation

λ̃4 + c̃ · λ̃2 = 0

has roots λ̃ = {0,
p
−c̃,−

p
−c̃}. Going back to the eigenvalues λ = −1 − λ̃,

we have that the real parts of the eigenvalues of M are all −1, irrespective of
a, b, c, d, x , y, and hence uniformly bounded away from zero in (µ,ϕ). This
proves claim (b).

Furthermore, we see from (18) that the elements (µA∗
1 (ϕ̃),µ

B∗
1 (ϕ̃)) of the

root µ∗(ϕ̃) only depend on ζA
1 and ζB

1 , and hence on {FA
1 , F B

1 } alone. Inspecting
the characteristic polynomial (19) additionally reveals that for x , y = 1 the
determinant only depends on ζA

1 and ζB
1 , and hence on {FA

1 , F B
1 } alone. As the

trace of M is constant, claim (c) follows.
Finally, we turn to (a). Given that the rest-point µ̃= µ∗(ϕ̃) is interior and

that µ∗(ϕ) is differentiable at ϕ, it follows that µ∗(ϕ) is interior for all ϕ in
neighborhood of ϕ̃. As all ζp

q(.) are differentiable, differentiability of µ∗(ϕ) on
ϕ ∈ (0,1) in a neighborhood of ϕ̃ follows directly from the implicit function
theorem, whereas for ϕ 6= ϕ̃ in the boundary of [0, 1]2 in a neighborhood of ϕ̃
it follows from an analogous argument as in the proof to Lemma 2.

A.6 Proof of Proposition 4

Proof. We need to show that ϕ̃ = (1,1) is an asymptotically stable rest-point
of the reduced system if and only if µ∗(ϕ̃) corresponds to the mixed Nash

33



equilibrium. To this end, we write out the reduced system as:

ϕ̇A = ϕA
�

1−ϕA
� �

µA∗
1 (ϕ)−µ

A∗
2 (ϕ)

� �

zB∗ (ϕ) aA−
�

1− zB∗ (ϕ)
�

bA

�

ϕ̇B = ϕB
�

1−ϕB
� �

µB∗
1 (ϕ)−µ

B∗
2 (ϕ)

� �

zA∗ (ϕ) aB −
�

1− zA∗ (ϕ)
�

bB

�

Let variables marked with a tilde denote equilibrium values. We define ϕ̃ =
(ϕ̃A, ϕ̃B)≡ (1,1), µ̃p

q ≡ µ
p∗
q (ϕ̃), and z̃p ≡ zp∗(ϕ̃). Then, the Jacobian matrix J∗

at the rest point ϕ̃ is given by

J∗ =
�

a 0
0 b

�

with
a ≡ −

�

µ̃A
1 − µ̃

A
2

� �

z̃BaA− (1− z̃B)bA

�

b ≡ −
�

µ̃B
1 − µ̃

B
2

� �

z̃AaB − (1− z̃A)bB

�

In order to check for stability on the reduced system, we need to distinguish
three cases regarding the rest-point value of z̃p: (i) z̃p 6= zp∗ , ∀p ∈ P, (ii)
z̃p = zp∗ for one p ∈ P but not the other, and (iii) z̃p = zp∗ , ∀p ∈ P. The nature
of the rest point differs among the cases. With z̃p 6= zp∗ , ∀p ∈ P, the argument
for stability is straightforward, as the rest point is hyperbolic:

Lemma 8. Let ϕ̃ = (1,1) and z̃p 6= zp∗ , ∀p ∈ P. Then ∃{FA
2 , F B

2 } ∈ F ×F such
that ϕ̃ is not an asymptotically stable rest point of the reduced system.

Proof. The eigenvalues (λ1,λ2) of the linearized system around the rest point are
given by (a, b). Stability requires that a, b < 0. Evidently this is not necessarily
given as it depends on the rest point distributions produced by {FA

1 , FA
2 , F B

1 , F B
2 }:

When we fix some profile {FA
1 , F B

1 }, then by Assumption 2 (Richness), there
always exists a profile {FA

2 , F B
2 } yielding z̃-different reaction functions such that

either or both a, b > 0.

In other words, there is always a sub-population that can intrude – on both
sides. That is, given z̃p

1 6= zp∗

1 and any profile of belief distributions {FA
1 , F B

1 }
yielding that rest point, we can always find another profile of belief distributions
{FA

2 , F B
2 } such that the distribution-monomorphic rest point is unstable. Next, a

similar argument unfolds for rest points with exactly one population’s strategy
distribution being equal to the Nash equilibrium distribution:

Lemma 9. Let ϕ̃ = (1, 1) and z̃p = zp∗ , but z̃−p 6= z−p∗ . Then ∃{FA
2 , F B

2 } ∈ F ×F
such that ϕ̃ is not an asymptotically stable rest point of the reduced system.

Proof. With z̃p
1 = zp∗

1 for p but not for −p, we get a zero eigenvalue in J∗:
Suppose w.l.o.g that z̃B

1 = zB∗
1 . Then, the eigenvalues are given by λ = (0, b). If

b > 0 (as holds by appropriately choosing F B
2 ), the system has no asymtotically

stable manifold and hence cannot be asymptotically stable.
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Hence for any profile of belief distributions {FA
1 , F B

1 } that happens to produce
the Nash equilibrium distribution of strategies only on one but not on the other
side, we can find a belief distributions {FA

2 , F B
2 } such that ϕ̃ is not asymptotically

stable on the reduced system. Lemmata 8 and 9 taken together then imply
that for any set of belief distributions {FA

1 , F B
1 } not leading to the unique Nash

equilibrium strategy distribution z∗ in both populations, we can find belief
distributions {FA

2 , F B
2 } such that ϕ̃ is not asymptotically stable on the reduced

system. This shows the only if part of the statement.
It remains to show that if z̃ equals the unique Nash equilibrium distribution,

we have ϕ̃ as an asymptotically stable rest point. This is done in the next
lemma:

Lemma 10. Let ϕ̃ = (1,1) and z̃p = zp∗ , ∀p ∈ P. Then ϕ̃ is an asymptotically
stable rest point of the reduced system for any profile {FA

2 , F B
2 } ∈ F ×F where for

both p ∈ P, F p
2 is z̃-different from F p

1 .

Proof. Note that the linearized system becomes non-hyperbolic with both eigen-
values zero. Hence, we will need to look at higher order terms in both dimen-
sions. For the sake of clarity, we shift variables such that the rest point comes
to lie at (0,0). Let u = ϕA − ϕ̃A, and v = ϕB − ϕ̃B. Furthermore, we have

µp
q = µ̃

p
q + dµp∗

q (ϕ̃) with dµp∗
q (ϕ̃) = u

∂ µ
p∗
q (ϕ̃)
∂ ϕA + v

∂ µ
p∗
q (ϕ̃)
∂ ϕB . For the total distribution

of strategies in population B, we then have zp = z̃B + dzB(ϕ̃) and it follows at
the distribution-monomorphic rest point with ϕ̃p = 1, that

dzB∗(ϕ̃) = v(µ̃B
1 − µ̃

B
2) + u

∂ µB∗
1 (ϕ̃)

∂ ϕA
+ v
∂ µB∗

2 (ϕ̃)

∂ ϕB

Application of the implicit function theorem to g(µ∗(ϕ),ϕ) = 0 as given in (18)
yields

dzB∗(ϕ̃) = u
ζB′

1 (µ̃
A1
1 )(µ̃

A
1 − µ̃

2
2)

1− ζA′
1 (µ̃

B
1)ζ

B′
1 (µ̃

A
1)
+ v

(µ̃B
1 − µ̃

B
2)

1− ζA′
1 (µ̃

B
1)ζ

B′
1 (µ̃

A
1)

Under our change of variable, Population A’s branch of the reduced system can
be written as

u̇= −u(µ̃A
1 − µ̃

A
2)dzB∗(ϕ̃)(aA+ bA) +O(u2, v2)

Combining this with the expression for dzB∗(ϕ̃) and computing the other di-
mension analogously, we arrive at:

u̇= −u2(µ̃A
1 − µ̃

A
2)

2ζB′

1 (z
A∗)

aA+ bA

1− ζA′
1 (zB∗)ζB′

1 (zA∗)
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− uv(µ̃A
1 − µ̃

A
2)(µ̃

B
1 − µ̃

B
2)

aA+ bA

1− ζA′
1 (zB∗)ζB′

1 (zA∗)
+O(u3, v3)

v̇ = −v2(µ̃B
1 − µ̃

B
2)

2ζA′

1 (z
A∗)

aB + bB

1− ζA′
1 (zB∗)ζB′

1 (zA∗)

− uv(µ̃A
1 − µ̃

A
2)(µ̃

B
1 − µ̃

B
2)

aB + bB

1− ζA′
1 (zB∗)ζB′

1 (zA∗)
+O(u3, v3)

In order to show that this system is asymptotically stable on (u, v) = {(u, v) :
u, v ≤ 0} around (u, v) = (0, 0), note that the system is of the form:

u̇= au2 + buv

v̇ = cv2 + duv

with a, c > 0 and sgn(b) 6= sgn(d). Without loss of generality, let d < 0.
Then b > 0 and consequently for any u0, v0 < 0, we have u̇ > 0, that is, u
returns to the origin. So, we need to take a closer look at the dynamics of
v: v̇ > 0 requires cv2 > −duv ⇔ cv < −du. Evidently, ∀u ∃v s.t. cv < −du.
Let v(u) ≡ sup{v : cv < −du, u < 0, v < 0} and observe that dv(u)

du > 0 holds.
As u returns to the origin from below, the trajectory of v, v(t, v0) starting at
v0, is bounded below for any u0. Call this bound δ = δ(u0). Hence for any
δ < 0 there is an ε < 0 such that v0 ≥ ε implies v(t, v0) ≥ δ, ∀t > 0 as well
as lim

t→∞
v(t, v0) = 0. Together with the fact that u̇ > 0 for any u0, v0 < 0, we

have asymptotic stability. In other words, for any u0 < 0, ∃T > 0 such that
u = u(t, u0), ∀t > T , is sufficiently close to zero such that v̇ > 0; hence, as
soon as u becomes sufficiently close to zero again, both u̇, v̇ > 0 and the system
returns to its steady state at (0,0). The same reasoning applies for d > 0.

We conclude that if the profile of belief distributions {FA
1 , F B

1 } yields the
unique mixed strategy distribution for z̃ then ϕ̃ is stable on the reduced system.
Combining this with Lemmata 8 and 9 we have established that ϕ̃ is an asymp-
totically stable rest point of the reduced system if and only if z̃ corresponds to
the Nash equilibrium z∗. This completes the proof.
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