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Abstract

We study a class of Bayesian games in which players face restrictions on how much

information they can obtain on a common payoff relevant state, but have some leeway

in choosing the correlation (or similarity) between their signals, before choosing their

actions. Using a new dependence stochastic ordering between a player’s and other players’

signals, we obtain equilibrium necessary conditions that link the complementarity or

substitutability in own and other’s actions, the monotonicity properties of the second

stage action strategies, and the dependence between the chosen signals. We also provide

(stronger) sufficient conditions for certain types of equilibria, in particular for public

information to arise as an equilibrium outcome. Equilibrium information structures may

be inefficient. Making which signals were chosen (but not their realizations) observable by

all players may restore efficiency.
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1 Introduction

We study a class of Bayesian games in which players face restrictions on how much information

they can obtain on a common payoff relevant state, but have some leeway in choosing the

correlation (or similarity) between their signals, before choosing their actions. Using a new

dependence stochastic ordering between a player’s and others’ signals, we obtain equilibrium

necessary conditions that link the complementarity or substitutability in own and others’ actions,

the monotonicity properties of the second stage action strategies, and the dependence between

the chosen signals. We also provide (stronger) sufficient conditions for certain types of equilibria,

in particular for public information to arise as an equilibrium outcome. Equilibrium information

structures may be inefficient. Making information choices (but not the signal realizations)

publicly observable may restore efficiency.

2 Related literature

In the classic formulation of a game with incomplete information, a Bayesian game, the

information structure is exogenously given.

In recent years, a large literature has developped, whose objective is to understand how the

information structure maps to equilibrium outcomes, and how sensitive these outcomes are

to the information structure (e.g. Bergemann and Morris, 2013). At the same time, scholars

have seeked to endogenize the information structure. Three main forms of endogeneity of the

information structure of a game have been considered. First, the player’s information can

be influenced by what players tell each other via cheap talk communication (Crawford and

Sobel, 1982, Myerson, 1986, Forges, 1986), or through some other forms of communication.

Second, the information structure can be design by a third party, who has a stake in the

game that is being played. For example, one can think of the seller of an object in an auction

(Bergemann and Pesendorfer, 2007), the central bank of a macroeconomy (Morris and Shin,

2002), an agent persuading a decision maker (Gentzkow and Kamenica, 2010) or simply the

social planner (Taneva, 2014). Third, the players’ information can result from the players’

information acquisition decentralized choices and effort, as in Li, McKelvey and Page (1987),

Vives (1988), Hellwig and Veldkamp (2009), Myatt and Wallace (2011), Szkup and Trevino

(2014), Yang (2014), and many others. Our work belongs to this third class of models. We

discuss these models in further detail.
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2.1 Decentralized information acquisition

Regarding decentralized information acquisition, the most commonly studied framework is a

two stage game where players start with a common prior on some unknown common value state

that affects all players’ payoffs.1 In the first stage, each player makes an information choice (for

example, the precision of the signal she receives) that determines the information on the state

that she has when entering the second stage. In the second stage, players simultaneously choose

an action. Two different extensive forms have been considered, depending on whether the choices

made at the first stage are observed or not. In some models, the acquisition is publicly observed.

The game is then an extensive form game where each profile of information acquisition choices

defines a subgame, and in each subgame, the information structure is common knowledge:

in these games, acquisition is open. In other models, the choices of the players in the first

period are not observed before actions are taken. Acquisition is then hidden. A game where

information acquisition is hidden is essentially static, as it is equivalent to one where all players

simultaneously choose both their information and a commitment to an action strategy that

maps the signal they will observe to the action they choose. The difference between open and

hidden information acquisition is in the way a deviation in the first stage is treated: Under

open acquisition, a deviation on information choice is commonly observed, and the information

structure is common knowledge in the second stage subgame following the deviation; Under

hidden acquisition, players form a belief of what the information structure is in the second stage,

and this belief is correct in equilibrium. But whenever a player deviates, all other players’ belief

on the information structure is incorrect. It should be noted that in games with a continuum

of players (Hellwig and Veldkamp, 2009; Myatt and Wallace, 2011; Szkup and Trevino, 2014),

where players’ payoffs only depend on the statistical distribution of the other players’ actions,

the two forms of acquisition are equivalent. Thus, there is no need to make a distinction in

this case. The distinction matters only for games with finitely many players. In this paper, we

derive results that apply to games with hidden acquisition and finitely many players, and to

games with hidden or open acquisition and a continuum of players. The case where acquisition

is open and the number of players is finite is also considered but only in the last section.

2.1.1 The motive inheritance result

The main focus in the literature has been on the player’s choice of amount of information

(their signal’s precision), and on the acquisition of private information. These models assume

that signals are independent conditionnaly on the state: The acquired information is therefore

1Veldkamp’s monograph (2011) and Hellwig, Kohls and Veldkamp (2013) provide excellent surveys on the
widely studied special case of the beauty contest games with a continuum of actions and players, quadatic
payoffs and a Gaussian information structure, and their applications to macroeconomics and finance. Our paper
covers a larger class of models, since we do not rely on specific functional forms and allow for a finite number of
players.
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private. A central question in this context is whether the players’ amount of information

acquisition are complements, substitutes, or neither complements nor substitutes. With finitely

many players, the question is meaningful only when acquisition is open. With a continuum of

players, the question is meaningful for both open and hidden acquisition, since the two are in

this case equivalent. Li, McKelvey and Page (1987) study a Cournot market with finitely many

firms and open acquisition. The unknown common value state is the demand intercept and the

information structure satisfies certain conditions. Actions are substitutes and they find that

that the precision levels of the private information acquired in the first stage are substitues as

well.2 Vives (1988) obtains a similar result in the case of a continuum of players. Assuming

as well a continuum of players, Hellwig and Veldkamp (2009) obtain a similar result in the

context of a beauty contest game, where actions can be either substitutes or complements. They

find that when actions are substitutes, acquisition levels are substitutes and when actions are

complements, acquisition levels are complements: the strategic motive in actions is inherited by

the acquisition game. All of these papers assume an unbounded continuum of actions (the real

line), quadratic payoffs, and a Gaussian information structure.

In spite of the large number of contexts where the inheritance result is confirmed, it does not

generalize to the larger class of all game with strategic complementarities or substitutabilities.

In particular, the unbounded continuum of actions, the continuum of players and a Guassian

information structure seem to be crucial for the result. Even with unbounded actions, quadratic

payoffs and a Gaussian information structure, but only two players (as in the case of a

differentiated Bertrand game, which the author uses as an example), Jimenez-Martinez (2013)

shows that it only holds for some parameters: when the complementarity in actions is strong,

levels of acquired precision may be substitutes. And even with a continuum of players, quadratic

payoffs, a Gaussian information structure, but binary actions, i.e. a global game, Szkup and

Trevino (2014) present a model where the actions are complements but the acquired precision

levels are not.

In contrast with this literature, we do not allow agents to choose how much information they

acquire. We hold the amount of information fixed. Instead, we let them choose whether the

information they acquire is private or public. More generally, we allow agents to choose the level

of conditional dependence between their signals. We obtain another type of inheritance result

holds: complementarity in actions implies a preference for positive informational dependence,

and substitutability in actions implies a preference for informational independence. But unlike

the precision inheritance result, our dependence inheritance results hold for all games where

actions are strategic complements or substitutes and do not rely on specific functional forms,

2Hwang (1993) exploits this result in a duopoly to derive various comparative statics results. Hwang (1995)
studies a similar model but focuses on payoff comparisons between different market structures and different
ways in which the levels of information precision of the firms is set. Bergemann, Shi and Välimäki (2009) obtain
conditions under which information acquisition levels are substitutes or complements, in a VCG auction with
interdependent valuations. Their setting differs from the common value models listed here in several ways.

4



provided that the second stage strategies are monotonic (which is a possibility in some games,

and an implication of Nash-Bayesian equilibrium in a subset of these games).

2.1.2 Public and private information

The issue of the role of public and private information is a central one in the entire literature on

endogenous information structures. Morris and Shin (2002) for example, show that in a beauty

contest game with a continuum of players, when the planner (the central bank) increases the

precision of public information, it can be detrimental to welfare, because agents rely less on

their private information.

In the context of information acquisition, Hellwig and Veldkamp (2009) and Myatt and Wallace

(2011) let agents choose whether the information is private and potentially public. They provide

models where public information is an equilibrium outcome of agents choosing to observe the

same potentially public signals. Thus in their models, unlike Morris and Shin (2002), public

information is not provided by an external third party, but is the result of the market forces

themselves. We follow up on this idea, and go one step further. While their model has private

and potentially public signals, and public signals are the potentially public ones that all agents

chose to observe, in a version of our model, all signals are potentially public: a private signal is

one that only one agent chose to observe, while a public signal is one that all agents chose to

observe.

Like Morris and Shin (2002), Hellwig and Veldkamp (2009) are interested in the marginal value

of additional public information compared to an initial situation. But because no information

is intrinsically public or private, what they really look at is the marginally value of additional

potentially public information. They make the important observation that marginal value

of acquiring more potentially public information is kinked at some profiles that they call

symmetric. At a symmetric profile, defined as one where all agents observe the same potentially

public signals, if a player deviates and observes one more potentially public signal, she obtains

additional information that in effect is private, since nobody else observes it. If she instead

drops one of her potential signals, she decreases her own access to public information. This

asymetry and discontnuity causes mutiple equilibria that differ in the level of public information.

In Myatt and Wallace (2011), public information obtains when all agents pay a substantial

amount of attention to the same signal. An implication of this assumption is that agents who

hold public information are necessarily well informed agents. In both of these two papers, the

problem of the division of information between private and public (and eveything in between)

is intrinsically intertwined with the more widely studied isse of the amount of information that

the agents acquire. In Hellwig and Veldkamp (2009), it is because of the question they choose

to ask, and in Myatt and Wallace (2011), it is in the way they define public information.
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In contrast, we choose to completely disentangle the two issues. At the risk of making the

model seem less realistic (because in practice, economic agents often face the choice of how

much information to acquire), we hold the amount of information fixed by assuming that all

signals an agent can choose to observe are equally informative of the unknown state: they all

have the same joint marginal distribution with the state. By doing so, we isolate the issue of

the partition of the information stucture between public, private and neither private nor public

information, from the issue of the amount of information. Doing so enables us to identify a

robust force and to obtain general results that hold for a large class of games, not only the

Gaussian-quadratic model with a continuum of actions and players. As we argued earlier, no

such result holds when the issue of the amount of information is not excluded, even when only

private information can be acquired.

Our assumption that agents are restricted in the amount of information they acquire (formally,

the joint marginal distribution between their own signal and the state is fixed, no matter what

signal they choose). This can be thought of as a form of rational inattention. Agents are limited

in how much informationthey can acquire, (Sims, 2003, 2005, 2006), and thus face a choice of

what to observe.

2.1.3 Inefficiency of equilibrium under hidden information acquisition

A number of papers are dedicated to the analysis of inefficiencies in the collection of information

and in the use of that information when the information structure is exogenously given. Angeletos

and Pavan (2007) for instance, study a model with a continuum of agents, quadratic payoff and

a Gaussian information structure, where each player observe a private and a public signals. By

comparing the equilibrium use of information to an efficiency benchmark (the best society could

achieve keeping information decentralized), they show that information use can be inefficient

when the incentives to coordinate actions and the social value for coordination are different. The

welfare impact depends on the degree of strategic interaction and on its nature (complementarity

or substitutability).

Angeletos and Pavan (2007)’s finding is recurrent in the literature. Morris and Shin (2002)

among others also show that an increase in the amount of public information can impair welfare.

However, this does not hold necessarily if information is a choice for the players.

Chahrour (2012) proposes a model of endogenous information acquisition where the detrimental

effect of public information is still valid. In the model, a central authority chooses both how

many signals to divulge and their precisions. He finds that the authority always chooses the

highest possible precision and releases a positive but finite number of signals. An important

result is that too many signals can cause the players to decrease the amount of information

they acquire which in turn decreases welfare.
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Colombo and Femminis (2008; 2011) are other examples where endogenizing the information

structure makes additional public information beneficial for welfare. By allowing the players

to choose the precision of their private signals once the central authority has announced the

precision of the public signal, they show that the precisions of private and public signals are

strategic substitutes. Moreover, if the cost of public information is lower than the cost of private

information, then increasing the precision of the public information increases welfare. While

Colombo and Femminis (2008, 2011) investigate the welfare implications of public information

provision on incentives to acquire private information, Llosa Gonzalo and Venkateswaran (2012),

by considering models different from the beauty-contest type, study how different links and

externalities among agents affect the acquisition process of private information.

Existing work allows the players to choose the level of information precision. We take the

analysis in an other direction by keeping the amount of information fixed and focusing instead

on information correlation. We show that hidden information acquisition sometimes leads to

inefficiencies when there are payoff externalities that are not reflected in the players’ equilibrium

choice. Interestingly, we show that these inefficiencies can sometimes be eliminated when

information acquisition is open.

2.2 Statistical dependence

In our main result, we characetrize the precise notion of statistical dependence for which the

result that complementarities and monotonicity imply a preference for positively dependent

signals. In the case on two players, our result in an application of a result by Tchen (1980) which

establishes the equivalence between various concepts of statistical dependence for bivariate

random vectors. For the case of more than two players, our result requires a generalization of

this result to notions of statistical dependence between a random variable (own signal) and a

vector (others’ signals). Surprisingly, to the best of our knowledge, such generalizations have

not been studied in the probability and statistics literatures.

The statistics and economics literature has up to now taken another view, which was to

consider dependence relations in the case N = 2 as measures of interdependence between the

two components of a bivariate random vector. The natural generalization to the case of a

general N ≥ 2, was then to consider dependence as a measure of interdependence between

all univariate components of a multivariate random vector. Partial generalizations of Tchen’s

(1980) result for interpedepence in the case N ≥ 3 exist. They are reviewed by Strulovici and

Meyer (2012), who also establish new relations. Roughly speaking, one can define a number

of “more interdependent than” weak partial orders on the set of all N -variate random vectors

with the same fixed marginal distributions: a general covariance interdependence relation, a

supermodular interdependence relation, a concordance interdependence relation and many

others. One could imagine a way to define a dominance interdependence relation, but to the
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best of our knowledge, this has not been studied. As Strulovici and Meyer (2012) summarize,

the general covariance interdependence relation is strictly stronger than the supermodular

interdependence relation (established by Strulovici and Meyer, 2012, generalizing a proof of

Christofides and Vaggelatou, 2004, for a special case), which in turn is strictly stronger than

the concordance interdependence relation (Müller and Stoyan, 2002). The strictness in these

statements is established by examples provided by Hu, Müller and Scarsini (2004) and Strulovici

and Meyer (2012).

We believe that the concepts of statistical dependence (as oppose to interdependence) between

two random vectors , which we introduce in this work, and the equivalences we establish are of

independent interest and could be used in other settings.

3 The Model

Let I = {1, ..., N} be a finite set of players. The state of the world is described by a random

variable θ, with support Θ, which enters explicitly in the players’ payoffs. Each player may

observe a signal of θ, that does not explicitly enter his payoff. More precisely, there is an

arbitrary set of signals S, and a collection of random variables Xs, with s ∈ S. For each i ∈ I,
there is a set of signals Si ⊆ S, that player i has access to. For simplicity, we assume that all

the variables Xs have identical finite support X =
{

1, ..., k
}
.3

The game unfolds as follows in two stages.

Initially all players start with a common prior, which is a pdf on Θ× X S. In the first stage,

each player i chooses a unique signal si from the set Si ⊆ S. The players choose their signals

simultaneously. Abusing notations, for all i, let Xi denote the signal chosen by player i and

let xi denote its realization. Then each player i privately observes the realization xi without

having observed the other players’ signal choices nor their signal realizations. In the second

stage, each player then chooses an action ai from the set Ai = R. Let a = (a1, ..., aN) be a

profile of actions for all players. Each player then obtains a payoff ui (a, θ) . In the normal

form of this game, a pure strategy for player i is a pair (si, αi) in S × AX×Si , where si is the

signal chosen by player i and αi, the player’s action strategy, is a mapping that determines

player i’s action choice, given the realization xi he observed and the source si he chose. For the

time being, we will restrict attention to pure strategies. We will extend the analysis to mixed

strategies in Section 8. With pure strategies, it is without loss of generality to restrict attention

to action strategies that do not depend on si: holding a strategy profile for the other players

(s−i, α−i) fixed, any outcome, i.e. a joint distribution over Θ× AN induced by the profile (s, α)

3The finite support assumption is made to simplify the exposition, and to avoid uninteresting technical
complications. We conjecture that our results extend to the case where X is infinite, as in the normal quadratic
class of examples in Section 4.2.
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such that αi depends on si, is also induced by some other profile (s, α′i, α−i) such that α′i does

not depend on si. Thus for simplicity and without loss of generality, we restrict attention to

action strategies in AXi .

A profile (s, α) = (si, αi)i∈I is a Nash-Bayesian Equilibrium if for all i all s′i and all

(s′i, α
′
i) 6= (si, αi) , we have

E (ui (αi (xi, si) , θ)) ≥ E (ui (α
′ (xi, s

′
i) , θ)) .

We are interested in the Nash-Bayesian equilibria of this game. In particular, we are interested

in understanding how the monotonicity properties of the equilibrium action strategies in stage

2, together with the complementarity or substitutability between actions is stage 2 affect the

players’ signal choice in stage 1, which in turn determines the players’ higher order beliefs at

the beginning of stage 2.

More precisely, for any mapping φ : X →R, we say that φ is increasing if for all xi, x
′
i ∈ X ,

we have xi ≤ x′i =⇒ φ (xi) ≤ φ (x′i) , and that φ is strictly increasing if for all xi, x
′
i ∈ X ,

we have xi < x′i =⇒ φ (xi) < φ (x′i) . We say that φ is decreasing if −φ is increasing and

that φ is strictly decreasing if −φ is increasing. A profile of action strategies α is strictly

monotonic if either for all i, the action strategy αi is strictly increasing, or for all i, αi is

strictly decreasing. A profile of action strategies α is strictly antimonotonic for i if for either

αi is strictly increasing and for all j 6= i, αj is strictly decreasing, or if αi is strictly decreasing

and for all j 6= i, αj is strictly increasing. Abusing terminology, we say that a strategy profile is

strictly monotonic (antimonotonic for i) if its action profile is strictly monotonic (antimonotonic

for i).

In general, an important consideration in a player’s choice of a signal could be how informative

the different available signals are, on the payoff-relevant state θ, or which aspects of θ the

different signals reveal.4 In order to eliminate these motives, and in order to concentrate on

the higher-order motive, we will assume that all signals Xs are equally informative on θ in the

sense of Blackwell, namely that the joint marginal distribution of θ and Xs is the same for all

signals s.

Intuitively, different signals have higher positive dependence between one another if their

distributions are more similar. More precise definitions will be given in Section 5. In one

extreme case of positive dependence, when different signals are perfectly positively dependent,

their realizations are identical with probability one. In this case, we can say that the signals

are public information on θ. In an other extreme case, they are independent conditional

on θ. In this case, we can say that they are private information on θ. Roughly speaking,

our main result says that in any strictly monotonic Nash-Bayesian Equilibrium, if the actions

4For example, one signal could reveal θ’s sign, whereas another could reveal θ’s absolute value.

9



are complements, the players choose signals as positively dependent as possible; if instead the

actions are substitutes, the players choose signals that have as little positive dependence as

possible. On the contrary, in any Nash-Bayesian Equilibrium that is strictly antimonotonic

for i, if the actions are complements, the players choose signals that have as little positive

dependence as possible; if instead the actions are substitutes, the players choose signals as

positively dependent as possible.

4 Examples

To fix ideas, we start with simple examples

4.1 The binary quadratic model

Suppose that S = {X, Y } and N = 2. Payoffs are

ui (θ, a) = −a2
i + 2bi12aiaj + 2bi13aiθ + 2bi1ai +K (aj, θ) (1)

where bi12, bi13 and bi1 are real numbers for i ∈ {1, 2} and K (·, ·) is a function that does not

affect the set of Nash-Bayesian equilibria, but may have an effect on welfare. The information

structure is as follows. The random vector (θ,X, Y ) is distributed in {0, 1}3 according to a

pdf (fθ)θ,x,y∈{0,1} such that the probability of the realization (θ, x, y) is fθxy. The joint marginal

distributions of (θ,X) and (θ, Y ) are identical, so that∑
y′

fθxy′ =
∑
x′

fθx′y

for all triples (θ, x, y) ∈ {0, 1}3 such that x = y.

More specifically assume that P(θ = 1) = pθ ∈ (0, 1) and that each signal has the joint

distribution with θ such that
X = 0 X = 1

θ = 0 q00 q01

θ = 1 q10 q11

where P(θ = `,Xs = k) = q`k. Note that these four numbers must add up to 1. Note also that

q10 + q11 = pθ, so that this matrix can be rewritten as

X = 0 X = 1

θ = 0 q00 1− pθ − q00

θ = 1 pθ − q11 q11
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Therefore the joint marginal (θ,X) is completely characterized by the three numbers pθ, q00

and q11. Note that

Cov (X, θ) = q11q00 − q10q01

= q11q00 − (pθ − q11) (1− pθ − q00)

= q00pθ + q11 (1− pθ)− pθ (1− pθ) .

Therefore, the signal is informative if and only if

q00pθ + q11 (1− pθ)− pθ (1− pθ) 6= 0,

which we assume. Without loss of generality, we can assume that

q00pθ + q11 (1− pθ)− pθ (1− pθ) > 0.

If this did not hold, we could simply change the labels 0 and 1 of the realizations of X and it

would hold. Note that we will keep these parameters pθ, q00 and q11 fixed throughout. They

parametrize the level of uncertainty in the economy and the informativeness of each signal.

Even the agents choices of signal cannot change these values, which hold for any signal that any

agent may choose to observe. Let P(X = `, Y = k) = z`k, such that the conditional probability

matrices are 

Y = 0 Y = 1

X = 0 z00 z01

X = 1 z01 z11

if θ = 0

Y = 0 Y = 1

X = 0 w00 w01

X = 1 w01 w11

if θ = 1.

(2)
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Note that z01 = 1
2

(1− z00 − z11) and w01 = 1
2

(1− w00 − w11) , so that

Y = 0 Y = 1

X = 0 z00
1
2

(1− z00 − z11)

X = 1 1
2

(1− z00 − z11) z11

if θ = 0

Y = 0 Y = 1

X = 0 w00
1
2

(1− w00 − w11)

X = 1 1
2

(1− w00 − w11) w11

if θ = 1.

(3)

Moreover, we have

z00 +
1

2
(1− z00 − z11) =

q00

1− pθ
which implies that

z11 = z00 + 1− 2q00

1− pθ
1

2
(1− z00 − z11) =

q00

1− pθ
− z00.

Similarly

w00 = w11 + 1− 2q11

pθ
1

2
(1− w00 − w11) =

q11

pθ
− w11

so that the conditional probability matrices are

Y = 0 Y = 1

X = 0 z00
q00

1−pθ
− z00

X = 1 q00
1−pθ
− z00 z00 + 1− 2q00

1−pθ

if θ = 0

Y = 0 Y = 1

X = 0 w11 + 1− 2q11
pθ

q11
pθ
− w11

X = 1 q11
pθ
− w11 w11

if θ = 1.

where the parameters z00 ∈
[
0, q00

1−pθ

]
and w11 ∈

[
0, q11

pθ

]
are determined by the agent’s choices

of information structure. The cases z00 = 0 and w11 = 0 correspond to (imperfect) negative

conditional correlation. The cases z00 = q00
1−pθ

and w11 = q11
pθ

correspond to perfect conditional
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correlation. When both equalities hold, the information is public. Conditional independence

correspond to the cases

z00

(
z00 + 1− 2q00

1− pθ

)
−
(

q00

1− pθ
− z00

)2

= 0

w11

(
w11 + 1− 2q11

pθ

)
−
(
q11

pθ
− w11

)2

= 0

i.e.

z00 =

(
q00

1− pθ

)2

∈
[
0,

q00

1− pθ

]
w11 =

(
q11

pθ

)2

∈
[
0,
q11

pθ

]
.

When both equalities hold, the agent’s information is fully private. To summarize, the entire

information structure is fully described by the five numbers pθ, q00, q11, z00 and w11. The first

three parameters are held fixed throughout. The last two are jointly controlled by the two

agents.

We now introduce two elements that will be useful when solving for the equilibrium. First,

let kix be the probability that θ = 1 given that player i has received the signal realization Xi = x.

As the state is binary, it implies that E(θ|Xi = x) = kix. Next, since a player’s best response

will depend on his expectation of the other player signal realization, let hix denote the belief of

player i on player j’s signal realization. More precisely, let hix ≡ P(Xj = x|Xi = x).

Note that the assumption that the joint marginals are identical for (X, θ) and (Y, θ) imply that

kix = kjx and that hix = hjx for all x. Thus we will simply write these conditional probabilities

kx and hx where

kx =
P(θ = 1, Xi = x)

P(Xi = x)
=


pθ−q11

pθ−q11+q00
if x = 0

q11
1−pθ−q00+q11

if x = 1
(4)

hx =
P(Xj = x,Xi = x)

P(Xi = x)
=



z00(1−pθ)+
(
w11+1− 2q11

pθ

)
pθ

q00+pθ−q11
if x = 0 and Xi 6= Xj

(z00+1− 2q00
1−pθ )(1−pθ)+w11pθ

1−pθ−q00+q11
if x = 1 and Xi 6= Xj

1 if Xi = Xj

(5)
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We see that kx only depends on pθ, q00, q11, so it is not controlled by the agents. Moreover, we

see that both h0 and h1 are increasing in z00 and w11.

4.1.1 Actions

Fixing signal choices X1 ∈ S and X2 ∈ S, let αix be the action strategy given that player i has

received the realization Xi = x. It is convenient to describe agent i’s action strategy by the two

variables αi, βi, such that αi := αi0 and βi := αi1−αi0. Let H = h0− (1− h1) and K = k1− k0.

We can restrict attention to 1 > K > 0, which means positive correlation between the signal

and θ and 1 > H ≥ 0, which means nonnegative correlation between the signals.

The expected payoff of player i given the profile of signal choice (X1, X2) is

P(Xi = 0)
(

(1− h0)E(ui(θ̃, αi, αj + βj)|Xi = 0) + h0E(ui(θ̃, αi, αj)|Xi = 0)
)

(6)

+P(Xi = 1)
(

(1− h1)E(ui(θ̃, αi + βi, αj)|Xi = 1) + h1E(ui(θ̃, αi + βi, αj + βj)|Xi = 1)
)

By taking the first-order condition to (6) with respect to αi and βi for i = 1, 2, we obtain the

following system of linear equations
αi = bi12(1− h0)βj + bi12αj + bi13k0 + bi1

βi = bi12βjH + bi13K

αj = bj12(1− h0)βi + bj12αi + bj13k0 + bj1

βj = bj12βiH + bj13K.

We can first solve for βi and βj. We get{
βi = bi12βjH + bi13K

βj = bj12βiH + bj13K,

so that

β∗i =
bi13K + bi12bj13KH

1− bi12bj12H2
(7)

β∗j =
bj13K + bj12bi13KH

1− bi12bj12H2
. (8)

Then we can solve {
αi = bi12(1− h0)β∗j + bi12αj + bi13k0 + bi1

αj = bj12(1− h0)β∗i + bj12αi + bj13k0 + bj1,

14



so that

α∗i =
bi12(1− h0)K(bj13(1 + bi12bj12H) + bi13bj12(1 +H))

(1− bi12bj12)(1− bi12bj12H2)
+
bi1 + bi12bj1 + (bi13 + bi12bj13)k0

1− bi12bj12

(9)

α∗j =
bj12(1− h0)K(bi13(1 + bj12bi12H) + bj13bi12(1 +H))

(1− bi12bj12)(1− bi12bj12H2)
+
bj1 + bj12bi1 + (bj13 + bj12bi13)k0

1− bi12bj12

.(10)

To sum up, a necessary condition for a Bayesian Nash equilibrium is that player i’s action in

the second-stage of the game are

a∗i =

α∗i if xi = 0

α∗i + β∗i if xi = 1.
(11)

From the expressions for β∗i , we can conclude on when the equilibrium action strategy is

increasing in the signal. In the case of symmetric payoffs, that is with bi12 = bj12 and bi13 = bj13,

then β∗i > 0 if either b13 < 0 and b12 > 1/H or if b13 > 0 and b12 < 1/H. Moreover, it is

always the case that the actions a∗i and a∗j are comonotonic (either strictly increasing or strictly

decreasing).

The assumption of identical joint marginal implies that at the profiles of signal choice (Y,X)

and (X, Y ) the players will have identical belief on the other’s signal and on the state. The

same claim remains true at the profiles of signal choice (Y, Y ) and (X,X). Therefore, without

loss of generality, we only need to compare the optimal profile of actions a∗ at the profiles of

signal choice (Y,X) and (X,X).

Let a∗(X,X) be the equilibrium action profile of the second-stage given that the profile of

signal choice is (X,X). Define similarly, a∗(Y,X). In particular, we have

a∗i (X,X) =


bi1+bi13+bi12(bj1+bj13)−

(bi13+bi12bj13)q00
pθ+q00−q11

1−bi12bj12 if xi = 0

(bi1+bi12bj1)(1−pθ−q00)+(bi1+bi13+bi12(bj1+bj13))q11
(1−bi12bj12)(1−pθ−q00+q11)

if xi = 1,

(12)

and

a∗i (Y,X) =



bi12(1−h0)K(bj13(1+bi12bj12H)+bi13bj12(1+H))

(1−bi12bj12)(1−bi12bj12H2)
+

bi1+bi12bj1+(bi13+bi12bj13)k0
1−bi12bj12 if xi = 0

(
bi12(1−h0)K(bj13(1+bi12bj12H)+bi13bj12(1+H))

(1−bi12bj12)(1−bi12bj12H2)
+

bi1+bi12bj1+(bi13+bi12bj13)k0
1−bi12bj12

+
bi13K+bi12bj13KH

1−bi12bj12H2

)
if xi = 1.

(13)
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4.1.2 Signal Choice

Suppose that the profile of signal choice is (Y,X) so that it is the less dependent profile given

the available information structure. Then, player i has a profitable deviation if the profile

(X,X) gives him a strictly higher payoff than (Y,X) keeping the action profile a∗(Y,X) fixed.

This provides a necessary but non sufficient condition for an equilibrium. When deviating from

(Y,X) to (X,X) we say that player i increases the dependence. We address now the conditions

under which increasing the dependence constitutes a profitable deviation.

The type of deviation that we study implies that when increasing the dependence, a player has

an effect on his ex-ante expected payoff only by changing the probability that the realization

of his signal is the same as the other player. Hence, the ex-ante expected payoff change only

because h1 and h0 do. To analyze whether increasing the dependence is profitable, we evaluate

the ex-ante expected payoff given in (6) at the action profile a∗(Y,X) and then compare it to

the ex-ante expected payoff where nothing changes except the probability h1 and h0.

At the profile (Y,X), ex-ante expected utility of player i is

P(Y = 0)
(
α∗i (2bi1 + 2bi13k0 − α∗i + 2bi12(α∗j + (1− h0)β∗j ))

)
+P(Y = 1)

(
−(α∗i + β∗i )(−2bi1 − 2bi13k1 + α∗i + β∗i − 2bi12(α∗j + h1β

∗
j ))
)
. (14)

Consider a deviation from player i to (X,X), such deviation increases the dependence and the

payoff is now

P(X = 0)
(
α∗i (2bi1 + 2bi13k0 − α∗i + 2bi12(α∗j ))

)
+P(X = 1)

(
−(α∗i + β∗i )(−2bi1 − 2bi13k1 + α∗i + β∗i − 2bi12(α∗j + β∗j ))

)
. (15)

The difference between (14) and (15) is

−2bi12P(Y = 1)P(X = 0|Y = 1)β∗i β
∗
j (16)

with P(Y = 1)P(X = 0|Y = 1) = q00 + q11 − (1− pθ)z00 − pθw11. If Equation (16) is negative,

then increasing the dependence by deviating to the profile of signal choice (X,X) is profitable for

the player i. From (16) it follows that whenever the actions are monotonic, i.e. β∗i β
∗
j > 0, then

the deviation will be profitable only if bi12 > 0. Similarly, under an antimonotonic equilibrium,

i.e. β∗i β
∗
j < 0, then player i does not benefit from increasing the dependence if there are

complementarities in actions.

Finally, we investigate under which conditions do the players benefit from decreasing the

dependence, that is going from a profile of signal choice (X,X) to (Y,X). In this case, the

difference between the ex-ante expected payoff at the profile (X,X) and the ex-ante expected
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payoff at the profile (Y,X) keeping the actions fixed to a∗(X,X) is

2bi12P(Y = 1)P(X = 0|Y = 1)β∗i β
∗
j . (17)

The case where (17) is negative implies that decreasing the dependence is profitable. Hence,

with complementarity in actions, decreasing the dependence is profitable only if the actions are

strictly antimonotonic.

4.2 The normal quadratic model

The second example is not strictly speaking a special case of our model, because the support

of the signals is infinite. We include it because of the important role it plays in the literature

and because our finiteness assumption is made to keep the exposition simple, not for more

fundamental reasons.

Suppose that S = {X, Y } and N = 2. Payoffs are

ui (θ, a) = −a2
i + 2bi12aiaj + 2bi13aiθ + 2bi1ai +K (aj, θ) (18)

where bi12, bi13 and bi1 are real numbers for i ∈ {1, 2} and K (·, ·) is a function that does not

affect the set of Nash-Bayesian equilibria, but may have an effect on welfare. The information

structure is as follows. The random vector (θ,X, Y ) is a Gaussian vector with expectation

(0, 0, 0) and covariance matrix

σ =

 σθθ σθX σθY

σθX σXX σXY

σθY σXY σY Y


with σXX = σY Y and σθX = σθY , so that (θ,X) and (θ, Y ) have identical joint marginal

distributions.

In this setting, a strategy for player i has two components. First, a source choice Xi ∈ S and a

reaction function αi : RSi −→ R, which maps a signal xs to an action a. Let A be the class of

such functions. Given a profile (X1, X2, α1, α2), the expected payoff of player i is

Ui (X1, X2, α1, α2) = E[ui(θ̃, αi (x̃i) , αj (x̃j))], (19)

where ui(θ, αi, αj) is given by (18).

A necessary condition for the profile (X1, X2, α1, α2) to be a Nash-Bayesian equilibrium is that

no player has an incentive to change its reaction function, i.e., (α1, α2) form a Nash-equilibrium
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in the game where (X1, X2) is already fixed. Hence, fixing signal choices X1 ∈ S and X2 ∈ S,
one can without loss of generality5 restrict attention to affine action strategies of the form

αi (xi) = wixi + κi.

Given X1 ∈ S and X2 ∈ S, we assume that (θ,X1, X2) is a Gaussian vector with expectation

(0, 0, 0) and covariance matrix

σ =

 σθθ σθ1 σθ2

σθ1 σ11 σ12

σθ2 σ12 σ22

 (20)

Taking the first-order condition to (19) with respect to αi conditional on Xi = xi yields the

best-response

αi = bi12E(αj|Xi = xi) + bi13E(θ|Xi = xi) + bi1 (21)

Conjecturing that αj = wjxj + κj, and using the covariance matrix given in (20), we get that

E(αj|Xi = xi) = wj

(
σijxi
σii

)
+ κj (22)

and

E(θ|Xi = xi) =
σθixi
σii

. (23)

The best-response in (21) becomes

αi =

(
bi12wjσij

σii
+
bi13σθi
σii

)
xi + bi12kj + bi1 (24)

An equation similar to (24) also holds for player j, that is

αj =

(
bj12wiσij
σjj

+
bj13σθj
σjj

)
xj + bj12ki + bj1. (25)

5It is known that in a game with quadratic payoffs and Gaussian information, there exists a unique equilibrium
and the equilibrium reaction functions α1 and α2 are affine functions of the signals.Jiménez-Martinez (2013)
and Calvo-Armengol & de Marti Beltran (2009) prove uniqueness of the reaction functions for a game with
quadratic payoffs and an exogenous level of information using the theory of potential games and Radner (1962)’s
team theory.
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Then (24) and (25) define the following system of linear equations
1 − bi12σij

σii
0 0

− bj12σij
σjj

1 0 0

0 0 1 −bi12

0 0 −bj12 1

×


wi

wj

κi

κj

 =


bi13σθi
σii

bj13σθj
σjj

bi1

bj1

 (26)

Solving (26) with respect to (wi, wj, κi, κj) yields the solution (w∗1, w
∗
2, κ

∗
1, κ
∗
2) with

w∗i =
bi13σjjσθi + bi12bj13σijσθj

σiiσjj − bi12bj12σ2
ij

(27)

κ∗i =
bi1 + bi12bj1
1− bi12bj12

. (28)

In a Nash Bayesian equilibrium, given a signal profile (X1, X2), we must have α∗ = (α∗1, α
∗
2)

where

α∗i = w∗i xi + κ∗i . (29)

We proceed next with the first-stage of the game as an equilibrium profile must also specify a

choice of signal for each player. The expected payoff for player i in the first-stage at a profile

(X1, X2) is obtained by evaluating (19) at α∗

E(ui(θ̃, α
∗
i (x̃i), α

∗(x̃j)) = −w2∗
i σii+2bi12w

∗
iw
∗
jσij+2bi13w

∗
i σθi−κ∗i+2bi12κ

∗
iκ
∗
j+2bi1κ

∗
i+E(K(α∗j , θ)).

(30)

Once again, we are interested in necessary conditions for a Bayesian Nash equilibrium. In

particular, we would like to obtain conditions under which a deviation that increases (decreases)

the dependence is profitable.

Suppose that the profile of signal choice is (Y,X), then the ex-ante expected payoff is

−w2∗
i (Y,X)σY Y + 2bi12w

∗
i (Y,X)w∗j (Y,X)σXY + 2bi13w

∗
i (Y,X)σθY (31)

−κ∗i (Y,X) + 2bi12κ
∗
i (Y,X)κ∗j(Y,X) + 2bi1κ

∗
i (Y,X) + E(K(α∗j (Y,X), θ)).

Suppose next that player i considers increasing the dependence with the deviation Xi = X.

Then as the signal choice are not observable, this means that player j will not modify his

action to take into account the new dependence between Xi and Xj. Note that player i’s

action is also fixed. Thus, the effect of the deviation is to change σ12 the covariance between

the players’ signals. In particular, this means that we can restrict attention to the term

2bi12w
∗
i (Y,X)w∗j (Y,X)σij in the payoff function to conclude on the effect of the deviation.
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In this respect, notice that we must have σXX ≥ σY X in order for the covariance matrix σ to

be positive definite. This means that going from (Y,X) to (X,X) necessarily increases the

covariance between the signals. The deviation will be profitable if the term bi12w
∗
i (Y,X)w∗j (Y,X)

is positive.

In the case of symmetric payoffs, that is with bi12 = bj12 and bi13 = bj13, then it is always

the case that the actions α∗i and α∗j are comonotonic (either strictly increasing or strictly

decreasing). Therefore, the profitability of increasing the dependence only depends on the sign

of b12. If actions are substitutes (or equivalently if the payoff is submodular in actions), then

increasing the dependence is not a profitable deviation. However, if actions are complements

(or equivalently if the payoff is supermodular in actions), then increasing the dependence is

indeed a profitable deviation for player i. Hence the profile of signal choice (Y,X) cannot be an

equilibrium if there is complementarity.

Turning next to a deviation that consists of decreasing the dependence, as a result of the

assumption that marginals are identical, we can restrict the analysis to the study of the deviation

(X,X) to (Y,X). In this change, since σXX ≥ σY X , we necessarily decreases the covariance

between the signals. Thus, the deviation will be profitable if the term bi12w
∗
i (X,X)w∗j (X,X) is

negative. The fact that actions are comonotonic in the symmetric case allows us to conclude

that it is the sign of b12 that drives whether decreasing the dependence is profitable. If actions

are complements (or equivalently if the payoff is supermodular in actions), then decreasing the

dependence is not a profitable deviation. However, if actions are substitutes (or equivalently

if the payoff is submodular in actions), then decreasing the dependence is indeed a profitable

deviation for player i. Hence the profile of signal choice (X,X) cannot be an equilibrium if

there is substitutability.

In the rest of the paper, we will generalize some of the results obtained in these examples to a

larger class of games. In the next section, we introduce a notion of dependence of a random

variable on a random vector that will play an important role in this analysis.

5 Dependence of a random variable on a multivariate

vector

We start by introducing various concepts of dependence between a random variable and a fixed

random vector and establish some relationships between them. We relate this results to a few

known results.

Let h be a pdf distribution on X . Let X be the set of random variables Xj on X whose pdf is

h. Consider a fixed random vector X−i with support in XN−1, with N ≥ 2, such that each of

the univariate components Xj is an element of X. We will define various weak partial orders on
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the set X that compare the similarity of the elements of this set with the components of the

vector X−i.

Definition 1 (General covariance dependence). For all Yi and Zi in X, the variable Yi has

a weakly greater general covariance dependence on X−i than Zi, denoted Yi �X−iG Zi if for all

increasing functions r : X → R and s : XN−1 → R,

Cov (r (Yi) , s (X−i)) ≥ Cov (r (Zi) , s (X−i)) .

We say that the function φ : XN → R has increasing differences in xi and x−i if for all

x = (xi, x−i) ∈ XN and y = (yi, y−i) ∈ XN , such that x ≤ y, we have

φ (yi, x−i)− φ (xi, x−i) ≤ φ (yi, y−i)− φ (xi, y−i) .

We say that the function φ has strictly increasing differences in xi and x−i if for all

x = (xi, x−i) ∈ XN and y = (yi, y−i) ∈ XN , such that xi < yi and x−i < y−i we have

φ (yi, x−i)− φ (xi, x−i) < φ (yi, y−i)− φ (xi, y−i) .

We say that φ has decreasing differences in xi and x−i if −φ has increasing differences in

xi and x−i and that φ has strictly decreasing differences in xi and x−i if −φ has strictly

increasing differences in xi and x−i.

Definition 2 (Increasing differences dependence). The random variable Yi has a weakly greater

increasing-differences dependence on X−i than the random variable Zi, denoted Yi �X−i∆ Zi, if

for all functions φ : XN → R that have increasing differences in xi and x−i, E (φ (Yi, X−i)) ≥
E (φ (Zi, X−i)) .

Definition 3 (Concordance dependence). The random variable Yi has weakly greater concor-

dance dependence on X−i than the random variable Zi, denoted Yi �X−iC Zi, if the cdfs F and

G of the random vectors (Yi, X−i) and (Zi, X−i) satisfy for all x ∈ XN , G (x) ≤ F (x) and

in addition if the survival function F (x) = PF ((Yi, X−i) ≥ x) and G (x) = PG ((Zi, X−i) ≥ x)

satisfy G (x) ≤ F (x) .

Given that the random vectors (Yi, X−i) and (Zi, X−i) have the same univariate marginal

distributions, an equivalent definition is that Yi �X−iC Zi, if for all x ∈ X I , Pr ((Yi, X−i) ≥ x) ≥
Pr ((Zi, X−i) ≥ x) .

Our next dependence weak partial order relies on the notion of stochastic dominance, which we

need to introduce first.

The following result due to Lehman (1955) and Levhari, Paroush and Peleg (1975) establishes

the equivalence between four different possible ways to define the stochastic dominance ordering
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for multivariate vectors, which generalizes the familiar first-order stochastic dominance ordering

from the univariate case. A set L ⊆ X k is called comprehensive if for all x ∈ L, x′ ≤ x

=⇒ x′ ∈ L. For any vector x ∈ X k, let 1x be the indicator function of the singleton {x} .

Theorem 1. Let X and Y be random vectors with respective pdfs f and g on the support X k.

The following conditions are equivalent:

i. For all comprehensive L, we have∑
x∈L

f (x) ≥
∑
x∈L

g (x) .

ii. For all nondecreasing mapping W : X k → R, E(W (Y )) ≥ E(W (X)).

iii. There exist random vectors X ′ and Y ′ with respective pdfs f and g such that X ′ ≤ Y ′.

iv. There exist a finite list of vector pairs (xt, yt)t=1,...,T with xt ≤ yt and a list of reals

(∆t)t=1,...,m , with ∆t ∈ [0, 1] such that

g (x)− f (x) =
∑
t

∆t (1yt (x)− 1xt (x)) .

This result allows us to provide the following definition.

Definition 4. A random variable Z with pdf g on the support X k stochastically dominates

another random vector Y with pdf f on X k if they satisfy the equivalent conditions (i) to (iv)

in Theorem 1.

The notion of multivariate stochastic dominance enables us to define our next dependence weak

partial order.

Definition 5 (Dominance dependence). The random variable Yi has a weakly greater dominance

dependence on X−i than the random variable Zi, denoted Yi �X−iD Zi, if for all xi, the distribution

of X−i conditional on Zi ≤ xi stochastically dominates the distribution of X−i conditional on

Yi ≤ xi.

For each of these weak partial orderings, we can define the associated strict orderings as follows:

for each O ∈ {G,∆, C,D} , we let Y �O X if Y �O X and not X �O Y.

We are now ready to present a result that describes the relation between the different dependence

weak partial orders.

Theorem 2. The covariance dependence, increasing differences dependence and dominance

dependence weak partial orders are equivalent. If N = 2, these weak partial orders are equivalent

to the concordance weak partial order. If N ≥ 3, they are strictly stronger than the concordance

weak partial order.
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Proof. In the case N = 2, the equivalence of the four weak partial orders are by now classic

results in probability and statistics. The equivalence between the increasing differences and

concordance orderings was established by Tchen (1980). The other equivalence is well known

(e.g. Müller and Stoyan, 2002, Theorem 3.8.2). In the continuation, we prove the result in the

case where N = 3.

Step 1: The general covariance dependence weak partial order is at least as strong as the

increasing differences dependence weak partial order.

This proof is adapted from the proof of Strulovici and Meyer (2012) of the analogous implication

for interdependence weak partial orders, which builds on a proof by Christofides and Vaggelatou

(2004) that establishes this implication in the special case of the comparison between a random

vector and its independent counterpart. Let X−i be a fixed random vector. Let Yi and Zi in X,
such that Yi �X−iG Zi. We will show that Yi �X−i∆ Zi.

First, let W = (W1, ...,WN) be a random vector that has the same distribution as (Zi, X−i)

but is independent of (Yi, X−i) . This implies that the vectors (Yi,W−i) and (Wi, X−i) have the

same distribution. Thus it follows that for any function φ : XN → R, we have

Eφ (Wi, X−i)− Eφ (Yi,W−i) = 0. (32)

Now, let φ be any function that has increasing differences in xi and x−i. We will show that

Eφ (Yi, X−i)− Eφ (Wi,W−i) ≥ Eφ (Wi, X−i)− Eφ (Yi,W−i)

Together with (32) and the equality E (φ (Wi,W−i)) = E (φ (Zi, X−i)) , this will imply that

E (φ (Yi, X−i))− E (φ (Zi, X−i)) ≥ 0.

Label k = 1, ..., k the elements of X . We can write

φ (Yi, X−i)− φ (Wi, X−i) =
k−1∑
k=0

(IYi>k − IWi>k) (φ (k + 1, X−i)− φ (k,X−i)) .
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Therefore

Eφ (Yi, X−i)− Eφ (Wi, X−i)

=
k−1∑
k=0

E [IYi>k (φ (k + 1, X−i)− φ (k,X−i))]−
k−1∑
k=0

E [IWi>k (φ (k + 1, X−i)− φ (k,X−i))]

=
k−1∑
k=0

E [IYi>k (φ (k + 1, X−i)− φ (k,X−i))]−
k−1∑
k=0

E [IWi>k]E (φ (k + 1, X−i)− φ (k,X−i))

=
k−1∑
k=0

E [IYi>k (φ (k + 1, X−i)− φ (k,X−i))]−
k−1∑
k=0

E [IYi>k]E (φ (k + 1, X−i)− φ (k,X−i))

=
k−1∑
k=0

Cov (IYi>k, (φ (k + 1, X−i)− φ (k,X−i)))

≥
k−1∑
k=0

Cov (IZi>k, (φ (k + 1, X−i)− φ (k,X−i)))

=
k−1∑
k=0

Cov (IWi>k, (φ (k + 1,W−i)− φ (k,W−i)))

= Eφ (Wi,W−i)− Eφ (Yi,W−i) .

where the second equality holds because Wi is independent from X−i, the third equality holds

because Wi and Yi have the same marginal distribution, the inequality holds because Yi �X−iG Zi,

the function r (xi) = Ixi>k is increasing in xi, and the function s (x−i) = φ (k + 1, x−i) −
φ (k, x−i) , is increasing in x−i since φ has increasing differences, the fifth equality holds because

(Zi, X−i) has the same distribution as W, and the last equality holds by the same arguments

invoked in the first four equalities. We thus obtain E (φ (Yi, X−i))− E (φ (Zi, X−i)) ≥ 0. Since

this is true for any function φ that has increasing differences, it follows that Yi �X−i∆ Zi, the

desired conclusion.

Step 2: The increasing differences dependence weak partial order is at least as strong as the

general covariance dependence weak partial order.

Let X−i be a fixed random vector. Let Yi and Zi in X, such that Yi �X−i∆ Zi. We will show that

Yi �X−iG Zi.

Let r : X → R and s : XN−1 → R be two increasing functions. Let φ : XN → R be such that

φ (xi, x−i) = r (xi) s (x−i) . Let x ∈ XN and y ∈ XN be such that x ≤ y. Then

φ (yi, x−i)− φ (xi, x−i) = (r (yi)− r (xi)) s (x−i)

≤ (r (yi)− r (xi)) s (y−i)

= φ (yi, y−i)− φ (xi, y−i)

24



where the inequality holds because both r and s are increasing functions. Thus φ has increasing

differences in xi and x−i. It follows that

E [r (Yi) s (X−i)] = Eφ (Yi, X−i)

≥ Eφ (Zi, X−i)

= E [r (Zi) s (X−i)]

where the inequality holds because Yi �X−i∆ Zi and φ has increasing differences in xi and x−i.

Because Yi and Zi have the same marginal distribution, it also holds that E [r (Yi)] = E [r (Zi)] .

Together with E [r (Yi) s (X−i)] ≥ E [r (Zi) s (X−i)] , it implies that

Cov (r (Yi) , s (X−i)) ≥ Cov (r (Zi) , s (X−i)) .

Since this holds for any increasing functions r and s, we obtain that Yi �X−iG Zi, the desired

conclusion.

Step 3: The general covariance dependence weak partial order is at least as strong as the

concordance dependence weak partial order.

This can be shown by using r (xi) = Ixi≥ki for all ki = 1, ..., k and s (x−i) = Ix−i≥k−i for all

k−i ∈
{

1, ..., k
}N−1

.

The following example, which we adapt from Hu, Müller and Scarsini (2004) shows that the

second implication is strict.

Let (X2, X3) be uniformly distributed on the set {(0, 0) , (1, 1) , (2, 1) , (0, 2) , (1, 2) , (2, 2)} . Next

let Y1 = φ (X2, X3) and Z1 = ψ (X2, X3) , where φ and ψ are defined by φ (0, 0) = 0; φ (1, 1) = 2;

φ (2, 1) = 1; φ (0, 2) = 2; φ (1, 2) = 1; φ (2, 2) = 2 and ψ (0, 0) = 2; ψ (1, 1) = 1; ψ (2, 1) = 2;

ψ (0, 2) = 0; ψ (1, 2) = 2; ψ (2, 2) = 1. Both Y1 and Z1 have the marginal distribution h (0) = 1/6,

h (1) = 1/3 and h (2) = 1/2. One can verify that Y1 �X−1

C Z1 holds but that Y1 �X−1

D Z1 does

not hold.

Step 4: The general covariance dependence weak partial order is equivalent to the dominance

dependence weak partial order.

This equivalence is easy to prove. We leave it to the reader.�

In the case N = 2, Theorem 2 is well knows and was established by Tchen (1980) and other

authors (see Müller and Stoyan, 2002, Theorem 3.8.2 for references). When N = 2, dependence

relations can be viewed as comparisons on how different random variables depend on a fixed

random vector that happens to be univariate. This is the view that we take and that we

generalize to the case where the fixed vector is not necessarily univariate. The statistics
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and economics literature has up to now taken another view, which is to consider dependence

relations in the case N = 2 as measures of interdependence between the two components of a

bivariate random vector. The natural generalization to the case of a general N ≥ 2, is to consider

dependence as a measure of interdependence between all univariate components of a multivariate

random vector. Partial generalizations for N ≥ 3 along this line exist. They are reviewed

by Strulovici and Meyer (2012), who also establish new relations. Roughly speaking, one can

define a number “more interdependent than” weak partial orders on the set of all N -variate

random vectors with the same fixed marginal distributions: a general covariance interdependence

relation, a supermodular interdependence relation, a concordance interdependence relation and

many others. One could imagine a way to define a dominance interdependence relation, but to

the best of our knowledge, this has not been studied. As Strulovici and Meyer (2012) summarize,

the general covariance interdependence relation is strictly stronger than the supermodular

interdependence relation (established by Strulovici and Meyer, 2012, generalizing a proof of

Christofides and Vaggelatou, 2004, for a special case), which in turn is strictly stronger than

the concordance interdependence relation (Müller and Stoyan, 2002). The strictness in these

statements is established by examples provided by Hu, Müller and Scarsini (2004) and Strulovici

and Meyer (2012).

Our result suggests that the fact that these relations are not equivalent when N ≥ 3, unlike

what occurs in the case N = 2, is not due to the multivariate nature of the objects being

compared, but rather to the multilateral comparisons between many pairs of variables, and the

fact that they all can change, as opposed to our comparisons that only involve two vectors, one

of them held fixed, and the other one univariate.

We now return to the study of the equilibria of games with endogenous information struc-

tures.

6 Equilibrium information structures: necessary condi-

tions

Using the result in Theorem 2, we will first obtain necessary conditions for equilibrium informa-

tion structures.

For any random variable X, let Xθ denote the random variable X conditional on the state

being θ. For all i ∈ I, and all si, s
′
i and s−i, we say that (s′i, s−i) has weakly greater

(smaller) dependence than (si, s−i) if for all θ, conditional on θ, the vector
(
Xθ
s′i
, Xθ

s−i

)
has

weakly greater (smaller) dependence than the variable
(
Xθ
si
, Xθ

s−i

)
. We say that (s′i, s−i) has

strictly greater (smaller) dependence than (si, s−i) if (s′i, s−i) has weakly greater (smaller)

dependence than (si, s−i) but (si, s−i) does not have weakly greater (smaller) dependence than
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(s′i, s−i) . At any signal profile s, and for all i ∈ I, we say that player i can strictly increase

(decrease) the dependence at s of his own signal on the other players’ signals, if there exists

s′i such that (s′i, s−i) has strictly greater (smaller) dependence than (si, s−i) .

We say that ui has strictly increasing differences in own and other’s actions if for all

θ, the function ui (θ, ·) has strictly increasing differences in ai and a−i, and that ui has strictly

decreasing differences in actions if −ui has strictly increasing differences in actions.

Strictly increasing (decreasing) differences implies that in the complete information game (where

θ is commonly known), player i has an increasing (decreasing) best reply function (Topkis, 1998;

Milgrom and Roberts, 1994).

We are now ready to state the necessary condition that must hold in equilibrium in a game with

endogenous information structures. It relates the signal choice of a player, the action strategy

monotonicity properties and the payoff function of this player.

Theorem 3. Let i be a player such that ui has strictly increasing (decreasing) differences in

own and others’ actions. Let (s, α) be a pure Nash-Bayesian equilibrium of the game.

1. If α is strictly monotonic, then player i cannot strictly increase (decrease) the dependence

of his own signal on the other players’ signals at s.

2. If α is strictly antimonotonic for i, then player i cannot strictly decrease (increase) the

dependence of his own signal on the other players’ signals at s.

Proof. We only prove point 1, and only in the case where α is strictly monotonic and player i

has strictly increasing differences in actions. The proofs of the other three cases are similar.

First, suppose that ui has strictly increasing differences in own and other’s actions and suppose

that player i can strictly increase the dependence at s, so that there exists a source s′i 6= si such

that (s′i, s−i) has strictly greater dependence than s. We will show that the strategy (s′i, αi) is a

profitable deviation for player i.

Since the action strategy profile is kept fixed and is strictly monotonic, and since ui has strictly

increasing differences in own and other’s actions, then for each θ, the function that associates the

payoff ui
(
αi (xsi) , α−i

(
xs−i

)
, θ
)

to the signals realization profile (xs, xs′) has strictly increasing

differences in xi and x−i. Thus by Theorem 2, the inequalities

Eθ
[
ui
(
αi (xsi) , α−i

(
xs−i

)
, θ
)]
≤ Eθ

[
ui
(
αi
(
xs′i
)
, α−i

(
xs−i

)
, θ
)]

hold for all realizations of θ, and at least strictly for some realization of θ that has positive

probability. Thus we obtain that

E
[
ui
(
αi (xsi) , α−i

(
xs−i

)
, θ
)]
< E

[
ui
(
αi
(
xs′i
)
, α−i

(
xs−i

)
, θ
)]
,
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the desired conclusion.�

Theorem 3 says that when a player’s payoff function has strictly increasing differences in actions,

and expects a strictly monotonic action strategy profile, he chooses to acquire information as

dependent of the other player’s information as possible. In particular, if N = 2 and both players

have access to the same signals, in any strictly monotonic equilibrium, they choose to acquire

essentially the same information. The next definition formalizes this idea. For any signal profile

s ∈ S, let F θ
si

be the marginal distribution of Xsi , conditional on θ. We say that s is public

information if all i and j, the event Xsi = Xsj has probability one.

Corollary 1. Suppose that N = 2, that S1 = S2 and let i be a player such that the payoff

function ui has strictly increasing (decreasing) differences in actions. Let (si, s−i, αi, α−i) be a

pure Nash-Bayesian equilibrium of the game. If α is strictly monotonic (antimonotonic for i),

the signals profile is public information.

Proof. For any signal profile s, and any player i, we can construct the profile (s′i, s−i) such that

s′i := s−i and Xs′i
�Xs−iC Xsi . By Theorem 3, it must be that Xsi �

Xs−i
C Xs′i

. Since Xs′i
= Xs−i ,

we obtain Xsi �
Xs−i
C Xs−i , which implies that the profile s is public information.�

It is worth noting that Corollary 1 does not generalize to the case of three players or more, as

can be seen in the following example.

Example 1. Let N = 3 and S = S1 = S2 = S3 = {a, b, c} and let f be a cdf on {0, 1}4 such

that the joint marginal of (θ,Xs, Xt) is identical for all s, t ∈ {a, b, c} , with s 6= t. Let

ui (θ, a) = −a2
i + b12

∑
j 6=i

aiaj − b13aiθ + b1ai

be player i’s payoff, with b12 > 0. Then there exists a Nash-Bayesian equilibrium where each

player plays the same action strategy αi = (αi0, αi1) and where s = (a, b, c) .

Even when Si 6= S−i, Theorem 3 leads to sharp predictions when the sets of signals Si and S−i

have a certain structure. Each signal profile s−i induces a weak partial order on the set Si,

namely the “weakly more dependent on s−i” relation. If this weak partial order has a greatest

element, let us say that this signal si is most dependent on s−i in Si. We say that the tuple

(S1, ..., SN , F ) is positively simple for i if every signal in S−i has a most dependent signal

in Si. For example, if N = 2 and S1 = S2, the triple (S1, S2, F ) is positively simple for both

players, and each signal is its own most dependent signal in S.6

Corollary 2. Suppose that (S1, ..., SN , F ) is positively simple. Let (s1, ..., sN , α1, ..., αN) be

a Nash-Bayesian equilibrium of the game. Suppose that either (i) ui has strictly increasing

6Is there a nontrivial example of a positively simple tuple (S1, ..., SN , F ) when N ≥ 2? It is not clear. For
example S1 = ... = SN = S will not be sufficient in general, except in trivial cases, such as if S is a singleton or
if N = 2.
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differences and α is strictly monotonic or (ii) ui has strictly decreasing differences and α is

strictly antimonotonic for i. Then the signal si is most dependent on s−i in Si.

Proof. This is a direct implication of Theorem 3.�

Similarly, for each i, and each signal profile s, we say that signal si is least dependent on

s−i in Si if it is a least element in Si for the “weakly more dependent on s−i” relation. We

say that the tuple (S1, ..., SN , F ) is negatively simple for i if every signal in S−i has a least

dependent signal in Si. For example, if for every i and every signal s−i, the set Si contains a

signal that is independent from s−i and all signals in S are pairwise positively dependent, the

tuple (S1, ..., SN , F ) is negatively simple for all players, and each signal si independent from

s−i is least dependent on s−i in Si and vice-versa.

Corollary 3. Suppose that (S1, ..., SN , F ) is negatively simple. Let (s1, ..., sN , α1, ..., αN) be a

Nash-Bayesian equilibrium of the game. Suppose that for some player i, either (i) ui has strictly

decreasing differences in actions and α is strictly monotonic; or (ii) ui has strictly increasing

differences in actions and α is strictly antimonotonic for i. Then the signal si is least dependent

on s−i in Si.

Proof. This is a direct implication of Theorem 3.�

7 Equilibrium information structures: sufficient condi-

tions

In this section we provide sufficient conditions for any information structure s at which all agents

maximize the dependence of their own signal on the other signals to be part of a Nash-Bayesian

equilibrium of the game with an endogenous information structure.

Theorem 4. Let N ≥ 2. Suppose that for each i,

i. ui has increasing differences in own and others’ actions.

ii. ui has increasing differences in ai and θ.

iii. For all xi < x′i, the distribution of θ conditional on Xi = x′i first order stochastically

dominates the distribution of θ conditional on Xi = xi.

iv. For every profile s, all i and all xi < x′i, the distribution of X−i conditional on Xi = x′i

stochastically dominates the distribution of X−i conditional on Xi = xi.

Then for any profile s such that for each i, the signal si is most dependent on s−i in Si, there

exists an increasing action strategy profile α such that (s, α) is a Nash-Bayesian equilibrium for

the game.
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Proof. Let Γs denote the game with exogenous information structure s, and Γ the game

with endogenous information structure. The main result in Van Zandt and Vives (2007) imply

that there exists an increasing action strategy profile α such that in the game Γs, the profile

α is a Nash-Bayesian equilibrium of Γs. Let α be such a profile. We will now show that the

profile (s, α) is a Nash-Bayesian equilibrium of the game with endogenous information structure

Γ.

Suppose by contradiction that (s′i, α
′
i) is a profitable deviation for player i. Let α′′i be a player

i’s best response to α−i under the information structure (s′i, s−i) Then by Proposition 11 in

Van Zandt and Vives (2007), the action strategy α′′i is increasing. Since (s′i, α
′
i) is a profitable

deviation for player i from profile (s, α) , therefore (s′i, α
′′
i ) is also a profitable deviation for

player i from profile (s, α) . But, because si has weakly greater dependence on si than s′i, the

same argument used in Theorem 3 implies that (si, α
′′
i ) is an even (weakly) better profitable

deviation, which contradicts the definition of profile (s, α), as a Nash-Bayesian equilibrium of

the game Γs with exogenous information structure s. Therefore no player has any profitable

deviation, the desired conclusion.�

The following result is a direct implication of Theorem 4.

Corollary 4. Let N ≥ 2. Suppose that conditions (i) to (iv) of Theorem 4 hold. In addition

suppose that the set
⋂
i∈I
Si is nonempty, i.e. that public information is feasible. Then for any

public information signal profile, there exists an increasing action strategy profile α such that

(s, α) is a Nash-Bayesian equilibrium for the game Γ.

8 Mixed strategies

The results obtained in Theorem 3 generalize to mixed strategies, but they imply very few

restrictions for Nash-Bayesian equilibria where players play non degenerate mixed strategies. For

example, consider a game with two players and two signals, with a fixed information structure

such that both players observe each of the two signals with equal probabilities (independent

draws). Suppose that this game admits a pure Nash-Bayesian equilibrium in action strategies

(they could be pure or not).

Then it is easy to see that the game with an endogenous information structure admits a

Nash-Bayesian equilibrium, where both players randomize with equal probabilities between the

two signals. To see this, suppose that player 2 uses this strategy. From the point of view of

the player 1, the two signals are then equally informative in a Blackwell sense on the vector

(θ, a2) , which is all he cares about. It is then a best response for him to play this half half

mixed strategy and the same argument holds for player 2. This phenomenon is more general. A

symmetric fully mixed equilibrium exists, for any number of players, if and only if the Bayesian
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game where this structure is fixed admits a Nash-Bayesian equilibrium. What is important for

the result is that there are only two signals in S. A more general result can be obtained for a

larger number of signals in S, provided that some symmetry condition, which automatically

holds in the case of two signals, is imposed on the signal structure.

Theorem 5. Let N ≥ 2 and S = {a, b} Consider the game with an exogenous information

structure, where each player observes a or b with probability 1/2 (independent draws across

players). Suppose that this game admits a pure Nash-Bayesian equilibrium in action strategies

(pure or not). Then this action profile and this information structure form a Nash-Bayesian

equilibrium of the game Γ where the information structure is endogenous.

9 Ex ante Pareto-inefficiency of equilibrium information

structures

In this Section, we show that the players’ equilibrium signal choices sometimes differ from

what a planner would design. We suppose that the planner may choose the information

structure (within the same set available to the players), but the players still choose their actions

non-cooperatively in the second stage. We show that in the absence of a planner, pure Nash

equilibria need not be ex ante Pareto-efficient. More precisely, we provide an example with two

players that has the property that, in all pure Nash-Bayesian equilibria, the players choose an

ex ante Pareto-dominated information structure.

Consider a duopoly where the firms produce a differentiated product and compete in Bertrand.7

Each of the two firms i = 1, 2 sets a price ai for its product and faces the linear demand

Qi = b0 + b1θ − γ(ai − aj). Each firm i has convex costs Ci = c0Qi + c1Q
2
i . The intercept θ of

the demand function is the unknown state.

Firm i’s profit is then

ui(a, θ) = Qi[ai − Ci]

= [b0 + b1θ − γ(ai − aj)][ai − c0 − c1(b0 + b1θ − γ(ai − aj))]. (33)

The payoff in (33) is equivalent to our general payoff, that is

ui(θ, a) = −a2
i + 2b12aiaj + 2b13aiθ +K(aj, θ) (34)

where K(aj, θ) = −b22a
2
j + 2b23ajθ − b33θ

2 and

b12 = 1+2c1γ
2+2c1γ

, b22 = c1γ
1+c1γ

, b13 = b1(1+2c1γ)
2γ(1+c1γ)

, b23 = − c1b1
1+c1γ

, b33 =
c1b21

γ(1+c1γ)
.

7This example comes from Jimenez (2013).
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Note that b22, b23 and b33 do not affect the Nash Bayesian equilibrium in the second-stage. As

pricing decisions are complements, the payoff function in (34) is supermodular (b12 > 0) in

actions.

Suppose that 2 signals are available, that is S = {X, Y }, and that the random vector (θ,X, Y )

is a Gaussian vector with expectation (0, 0, 0) and covariance matrix

σ =

 σθθ σθX σθY

σθX σXX σXY

σθY σXY σY Y


with σXX = σY Y and σθX = σθY , so that (θ,X) and (θ, Y ) have identical joint marginal

distributions. This information structure is identical to the one in Section 4.2.

We now show that when the firms do not observe the information structure, then (X∗1 , X
∗
2 ) ∈

{(X,X), (Y, Y )}, but this might no longer be true if the firm can observe the information

structure.

First, from Section 4.2 we know that in the case of a symmetric payoff function, the equilibrium

in the second-stage is of the form w∗i xi+κ
∗
i and that it is always strictly monotonic, i.e. w∗iw

∗
j > 0.

From Section 4.2 we know also that deviating from the profile of signal choice affect a player’s

payoff only up to the covariance between X1 and X2. Moreover, we show that, when b12 > 0

increasing the dependence is a profitable deviation, but that decreasing the dependence is not.

Therefore, in equilibrium, in the first-stage, we will have (X∗1 , X
∗
2 ) ∈ {(X,X), (Y, Y )}.

Suppose now we assume the players can observe the information structure and in particular,

that they see when a player deviates. Then, if player i changes the dependence between the

signals, then player j detects the deviation, acknowledges the resulting change in the dependence

and changes his action consequently through a change in w∗j . We say that a deviation by player

i triggers a reaction and hence induces a strategic effect.

For instance suppose that the profile of signal choice is (X,X), then

w∗i (X,X) = w∗j (X,X) =
b13σθX

σXX(1− b12)
, (35)

and player i’s ex-ante expected payoff is

b13(b13(1− b22) + 2(1− b12)b23)σ2
θX

(1− b12)2σXX
. (36)

For a deviation by player i to the profile (Y,X), then

w∗i (Y,X) = w∗j (Y,X) =
b13σθX

σXY (1− b12)
, (37)
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and player i’s ex-ante expected payoff is ex-ante expected payoff is

b13(b13(1− b22)σXX + 2(σXX − b12σXY )b23)σ2
θX

(σXX − b12σXY )2
. (38)

The difference between (36) and (38) is

b12b13(σXX − σXY )(2(1− b12)b23(σXX − b12σXY )− b13(1− b22)((b12 − 2)σXX + b12σXY ))σ2
θX

(1− b12)2σXX(σXX − b12σXY )2
.

(39)

Whenever, (39) is negative, then decreasing the dependence will be a profitable deviation for

player i. For instance, if b12 > 0, b13 > 0 and b23 < 0, as it is the case in the duopoly example,

then it is possible that (39) be negative. Table 1 shows the sign for Equation (39) for different

parameters of the initial duopoly game γ, c1 and b1.

b12 b13 b23 b22 Sign of (39)
i. γ = 3, c1 = 0.1, b1 = 0.8 0.62 0.08 -0.06 0.23 +
ii. γ = 3, c1 = 0.5, b1 = 0.8 0.8 0.11 -0.16 0.6 +
iii. γ = 3, c1 = 0.1, b1 = 2.0 0.62 0.21 -0.15 0.23 +
iv. γ = 5, c1 = 0.5, b1 = 0.8 0.86 0.07 -0.11 0.71 -

Table 1: Bertrand Competition, σXX = 1, σXY =
0.75, σθX = 0.5

Hence, we can conclude that in a Bertrand environment, the equilibrium is sensitive to the

parameters and to the assumption on the observability of information structure. Our example

proves the following result.

Theorem 6. In general, the Nash-Bayesian equilibria of Γ need not be ex ante Pareto-efficient.

There exist examples were all Nash-Bayesian equilibria of Γ are ex ante Pareto-inefficient.

This result suggests that policy intervention is sometimes desirable in markets for information.

In a decentralized system, agents may choose either too similar or too dissimilar information,

and policy intervention can help mitigating this type of inefficiency.

10 Observable signal choices

In the main model, we made the assumption that signal choices of the first stage are not

observed by the players. This is important, since it implies that a deviation from equilibrium

play does not affect the other player’s action choices in the second stage: the choice of signal

and actions are strategically simultaneous. One can imagine situations where signal choices are

observable. For example a company may sign a contract with a market research firms and this

may be observable by all other companies.
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Interestingly, this difference can have important effects. To see this, consider the case of two

symmetric players. In this case, both players in stage 1 face the problem of the planner, which

we analyze in Section 9. As we showed, the planner’s solution may be disjoint from the set of

Nash equilibria of the game where signal choices are unobservable. Thus, we can deduce the

following result.

Theorem 7. In general, the set of Nash-Bayesian equilibria of the game Γ∗ where signals are

observable is not equal to the set of Nash-Bayesian equilibria of the game Γ where signals are

not observable. There exist example where the two sets are disjoint. If there are two players and

the game is symmetric, the second set coincides with the set of ex ante Pareto efficient profiles

of both games.

This result suggests that an intervention that mandates players to publicly disclose their sources

of information may sometimes be desirable, in that it could help to mitigate excessive information

similarity or dissimilarity that may result from a decentralized market for information.
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