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Abstract

| study a dynamic relationship in which a principal delegates experimentationdagent.
Experimentation is modeled as a two-armed bandit whose risky arm yieldsssasdfollowing
a Poisson process. Its intensity, unknown to the players, is either higivoiTlee agent has
private information, his type being his prior belief that the intensity is high. agent values
successes more than the principal and therefore prefers to expetonget. | show how
to reduce the analysis to a finite-dimensional problem. In the optimal contragpyiticipal
starts with a calibrated prior belief and updates it as if the agent had retgrivformation.
The agent is free to experiment or not if this belief remains above a cidefis required to
stop once it reaches the cutoff. The cutoff binds for a positive meadungh enough types.
Surprisingly, this delegation rule is time-consistent. | prove that the cutieffemains optimal
and time-consistent for more general stochastic processes goveayiofisp
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1 Introduction

Motivation. Innovation carries great uncertainty. Firms frequentytdR&D projects with little
knowledge of eventual success. As experimentation goesibndsuccess occurs, firms grow
pessimistic and taper resource input or even discontireipribject altogether.

This paper studies the optimal mechanism by which a prih(gb@) delegates experimentation
to an agent (he), as is the case of a firm delegating an R&D priojéts employee. The literature
on experimentation in a principal-agent setting focusesgr@msferable utilities. Instead, | focus
on delegation (Holmstrém, 1977, 19849 [ 16]) for three reasons. First, from a practical point of
view, it is obvious that an overwhelming number of econonaitivties (conventional and innova-
tive) are organized by delegation: managers delegate taskdbordinates by authority, rather than
transfer-based trading contracts. Second, it is oftenpdre@a restrict the agent’s actions than to
devise a possibly complex compensation scheme. This isstenswith the transaction-cost eco-
nomics which discusses the relative efficiency of authdsaged organization (“hierarchies”) and
contract-based organization (“market”) (Coase, 198];[Williamson, 1975 P5]). Third, there
are cases in which transfers are prohibited outright to garecorruption, such as constituents
delegating reforms to politicians.

Current literature on delegation focuses on static probletmsh preclude learning. In this
paper, | consider the problem of dynamic delegation. As mdarimation arrives over time, the
flexibility granted to the agent might be adjusted accorlging

The R&D project consumes the principal’s resources and taetagime. Both wish to discon-
tinue it if they become pessimistic enough. However, thentgieelative return from the project’s
successes typically exceeds the principal’s (high costin€pal’s resources; principal’s moderate
benefit from one project out of her many responsibilitie€rd® career advancement as an extra
benefit); hence the agent prefers to keep the project alive llanger time.

Promising projects warrant longer experimentation. Bagdon his expertise, the agent often
has private knowledge on the prospect of the project at tibeetulf the principal wishes to take
advantage of his information, she has to give the agent saxibiflty over resource allocation.
But misaligned preferences curtail the flexibility that threnpipal is willing to grant. Therefore
the principal faces a trade-off between using the agerftsnmation and containing his bias.

The purpose of this paper is to solve for the optimal delegatile. It addresses the following
guestions: In the absence of transfers, what instrumerds thee principal have to extract the
agent’s private information? Is there delay in informatamguisition? How much of the resource
allocation decision should be delegated to the agent? Willesprojects be over-experimented and

1See for instance Bergemann and Hege (1998, 2005)8], Halac, Kartik, and Liu (2013)14], H6rner and
Samuelson (2013)L[7].



others under-experimented? Is the optimal delegationtimle-consistent?

Analysis. | examine a dynamic relationship in which a principal detegeexperimentation to
an agent. Experimentation is modeled as a continuous-tiaeatmed bandit problem. See for
instance Presman (199®J], Keller, Rady, and Cripps (20052(], and Keller and Rady (2010)
[18]. There is one unit of a perfectly divisible resource pettwhitime and the agent continually
splits the resource between a safe task and a risky one. Igie@y time interval, the safe task
generates a known flow payoff proportional to the resoureeailed to it> The risky task’s payoff
depends on an unknown binastate In thebenchmark settingf the state is good the risky task
yieldssuccesseat random times. The arrival rate is proportional to the ues® allocated to it. If
the state is bad, the risky task yields no successes. | aghianthe agent values the safe task’s
flow payoffs and the risky task’s successes differently tthenprincipal. Both prefer to allocate
the resource to the risky task in the good state and to thetasiten the bad one. However, the
agent values successes relatively more than the prindipate, he prefers to experiment longer
if faced with prolonged absence of succésst the outset, the agent has private information: his
typeis his prior belief that the state is good. After experiméntabegins, the agent’s actions and
the arrivals of successes are publicly observed.

The principal delegates the decision on how the agent sladlddate the resource over time.
This decision is made at the outset. Since the agent haseifarmation before experimentation,
the principal offers a set gfoliciesfrom which the agent chooses his preferred one. A policy
specifies how the agent should allocate the resource intalificontingencies.

Note that the space of all policies is very large. Possibleies include: allocate all resource
to the risky task until a fixed time and then switch to the sagktonly if no success has realized;
gradually reduce the resource input to the risky task if rexzess occurs and allocate all resource
to it after the first success; allocate all resource to theyriask until the first success and then
allocate a fixed fraction to the risky task; always allocatieed fraction of the unit resource to the
risky task; etc.

A key observation is that any policy, in terms of payoffs, c@summarized by a pair of
numbers, corresponding to thatal expected discounted resou@iéocated to the risky task con-
ditional on the state being good and tio¢gal expected discounted resou@éocated to the risky
task conditional on the state being bad. That is, as far asffsagre concerned, there is a simple,
finite-dimensional summary statistic for any given polidhe range of these summary statistics
as we vary policies is what | call the feasible set—a subs#te@plane. Determining the feasible

2The flow payoff generated by the safe task can be regardedeaspiortunity cost saved or the payoff from
conducting conventional tasks.
3This assumption will be relaxed later and the case in whiefbths goes in the other direction will also be studied.



set is a nontrivial problem in general, but it involves nodntive constraints, and so reduces to a
standard optimization problem which | solve. This redutesdelegation problem to a static one.
Given that the problem is now static, | use Lagrangian ogt@ton methods (similar to those used
by Amador, Werning, and Angeletos (2008))[to determine the optimal delegation rule.

Under a mild regularity condition, the optimal delegatiofertakes a very simple form. Itis a
cutoff rulewith a properly calibrated prior belief that the state is go®his belief is then updated
as if the agent had no private information. In other words, bielief drifts down when no success
is observed and jumps to one upon the first success. It is eghdlathe way the principal would
if she were carrying out the experiment herself (startinthatcalibrated prior belief). The agent
freely decides whether to experiment or not as long as thateddelief remains above the cutoff.
However, if this belief ever decreases to the cutoff, thenaigaequired to stop experimenting. This
rule turns out not to bind for types with low enough priors,omvluntarily stop experimenting
conditional on no success, but does constrain those with éngugh priors, who are required to
stop when the cutoff is reached.

Given this updating rule, the belief jumps to one upon the $iuecess. Hence, in the bench-
mark setting the cutoff rule can be implemented by imposidgadline for experimentation, under
which the agent allocates all resource to the risky task #ieefirst success, but is not allowed to
experiment past the deadline. Those types with low enouiginspstop experimenting before the
deadline conditional on no success while a positive measiggpes with high enough priors stop
at the deadline. In equilibrium, there is no delay in infotima acquisition as the risky task is
operated exclusively until either the first success revbalsthe state is good or the agent stops.

Among the positive measure of high enough types who are dacstop when the cutoff (or
the deadline) is reached, the highest subset under-expetriaven from the principal’s point of
view. Every other type over-experiments. This implies thadractice the most promising projects
are always terminated too early while less promising onestapped too late due to the agency
problem.

An important property of the cutoff rule is time consisten@&fter any history the principal
would not adjust the cutoff rule even if she were given a chanado so. In particular, after the
agent experiments for some time yet no success has redtfiweegdrincipal still finds it optimal to
keep the cutoff (or the deadline) at the same level as it waatsbe beginning. This property
indicates that, surprisingly, implementing the cutofferuequires minimal commitment on the
principal’s side.

| then show that both the optimality of the cutoff rule andtitae-consistency generalize to
situations in which the risky task generates successesibdl state as well. When successes
are inconclusive, the belief is updated differently thathi@ benchmark setting. It jumps up upon
successes and then drifts down. Consequently, the cuteftarinot be implemented by imposing



a deadline. Instead, it can be interpreted asiding deadline The principal initially extends
some time to the agent to operate the risky task. Then, wieersesuccess realizes, more time
is extended. The agent is free to switch to the safe task ddferuses up the time granted by
the principal. After a long enough period of time elapse$iit success, the agent is required to
switch to the safe task.

| further extend the analysis to the case in which the agansdess from the experiment than
the principal and therefore tends to under-experiments appens when an innovative task yields
positive externalities, or when it is important to the firnt does not widen the agent’s influence.
When the agent’s bias is small enough, the optimum can be mgited by imposing a lockup
period which is extended upon successes. Instead of plaaag on the length of experimentation
in the previous case, the principal enacts a floor. The agennb flexibility but to experiment
before the lockup period ends, yet has full flexibility aftards. Time-consistency is no longer
valid, though, as whenever the agent stops experimentilngtasily, he reveals that the principal’s
optimal experimentation length has yet to be reached. Tineipal is tempted to order the agent
to experiment further. Therefore to implement the slidiagklup period, commitment from the
principal is required.

My results have two important implications for the pradtidasign of delegation rules (I as-
sume a larger agent’s return in this illustration). Firsgslading) deadline should be in place as a
safeguard against abuse of the principal’s resources. ditncation of the project is permitted
only upon demonstrated successes. Second, the agent slawelthe flexibility over resource al-
location before the (sliding) deadline is reached. In paltér, the agent should be free to terminate
the project whenever he finds appropriate. Besides in-howmsation, these results apply to var-
ious resource allocation problems with experimentatioghsas companies budgeting marketing
resources for product introduction and funding agenciemrding grants to scholarly researth.

Related literature. My paper contributes to the literature on delegation. Titesdture addresses
the incentive problems in organizations which arise dueidién information and misaligned
preferences. Holmstrom (1977, 1984%][ 16] provides conditions for the existence of an optimal
solution to the delegation problem. He also characteriptsnal delegation sets in a series of
examples, under the restriction, for the most part, thay orierval delegation sets are allowed.
Alonso and Matouschek (2008)][and Amador and Bagwell (20123] characterize the optimal
delegation set in general environments under some condiéind provide conditions under which
simple interval delegation is optimal.

None of these papers consider dynamic delegation. Whangisshes my model from static

4Suppose that experimentation has a flow cost. The agenthiscoemstrained and his action is contractible. Dele-
gating experimentation equals funding his research ptojec
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delegation problems is that additional information arigesr time. The principal ought to use it
both to reduce the agent’s informational rents and to adljissbehavior. My paper complements
the current literature and facilitates the understandinigow to optimally delegate experimenta-
tion.

Second, my paper is related to the literature on experirtientan a principal-agent setting.
Since most papers address different issues than | do, herg heention the most related ones.
Gomes, Gottlieb and Maestri (2013)3 study a multiple-period model in which the agent has
private information about both the project quality and hostoof effort. The agent’s actions are
observable. Unlike my setting, the agent has no benefit flraptoject and outcome-contingent
transfers are allowed for. They identify necessary andaeift conditions under which the prin-
cipal only pays rents for the agent’s information about listcbut not for the agent’s information
about the project quality. Garfagnini (2011)] studies a dynamic delegation model without hid-
den information at the beginning. The principal cannot canenfuture actions and transfers are
infeasible. Agency conflicts arise because the agent grédework on the project regardless of
the state. He delays information acquisition to preveniptfirgcipal from growing pessimistic. In
my model, there is pre-contractual hidden informatiomsfars are infeasible and the principal is
able to commit to long-term contract terms; the agent hastivenefit from experimentation and
shares the same preferences as the principal conditiortakmstate. Agency conflicts arise as the
agent is inclined to exaggerate the prospects for succelgsralong the experimentation.

The paper is organized as follows. The model is presentedaetid®2. Section3 considers a
single player’s decision problem. In Sectidnl illustrate how to reduce the delegation problem
to a static one. The main results are presented in Sestibextend the analysis to more general
stochastic processes in Secttband discuss other applications of the model. Sectiooncludes.

2 The Model

Players, tasks and states. Time ¢t € [0,00) is continuous. There are two risk-neutral players
i € {a, p}, an agent (he) and a principal (she), and two tasks, a s&f&'tasd a risky oner. The
principal is endowed with one unit of perfectly divisiblespairce per unit of time. She delegates
resource allocation to the agent, who continually spliesrgsource between the two tasks. The
safe task yields a known deterministic flow payoff that igqundional to the fraction of the resource

SBergemann and Hege (1998, 2003) [8] study the financing of a new venture in which the principaids the
experiment and the agent makes contract offers. Dynamitcggeroblem arises as the agent can invest or divert the
funds. Horner and Samuelson (2013Y] consider a similar model in which the agent’s effort regaifunding and
is unobservable. The principal makes short-term contrifetsospecifying profit-sharing arrangement. Halac, Karti
and Liu (2013) [L4] study long-term contract for experimentation with adeeselection about the agent’s ability and
moral hazard about his effort choice.



allocated to it. The risky task’s payoff depends on an unknbwmarystate w € {0, 1}.

In particular, if the fractionr, € [0, 1] of the resource is allocated foover an intervalt, t+dt),
and consequently— 7, to S, playeri receiveq 1 — m;)s;dt from S, wheres; > 0 for both players.
The risky task generatessaiccesst some point in the interval with probability \'dt if w = 1
and m, \°dt if w = 0. Each success is worth; to playeri. Therefore, the overall expected
payoff increment to playerconditional orw is [(1 — m;)s; + mA“h;]dt. All this data is common
knowledge®

In the benchmark setting, | assume that> \° = 0. Hence,R yields no success in state In
Subsectior6.1.1, | extend the analysis to the setting in whith> \° > 0.

Conflicts of interests. | allow different payoffs to players,e., | do not require that, = s, or
h. = h,. The restriction imposed on payoff parameters is the faligw

Assumption 1. Parameters are such thdth; > s; > \°h; fori € {a, p}, and

AMho — sq - )xlhp -5,
So —Ahg ~ s, — AOh,

Assumptionl has two implications. First, there is agreement on how tocalie the unit re-
source if the state is known. Both players prefer to allocag¢erésource ta in statel and the
resource ta' in state). Second, the agent values successes over flow payoffvedyatnore than
the principal does. Let

Mh; — s
(S
denote playei’s net gain fromR’s successes over's flow payoffs. The ratio, /7),, being strictly
greater than one, measures how misaligned players’ in¢e@es and is referred to as the agent’s
bias. (The case in which the bias goes in the other direction mudised in Subsectidh?2.)

Private information. Players do not observe the state. At tilh¢he agent has private informa-
tion about the probability that the statelisFor ease of exposition, | express the agent’s prior belief
that the state i$ in terms of the implied odds ratio of stateo state0, denoted) and referred to
as the agent’s type. The agent’s type is drawn from a compeetalo = [¢, ] C R, according
to some continuous density functign Let F' denote the cumulative distribution function.

By the definition of the odds ratio, the agent of typassigns probability(9) = 6/(1 + 6) to

the event that the state isat time0. The principal knows only the distribution of types. Hence,

8It is not necessary that generates deterministic flow payoffs. What matters to pkigthat the expected payoff
rates ofS are known and equal, and thatS’s flow payoffs are uncorrelated with the state.



her prior belief that the state isis given by

——dF(6
= g

Actions and successes are publicly observable. The ordynrdtion asymmetry comes from the
agent’s private information about the state at tilnédence, a resource allocation policy, which |
introduce next, conditions on both the agent’s past actimksarrivals of successes.

Policies and posterior beliefs. A (pure) resource allocatigmolicy is a non-anticipative stochas-
tic processr = {m }1>0. Here,m, € [0, 1] is interpreted as the fraction of the unit resource allatate
to R at timet, which may depend only on the history of events up tA policy = can be described
as follows. At time0, a choice is made of a deterministic functio(t | 0), measurable with re-
spect tot, 0 < ¢t < oo, which takes values if0, 1] and corresponds to the fraction of the resource
allocated taR up to the moment of the first success. If at the random tir@esuccess occurs, then
depending on the value of, a new functionr(¢ | 71, 1) is chosen, etc. The space of all policies,
including randomized ones, is denofidd (See Footnot8.) The agent is said texperimentvhen

a positive fraction of the unit resource is allocatedtavhen the state is still unknown.

Let V; denote the number of successes observed up tottiBeth players discount payoffs at
rater > 0. Player:’'s payoff given an arbitrary policyr € IT and an arbitrary prior belief € [0, 1]
consists of the expected discounted payoffs fiBissuccesses and the expected discounted flow
payoffs fromS

Ui(ﬂ,p) =FE |:/ ,r,e—rt [hszt + (1 — 71'75) Sldt] ‘ 7T,p:| .
0

Here, the expectation is taken over the state variabénd the stochastic processesand V;.
By the Law of Iterated Expectations, | can rewrite playsmpayoff as the discounted sum of the
expected payoff increments

Ui(’ﬂ',p) =E |:/ re*rt [(1 - 7Tt)51' + Wt)\whi] dt ‘ 7T,p:| .
0

Given priorp, policy = and trajectoryV, on the time interval < s < ¢, | consider the posterior
probability p; that the state i$. The functionp; may be assumed to be right-continuous with left-
hand limits. Because& yields no success in staie before the first success of the procégsthe
procesy; satisfies a differential equation

Dy = —Wt)\lpt(l _pt)- (1)



At the first successy, jumps to oné€.

Delegation. | consider the situation in which transfers are not allowed e principal is able
to commit to dynamic policies. At time, the principal chooses a set of policies from which the
agent chooses his preferred one. Since there is hiddermafam at time0, by the Revelation
Principle, the principal’s problem is reduced to solving éomapz : © — II to maximize her
expected payoff subject to the agent’ incentive compdtitalonstraint (IC constraint, hereatfter).
Formally, | solve

sup / U, (w(6). p(6))dF(9),

subjectto U, (w(0),p(8)) > U,(w(8'),p(0)) V0,6 € O,

over measurable : © — 1.8

3 The Single-Player Benchmark

In this section, | present playés preferred policy as a single player. This is a standardlera.
The policy preferred by playéiis Markov with respect to the posterior beljgf It is characterized
by a cutoff beliefp; such thatr, = 1if p, > pf andn;, = 0 otherwise. By standard results (see
Keller, Rady, and Cripps (2005, Propositidn) [20], for instance), the cutoff belief is

S; r

ik: prm— . 2
P Ny BRI T ”

Note that this is lower than playéis myopic cutoff beliefs; /(A\'h;), i.e., the probability below
which R yields a lower expected flow payoff thahdoes. The cutoff beliep; decreases in;.
Therefore, the agent's cutoff beligf, is lower than the principal’s;, as he valuegt's successes
overS’s flow payoffs more than the principal does.

’In general, subscripts indicate either time or player. Sagp#ts refer to state. Parentheses contain type or policy
8Here, | define randomized policies and stochastic mechanishowing Aumann (1964)d]. Let By 1) (resp.
B*) denote ther-algebra of Borel sets 46, 1] (resp.R% ) and\ the Lebesgue measure fth1], wherek is a positive
integer. | denote the set of measurable functions f(®fi, B*) to ([0, 1], Bj,1) by F* and endow this set with the
c-algebra generated by sets of the fofih: f(s) € A} with s € RE andA € By ;). Theo-algebra is denoteg”.
Let IT* denote the space of pure policies. | imposelbnthe productr-algebra generated by™*, x*), vk € N,.
Following Aumann (1964)d], | define randomized policies as measurable functiong0, 1] — IT*. According tof,
a valuee € [0, 1] is drawn uniformly from[0, 1] and then the pure polic§(e) is implemented. Analogously, | define
stochastic mechanisms as measurable functton), 1] x © — II*. A valuee € [0, 1] is drawn uniformly from0, 1],
along with the agent’s repo#, determines which element of is chosen. For ease of exposition, my descriptions
assume pure policies and deterministic mechanisms. Mytsedwinot.



Given the law of motion of beliefslj and the cutoff belief?), playeri’s preferred policy
given priorp(#) can be identified with atopping timer;(6): if the first success occurs before the
stopping time, use& forever after the first success; otherwise, ésantil the stopping time and
then switch taS. Player:’s preferred stopping time for a givehs stated as follows:

Claim 1. Player:’s stopping time given odds ratibe © is

)\1_110g (r+21)0n; if (r+X1)0n; > 1,
T’L(e) = " . )\Tl On,
0 if M < 1.

Figurelillustrates the two players’ cutoff beliefs and their preéel stopping times associated
with two possible odds ratiog, §” (with ¢’ < ¢”).° The prior beliefs are thus(¢’), p(¢") (with
p(0") < p(0")). Thez-axis variable is time and they-axis variable is the posterior belief. On the
y-axis is labeled the two players’ cutoff beligis andp;,. The solid and dashed lines depict how
posterior beliefs evolve wheR is used exclusively and no success realizes.

The figure on the left-hand side shows that for a given oddsttad agent prefers to experiment
longer than the principal does because his cutoff is lowan thhe principal’s. The figure on the
right-hand side shows that for a given playgethe stopping time increases in the odds ratm,
7,(0") < 7;(0”). Therefore, both players prefer to experiment longer gadrigher odds ratio.
Figurel makes clear what agency problem the principal faces. Tineipal's stopping time,(6)
is an increasing function af. The agent prefers to stop later than the principal for argivand
thus has incentives to misreport his type. More specifickdiyer types (those types with a lower
0) have incentives to mimic high types to prolong the expentaton.

State probp State probp

0 T,(0")  Ta(0) timet 0 ,(0")  Ta(0) T,(0")  T.(0") timet

Figure 1: Thresholds and stopping times

Given that a single player’s preferred policy is always elotgrized by a stopping time, one
might expect that the solution to the delegation problem $etaof stopping times. This is the

SParameters in Figurkaren, = 3/2,7, = 3/4,7/A\' = 1,0 = 3/2,0' = 4.

9



case if there is no private information or no bias. For examnipkthe distribution/” is degenerate,
information is symmetric. The optimal delegation set is phiecipal’s preferred stopping time
given her prior. Ifn,/n, equals one, the two players’ preferences are perfectinedig The
principal, knowing that for any prior the agent’s preferstdpping time coincides with hers, offers
the set of her preferred stopping timgs () : 6 € ©} for the agent to choose from.

However, if the agent has private information and is alssdmiait is unclear how the principal
should restrict his actions. Particularly, it is unclearetiter the principal would still offer a set of
stopping times. For this reason, | am led to consider theespgall policies.

4 A Finite-Dimensional Characterization of the Policy Space

The space of all policies is large. In the first half of thistg®et | associate to each policy—a
(possibly complicated) stochastic process—a pair of nusjbmalledtotal expected discounted
resourcepair, and show that this pair is a sufficient statistic fosholicy in terms of both players’
payoffs. Then, | solve for the set of feasilitdal expected discounted resourgairs, which is a
subset ofR? and can be treated as the space of all policies.

This transformation allows me to reduce the dynamic deiegatroblem to a static one. In the
second half of this section, | characterize players’ pexfees over the feasible pairs and reformu-
late the delegation problem.

4.1 A Policy as a Pair of Numbers

For a fixed policyr, | definew! () andw®(r) as follows:

w!(n) =E {/OO re”"'mdt ) T, 1] andw’(r) = E [/00 re”"'mdt ‘ 7T,O‘| ) 3)
0 0

The first termw! (7) is the expected discounted sum of the resource allocat&diftpolicy = is
implemented conditional on the state beingl refer tow!(w) as thetotal expected discounted
resource(expected resourgdnereafter) allocated t& underr in statel.'° Similarly, the second
termw"(7) is theexpected resourcallocated toR underr in state0. Bothw! () andw®(r) are
in [0, 1] becauser takes values in0, 1]. Therefore,(w', w’) defines a mapping from the policy
spacdl to [0, 1)%.

To calculate the payoff of implementing a policy for a givaropp, | first calculate the payoff
of implementing this policy if the state is(or equivalentlyp = 1) and the payoff if the state (%

For a fixed policyr, theexpected resourcgpent onR in statel is proportional to the expected discounted number
of successes.e, w!(m) = E [ [ re "'dN; | m, 1] /AL

10



(or equivalentlyp = 0). Multiplying these payoffs by the initial distribution ¢ifie state gives the
payoff of this policy. Then | show that, conditional on thatst the payoff of implementing one
policy is linear in theexpected resourcalocated taRk.** As a result, what is relevant for evaluating
a policy is theexpected resourgeair (w!(7), w’(7)). | summarize this in the following lemma.

Lemma 1 (A policy as a pair of numbers)
For a given policyr € IT and a given priomp € [0, 1], playeri’s payoff can be written as
Us(m,p) = p (A hi — ;) w'(m) + (1 — p) (\h; — s;) w(7) + s;. 4)

Proof. Playeri’s payoff given policyr € I1 and priorp € [0, 1] is

Ui(m,p) = E [/ re " [(1 — ) s; + T ARy dt ‘ 7T,p:|
0
= pE |:/ re- Tt [Si + (Alhi — Sz)] dt ‘ , 1] + (1 —p)E |:/ re- "t [Si + 7 ()\Ohi . Sz)} dt ’ 7T70:|
0 0

=p (Alhi _ Si) E |:/ reirtﬂ'tdt ’ T, ]_:| + (1 —p) ()\Ohl - Si) E |:/ ’r'e*Ttﬂ_tdt ’ 7.(.’0:| + s
0 0

=p(A'h; — si) w(m) + (1 — p) (\°h; — s;) WO(m) + 55
|

According to Lemmal, (w!(7),w"(r)) is a sufficient statistic in terms of payoffs for the
policy 7. Moreover,U;(w, p) is a linear function of w!(7), w’(r)) as specified in4). Lemmal
claims that instead of working with a generic polieyit is without loss of generality to focus on

(w (), w' ().

4.2 Feasible Pairs

Let ' denote the image of the mappifig!, w®) : IT — [0,1]?. | call T the feasible sesince it
contains all possibléw®, w°) pairs that can be achieved by some policylo illustrate the concept
of expected resourcé calculate the image dfw!, w°) for two classes of policies, which turn out
to be important for characterizirig

1. Stopping-time policiesallocate all resource t& until the stopping time; if at least one success
occurs by then, allocate all resourceltdorever; otherwise, switch t8 forever. Letrs' denote
such a policy withr being the stopping time. If the statelisno success will occur. All resource
is allocated toR from time 0 to 7 and thenS is used exclusively until infinity. If the state is

1Recall that, conditional on the state and over any intelvajenerates a flow payoff proportional to the resource
allocated to it and? yields a success with probability proportional to the resewallocated to it.
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1, switch toS will be triggered if and only if no success occurs beforavhich happens with
probabilitye=*'". Therefore, | have

T T

(w! (7%), WO () = (1 _ e—(r+/\1)7’ 1— 6—7"7') .

As the stopping time- ranges from) to oo, w!(7%') andw’(7%) increase fronf) to 1. The
image of all stopping-time policies undex', w®) is denoted™

o= {(wh ) [0 =1- (1) w' e 0,1},

. Slack-after-success policieallocate all resource t& until the first success occurs; then allo-
cate a fixed fraction td. Let 7r§;' denote such a policy with € [0, 1] being the fixed fraction
allocated toR after the first success. If the statelisall resource is directed t& because
no success will occur. Hencw,o(w;') always equals one. If the statelisthe arrival time of
the first success is exponentially distributed with ratepsater\!. After the first success, the
fraction ¢ is allocated taR until infinity. Therefore, | have

(! () o () = (S50

As the fixed fractiony varies from0 to 1, w' (r3)) increases from/(r + A') to 1. The image of
all slack-after-success policies under', w) is denoted™

FSIE {(wl,wo) ’U)O: ]_,U}l S [ﬁ,l}}

Figure2 depicts the image of all stopping-time policies and slait&resuccess policies when

r and\! both equall /5. The shaded area i(I''U I'S). Here,co(X) denotes the convex hull
of X. The(w!,w") pairs on the southeast boundary correspond to stoppireygticies. Those
pairs on the north boundary correspond to slack-afteresscpolicies.

The following lemma characterizes the feasible set, whieh (st U T's!).

Lemma 2 (Feasible set)

The image of the mappir(gv!, w°) : IT — [0, 1] is co(TStU T').

Proof. Giveny = (v%,7°) € R?, define the supremum score in directipand the associated half
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Slack-after-success policies
1+ E C

A: allocate all resource t6

B: switch toS at somer € (0, o)
if no success occurs

)
. é}@ C: allocate all resource t&
N\

D: allocate all resource t&
until 1st success; then allocate
some fractionp € (0,1) to R

E: allocate all resource t&
until 1st success;
then switch taS

1 wi(m)
Figure 2: Feasible set and example policies\{ = 1)

space as

K(y) = sup [y'w! () + 2 w0 ()],

Hy)={veR*:v-v< K(v)}.

Define the intersection of all half spacestas= N.,cr2H (7). Sincel’ C H(y) for any~, it follows
thatl" C H. On the other hand, the feasible §at convex given that the policy spableand hence
I are convexified. (Recall thét includes all randomized policies (see Footrg)t¢ It follows that
I'=™H.

If v1 > 0,7° > 0, K(v) equalsy! + +°, achieved by the policy which directs all resources
to R. If ! < 0,7° < 0, K(v) equalsy, achieved by the policy which directs all resourcesto
If v1 > 0,7° < 0, finding K(v) is equivalent to a (Bayesian) decision problem of playeho
choosesr to maximizeU;(, p). His priorp is given byp/(1 —p) = —'/(7°n;). Therefore K (v)
is achieved by a cutoff Markov policy under whighis used exclusively if the posterior belief is
abovep! and S is used otherwise. This Markov policy is effectively a stimgptime policy, the
stopping time increasing fror to co as the ratio—+' /+° increases front) to co. Hence, the
southeast boundary @f is I'S' (more detailed proof is given in Appendx1).

If v! < 0,7° > 0, finding K (v) is equivalent to a decision problem of playewho chooses
to minimizeU;(r, p). His priorp is given byp/(1 — p) = —'/(+°n;). According to Keller and
Rady (2013) 19], K'(v) is achieved by a cutoff Markov policy such thatis used exclusively if
the posterior belief is below the cutoff asdis used if above. Depending on his prior (or the ratio
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—1/4Y), playeri either usesz until the first success and then switches$tr usesS forever. The
former policy corresponds to the p&in', w®) = (r/(r+A!), 1) and the latter téw', w°®) = (0, 0).
Hence, the sekt{ is bounded from above by

oty {(wl,wo) ‘ € (# 1) 4 (1—¢)(0,0),¢ € [0, 1]} .

Thereforel’ = H = co(TS'UT).

Note that the image of all pure policies undev!, w°) is alsoco(I't U T'®). Pick any pair
(w',w®) in the interior ofco(T'' U I'S!). The line connecting the origin and*, w°) intersects
rstyrs at some pointit, @°) which is the image of a stopping-time or slack-after-susgesicy
7 under(w', w®). There exists & € (0,00) such that(w', w°) corresponds to a policy which
directs all resource t§ until time ¢ and then the policy is implemented from time on. [ |

According to Lemma, the image of any policy under(w!, w®) is in co(TStU T's'). Also, for
any (w', w®) € co(TtUT*), I can identify a policyr such tha{w!, w®) = (w!(x), w’(r)). From
now on, when | refer to a paiw!, w®) € T, | have in mind a policy such that! is theexpected
resourceallocated toR under this policy in staté andw? is that in staté). A (w!, w") pair which
liesinT is called abundle

The feasible sef is bounded from above by the unionlst and{(w*, w°) | e(r/(r+ '), 1)+
(1 —¢€)(0,0),e € [0,1]}. The latter set can be achieved by delaying the policy cpamrding to
point £ (see Figure?) for some fixed amount of time. | call this class of policaay policies
From now on, | also refer to the union Bf and{(w*, w®) | e(r/(r + A1), 1) + (1 — €)(0,0), ¢ €
[0, 1]} as thenorthwestboundary of". The fact that the northwest boundary is piecewise linear is
peculiar to the benchmark setting due to its degeneraterettiatR yields no success in stafe
In Subsectior.1.1, | will characterize the feasible sets of more general sistib processes.

The shape of the feasible set only depends on the rdtié. Figure3 shows that ag/\!
decreases, the feasible set expands in both the southeasteanorthwest directions. Intuitively,
if future payoffs are discounted to a less extent, a playsrrhare time to learn about the state.
As a result, he is more capable of directing resourceB to one state while avoiding wasting
resources ok in the other state.

For future reference, | also write the feasibility $easT" = {(w',w°) | B%w?!) < w® <
B™(wh), wt € [0, 1]} wheres®e, 3™ are functions from0, 1] to [0, 1], characterizing the southeast

14



— /Al =2
————  p/Al=1
........ r/)\1:1/2

The feasible set expands@aé\! decreases.

1 wi(m)
Figure 3: Feasible sets ag\! varies

and northwest boundaries of the feasible set,

g (w) =1 - (1—w)r,
(r+AHw! ifw!e [0, TJFIAJ ,

1 ifwle(rjf)\l,%].

™ (')

4.3 Preferences over Feasible Pairs

If a player knew the state, he would allocate all resourcd? o statel and all resources t§ in
state0. However, this allocation cannot be achieved if the statamisiown. A policy, being state-
independent, necessarily entails the cost of learning plager wants to direct more resources to
R in statel, he has to allocate more resourcegitbefore the arrival of the first success. Inevitably,
more resources will be wasted éhif the state is actually.

A player’s attitude toward this trade-off between spendime resources oR in statel and
wasting less resources éhin state0 depends on how likely the stateli@nd how much he gains
from R’s successes ovéf's flow payoffs. According to Lemma, playeri’s payoff given policy
7w and odds ratid is

0 1

Ui(m,p(0)) = (mmwl(ﬂ) — 1—+6w0(7r)) (si — A°hy) + si.

Recall thatp(d) = 6/(1 + ) is the prior that the state isgivend. Player:'s preferences over
(w!, w?) are characterized by upward-sloping indifference curvitls the slope beingr;. For a
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fixed player, the indifference curves are steeper for higldels ratios. For a fixed odds ratio, the
agent’s indifference curves are steeper than the Pringifsale Figuret).?

w(7)

It -
Agent’s indifference
curve givery

A Slope#n,,
Feasible setl’
A (wg (6), we(0))
p A Slope¥, P: (wy(0), w)(0))
Principal’s indifference
curve givery
0 1 wi(m)

Figure 4. Indifference curves and preferred bundles

Playeri's preferred bundle gived, denoted(w; (6),w?(#)), is the point at which his indif-

7

ference curve is tangent to the southeast boundaty. df is easy to verify thatw; (), w?(9))

corresponds to a stopping-time policy witf{f) being the stopping time. Also, for a fixeédthe
agent’s preferred bundle lies to the northeast of the grails.

4.4 Delegation Problem Reformulated

Based on Lemma and?2, | reformulate the delegation problem. Given that eachcyatan be
represented by a bundle Ih the principal simply offers a direct mechanigm!, «°) : © — T,
called acontract such that

4 1 Lo
g}ifg /@ <1—+977pw (0) — 1—+9w (9)> dF'(0), (5)
subject to On,w'(0) — w’(#) > On,w'(9) — w°(0),V0,6 € O. (6)

The IC constraint®) ensures that the agent reports his type truthfully. Tha dalevant to this
problem include: (i) two payoff parameteys, 7,; (ii) the feasible set parametrized byand \';
and (iii) the agent’s private informatighdrawn from® with distribution functionF'. The solution

12parameters in Figuréaren, = 3/2,m, = 3/4,7/\' = 1,0 = v/10/3.
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to this problem, called the optimal contract, is dendted (6), w’*(9)).*3

5 Main Results

5.1 A Special Case: Two Types

| begin by studying the delegation problem with binary typigh typed,, or low type#;, and
then return to the case with a continuum. L&) denote the probability that the agent’s typé.is
Formally, | solve for(w!, w®) : {6;,6,} — T such that

0 1 1 0

ﬁi% Z q(0) (mnpw (6) — 1ro% (9)) ,
0€{6:,0r}

subject to fyaw' (6;) — w’(6)) > Oimaw () — w’(0),

Onnaw' (0) — w(0r) > Opnaw' (6;) — w’(6)).

For ease of exposition, | refer to the contract for the lovgihitype agent as the low (high) type
contract and the principal who believes to face the low (highe agent as the low (high) type
principal. The optimum is characterized as follows.

Proposition 1 (Two types)
Suppose thatr + A')6;n,/r > 1. There exists & € (1,6,,/6,) such that

1.1 Ifne/n, € [1,V'], the principal’s preferred bundlef(w, (6;), w(6:)), (w,(64), w)(0r))} are
implementable.

1.2 Ifn./n, € (V,0,/6,), separating is optimal, i.e(w"(6,), w™(6,)) < (w™ (), w"(6)).
The low type contract is a stopping-time policy, the stogpime betweem,(¢;) and7,(6;).
The low type’s IC constraint binds and the high type’s dods no

1.3 Ifn./n, > 6,/6,, pooling is optimal, i.e.(w'(6,), w™(6;,)) = (w'*(0r), w™(6y)).
In all cases, the optimum can be attained using bundles ohdbadary ofi".
Proof. See Appendig.2 [ |

Without loss of generality, the presumption-+ A\!)6,7,/r > 1 ensures that both the low type
principal’s preferred stopping time,(¢;) and the high type principal’s preferred stopping time

13Since both players’ payoffs are linear(im*, w°), the optimal mechanism is deterministic.
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7,(0),) are strictly positive. The degenerate cases,(,) > 7,(6;) = 0 andr,(6,) = 7,(6;) =0
yield similar results to Propositiohand thus are relegated to Appen@i2

Propositionl describes the optimal contract as the bias level variesoriatg to result {.1),
if the bias is low enough, the principal simply offers herfpreed policies giver;, andf,. This is
incentive compatible because even though the low type auyefdrs longer experimentation than
the low type principal, at a low bias level he still prefers thw type principal’s preferred bundle
instead of the high type principal’'s. Consequently the ppialcpays no informational rents. This
result does not hold with a continuum of types. The prin¢gpateferred bundles are two points
on the southeast boundary Bfwith binary types, but they become an interval on the sosthea
boundary with a continuum of types in which case lower typessdrictly better off mimicking
higher types.

The result {.2) corresponds to medium bias level. As the bias has increaststing the
principal’s preferred policies is no longer incentive catiple. Instead, both the low type contract
and the high type one deviate from the principal’s prefepeticies. The low type contract is
always a stopping-time policy while the high type contradtes one of three possible forms:
stopping-time, slack-after-success or delay poli¢fe@ne of the latter two forms is assigned as
the high type contract if the agent’s type is likely to be lavdédnis bias is relatively large. All three
forms of high type contract are meant to impose a significast-e-excessive experimentation,
constrained exploitation of success, or delay in expertatemn—on the high type contract so as
to deter the low type agent from misreporting. However thaggpal can more than offset the
cost by effectively shortening the low type agent’s expentation. In the end, the low type agent
over-experiments slightly and the high type contract degidrom the principal’s preferred policy
(w,(0n), w,(6,)) as well. One interesting observation is that the optimatremn can take a form
other than a stopping-time policy.

If the bias is even higher, as shown by resiil8|, pooling is preferable. The conditiog /7, >
/0, has an intuitive interpretation that the low type agentgn®fo experiment longer than even
the high type principal. The screening instruments utliz@ result (.2) impair the high type
principal’s payoff more than the low type agent’s. As a rgdile principal is better off offering
her uninformed preferred bundle. Notably, for fixed types piior probabilities of the types do
not affect the pooling decision. Only the bias level does.

Before moving to the continuous type case, | make two obsenst First, the principal
chooses to take advantage of the agent’s private informatiess the agent’s bias is too large.
This result carries over to the continuous type case. Setbadptimal contract can be tailored to

Here, | give an example in which the high type contract is @kskfter-success policy. Parameters are
Ne = 6,m, = 1,0, = 3/2,0, = 19,7 = X! = 1. The agent’s type is low with probability/3. The optimum
is (w*(0x), w"* (0)) ~ (0.98,1) and (w'* (6;), w’*(6;)) ~ (0.96,0.79).
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the likelihood of the two types. For example, if the type kely to be low, the principal designs
the low type contract close to her low type bundle and puripdigenakes the high type contract
less attractive to the low type agent. Similarly, if the typdikely to be high, the principal starts
with a high type contract close to her high type bundle withmancerning about the low type’s
over-experimentation. This “type targeting”, howevedmes irrelevant when the principal faces
a continuum of types and has no incentives to target ceypest

5.2 The General Case

| return to the case that the distribution of types is represgby a continuous densifyover the
bounded intervab C R, . The first step involves simplifying further the problem.

Given a direct mechanisifw! (9), w°(9)), let U, (0) denote the payoff that the agent of type
gets by maximizing over his repoite., U, (6) = maxgce[0n,w*(8") — w°(#')]. As the optimal
mechanism is truthfull/, () equalsfn,w!(6) — w°(d) and the envelope condition implies that
U! () = n,w'(#). The principal’s payoff for a fixed is

0 1 1 0 . Ua(g) (77/) - na)le(Q)
1+077'”w<9) 1+9w(9>_1+6+ 1+6 '

The first term on the right-hand side corresponds to the &hpreference” between the two play-
ers because they both prefer highérvalue for a higher. The second term captures the “pref-
erence divergence” as the principal is less willing to spessburces orR in state0 for a given
increase inv! than the agent.

By integrating the envelope condition, one obtains the stethohtegral condition

0 ~ ~
Onaw' (0) — w’(0) = nq /9 w' (0)df + Onaw' (0) — w°(0). )

Incentive compatibility of(w!, w®) also requiresy! to be a nondecreasing function @f higher
types (those types with a high&rare more willing to spend resources Brin state0 for a given
increase inw' than low types. Thus, conditiorfand the monotonicity ofv! are necessary for
incentive compatibility. As is standard, these two comxhisi are also sufficient.

The principal’s problem is thus to maximize the expectedoffap) subject to the feasibility
constraintw®(9) € [8%%w'(0)), B™(w'(0))], the IC constraintq), and monotonicityw!(9') >
wt(0) for ¢ > 6. Note that this problem is convex because the expected fpgh)ok linear in
(w!(0),w"()) and the constraint set is convex.

Substituting the IC constrain) into (5) and the feasibility constraint, and integrating by
parts allows me to eliminate®(#) from the problem except its value @t | denotew(6) by w°.
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Consequently, the principal’s problem reduces to findingretionw! : © — [0, 1] and a scalar
w' that solves

5
max (7704 / W (0)G(0)dO + O (0) — wo) 7 (OBJ)
wl wde 0
subject to
9 ~ ~
Ot (6) — 7, / W (B)dd — e (0) + u® — F¥w'(9) >0, Y9 €O,  (8)
0
7]
B™(w'(0)) — (9%101(9) - na/ wl(é)dé — Onaw (0) +w0) >0, V0 € O, 9)
0
where

¢ = {w', v’ |w': 0 = [0,1],w" nondecreasingy’ € [0,1]},

_HO) —HE) | (1), hO) _ 1) .
G(0) = H @) + (% 1) QH@)’ whereh(0) = 150 andH (0) = /0 h(0)dh.

Here,GG(0) consists of two terms. The first term is positive as it coroes|s to the “shared prefer-
ence” between the two players toward highérvalue for a highef. The second term is negative
as it captures the impact of the incentive problem on thecjpal's expected payoff due to the
agent’s bias toward longer experimentation.

| denote this problem by. The set is convex and includes the monotonicity constraint. Any
contract(w!, w®) € ® uniquely determines an incentive compatible direct meisimarbased on
(7). A contract isadmissiblef (w!, w®) € ® and the feasibility constraintg) and @), is satisfied.

5.3 A Robust Result: Pooling on Top

With a continuum of types, | first show that types above somestiold are offered the same

(w*, w?) bundle. Intuitively, types at the very top prefer to expezitnmore than what the principal

prefers to do for any prior. Therefore, the cost of sepagdtiose types exceeds the benefit. This

can be seen from the fact that the first term—the “shared reneée” term—ofG(¢) reduces ta@

asf approaches8. As a result, the principal finds it optimal to pool those typéthe very top.
Letd, be the lowest value i® such that

0
/ G(0)dh < 0, for anyf > 6,. (10)
0

My next result shows that types with> 6, are pooled.
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Proposition 2 (Pooling on top)
An optimal contrac{w!*, w’*) satisfiesw'*(0) = w'*(6,) for 6 > 6,. It is optimal for (8) or (9)
to hold with equality abv,,.

Proof. The contribution to ©BJ) from types withd > 6, is 7, ffp w!(0)G(0)dh. Substituting
wh(f) = f;p dw' + w'(#,) and integrating by parts, | obtain

nawl(é’p)/ d0+77a/ / 0)dfdw' ( (11)
6, 0,

The first term only depends an'(6,). The second term depends éa'(6) for all § < [0,,0].
According to the definition of,, the integrand of the second ter\rﬁj{G(é)dé, is weakly negative
for all € [¢,,0]. Therefore, it is optimal to setw!(9) = 0 for all & € [0,,0]. If 6, = ¢, all
types are pooled. The principal offers her preferred ummé bundle, which is on the southeast
boundary ofl". If 6, > 6, the first term of {1) is zero as well becausﬁe G(0)df = 0. Adjusting
w'(h,) does not affect the objective function, 89(6,) can be increapsed until eitheB)(or (9)
binds. [

The slope of the principal’s indifference curves is bounttedh above bydr,, which is the
slope if she believes that the agent’s typé.i#An agent whose type is abo¥e, /7., has indiffer-
ence curves with slope steeper tk?h;;;. The following corollary states that types abdug /7,
are offered the same bundle.

Corollary 1. The threshold of the top pooling segmetht,is belowdn, /7,
Proof. See Appendig.3. [ |

Note that for a fixed type distribution, the value &f depends only on the ratig,/n, but
not on the magnitudes of,, n,. If n,/n, = 1, both parties’ preferences are perfectly aligned.
The functionG is positive for anyy, and thus the principal optimally sefs to bed. As,/7.
decreases, the agent’s bias grows. The principal enlangesp pooling segment by lowerirdg.
Whenn, /n, is sufficiently close to zero, the principal optimally séfsto bed in which case alll
types are pooled.

Corollary 2. For a fixed type distribution, increases in;,/n,. Moreoverd, = 0 if n,/n, = 1,
and there exists* € [0, 1) such that, = ¢ if 1, /n, < z*.

Proof. See Appendi8.4. [ |

If 6, = 0, all types are pooled. The optimal contract consists of thecjpal’s preferred
uninformed bundle. For the rest of this section, | focus aa nore interesting case in which
0, > 0.
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5.4 Imposing a Cutoff

To make progress, | assume that the distribution of typdsfigst the following condition. In
Subsectiorb.4.4 | will examine how results change when this condition fails

Assumption 2. For all§ < 6,, 1 — G(6) is nondecreasing.

When the density functiorf is differentiable, Assumptio is equivalent to the following

condition: (6) |
Na
0 > — + ) , VO <4,
f(e) (7704 - 77/) 1 + 9 P

This condition is satisfied for all density functions that aondecreasing and holds for the expo-
nential distribution, the log-normal, the Pareto and then®a distribution for a subset of their
parameters. Also, it is satisfied for any dengfitwith 6 f'/ f bounded from below when, /7, is
sufficiently close tal.

My next result (Propositio) shows that under Assumpti@the optimal contract takes a very
simple form. To describe it formally, | introduce the follow:

Definition 1. Thecutoff ruleis the contractw!, w°) such that

(WL (0),02(0))  if6<0,

« e}

(wh(60,),wd(6,)) if >0,

«

(w'(6), w'(6)) =

Under the cutoff rule, types with < 6, are offered their preferred bundlés (6), w°(6))
whereas types with > ¢, are pooled atw,,(6,), wp(6,)). | denote the cutoff rule byuw, ,wy ).

Figure5 shows the delegation set corresponding to the cutoff'fulith a slight abuse of
notation, | identify a bundle on the southeast boundary @fith the slope of the tangent line at
that point. Asf varies, the principal's preferred bundle ranges fréwp to 0, and the agent's
ranges frondn, to On,. The delegation set is the interval betwekp andd,n,. According to
Corollary 1, 6,7, is smaller thargn,. Therefore, the upper bound of the delegation set is lower
than?np, the principal’s preferred bundle given the highest t§pe

The next proposition shows thm;p,wgp) Is the optimum under Assumptich

Proposition 3 (Sufficiency)
The cutoff rulg(wy , wy ) is optimal if Assumptiog holds.

In what follows, 1 first illustrate how to implement the cutofile and prove that it is time-
consistent. Next, | present the proof of Proposit®nThen, | discuss the condition required by
Assumption2 and how results change if this assumption fails.

Sparameters in Figuré aren, = 1,7, = 3/5,r/A! = 1,60 = 1,0 = 5. The type variable is uniformly
distributed. The pooling thresholdés ~ 1.99.
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Figure 5: Delegation set under cutoff rule

5.4.1 Properties of the Cutoff Rule

Implementation. Under the cutoff rule, the agent need not report his typenae €. Instead,
the optimal outcome for the principal can be implemented@udly by calibrating aconstructed
belief that the state i$. It starts with the prior belief(6,7./7,) and then is updated as if the agent
had no private information about the state. More specificélino success occurs this belief is
downgraded according to the differential equatipr= —\'p,(1 — p;). Upon the first success this
belief jumps to one.

The principal imposes a cutoff @f. As long as the constructed belief stays above the cutoff,
the agent can decide whether to continue experimenting torAssoon as it drops to the cutoff,
the agent is not allowed to operafieany more. This rule does not bind for those types belpw
who switch toS voluntarily conditional on no success, but does constianse types abové,,
who are forced to stop by the principal.

Figure6 illustrates how the constructed belief evolves over timke $olid arrow shows that
the belief is downgraded wheh is used and no success has realized. The dashed arrow shows
that the belief jumps to one at the first success. The grayshi@as that those types beldystop
voluntarily as their posterior beliefs drop to the agentitoff p’ . As illustrated by the black dot, a
mass of higher types are required to stop when the cutofbished.

There are many other ways to implement the cutoff rule. Fanmgle, the constructed belief
may start with the prior beligf(6,) and the principal imposes a cutoffjg. What matters is that
the prior belief and the cutoff are chosen collectively tsume that exactly those types beléy
are given the freedom to decide whether to experiment or not.
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Cutoff: p;‘) ......................... ................... , ......... e Principal forces all to stop.
0 : timet
Typed stops. Types withd > 6,, stop.

Figure 6: Implementing the cutoff rule

Time consistency. Given that the agent need not report his type at tinaad that the principal
commits to the cutoff rule before experimentation, a ndumastion to follow is whether the cutoff
rule istime-consistentDoes the principal find it optimal to fulfill the contract trehe commits to
at time0 after any history? Put differently, were the principal givaechance to adjust the contract,
would she choose not to do so? As my next result shows, thé cul®is indeed time-consistent.

Proposition 4 (Time consistency)
If Assumptior? holds, the cutoff rule is time-consistent.

To show time-consistency, | need to consider three claddastories on the equilibrium path:
(i) the first success occurs before the cutoff is reachedh@iagent stops experimenting before the
cutoff is reached; (iii) no success has occurred and thetégesmot stopped. Clearly, the principal
has no incentives to alter the contract after the first twesgla of histories. Upon the arrival of
the first success, it is optimal to let the agent iisexclusively thereafter. Also, if the agent stops
experimenting before the cutoff is reached, his type isakade From the principal’s point of view,
the agent already over-experiments. Hence, she has naiveio ask the agent to uge any
more.

If the agent has not stopped and there is no success, it isarmehether the principal still finds
the cutoff rule set at timé to be optimal. On the one hand, the principal learns from dlo& bf
success that the agent’s type is more likely to be low. Onétragpect that the principal wishes
at this moment that she had set up a higher cutoff at tinfen the other, as time elapses without
success, the constructed belief is downgraded and henaeithiess time left before the cutoff
is reached. This might eliminate the need to adjust the tulbfurns out that these two factors
exactly cancel out. After updating the constructed betied, principal finds it optimal to keep the
cutoff intact.

Here, | sketch the proof. First, | calculate the principaifgdated belief about the type dis-
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tribution given no success and that the agent has not stogdedontinuing experimenting, the
agent signals that his type is above some level. Hence, ttiategh type distribution is a truncated
one. Since the agent has also updated his belief about tiee Istaen rewrite the type distribution
in terms of the agent’s updated odds ratio. Next | show thargthe new type distribution the
optimal contract is to continue the cutoff rule set at titne

Let0* = p:/(1 — p?,) be the odds ratio at which the agent is indifferent betweenticoing
and stopping. After operating for 6 > 0 without success, the agent of typeipdates his belief
about the state. He assigns odds rétio*'? to the state being, referred to as his type at tinde
Let§; = max{6, 0= °}. After a period of§ with no success, only those types abéyeemain.
The principal’s updated belief about the agent’s type idhistion, in terms of his type at time, is
given by the density function

7[1*?(9)(176—A15>]f(9) it 0 e [9 @]
F(0)8) = { oy [1-p®) (1-e=219) | f(0)do Zs Yl
0 otherwise

Here,1 — p(6)(1 — e~*'%) is the probability that no success occurs from titni@ ¢ conditional
on the agent’s type beingat time0. The principal’s belief about the agent’s type distribatim
terms of his type at tim& is given by the density function

£+(6) = F(0eN ] 5)eN if 0 € [B5eN, e N7,
0 otherwise

| prove that continuing the cutoff rule is optimal by showimg things. First, given the distribution
fs attimed, the threshold of the top pooling segmerﬁZjS‘Alfs. Second, if Assumptiof holds for

6 < 6, under distributionf, then it holds fol < #,e*"% underf;s. The detailed proof is relegated
to Appendix8.5.

Over- and under-experimentation. The result of Propositio® can also be represented by a
delegation rule mapping types into stopping times as omg@hg-time policies are assigned in
equilibrium. Figure7 depicts such a rule. Theaxis variable ig, ranging fron¥ to 6. The dotted
line represents the agent’s preferred stopping time andakked line represents the principaf's.
The delegation rule consists of (i) segmé&h®,,| where the stopping time equals the agent’s pre-
ferred stopping time and (i) segmelfit, §] where the stopping time is independent of the agent's
report {.e., pooling segment). To implement, the principal simply img®a deadline at,(¢,).

5 parameters in Figur@ aren, = 6/5,m, = 1,r/A\! = 1,6 = 1,0 = 5. The type variabl® is uniformly
distributed.
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Those types witl¥ > 6, all stop atr,(6,), which is the principal’s preferred stopping time
if she believes that the agent’s typeaboved,. Since the principal’s stopping time given type
8,m./m, €quals the agent’s stopping time givéy the delegation rule intersects the principal’s
stopping time at typé,n,/n,. From the principal’s point of view, those types with< 6,1,/7,
experiment too long while those types with> 6,1,/n, stop too early.

Stopping timer
PRINg Agent’s preferred

"""""""""""""" stopping time

e -
et -
— -

—— Delegation rule

Principal’s preferred
......................................... stopping time

Ta(ep)

6, 1= 7 typed

Y . Y .
Over-experimentation Under-experimentation

Figure 7: Equilibrium stopping times

5.4.2 Proof of Proposition3: the Optimality of the Cutoff Rule

To prove Propositiof3, | utilize Lagrangian optimization methods (similar to s$eaised by Amador,
Werning, and Angeletos (2006%]). It suffices to show tha(w;p,wgp) maximizes some La-
grangian functional. Then | establish the sufficient firstey conditions and prove that they are
satisfied at the conjectured contract and Lagrange matgpli

| first extends®€ to the real line in the following way:

(5%¢)(0)w! if w! € (—o0,0),
Bw') = < ge(w?) if w! € [0,w1],
Fo) + (B (') ' — ) T ! € (4, ).

for some valuei' such thati' € (w'(6),1).7 The newly defined functiom is continuously

(67

differentiable, convex and lower thaii¢on [0, 1].
| then define a new probler® which differs fromP in two aspects: (i) the upper bound

17Such ai! exists becauseis finite and hencev’, (9) is bounded away frorh.
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constraint 9) is dropped; and (ii) the lower bound constraid} ic replaced with the following:
9 ~ ~ A
Onaw (0) — . / W (8)d0 — B (8) + u® — B(w'(8)) = 0, VO € ©. (12)
0

If (w!,w") satisfies the feasibility constrair8)(and Q), it also satisfies12). Therefore, the newly
defined problen® is a relaxation ofP. If the solution toP is admissible, | claim that it is also the
solution toP.

Define the Lagrangian functional associated withas
. [4
L, | A) = fpo0'(€) = w4 1, | 0 (0)G(0)0
0

+ /99 <9naw1(0) = Tla /90 w'(8)d — naw' (8) +u’ — B(wl(e))> dA,

where the functiom\ is the Lagrange multiplier associated with?). Fixing a nondecreasing
multiplier A, the Lagrangian is a concave functional ®rbecause all terms in(w!, w | A) are
linear in(w!, w") exceptf; —B(w*(0))dA which is concave inv'. Without loss of generality | set
A(6) = 1. Integrating the Lagrangian by parts yields
7
L', | 4) = @ro0'(®) = w*) A®) + [ (oo’ (6) = 5w 0)) b @3)
A

+ e /9 wH(0) [A(0) — (1 — G(0))] do.

The following lemma provides a sufficient condition for a trait (', @°) € ® to solveP.

Lemma 3 (Lagrangian—sulfficiency)

A contract(w', @°) € ® solvesP if (12) holds with equality and there exists a nondecreasing
such that

Proof. | first introduce the problem studied in section 8.4 of Luegke (1969, p. 220)41]:
max,cx Q(x) subject tox € Q andJ(x) € P, where( is a subset of the vector spacé,
Q:Q— RandJ: Q — Z; whereZ is a normed vector space, aitdis a nonempty positive
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cone inZ. To apply Theoren in Luenberger (1969, p. 22021], set

X ={w" v’ |w': 6 — Randu’ € R}, (14)
0=, (15)
Z ={z]z:0 — Rwith sup|z(d)|< oo},

e

with the nornj| z||= sup|z(8)],
0co

P={z|ze Zandz(0) >0, V8 € ©}.

| let the objective function in@BJ) be () and let the left-hand side o12) be defined ag. This
result holds because the hypotheses of Thedr@mLuenberger (1969, p. 2202]] are met. W

To apply Lemma3 and show that a proposed contréat', @°) maximizesL(w*, w°|A) for
some candidate Lagrangian multipli&r | modify Lemmal in Luenberger (1969, p. 22721]
which concerns the maximization of a concave functional soavex cone. Note that sét is
not a convex cone, so Lemman Luenberger (1969, p. 22721] does not apply directly in the
current setting.

Lemma 4 (First-order conditions)

Let L be a concave functional dn, a convex subset of a vector spafeTakez € (2. Suppose that
the Gateaux differential8L(z; z) anddL(Z; x — z) exist for anyr € Q and thatoL(z;z — z) =
L(7;x) — L(7; 7).1® A sufficient condition that € © maximized. over(} is that

OL(Z;z) <0, Ve,
OL(#;7) = 0.
Proof. See Appendi8.6. [ |
Next, | prove Propositio based on Lemmaand Lemmat.

Proof. To apply Lemma4, let X and(2 be the same as irlf) and (L5). Fixing a nondecreas-
ing multiplier A, the Lagrangiani(3) is a concave functional o. By applying LemmaA.1 in
Amador, Werning, and Angeletos (2008],[it is easy to verify thaﬁﬁ(wgp,wgp; wh, w’ | A) and

18 et X be a vector spacé; a normed space and C X. Given a transformatioff : D — Y/, if for # € D and
x € X the limit

lim T(Z+ ex) — T(Z)
e—0 €

exists, then it is called the Gateaux differentiakawith directionz and is denotedT'(z; ). If the limit exists for
eachr € X, T is said to be Gateaux differentiablezat
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OL(wg ,wy 5 (w', w”) — (wp ,wp ) | A) exist for any(w',w’) € ®.*° The linearity condition is
also satisfied

a[:(w;,nwgp; (wlawo) o (wép>wgp) | A) = aﬁ(wépawgp;wlawo | A) _ai(wépvwgp;wépvwgp | A)

So the hypotheses of Lemmare met. Also, the Gateaux differential(atgp, wgp> is given by

OL(wy ,wy ;w',w’ | A) = (Bnaw' (8) — w°) A8) + 1a /0 (6 — 6,)w' (0)dA (16)
+ 77(1/9 w'(0) [A(0) — (1 — G())]df, V(w' w’) € .

Next, | construct a nondecreasing multiplferin a similar manner as in Propositiérin Amador,
Werning, and Angeletos (2006)][ such that the first-order conditioﬁsﬁ(wgp,wgp; wh,w’ | A) <
0 andaﬁ(w;p,wgp; wg , Wy | A) = 0 are satisfied for angw', w°) € ®.

Let A(9) = 0, A() = 1 — G(9) for (9,6,], andA(#) = 1 for § € (6,,0]. Given thatd, > 0,
| need to show that jumps @t and ¢, are upward. The jump & is upward sincel — G(0)
is nonnegative. The jump &, is G(6,), which is nonnegative based on the definitionfpf
Therefore A is nondecreasing.

Substituting the multiplieA into the Gateaux differentiall6) yields

9
OL(wj, wh sw',w’ | A) —na/ w'(0)G(0)do
0.

P

= N /: (/eea(é)dé> dw'(0),

where the last equality follows by integrating by parts, ethcan be done given the monotonicity
of w' and by the definition of),. This Gateaux differential is zero @(tue ,wg ) and, by the
definition of6,, it is nonpositive for alkv* nondecreasing. It follows that the first-order conditions
are satisfied for alfw', w°) € . By Lemma4, (w; ,wj ) maximizesL (w',w° | A) over®. By
Lemma3, (wy , wy, ) solvesp. Becausduw, ,wy ) is admissible, it solve®. |

5.4.3 Discussion of the Results

Here, | explain the intuitions for the cutoff rul(eue ,we ) to be optimal, particularly how the
threshold of the pooling segmefjtis determined and what is the economic content of Assumption

19The observations made by Ambrus and Egorov (205B}§ not apply to the results of Amador, Werning and
Angeletos (2006)4] that my proof relies on.
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2. To do so, | consider a delegation problem in which only basdin the southeast boundary of
I' are considered. This restriction reduces the action spaeedne-dimensional line segment
and allows me to compare the condition in Assumptbwith those identified in Alonso and
Matouschek (2008)7.

Recall thatl™* denotes the southeast boundarylofcharacterized by*¢(w') = 1 — (1 —
w!)/ 2 such that

= {(w",w°) | w’ = g% ("), w" €0,1]}.

The functiong®¢ is twice continuously differentiable with*¢(0) and5°¢(1) being0 and1 respec-
tively. The derivative3%%)’(w!) strictly increases im' and approaches infinity as' approaches
1. lidentify an elementw?, 3°(w')) € T's'with the derivative(5%°)'(w') at that point. The set of
possible derivatives is denotéd = [(5%¢)'(0), co]. Since there is a one-to-one mapping between
I'standY, | let Y be the action space and refent@ Y as an action. The principal simply assigns
a non-empty subset df as the permissible set. Le{y) = ((5%%))"'(y) be the inverse of the
mapping fromw! to the derivative 3%¢)' (w?).

Playeri’s preferred action givefi is y;(0) = n;0. Player:'s payoff given type) and actiory is
denoted p .

Vill,y) = mig—pn(y) = 7557 (n(w)).

| first solve the principal’'s preferred action if she belis\tbat the agent’s type is belav The
principal chooseg € Y to maximizeff Vp(é, y)f(9)df. The maximum is achieved by choosing

action

Jy On(6)do

Following Alonso and Matouschek (2008)] | define thebackward biador a given type) as

% 0n(0)do
T(@)E%(Oﬁ— p%>.

Here,T'(#) measures the difference between the agent’s preferrexhagtiend and the principal’s
preferred action if she believes that the type is befosimilarly, theforward bias

Ry = 2O -HO [, Jy On(@)dd
= H() o an(E) —H{®)

measures the difference between the agent’s preferrezhagitiend and the principal’s preferred
action if she believes that the type is abévé&ince players’ preferred actions increasé and the
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agent is biased toward larger actions, the backward biasetiys positive for anyd. The sign of
the forward bias depends on the parameters. It is easy ty teait

[’
7(60) = | (1= GI@))3d

Hence, according to the definition 6f, 0, is the lowest type) such thatR(6) > 0 for any
0 [0,0). If 6, > 0, R(0,) = 0. The definition of¢, ensures that for ang > 6,, the agent's
preferred action giveH is larger than the principal’s preferred action if she bedgethat the type
is aboved. Therefore, the principal finds it optimal to push the thmddtof the pooling segment
until it reached,.

Assumption2 is equivalent to requiring that the backward bias is conveemy < ¢,. This
is the condition that Alonso and Matouschek (20a8)f[nd for the interval delegation set to be
optimal in their setting. Intuitively, when this conditidiolds, the principal finds it optimal to fill
in the “holes” in the delegate set. | shall emphasize that ot a proof of the optimality of
the cutoff rule, because considering only bundles on théhsast boundary might be restrictive.
For example, | have shown that with two types the optimal @mtinvolves bundles which are
not on the southeast boundary for certain parameter valliés.a continuum of types, there exist
examples such that the principal is strictly better off bigohg policies which are not necessarily
stopping-time policies. By using Lagrangian methods, | prilat the cutoff rule is indeed optimal
under Assumptior2. In my setting, the principal’s preferred bundle is not meeasitive than the
agent’s to the agent’s private information and Assumpfansures that the type distribution is
sufficiently smooth so the principal has no particular ies¢rto screen some types. Hence, the
interval delegation set is optimal.

5.4.4 Results if Assumptior? Fails

| first define thex,-cutoff contract, given byw! (), w°(6)) = (wk (), w’()) for 6 < z, and
(w'(0), w°(0)) = (wy(xp), wo(x,)) for & > x,. The,-cutoff contract is denotetw, ,w; ).
The purpose of this subsection is to show thatpeutoff contract is optimal for any,, € © if

Assumption2 does not hold.
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Define the Lagrangian functional associated itlas

L(w', w” | A% A™) = Onow' (8) — w’(0) + 1a /: w' (0)G(0)do (17)
of (9mat®) e [ @~ @) 400 — ) )
v ' 570 0) — (9100’ 0) = [ 00100 - 0no' @) + 02 )| ax

where the function\®¢, A"V are the Lagrange multiplier associated with constrai@fs(d Q). |
first show that if(w, ,w? ) is optimal for somer,, there must exist some Lagrange multipliers
A%, A™ such thatl(w', w” | A% A™) is maximized a{w, ,w! ). Since anyr,-cutoff contract

IS continuous, | can restrict attention to the set of cortirsicontracts

d = {w',w’ | w':© — [0,1],w' nondecreasing and continuous € [0, 1]} .

Lemma 5 (Lagrangian—necessity)
If (w;p,wgp) solvesP, then there exist two nondecreasing functidié A™ : © — R such that

L(w;p,wgp | A8 A™) > L(w!, w® | A% A™), V(w!, w’) € d.
Furthermore, it is the case that
7 0 o ~
0= [ (mat, @ = [k, 0108~ ot (0) + w8, - ¥ (0)) i 19)
] 0
7 0 o .
b [ |t ) = (onout, @ < [t @0 - g0t 0) + o8, )| dio
0 0
Proof. This is a direct application of Theoreimin Luenberger (1969, p. 2172]]. The proof is
relegated to Appendi®.7. [ |

My next result shows that no,-cutoff contract is optimal if AssumptioBfails.

Proposition 5.
If Assumptior does not hold, then ne,-cutoff contract is optimal for any,, € ©.

Proof. The proof proceeds by contradiction. Suppose (h&g ,wgp) is optimal for somer, €
©. According to Lemmab, there exist nondecreasidgf®, A™ such that the Lagrangiarl?) is
maximized ai(w;p,ggp) and (L8) holds. This implies thaA™ is constant so the integral related
to A™ can be dropped. Without loss of generality | 46%#) = 1. Integrating the Lagrangian by
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parts yields

L(w',w® | A*) = (@naw' (8) — w’) A(0) + /9 (Onaw"(8) — B°(w" (9))) dA®
] 0
+ 7o /9 w' (0) []\58(9) —(1- G(e))} dh.

Then, | establish the necessary first-order conditiond.far!, w° | A% to be maximized at,-
cutoff rule and show that they cannot be satisfied if Assuomd?ifails. The rest of the proof is
relegated to Appendi®.8. [ |

6 Extensions

6.1 More General Stochastic Processes
6.1.1 Inconclusive Successes

Now suppose thak’ > 0, so R generates successes in statas well and players never fully
learn the state. In this subsection, unless otherwise figcl use the same notations as in the
benchmark setting. Recall that! (), w°()) denotes thexpected resourcalocated tak under
policy = conditional on the state beirigand0, andT" the image of the mappingv!, w°) : IT —

0, 1]%. The following lemma characterizes the feasiblelset

Lemma 6 (Inconclusive news—feasible set)

There exist two functiong®®, g™ : [0,1] — [0,1] such thatl’ = {(w',w®) | f(w') < w® <
B™(w'),w! € [0,1]}. The southeast boundary is given B{(w') = 1 — (1 — w!')*/(+») for
some constant > 0. The northwest boundary™ is concave, nondecreasing, once continuously
differentiable, having end point$, 0) and (1, 1).

Proof. The proof is similar to that of Lemmaand relegated to Append&9 [ |

Figure 8 depicts the feasible set when= 1/5, A, = 2/5, )\ = (2 — v/2)/5. Unlike the
benchmark setting, the northwest boundary is characteligea once continuously differentiable
function. My next result shows that, if Assumpti@tolds, the cutoff rule as defined in Definition
lis optimal. This is the case because the proof of Proposi{iarnich only relies on the properties
of the southeast boundary of the feasible set, appliesttjiriecthe current setting.

Proposition 6 (Inconclusive news—sufficiency)
If Assumptior? holds, the cutoff rule is optimal.
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Figure 8: Delegation set under cutoff rule: inconclusiveraease

Proof. According to Lemmab, the southeast boundary of the feasible set is giveiByw!) =
1—(1—w")*/0+m) for some constant > 0. The proof of PropositioB applies directly here.

The implementation of the cutoff rule, similar to that of thenchmark setting, is achieved by
calibrating a constructed belief which starts with the pbieliefp(6,7,/1.). This belief is updated
as follows: (i) if no success occurs, the belief drifts doveeading to the differential equation
pe = —(A = X%)py(1 — p,); and (i) if a success occurs at timethe belief jumps fromp, _ to

o )\lpt_
COAMp (1 —p )

yg;

The principal imposes a cutoff gf. The agent can choose to experiment or not if this beliefsstay
above the cutoff and are required to stop when it drops to tiheffc The gray areas in Figur@
show that lower types stop voluntarily as their posteridii@reachp’ . The black dot shows that
those types witld > 6, are required to stop.

Figure9 also highlights the difference between the benchmarknggtivhere the belief jumps
to one after the first success, and the inconclusive newiagetthere the belief jumps up upon
successes and then drifts down. Consequently, when suscagsénconclusive, the optimum
can no longer be implemented by imposing a fixed deadlingedadis it takes the form of a sliding
deadline. The principal initially extends some time to thera. Then, whenever a success realizes,
more time is extended. The agent is allowed to give up his Viohentarily. That is, the agent can
choose to switch t& before he uses up the time granted by the principal. Aftemg knough
period of time elapses without success, the principal reguhe agent to switch t6.
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Figure 9: Implementing the cutoff rule: inconclusive news

My next result shows that the cutoff rule is time consistehew successes are inconclusive.
The only difference from the benchmark setting is that thestraicted belief does not jump to one
upon the first success. | need to show that the principal firafgtimal not to adjust the cutoff each
time a success occurs. The intuition, similar to that in teedhmark setting, is that there is no
need to adjust the cutoff after the constructed belief isaghgd upon successes. The proof is also
similar and hence relegated to Appen8itQ

Proposition 7 (Inconclusive news—time consistency)
If Assumptior® holds, the cutoff rule is time-consistent.

Proof. See Appendi8.10 |

6.1.2 Leévy Processes and Lévy Bandits

Here, | extend the analysis to the more general Lévy ban@idén and Solan, 20131]). The
risky task’s payoff is driven by a Lévy process whose Lévplét depends on an unknown binary
state. In what follows, | start with a reminder about Lévyqasses and Lévy bandits. Then, |
show that the optimality of the cutoff rule and its time c@tsincy property generalize to Lévy
bandits.

Lévy processes. A Lévy process. = (L(t)):>o iS a continuous-time stochastic process that (i)
starts at the originZ(0) = 0; (ii) admits cadlag modificatioff (iii) has stationary independent
increments. Examples of Lévy processes include a Browniaiomaoa Poisson process, and a
compound Poisson process.

201t is continuous from the right and has limits from the left.
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Let(Q2, P) be the underlying probability space. For every Borel medsesetd € B(R\{0}),
and everyt > 0, let the Poisson random measu¥¢t, A) be the number of jumps df in the time
interval [0, ¢] with jump size inA: N(t, A) = #{0 < s <t | AL(s) = L(s) — L(s—) € A}. The
measure defined by

V(A) = BIN(1, A)] = /N(l,A)(w)dP(w).

is called the_évy measuref the procesg..

| focus on Lévy processes that have finite expectation fon eaEor a fixed Lévy process,
there exists a constapt€ R, a Brownian motiorvZ(t) with standard deviation > 0, and an
independent Poisson random meas\ig€t, dh) with the associated Lévy measursuch that, for
eacht > 0, the Lévy-1b decomposition of.(¢) is

L(t) = ut +oZ(t) +/ hN,(t,dh),
R\{0}
where N, (t, A) = N,(t,A) — tv(A) is the compensated Poisson random mea8utéence, a
Lévy procesd. is characterized by a tripl€f:, o, v).

Lévy bandits. The agent operates a two-armed bandit in continuous timth, avsafe arms
that yields a known flow payof; to playeri, and a risky armRk whose payoff, depending on an
unknown stater € {0, 1}, is given by the process”. For ease of exposition, | assume that both
players derive the same payoff frombut different payoffs fromS. For a fixed state;, L* is a
Lévy process characterized by the trip{et, o”, v*). For an arbitrary priop that the state is, |
denote byP, the probability measure over space of realized paths.

| keep the same assumptions (A1-A6) on the Lévy processas in Cohen and Solan (2013)
[11] and modify A5 to ensure that both players prefer to fis@ statel andS in state0. That is,
put > s; > pl, fori € {a, p}.?? Letn; = (' — s;)/(s; — u°) denote playef’'s net gain from the
experiment. | assume that the agent gains more from theiexpet;i.e., n, > 7,. %

2lConsider a sett € B(R \ {0}) and a functionf : R — R. The integral with respect to a Poisson random
measureVN (¢, A) is defined ag , f(h)N(t,dh) = > , f(AL(s))1a(A(L(s))).

22The assumptions are (AB[(L*)2(1)] = (u®)%+(0®)?+ [ h2v®(dh) < oo; (A2) o = o°; (A3) [V (R\ {0}) —
V(RN {0})|< 005 (A4) | [ h(v!(dh) — v (dh))|< oo; (AB) u° < s, < s, < pu'; (A6) For everyA € B(R\ {0}),
W(A) < v!(A). Assumption (Al) states that bofit and L° have finite quadratic variation. It follows that both
have finite expectation. Assumptions (A2) to (A4) ensure giayers cannot distinguish between the two states in
any infinitesimal time. Assumption (A5) states that the etpeé payoff rate ofr is higher than that of in statel
and lower in stat®. The last assumption (A6) requires that jumps of any sjzeoth positive or negative, occur more
often in statel than in stated). Consequently, jumps always provide good news, and inertesposteior belief of
statel.

23The results generalize to the case in which, for a fixed statee drift term of the Lévy proceds® differs for the
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Policies and feasible set. A (pure) allocation policy is a non-anticipative stochagtiocessr =
{m¢}+>0. Here,m, € [0, 1] (resp.1 — m;) may be interpreted as the fraction of time in the interval
[t,t + dt) that is devoted ta? (resp.S), which may depend only on the history of events up.t6
The space of all policies, including randomized ones, iotedll. (See Footnot8.)

Playeri’s payoff given a policyr € IT and a prior beliep € [0, 1] that the state i$ is

Us(r,p) = E [/Ooo rert [dLI (/Ot 7r8ds> Y (1—m) sidt} ‘ W,p} .

Over an intervalt, t+dt), if the fractionr, of time is allocated taz, the expected payoff increment
to playeri conditional onz is [(1 — m;)s; + mu*]dt. By the Law of Iterated Expectations, | can
write player:’s payoff as the discounted sum of the expected payoff inergm

Ui<7T7p) —FE |:/ re—rt [Wtﬂx + (1 — ﬂ—t)si] dt ‘ 7T,p:| .
0

For a fixed policyr, | definew!(r) andw®(r) as follows:

w!(n)=E [/ re”"mdt ) T, 1] andw’(7) = E {/ re " dt ‘ W,O} .
0 0
Then, playeri’s payoff can be written as

U(m,p) =p (0" — si) wh(m) + (1 = p) (1° — s;) WO(m) + ;.

Let " denote the image of the mappifg!, w°) : IT — [0, 1), referred to as the feasible set. The
following lemma characterizes the southeast boundaty of

Lemma 7. There exista* > 0 such that the southeast boundarylo given by
{(wl’wO) | wO =1- (1 o wl)a*/(l—f—a*)’wl S [Oa 1]}

Proof. The proof is similar to that of Lemmaand relegated to Append&11 [ |

Given Lemma/, the proof of Propositio, which only relies on the properties of the southeast
boundary of the feasible set, applies directly to the cursetting. Therefore, the cutoff rule as
defined in Definitionl is optimal under Assumptio.

principal and the agent, as long as the relatjgn> 7, holds.
24Suppose the procedsis a Lévy procesd.! with probabilityp € (0,1) and L° with probability 1 — p. Let
FL be the sigma-algebra generated by the pro¢éss));<;. Then it is required that the processsatisfies that

{fot msds < t'} € Fk, foranyt,t’ € [0, 00).
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Proposition 8 (Lévy bandits—sulfficiency)
The cutoff rule is optimal if Assumpti@holds.

For every priorp € [0, 1] that the state i$, the probability measur®, satisfiesP, = pP; +
(1 — p)P,. An important auxiliary process is the Radon-Nikodym densjiven by

_ AP | Fr)

wt - d(pl | FK(t))

t
, WhereK (t) :/ msds andt € [0, o).
0
According to Lemma in Cohen and Solan (2013} ], if the prior belief isp, the posterior belief

at timet is given by
p

B p+(1- p)¢t.

The agent of typ@ updates his belief about the state. He assigns oddstraticto the state being

1, referred to as his type at timeLetd, = max{6, 0%, }. Recall tha®’ denotes the odds ratio at
which the agent is indifferent between continuing and sitogppAt time ¢, only those types above
0, remain. The principal's updated belief about the agenpe tjistributionjn terms of his type at

time0, is given by the density function

De

FO|t) = Jo,pO+1-p@):]10)

0 otherwise

The principal’s belief about the agent’s type distributionterms of his type at timg is given by
the density function

otherwise

£.0) = {f% [ty T80 € [0/, 013,

| prove that continuing the cutoff rule is optimal by showimg things. First, given the distribution
f: at timet, the threshold of the top pooling segmené,jg;. Second, if Assumptio@ holds for
¢ < 6, under distributionf, then it holds fory < 6, /v, under f,. The detailed proof is similar to
that of Propositiory (see Appendix8.5 and hence omitted.

Proposition 9 (Lévy bandits—time consistency)

If Assumptior? holds, the cutoff rule is time-consistent.

6.2 Biased Toward the Safe Task: a Lockup Period

In this subsection, | consider the situations in which therags biased toward the safe task,,
na < 1,. This happens, for example, when a division (agent) cosdutexperiment which yields
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positive externalities to other divisions. Hence, the agees not internalize the total benefit that
the experiment brings to the organization (principal). theo possibility is that the agent does
not perceive the risky task to generate significant carepoipnities compared with alternative
activities. In both cases, the agent has a preference tespgyimenting earlier.

To illustrate the main intuition, | assume that the lowegtetyagent prefers a positive length
of experimentationi.e., 7,(¢) > 0. Using the same methods as in the main model, | first show
that types below some threshold are pooled. Intuitivelgesyat the bottom prefer to experiment
less than what the principal prefers to do for any prior. Th&t of separating those types exceeds
the benefit. Then, | show that under certain condition thenzgdtoutcome for the principal can
be implemented by starting with a properly calibrated phelief that the state i$. This belief
is then updated as if the agent had no private informationloAg as this belief remains above
a cutoff belief, the agent is required to operateAs soon as it drops to the cutoff, the principal
keeps her hands off the project and lets the agent decidénarhietexperiment or not.

Notably, in contrast to the main model, the agent has no fléyiluntil the cutoff belief is
reached. | call this mechanism theversed cutoff ruleThose types with low enough priors stop
experimenting as soon as the cutoff is reached. Those wgtehipriors are not constrained and
thus implement their preferred policies.

If successes are conclusive, the principal simply setslagkaip periodduring which the agent
usesR regardless of the outcome. After the lockup period endsagent is free to experiment
or not. If successes are inconclusive, the principal iitisets up a lockup length. Each time a
success occurs, the lockup length is extended. The agemihfasedom until the lockup period
ends.

Given a direct mechanisiw! (9), w°(0)), let U, (6) denote the payoff that the agent of type
gets by maximizing over his report. As the optimal mechansstmuthful, U, (6) equalg)n,w! (0)—
w®(6) and the envelope condition implies thaf (0) = n,w'(0). By integrating the envelope
condition, one obtains the standard integral condition

0
Baw! (6) — w(9) = T (B) — w° — / D' (6)d0,
0

wherew? stands forw®(6). Substitutingw?(#) and simplifying, | reduce the problem to finding a
functionw! : © — [0, 1] and a scalaw® that solves

max (énawl(g) —W° — 1q /99 wl(Q)GS(Q)dH) , (OBJ-S)

wl,wleds
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subject to

0
Onow' (0) + / naw' (6)d — Onew' (0) +w° — B(w'(0)) 20, V9 € ©,  (19)
[%

0
B™(wt(0)) — <0naw1(9) +/ naw (8)df — Onaw* (6) —i—@0> >0, V0 € O, (20)
0

where
?* = {w', w’ | w': © — [0,1],w' nondecreasings’ € [0,1]},
sy 2O (1 &) o) _ 1) AN
G*(0) = H0) + (1 o 0H(§)’ whereh(0) = 110 andH (9) _/9 h(60)d6.

| denote this problem by°. Let 6, be the highest value i® such that

6
/ G*(0)df < 0, for anyd < 6s. (21)
]

My next result shows that types with< 6, are pooled.

Proposition 10(Pooling on bottom)
An optimal contractw'*, w"*) satisfiesw'* () = w'*(6;) for § < 67. Itis optimal for (19) or (20)
to hold with equality av;.

Proof. The contribution to@BJ-3 from types withy < 6 is —n, f;z w!(0)G*(6)dh. Substituting
w'(0) = w'(6;) — f;z dw' and integrating by parts, | obtain

% 1 s _ 1/pns % s % o S(ONJI0 1
. /9 w! (0)G*(0)d6 = —now (62) /9 G*(0)d0 + 1. /0 /9 G (0)dbdw(0).  (22)

The first term only depends an'(¢;). The second term depends @n' () for all § € [0,6;].
According to the definition of?, the integrand of the second teryfj, Gs(é)dé, Is weakly negative
for all & € [0,65]. Therefore, it is optimal to setw'(#) = 0 for all 6 € [0,63). 1f 65 = 6, all
types are pooled. The principal offers her preferred umméx bundle, which is on the southeast
boundary ofl". If 6; < 0, the first term of 22) is zero as well becausﬁz G*(6)df = 0. Adjusting
w'(65) does not affect the objective function, 85(65) can be decreased until eithé:i9 or (20)
binds. [

For the rest of this subsection, | focus on the more intergstase in whicly; < 6. | first
define the reversed cutoff rule.
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Definition 2. Thereversed cutoff rulés the contracfw!, w®) such that

w(9), w’(0)) =
(0, w10 (wk(0),ul(0)) if 0> 65

« «

{(w;w;), W0(02) 0 <05,

| denote this rule bxwgg,wgz). My next result gives a sufficient condition under which the
reserved cutoff rule is optimal.

Proposition 11 (Sufficiency-reversed cutoff rule)
The reversed cutoff rumgg,wg;) is optimal if G*(0) is nondecreasing wheh> 6.

If f(0) is differentiable G*(¢) being nondecreasing fér> ¢0; is equivalent to requiring that

0r ) e | _
< . Vhepa.
70 S 1ve el

It is satisfied for any density with 6 f'/ f bounded from above whep, /7, is sufficiently close to
1, or equivalently when two players’ preferences are sufiittyealigned.

Proof. | define a new problen®s which differs fromP* in two aspects: (i) the upper bound
constraint 20) is dropped; and (ii) the lower bound constraib®)is replaced with the following:

0
Onow () + / new (8)d6 — Bno (8) +7° — B(w'(6)) > 0, V0 € ©.
0

Define the Lagrangian functional associated Withas

R 3 3 7

L (w', w" | A) = Onaw' (0) — w° — na/ w' (0)G*(0)do

0
6 6 o 3 X
+ / (977aw1(9) + / naw*(0)dO — Ongw* (0) +w" — ﬁ(wl(e))) dA.
] 0
Integrating by parts and simplifying, | obtain
7
L@ | A) = (Bnaw' (6) = ") (1= AB) + A(©)) + / (me' (8) = Bl (9)) ) dA
]

0
e / (AO) — A(B) — G*(6)) w' (0)dO

Based on Lemma& and Lemma4, it suffices to show that the following first-order conditsomold
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for some candidate multipliex,

L*(wgy, s w', @ | A) <0, V(w',w) € 9°

A) = 0.

0.,,1 =—0
Ggawengég

rs(,,1
L (weg,w

If G*(6) is nondecreasing whehe [0, 0], the first-order conditions are satisfied given the follow-
ing candidate multiplier

0 if 0 €0,05),
AO) =4 Go(0) ifoeloh),
1 if =6

The jump atf; is nonnegative according to the definition@f The jump atd is nonnegative
becausé&>*(f) < 1 for all §. This completes the proof. |

6.3 Heterogeneous Beliefs

The analysis can be extended to the situation in which lsetied heterogeneous. Suppose that
the two players differ in their prior beliefs about the staf¢ time 0, the agent obtains a private
informative signal about the state. Due to difference inrtpdor beliefs, the principal’s belief
about the state distribution would differ from that of theeageven if she observed the agent’s
signal. To illustrate, suppose that there is no fundamemefkerence conflict. The results in the
benchmark setting are applicable in the situation whereagent is more optimistic and assigns
a higher odds ratio to statiethan the principal for any fixed signal. The agent has an iineen
to misrepresent his information to counteract the prin&geessimism (from the agent’s point of
view). There are many other possible forms of different aia. For example, the agent might
be more pessimistic or disagree with the principal aboutrtfegmativeness of his private signal.
The analysis can be easily modified to incorporate thosatsitus.

6.4 Social Planner’s Problem

Here, | consider a social planner who seeks to maximize thghtexl sum of the two players’
payoffs. The social planner determines a delegation sehat); knowing that the agent chooses
a bundle to maximize his own payoff. The social plannersigeoam R’s successes relative to
S’s flow payoffs can be summarized by a constant, dengiedhich is a weighted average 9f
andn,. As a result, the social planner's problem is similar to th@gpal’'s problem, the only
difference being that the bias term is smaller since the tyemlfare is taken into account. In
general, the social planner prefers to give the agent modbifiey than the principal does.
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If assumption? holds forf € ©, the optimal solution to the social planner’s problem i®als
a cutoff rule. Moreover, based on Corolla2y the threshold of the pooling segmehtis an
increasing function of the weight put on the agent’s welfdigerefore, the more weight is put on
the agent’s welfare, the more flexibility shall be grantethimagent.

7 Concluding Remarks

This paper discusses how organizations can optimally nemagpvative activities, particularly
how much control right over resource allocation shall bettethe agent over time with the pres-
ence of misaligned preferences and hidden informatiormRhis aspect, this paper contributes to
the discussion of how to optimally allocate formal authpaihd real authority within organizations
(Aghion and Tirole, 19971])).

The optimal delegation rule requires the agent to achieveeess before the next deadline to
keep the project alive. It is simple, time-consistent amdady implemented in organizations such
as Google. Google encourages its employees to come up witideas and build a prototype. If
the initial result is satisfactory, Google makes it an offigiroject, funds it and sets the next pair of
goal and deadline. The goal must be met before the deadlsectae future funding. Successful
products including Gmail, Google Earth and Google Mapsisadvall the deadlines. Needless to
say, many more did not. For example, the once highly pulditiand well-funded Google Wave
was canceled in Augug010 as it failed to achieve the goal set by Google executivesrbehen.

Besides in-house innovation, my results also apply to thegmaent sector, which often ex-
periments reforms in public policy. The constituents dategeforms to politicians. Legislatures
delegate policy-making to their standing committees. Tiglmut the process transfers are prohib-
ited to prevent corruption. It has been concluded that exefigrm has consequences that cannot
be fully known until it has been implemented (Strulovici 12(24]). The constituents as well as
the government learn the effects of a reform that gradualfpld. If a reform is thought to be a
failure, it can be legislatively repealed, executively mueed or allowed to automatically expire
with a sunset provision. Politicians hope to prolong thagyoéxperimentation as they gain the
most popularity from successful reforms that they initiatiely sliding deadline rule suggests that
if politicians are better informed on policies, every refoshould carry a sunset provision. They
should be renewed only upon demonstrated successes.
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8 Appendix

8.1 Proof of Lemma?2

| have shown that the supremuliy~) is achieved by stopping-time policiesiif > 0,~1° < 0. If
p < pr (or equivalently,—~' /4 < r/(r + A!)), the stopping time i§. Hence,(w', w°) = (0,0)
andK () = 0. If p > p;, the stopping time- satisfies

T N S e
Clepr o At

e

The correspondingw!, w") pair is

1.0 r =" Tﬁl ro = A
) (A“rr 71) ’ (A“rr 71)

The derivative of the boundaiy*! at this point equals-+! /°. As the ratio—~! /7 increases from
r/(r + A!) to oo the stopping time ranges frofnto co. This proves that the southeast boundary of
His st

| have shown that if! < 0,~7° > 0 the supremuni(+) is achieved by a cutoff Markov policy.
According to Keller and Rady (2013} 9], the cutoff, denoted;*, is given byp:* /(1—p;*) = (A'+
r)/(rn;). If p > pi* (or equivalently—~'/4° > (A +r)/r), the supremum is achieved by playing
S forever. Hence(w!, w®) = (0,0). If —y*/4" < (A! +r)/r, the supremum is achieved by using
R until the first success and then switchingtoHence,(w!, w®) = (r/(r + A'),1). Therefore,
the northwest boundary 6 is T U {(w!, w®) | e(r/(r + A1), 1) + (1 — €)(0,0), € € [0, 1]}.

8.2 Proof of Proposition1

Let o; (resp.«y,) denote the low (resp. high) type agent andresp.p;,) the low (resp. high) type
principal.

1. Suppose thatn, > r/(A\' + r). Both p;'s andp;’s preferred bundles lie in the interior 6F".
Given thatd, > ¢, andn, > n,, the slopes of players’ indifference curves are ranked l&sie

Onne > max{6yn,, Oina} > min{Oyn,, 6inat > 6in).

Let ICL and ICH denotey,’s anday,’s IC constraints. Lef,, denotey,’s indifference curves.
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If a; prefers(w, (6;), w)(6;)) to (w,(6n), w)(6r)), the optimum is

{(wp(01), wy(01)), (wp(On), wp(Bn)}-

This is the case when the slope of the line connedting6;), wy (6;)) and(w,(6x), w)(6r)) is
greater tham;n,. This condition is satisfied whep, /7, is bounded from above by

O\ + 1) (e,ﬁ - 951)

;o
b= Al Al
r (Gh Al —491 Al >

If this condition does not hold, at least one IC constrainti | explain how to find the optimal
bundles.

Step 1.ICL binds. Suppose not. It must be the case that ICH binds. Given that 1@s do
not bind and ICH binds, the principal offers two distinct blesdw!(6;), w"(6;)) <
(w'(0r), w"(6)) which lie on the same indifference curve ®@f. Given thatd,n, >
max{6,1,,0m,}, both p, and p, strictly prefer(w'(6,),w’(8;)) to (w'(6), w’(6)).
The principal is strictly better off by offering a pooling mdie (w'(6;), w°(6;)). Con-
tradiction. Hence, ICL holds with equality.

Step 2.1f 0,1, < 0;n,, the optimum is poolingSuppose not. Suppose that the principal offers
two distinct bundlegw! (0;),w°(6;)) < (w'(01),w’(0)) which are on the same indif-
ference curve ofy;. Given that);n, < 0,1, < 6in., a;'s indifference curves are steeper
thanp,’s andp;’s. Both p;, andp; strictly prefer(w!(6;), w°(6;)) to (w'(6,), w°(6)).
The principal is strictly better off by offering a pooling mdie (w!(6;), w°(6;)). Con-
tradiction.

Step 3.1f 0,1, > 0n,, the optimal bundles are on the boundarylof Suppose not. Sup-
pose thatw(6;), w°(0;)) or (w*(6),w°(y,)) is in the interior. The indifference curve
of o; going through(w®(6;),w°(6;)) intersects the boundary &&'(6;),w°(9;)) and
(@' (6y),w°(6,)). Given thatd,n, > O, > 0m,, py prefers(w' (), @°(6)) to
(wt(0y),w°(0y)) and p; prefers(w!(6;),w°(6;)) to (w'(6;),w°(6;)). The principal is
strictly better off by offering(w!(6;),w°(6;)) and (w'(6,),7°(0,)) (see FigurelQ).
Therefore, the optimal bundles are on the boundary. Thelgmois reduced to locate
the low type agent’s indifference curve on whigh'*(6;), w°*(6;)) and(w'*(6,), w**(6))
lie. I want to show that this indifference curve must be bemvthe indifference curves
of oy which go through(w(6;), w(6;)) and(w, (65), w; (6,)) (see Figure 1). Suppose
not. Suppose the optimal bundles are pinned down by the dastiéference curve of

45



0 ]: wl(m)

Figure 10:Optimum bundles are on the boundary
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(w) (), w)(6r))
0 1 wl(r)

Figure 11:Location of optimal bundles

oy as shown in Figurél. The principal is strictly better off by offeringu, (6;), wp (6;))
andC'. Analogously, the optimal bundles cannot lie on the indéfece curve which lies
to the southeast of the indifference curve that goes thréugtd, ), w)(65)).

Step 4.1f 6;,m, = 0., there exists an optimal pooling bundléthe principal finds it optimal
to offer two distinct contract$(w?(6;), w°(6;)), (w*(6x),w’(61))}, it must be the case
that (w!(6;), w°(6;)) and (w'(6,),w°(0,)) are on the same indifference curve wf
Sinceq,’s indifference curve is steeper thaps, (w!(6;),w’(6;)) lies on the boundary
of I and (w'(6), w°(6,)) is located to the northeast 6b'(6;), w°(6;)). Sincep, has
the same indifference curves ag it is optimal for the principal to offer a pooling
contract(w! (6;), w°(6;)) if {(w(6;),w’(0)), (w*(6),w’(01))} is optimal.

Combining Step 2 and 4, | obtain that pooling is optimal whefv), > 6,/6,. This completes

the proof of Proposition.

2. Suppose thai,n, < r/(r + A'). Both p, andp, prefer to stop at tim®. The optimum is
(W (0r), 0" (01)) = (w™(Or), w**(6r)) = (0,0).

3. Suppose than, < r/(r + A\') < 6,,n,, the principal optimally offers her preferred bundles if

1—

elna S

T

<Tip9h(/\1+T) ) Tar

1— (n,,Hh()\lJrr))_ A

/\1+'r‘ :

r

If this does not hold andn, < 07, , the principal offers two bundles on the same indifference
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curve of the low type agent. Both bundles are on the boundaty 4f6,n, > 60,7,, pooling is
optimal. The proof is similar as in case

8.3 Proof of Corollary 1
SubstitutingG (0 H(e (fe 0)do + ( - 1) Gh(e)) and integrating by parts, | obtain

/éag(g)de — ﬁ /: [/:h(g)déqt (2_2 — 1) Qh(e)] df
_ ﬁ /: {(9 —O)h(8) + (7?—: - 1) 9h(9)} d6

_ ﬁ /: (z—ze _ é) h(0)do.

For anyd € [0n,/7a, 0], the integranddn,, /1o, — 0)h(0) is weakly negative for an§ € ©. There-
fore, 0, < On,/n.. If 6, > 0, 0, is strictly belowdn,/n,. Otherwise,h(f) must equab for
0 € [0n,/na,0). Contradictior?®

8.4 Proof of Corollary 2

Let G(6, z) be the value ofz(9) if n,/n, equalsz € [0, 1], i.e,

_HO)-HEO) , ), h0)
G(0,2) = 0 +( 1)9H(§).

Letd,(z) be the lowest value i® such thatng(&, 2)df < 0 for anyd > 6,(z). Becausei (0, z)
is an increasing function of for a fixedd € ©, 6,(z) also increases in.

If 2=1,G(6,1) = (H(0) — H(#))/H(0). Supposd,(1) < 6. Given the definition 0b,(1), |
have

7 L P B
/ep(l) G(0,1)do = 70 /ep(l)(H(e) — H())do

1

-2 /;l)(e —0,(1)h(8)d0 < 0.

This implies that:(9) = 0 for all § € [6,(1), §]. Contradiction. Thereford, (1) = 6.

25if 6, > 0, | obtain thatf, (1,6 — 11a6,) h(6)d8 = 0.
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Foranyd € © andz € [0,1], | have

H() (/ (z — 1)6h(6)d9+/9(9 é)h(e)d9>
_H8</9h )do — 9/ >

Let 2* bemin,g, (é ffh(e)de) /(ff@h(@)d@). If 2 < 2%, [{ G(0,2)d0 < 0for anyd € ©, and
thuso,(z) = 6.

8.5 Proof of Proposition4
Given the distributiory; over € [Q(;e*Al‘S,?e**l‘s], | define functionsis, H;, G5 as follows:

0
h5(6) = 1+ 6 and H5(9> = /9 o hg(&)d@,

CH@)—H0) (N, held)
Hy(Ge=>"9) - (n_a 1> QH(s(?e—”)'

Substitutingfs(6) = f(fe*'? | §)e*'? into hs(#) and simplifying, | obtain

f(0eX)eX” whereC = ’ [1 — p(0) (1 - 6_»5)} f(0)do.

hs(f) = L °
(6) C(1 + 6eN'9)’ o,

First, | show that the threshold of the pooling segmerﬁpissr”‘s given fs. By simplifying and
making a change of variables= ¢*'%6, | obtain the following

Oe §C*A )\1(5
_ —ALs f5(6) _ / . —Al§ f(fe )
/Gpe)‘15 <77p9 Tabye > 1+ Qde B Ope—Ar'o (77;)9 Talpe ) C(1+ QBAI(S) 0

e /(2)
T OeNd /ep (p2 — Nabp) 1t zdz.

Therefore, if the threshold of the pooling segment giyen 6, then the threshold of the pooling
segment at timé is 6,e "%,
The condition required by Assumptichis thatl — G4(#) is nondecreasing fat < Gpe*”.
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The terml — G4(6) can be written in terms of (9),

1 — Gy(6) = m [H(;(G) + ( - Z—Z) m(e)]

1 [ ro f(éexla)exlts ~ (Up ) f(96A16)€A1§]
3/

0578 1+ fer'é Mo 1+ fer's
N NETE
IO (e ) @]
ClJg, 1+2 N 142

where the last step is obtained by making a change of vasabtee*' 96. Therefore, if Assump-
tion 2 holds for alld < 6, given £, then it holds for alp < 6,¢=*"? given f;.

8.6 Proof of Lemma4

Forz € 2 and0 < € < 1, the concavity of_ implies that

L(E + e(z — 7)) > L(7) + e (L(z) — L(7))
— L(z) - L(i) < % (L(F + e(x — 7)) — L(7)).

As ¢ — 0+, the right-hand side of this equation tends tow@fdz; x — ). Therefore, | obtain
L(z) — L(z) < OL(%;x — ) = OL(Z;x) — OL(Z; ).

Given thatoL(z;z) = 0 andoL(z;z) < 0 for all x € Q, the sign ofoL(z;x — %) is negative.
Therefore,L(z) < L(z) for all z € .

8.7 Proof of Lemmab

| first introduce the problem studied in section 8.4 of Luegbe(1969, p. 2171]: max,cx Q(z)
subject tox € 2 andJ(z) € P, wheref) is a convex subset of the vector space( : @ — R
andJ : Q — Z are both concave; whetgis a normed vector space, afds a nonempty positive
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cone inZ. To apply Theoren in Luenberger (1969, p. 21721], set

X ={w" v’ |we Randw': © —» R},
0 =9a,
Z ={z|z:6 — R*with sup|z()| < oo},
0€0
with the norm|z||= sup||z(8)]|,
0€6

P={z]|z¢e Zandz(¢) > (0,0), V0 € O}.

| let the objective function iIn@QBJ) be and the left-hand side 08) and Q) be defined ad. Itis
easy to verify that botly) and.J are concave. This result holds because the hypotheses offéfhe
1in Luenberger (1969, p. 21721] are met.

8.8 Proof of Proposition5

Leta,b € © be such that < b < 6, andl — G(a) > 1 — G(b) (so Assumptior? does not hold).

It is easy to verify that the Gateaux differentidL(w; ,w; -wl w® | A%®) exists for any
(w',w®) € ®. | want to show that a necessary condition lfnait ) maximizesl(w', w’ | )
overd is that

0L(w wo cwh,w’ | A% <0, V(w!, ') € D, (23)
8L(w w w wo | AS®) = 0. (24)

If (w;,,w) ) maximizesL(w', w" | A®®), then for any(w', w?) € @, it must be true that

d 1

S L((wg,,wf) + e(w',w) = (wg,,wf)) [ A%)] <0,

€ P P P =0

Hence 6L(w1 w) s (whw?) — (w, ,w) ) | As®) < 0. Setting(w', w®) = (w] w) )/2 € iy
yields O L(w! ,_xp;w;p,wgp | As®) > 0. By the definition of(w }3 ,wy ), there exists > 0
sufficiently small such thatl + €)(w? ,u® ) € ®. Setting(w',u’) = (1 + ¢)(w} ,w? ) yields

OL(wy ,wh swy ,w) | Ase) < 0. Together 23) and @4) obtaln

The Iast step is to show that there existsithat satisfies the first-order conditior3( and
(24). Here, | use the same approach as in the proof of PropositionAmador, Werning, and
Angeletos (2006)4]. The Gateaux dlfferentla?L(w w w!, w® | A% is similar to equation
(16) with 6, replaced byz,. Conditions 23) and Q4) |mply that ASE(Q) = 0. Integrating the
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Gateaux differential by parts yields
OL(w, ,wd ;w' w’ | A%) = x(0)w'(0) +/ x(0)dw' (0), (25)

with _ _
0 0
O = [ [840) - (1= GO b, [ (- 5)ak0)
0 max{zp,0}
By condition @3), it follows thaty () < 0 for all 8. Condition @4) implies thaty(6) = 0 for
0 € [0, z,). It follows thatAsé(#) = 1 —G(9) forall § € (8, z,). This implies that:, < b otherwise
the associated multiplieks® would be decreasing. Integrating by parts the second tergif |

obtain .
\(0) = / G@O)dl+ (6 — z,)(1 — A%(9)), V8 > =,
6

By definition of ,, there must exist & € [z,,6,) such that the first term is strictly positive;
sinceA%%() < 1, the second term is nonnegative. Hendé) > 0, contradicting the necessary
conditions. This completes the proof.

8.9 Proof of Lemmab6

Giveny = (v},7%) € R?, I let K(~) andH(v) denote the supremum score in directipand the
associated half space. Afidlis the intersection of all half spaces. Sirice- #(~) for any~ and
[ is convey, it follows that” = H. If 4! > 0,~1° > 0, K(v) equalsy' ++°, achieved by the policy
which directs all resources . If v! < 0,7° < 0, K(v) equalsd, achieved by the policy which
directs all resources t6.

If v! > 0,~7° < 0, finding K (v) is equivalent to a decision problem of playewho chooses
to maximizeU;(w, p). His priorp is given byp/(1 — p) = —'/(7"n;). According to Keller and
Rady (2010) 18], the optimum is a cutoff policy under whicR is used when the belief is above
the cutoff andS is used below. The cutoff belief, denotgd satisfies the equatiqrj /(1 — p) =
w/((1 + pu)n;) wherey is the positive root of equation+ A\ — (Al — X%) = A2(A\2/A\1)~. Let

Ui(p) = max, U;(m,p). If p < pf, U;(p) equalss;. Hence, K (y) = 0. If p > pf,

i) = A+ (5= Ay (L) whereay) = x'p+ 01— ).
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Hence, | obtain
()
Vet
K(vy)=—
p+1

It is easy to verify that the southeast boundary' a$ pinned down by the pairs

1
Loy ’YON Kt ’YOM [z
(wiw)=11-|—-———"—— A= - .
T+t T+t

The functional form of the southeast boundary is

+ ,Yl + 70'26

"

Bw') =1 — (1 —wh)w, w' € [0,1].

If v! < 0,7 > 0, finding K (v) is equivalent to a decision problem of playiewho choosesr

to minimizeU;(w, p). His priorp is given byp/(1 — p) = —'/(7n;). As shown by Keller and
Rady (2013) 19], the optimum is a cutoff policy under whicki is used if the belief is above the
cutoff and R is used if below. Lep;* denote this cutoff belief and’,(p) = min, U;(7, p). The
functionU, (p) is continuous, concave, and non-decreasing. Except forkeatp;*, U, (p) is once
continuously differentiable. When' < 0,7° > 0, K(v) equals(U,(p) — s;)(v"/mi — %)/ (si —
A%h;) > 0. Hence, the northwest boundary Bfis concave, nondecreasing, once continuously

differentiable, with the end points beirig, 0) and(1, 1).

8.10 Proof of Proposition7

Suppose that a success occurs at ttmBefore the success, the principal’s belief about the type
distribution is denoted,_. Without loss of generality, suppose that the suppoit,i§]. Here, |
calculate the updated belief after the success, denftelet (0, dt) be the probability that a

success occurs in an infinitesimal interlak + dt) given typed

Q(O,dt) = p(0)(1 — e ") + (1 — p(6)) (1 — e ")

_=Alat

= <1 — e*A%) <p(0)ﬁ +1-— p(9)> _

Bif 41 > 0,7° < 0, K(v) equals(U;(p) — s;) (v /s —°)/(s; — A°h;) > 0.

52



Given a success at tintethe principal’s updated belief about the agent’s typeitistion, in terms
of his type at timg—, is

) + (1 —p(e))ko] ’ V= [0 g]
) Y,

fe ft P+ (1= p(0)A°] do

After the success, the agent of typeipdates his belief about the state to the odds atig \°.
Therefore, the principal’s belief about the agent’s tyrdution, in terms of his type at timeis

0 otherwise

- { £7 (OA/AY) XO/AL i 0 [OA1 /A0, BAL/A°] |

Given the distributiory;, | defineh;, H;, G, as follows:

hi(0) = ftfz) and H,(0) = /9 im h,(0)d0,
H/(@N/\) = Hi(6) | (7, Ba()
Gu(8) = H,(ON1/)\0) * (n_a a 1) th@)\l /A0)’

Substitutingf; (6) = f; (0A°/AY) A°/A! into h,(#) and simplifying, | obtain

fi—(OA°/X1)

"0) = ST oo/

L+ (1= p(0))A°] db.

whereC = SOE

Following the same argument as in Subsec#of | can show that (i) if the threshold of the
pooling segment givelfi  is 6, then the threshold of the pooling segment giyeis 6,\' /\’; (ii)

if Assumption2 holds forf < 6, given f,_, then it holds fow < 6,\' /\° given f,. This completes
the proof.

8.11 Proof of Lemma?

Giveny = (v},7%) € R?, | let K(~) andH(v) denote the supremum score in directipand the
associated half space. Afidlis the intersection of all half spaces. Sirice- #(~) for any~ and
[ is convey, it follows that” = H. If 4! > 0,7° > 0, K(v) equalsy’ ++°, achieved by the policy
which usesi exclusively. Ify! < 0,7° < 0, K(v) equals), achieved by the policy which usés
exclusively.

If v > 0,7° < 0, finding K () is equivalent to a decision problem of playevho chooses
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7 to maximizeU,(r, p). His prior p is given byp/(1 — p) = —'/(7°n;). According to Cohen
and Solan (2013)1[1], the optimum is a cutoff policy under whicR is used when the belief
is above the cutoff and' is used below. The cutoff belief, denotet, satisfies the equation
pi/(1—pf) = a*/((1+ a*)n;), wherea* is the positive root of equation 6.1 in Cohen and Solan
(2013) [11].

LetU;(p) = max, U;(m,p). If p < p, U;(p) equalss;. Hence K (v) = 0. If p > p},

Uilp) = ' + (1 — p)p® + [ — (i + (1 — pr)®)] 11__;; (;1(1__1)])9]:;» '

Hence, | obtain

0 2o\
Y <_71a*+71)
K(y)=-—_"173

It is easy to verify that the southeast boundary'a$ pinned down by the pairs

) 0 ,yOa* a*+1 ")/OCL* a*
(whw')=[1--——L% [ .
’710,*+’71 'yla*+'yl

The functional form of the southeast boundary is

+ 71 _’_70.27

B!y = 1 — (1 — wh)a 1, w! € [0,1].

2f 41 > 0,7° < 0, K(v) equals(U;(p) — si) (v /ni —~°)/(si — u°) > 0.
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