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Abstract

In a dynamic contest where it is costly to compete, a player on a losing trajectory
must decide whether to surrender or to keep fighting in the face of bleak odds.
We experimentally examine the prediction of last stand behavior in a multi-battle
contest with a winning prize and losing penalty, as well as the contrasting prediction
of surrendering in the corresponding contest with no penalty. As predicted, we find
that players nearing defeat compete more fiercely when they face a large penalty, but
that they taper their effort when losing is costless. This behavior impacts winning
margins: neck-and-neck victories are more common when the penalty is relatively
large, while landslide victories occur more frequently when the penalty is small. We
find that the winner of the initial battle will typically also win the overall contest.
Subjects with previous experience in related experiments tend to mirror theoretical
predictions more closely than those without.
Keywords: Dynamic Contest, Multi-Battle Contest, Experiment, Last Stand,
Winning Margin
JEL: C73, C92, D44, D72, D74

1. Introduction

The notion of a last stand has become iconically linked with the tale of General
George A. Custer—a celebrated Civil War hero who, in 1876, in the Territory of
Montana, fought to the death alongside his men as they were heavily outnumbered
by Northern Cheyenne and Lakota warriors. As in the case of General Custer, last
stand behavior is fundamentally characterized as a strong defensive push in the face
of bleak odds. Making such a push, however, is necessarily costly, which raises a
question about the optimality of a last stand. When would a player on a losing
trajectory be willing to incur the cost of a last stand rather than simply accepting
defeat? Put differently, when is it better to fight or surrender?

Theoretically, Gelder (2013) provides sufficient conditions under which last stand
behavior is optimal. If there is a cost to losing (beyond merely forgoing the winning
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prize) and if players have a time preference for when they win or lose, then mak-
ing a last stand becomes a best response for a player on a losing trajectory. The
optimality of last stand behavior contrasts with earlier work on dynamic contests
where players slacken their effort or even give up entirely if they fall behind. An
early example is Fudenberg et al. (1983) who examine preemption in patent races
by firms who have a marginal lead over their competitors. A more recent example
is Konrad and Kovenock (2009), who, like Gelder (2013), examine a contest where
players compete in several successive battles until one of the players achieves a criti-
cal number of victories. Konrad and Kovenock find that a player who is behind will
completely give up—essentially surrendering—unless there is a separate intermedi-
ate prize for winning each of the individual battles. This paper tests the theoretical
predictions of Gelder (2013) and Konrad and Kovenock (2009). We find evidence
to support the basic predictions of each of these models.

Experimentally, this paper examines competitive behavior in a best-of-seven tour-
nament, a special case of the contest structure in Gelder (2013) and Konrad and
Kovenock (2009). This type of a contest is known more generally as a two-player
race and stems back to the patent race model of Harris and Vickers (1987). Al-
though previous experimental work has addressed best-of-three tournaments (see
Mago et al. 2013; Mago and Sheremeta 2012; Irfanoglu et al. 2010; and Sheremeta
2010), the full dynamics of last stand behavior can only be realized with a larger
number of battles. The best-of-seven tournament provides a structure that is large
enough to capture the desired dynamics, but small enough to keep the experiment
simple. It is also a natural choice as it is used in many championship settings, such
as the World Series.

The last stand environment of Gelder (2013) differs from Konrad and Kovenock
(2009) through the introduction of a losing penalty and discounting. Since the
behavioral predictions of Konrad and Kovenock are innocuous to the introduction
of discounting, we can compare the two models solely on the basis of the losing
penalty. We examine three prize-penalty combinations: one in which there is no
penalty, one with a prize and penalty of equal magnitude, and a third in which
the penalty is dramatically larger than the prize. For each of these three cases,
the net difference between the prize and penalty is identical; so in a one-shot con-
test, equilibrium behavior would be the same in each case. The diverging predictions
of surrendering versus making a last stand only come into play in a dynamic setting.

A consequence of last stand behavior is that the overall winning margin can be
predicted based on the magnitude of the losing penalty in comparison to the win-
ning prize. Neck-and-neck outcomes are more likely to be observed when the losing
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penalty is relatively large, while landslide victories are more probable when the
winning prize is dominant. We find evidence to support this hypothesis.

We model each battle of the best-of-seven tournament as an all-pay auction—the
highest bidder wins, but all players incur the cost of their own bid (see Hillman
and Riley 1989; and Baye et al. 1996). Although the winning prize and losing
penalty are fixed, allowing players to expend or conserve resources through the size
of their bids makes the tournament a non-constant-sum game. Given the strate-
gic complexity of this environment, we wanted to see if prior experience in other
contest related experiments affected performance. To do this we placed restric-
tions on the subject pool from which participants were drawn. Some sessions were
conducted solely with subjects who had previously participated in another contest
related experiment; other sessions were entirely comprised of subjects who had no
such experience. A third set of sessions did not have any such constraints and so
allowed for a mix of subjects with and without experience. As a rule, sessions with
more experienced subjects tended to behave more like the theoretical predictions.

Our paper fits within a small but emerging literature on dynamic contest exper-
iments, as well as within a broader literature on contests and tournaments (see
Dechenaux et al. 2012 for an extensive survey on experiments involving contests).
In terms of “best-of” experiments, we bridge the gap between the work on best-
of-three tournaments mentioned previously and the best-of-19 tournament in Zizzo
(2002), which was explicitly patterned after Harris and Vickers (1987). Our paper is
also closely related to the game of siege experiment by Deck and Sheremeta (2012).
In their experiment, players are positioned asymmetrically so that one player (the
defender) needs to win two successive battles to be victorious, while the attacker
only needs to win one (this is the dynamic counterpart of a weakest link contest).
This asymmetric starting point can be reached as an intermediate stage in a best-
of-three and a best-of-seven tournament.

We begin by giving a brief description of the theoretical framework (Section 2) and
then describe how we set up the experiment (Section 3). Section 4 presents our
results, and Section 5 concludes.

2. Theory and Hypotheses

The winner of a best-of-seven tournament is the first player to win four battles.
To keep track of each player’s progress, we can model the state space as a pair
(i, j) where i is the number of battles that Player A still needs to win and j is the
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number of battles that Player B still needs to win.1 Hence, the tournament begins
at state (4, 4) and proceeds until it reaches (0, j) for (i, 0) for i, j ∈ {1, 2, 3, 4}.
This is depicted in Figure 1. Once a player has won four battles, he receives a
prize Z ≥ 0 and his opponent incurs a penalty L ≤ 0. Each battle consists of
players competing in an all-pay auction with the winner of the auction advancing
one state closer to victory.2 The unique equilibrium of the two-player all-pay auc-
tion is in mixed strategies with players randomizing their bids between 0 and the
smaller of the two players’ valuation of the prize (Baye et al. 1996). While both
players randomize over this interval, the player with the lower valuation will bid
0 with positive probability. That is, if ζH and ζL are the high and low valuations
of the prize (ζH ≥ ζL > 0), then the equilibrium bidding distributions are as follows:

FH(h) =
{
h/ζL if h ∈ [0, ζL]
1 if h > ζL

GL(`) =
{

(ζH − ζL + `) /ζH if ` ∈ [0, ζL]
1 if ` > ζL

(1)

Given these distributions, then the expected payoffs are uH = ζH − ζL and uL = 0;
the winning probabilities are pH = 1− ζL

2ζH
and pL = ζL

2ζH
; and the expected bids are

E[eH ] = ζL

2 and E[eL] = ζ2
L

2ζH
.

The bulk of the analysis in Gelder (2013) and in Konrad and Kovenock (2009) is
in extending the one-shot all-pay auction to a dynamic structure where an actual
prize is awarded only after a player has achieved a critical number of wins. Hence,
it becomes necessary to identify the prize valuations at each interior state (i, j)
where i, j > 0. These prize valuations are implicitly defined based on the marginal
benefit of winning at (i, j) and being one state closer to overall victory versus los-
ing and being one state closer to defeat. When losing is costless—as in Konrad and
Kovenock—a player who is behind has a prize valuation of zero, so there is no incen-
tive to compete.3 In Gelder’s framework on the other hand, when there is a cost to

1Tracking the absolute number of wins for each player requires a two dimensional state space—
an alternative model, known as the tug-of-war, tracks the relative number of wins with a unidi-
mensional state space. Within the tug-of-war setting, Konrad and Kovenock (2005) predict that
laggards surrender when there is no losing penalty, while Agastya and McAfee (2006) find that
last stand behavior is possible when there is a penalty.

2Although an arbitrary tie-breaking rule typically suffices, the equilibrium in Konrad and
Kovenock (2009) requires that ties be awarded to the player who is ahead in the tournament.
This assumption allows the frontrunner to coast to victory with a bid of zero when the laggard
surrenders. Since this is a rather technical requirement, we use a fifty-fifty tie breaking rule in the
experiment.

3Since the player who is behind receives zero from continuing to lose, and since the expected
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B wins
0 (4, 0) (3, 0) (2, 0) (1, 0)

1 (4, 1) (3, 1) (2, 1) (1, 1) (0, 1)
A

w
ins
2 (4, 2) (3, 2) (2, 2) (1, 2) (0, 2)
3 (4, 3) (3, 3) (2, 3) (1, 3) (0, 3)
4 (4, 4) (3, 4) (2, 4) (1, 4) (0, 4)

4 3 2 1 0

Figure 1: Best-of-seven tournament

losing and when players would prefer to win early and lose late, the prize valuations
are always strictly positive so that players actively compete at every interior state.4
The magnitudes of the prize valuations do, however, vary from state to state and
across players. Gelder finds that there is a collection of states where the player who
is behind in the tournament actually has the higher prize valuation and therefore
tends to compete more aggressively. This heightened degree of competition from
the underdog is what Gelder terms the last stand.

In terms of incentives, the last stand represents the position in the tournament
where the underdog’s incentive to avoid losing is stronger than the frontrunner’s
incentive to win. A player who must avoid losing today, or else incur a sufficiently
large penalty, has a stronger motive to compete than the opposing player who may
secure the victory tomorrow if not today. The precise collection of states where a
last stand occurs depends on the ratio of the winning prize to the losing penalty,
as well as the discount factor. The larger the penalty, the closer to the end of the
tournament the last stand occurs. The likelihood of the underdog catching up after
an unsuccessful last stand is minimal at best. In addition to the last stand, Gelder
also finds that the frontrunner will defend his overall lead in the tournament if it
is threatened. The “defense of the lead” occurs when the frontrunner only has a

payoff from winning a single state is also zero, then the prize valuation is zero as well. Konrad
and Kovenock also examine the case where there is an intermediate prize for winning each battle.
In that setting, the prize valuation for a player who is behind is solely based on the intermediate
prize.

4An example of when these assumptions may be satisfied is the US presidential primaries.
Candidates would typically prefer to secure their party’s nomination early in the election cycle
to have more time to prepare for the general election. On the losing side, the potential loss of
political capital is likely higher for candidates who unmistakably lose at an early stage and are
not able to demonstrate their viability for future campaigns.
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one-state lead in the tournament, and it entails a much higher expenditure from the
frontrunner than from the underdog in expectation. Thus the last stand acts as a
defensive push, while the defense of the lead acts as an offensive one.

Based on the theoretical predictions, there are five main hypotheses that we will
examine in this experiment:

Hypothesis 1. Players on a losing trajectory will make a last stand if the penalty
for losing is large relative to the winning prize.

Hypothesis 2. If there is no losing penalty, then a player who is behind will sur-
render (or cease to compete).

Hypothesis 3. Players with a one battle lead in the tournament will compete more
aggressively than their opponent in order to maintain their lead.

Hypothesis 4. The expected winning margin is increasing in the size of the winning
prize relative to the losing penalty.

Hypothesis 5. The winner of the initial battle will win the tournament the majority
of the time.

3. Methodology

We conducted 18 experimental sessions, each composed of 12 subjects. These ses-
sions were conducted at the Economic Science Institute, Chapman University, in
computer labs where the computers were separated by partitions for privacy. The
experiment began with subjects reading the instructions on their computer (a copy
of the instructions is provided in the appendix). After reading the instructions,
subjects were given a short quiz comprised of three possible scenarios for how a
best-of-seven tournament could unfold. Subjects were then asked to compute the
payoff for each scenario. The purpose of this short quiz was to ensure that subjects
had a basic level of comprehension about the structure of the game. The quiz was
immediately followed by a short risk preference lottery à la Holt and Laury (2002).
During the main portion of the experiment, subjects participated in 20 best-of-seven
tournaments. Subjects were randomly and blindly paired and re-paired for each of
these tournaments via the computer network. At the conclusion of the experiment,
subjects completed a demographics survey and were paid in cash based on their
performance in two randomly selected tournaments.

Each battle of a best-of-seven tournament was treated as an all-pay auction: subjects
placed bids simultaneously and the highest bidder won (ties were broken randomly).
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In the all-pay fashion, the sum of a player’s bids throughout a tournament was de-
ducted from his or her payoff for that tournament. Additionally, the winner of the
tournament received a prize and the loser incurred a penalty. Since time preferences
for winning or losing in Gelder (2013) were implemented through a discount factor,
and since discounting is difficult to replicate in a short laboratory experiment, we
followed a common practice from macroeconomic experiments by implementing dis-
counting via a continuation probability (see, for instance, Duffy 2008, and Noussair
and Matheny 2000). Until a player had succeeded in winning four battles, there
was a 90% probability that the tournament would actually continue from one battle
to the next. If a tournament ended prematurely, neither player would receive a
prize or a penalty, but players still had to pay their bids. Our justification for this
approach is that a continuation probability is equivalent to discounting in terms of
the expected payoffs.5

Experimental sessions varied along two treatment variables: (1) payoffs in the best-
of-seven tournament and (2) subjects’ prior exposure to contest related experiments.
We conducted three separate payoff scenarios: the first with a substantial losing
penalty and meager winning prize (Win 15 Lose 285), the second with an equal
prize and penalty (Win 150 Lose 150), and the third with a sizable prize but no
penalty (Win 300 Lose 0). Prizes, penalties, as well as all bids, were denominated in
an experimental currency called rupees, where 50 rupees = $1 US dollar. In order
to make the stakes comparable across treatments, we fixed the difference between
the positive prize and the negative penalty at 300 rupees. The two treatments with
non-zero penalties coincide with the Gelder (2013) model, while the treatment with
no losing penalty fits the Konrad and Kovenock (2009) model.

For the second treatment variable, we varied the subject pool from which partici-
pants were recruited according to whether subjects had previously participated in a
separate contest related experiment. The Economic Science Institute at Chapman
University conducts a large volume of economic experiments. Since records are kept
of the experiments that subjects participate in, we were able to place restrictions

5The random ending rule may also be thought of as the potential that some exogenous factor
suddenly disrupts the conflict (such as the cavalry coming to save the day). An alternative method
for implementing discounting is to adjust the size of the prize and the penalty according to the
winning margin. Since the winning margin is based on the number of rounds that players compete,
this is a present value interpretation of discounting. A benefit of using the random ending rule in
an experimental setting is that the order of magnitude of expenditures early in the tournament
remains comparable to that of the prize and penalty at later stages of the tournament. Noussair
and Matheny (2000) compared both the random ending rule and the present value interpretation
of discounting in an experiment involving a single agent dynamic optimization problem.
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Table 1: Sessions by Treatment

Sessions Subject Pool Prize Penalty Bid Observations

3 Experienced 15 285 2786
3 Experienced 150 150 2536
3 Mixed 15 285 2616
3 Mixed 150 150 2692
3 Mixed 300 0 2456
1 Inexperienced 15 285 920
1 Inexperienced 150 150 874
1 Inexperienced 300 0 854

on the subject pool based on whether subjects had participated in an experiment
that had involved contests or contest theory. In some of our sessions, we restricted
the subject pool to individuals who had previous experience in a contest related
experiment. Other sessions were specifically limited to those without experience.
We also ran control sessions in which we placed neither of these restrictions on the
subject pool, allowing for a mix of participants with and without prior experience.
We will refer to these different treatments as experienced, inexperienced, and mixed.
A summary of the experimental sessions by treatment is shown in Table 1.

During a best-of-seven tournament, subjects could see both their own and their op-
ponent’s previous bids. They also could see how many rounds they had won or lost,
as well as the sum of their bids up to that point in the tournament. An example
of the bidding screen is shown in Figure 2. The bidding screen would also alert
subjects when a tournament had finished, either by a player winning four rounds or
by the computer ending the tournament early. After displaying the final outcome
and payoffs for the tournament, subjects would then be randomly re-matched to
begin a new tournament.

In order to cover bids and potential losses, each subject received an initial endow-
ment of rupees at the start of the experiment. At the end of the experiment, two of
the best-of-seven tournaments were randomly selected for payment. Subjects were
then paid, with winning prizes in the two tournaments being added to their endow-
ment, but bids and losing penalties being subtracted from it. Since losing penalties
varied across treatments, and since bids and losing penalties were both deducted
from the same account, we wanted to make the treatments comparable in terms of
the bidding budget. We accomplished this by varying the initial endowment across
treatments so that it was composed of an effective bidding budget (700 rupees) plus
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Figure 2: Bidding screen during a best-of-seven tournament

the size of the losing penalty. Thus, for penalties of 285, 150, and 0, the endowment
was 985, 850, and 700. In paying for two tournaments, we decided to set the bidding
budget at more than twice the prize-penalty spread of 300 rupees. We did not want
subjects to be budget constrained—especially in tournaments that continued onto
the seventh round. In most cases, the bidding budget was more than sufficient. For
each round of a best-of-seven tournament, we allowed players to bid between 0 and
300 inclusive (with up to one decimal place).

4. Results

4.1. Summary Statistics

Before analyzing the main hypotheses, we will briefly highlight the major summary
statistics. The fundamental level of observation for each treatment is a player’s bid
at a particular state (i, j) within tournament t. As a whole, the data form a panel
with 20 tournament observations per subject and up to seven bid observations per
tournament. Variance in the bidding observations is considerably higher during the
initial tournaments of the experiment since subjects are learning the structure of
the game. The analysis in this paper omits all observations from the first three (of
20) tournaments.6 Here we will summarize observations, winning probabilities, and

6Omitted bid observations are excluded from the counts in Table 1. We also omitted two
additional tournaments from one particular subject who clearly did not know what was going
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Table 2: Bidding Observations by State (i, j) and by Treatment

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

0 59 55 53 40
1 104 109 99 80
2 165 136 116
3 282 192
4 608

65 47 48 26
96 85 76 52
167 118 98
271 148
612

M
ix

ed

0 62 53 41 36
1 101 94 82 72
2 160 120 106
3 275 162
4 612

78 57 34 41
123 94 81 82
187 115 100
278 142
612

82 44 40 21
96 64 65 42
157 119 108
267 158
612

In
ex

pe
ri

en
ce

d 0 19 19 15 15
1 27 29 30 30
2 43 54 52
3 91 86
4 204

4 3 2 1

16 22 14 12
27 32 27 24
49 47 44
89 60
204
4 3 2 1

19 22 11 11
22 28 23 22
48 50 40
90 66
204
4 3 2 1

average bids by state and treatment.

Table 2 shows the number of observations in each state for each treatment. Due to
the symmetry of the tournament—whenever one player is ahead, the other player is
behind by the same margin—observations are only shown for states where a player
is behind or the tournament is tied (i.e. states (i, j) such that i ≥ j). The random
ending rule causes the total number of observations to decrease by roughly 10%
after each of the first four battles. In successive states, the number of observations
continues to decrease through the random ending rule, but also decreases through
players winning or losing tournaments.

on (we omitted their opponent’s bids as well). This subject was contacted midway through the
experiment and was asked if they needed any clarification. We kept all subsequent observations
from this subject.

10



Table 3: Winning Percentages in State (i, j): Theoretical and Observed

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

T
he

or
y 1 56.4 52.4 5.2 50

2 52.9 5.6 50
3 5.6 50
4 50

26.3 26.3 2.6 50
27.8 2.8 50
2.9 50
50

0 0 0 50
0 0 50
0 50
50

E
xp

er
ie

nc
ed 1 43.3 49.5 46.5 50

2 32.1 44.9 50
3 37.2 50
4 50

32.3 44.7 36.8 50
34.1 46.6 50
32.1 50
50

M
ix

ed

1 38.6 44.7 50.0 50
2 32.5 46.7 50
3 33.8 50
4 50

36.6 39.4 58.0 50
29.4 47.8 50
27.7 50
50

14.6 31.2 38.5 50
29.9 49.6 50
33.3 50
50

In
ex

pe
ri

en
ce

d

1 29.6 34.5 50.0 50
2 34.9 55.6 50
3 50.5 50
4 50

4 3 2 1

40.7 31.2 48.1 50
40.8 48.9 50
39.3 50
50
4 3 2 1

13.6 21.4 52.2 50
43.8 42.0 50
40.0 50
50
4 3 2 1

Theoretical and observed probabilities of winning a battle at each state are shown
in Table 3. Symmetry allows us to again focus on the states where a player is be-
hind or the tournament is tied. The major patterns of competition can be seen by
examining the theoretic winning probabilities. For instance, the defense of the lead
is reflected by the remote winning probabilities at states (4, 3), (3, 2), and (2, 1)
in the Win 15 Lose 285 and the Win 150 Lose 150 treatments. The last stand is
evidenced by the underdog having the higher winning probability at states (4, 2),
(4, 1), and (3, 1) of the Win 15 Lose 285 treatment. Although not as strong, the
underdog is still expected to win roughly a quarter of the time at these three states
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in the Win 150 Lose 150 treatment.7 Finally, the tendency to surrender is depicted
in the Win 300 Lose 0 treatment by the zero probability of winning a battle when
a player is behind in the tournament.

Although the observed probabilities from the laboratory fail to capture the defense
of the lead, the basic contrast between making a last stand and surrendering can be
seen. For instance, in the Win 300 Lose 0 treatment, the winning probability falls
below 15% at state (4, 1) for both the Mixed and Inexperienced treatments—a con-
siderable drop from winning probabilities at (4, 3) and (4, 2) of 30% to 44%. On the
other hand, there is a jump in the winning probability between states (4, 2) and (4, 1)
in the two Mixed treatments with a losing penalty, as well as in the Experienced
Win 15 Lose 285 treatment, with differences ranging from 6 to 11 percentage points.

While the winning probabilities provide information about the ratio of bids at (i, j)
relative to (j, i), it is also informative to have a measure of the absolute magnitude
of the bids at the different states. The expected bids, as predicted by theory, as
well as the average bids in the experiment are given in Table 4, by state and by
treatment. There are a few patterns in the bidding magnitudes that merit some
attention. For instance, when the tournament is tied, theory predicts that bids will
far and away exceed those at any other state—even when a losing penalty is present.
That is not the case in the experimental data. Average bids when the tournament
is tied are never as large as predicted. Likewise, bids by a player who is trailing
in the tournament by a single state do not plunge precipitously as theory suggests.
What does occur in every experimental treatment is that bids progressively increase
as both players win battles (that is, as the tournament proceeds to the Top-Right).
As if there were a minimization function, with the number of battles each player
has won as inputs, bids tend to plateau until the function reaches a higher value.
There are some minor fluctuations (such as the drop at (4, 1) in the Win 300 Lose
0 treatment with the mixed subject pool), but it generally appears that a winning
player will not update her bid until she loses, and a losing player will not update his
bid until he wins. At least that is the story in the aggregate. The tendency to make
a last stand or to surrender can be more credibly assessed using fixed effects models
which control for the idiosyncratic characteristics of the individual tournaments.

7For the Win 150 Lose 150 treatment, a best-of-seven tournament is not large enough to include
the states where the player who is behind wins battles with more than one-half probability.
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Table 4: Expected Theoretical Bids and Average Observed Bids

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

T
he

or
y 1 13.0 13.6 1.5 150

2 11.0 1.4 122.2 14.3
3 1.1 99.0 12.2 12.9
4 80.2 9.9 10.4 11.3

3.9 3.9 0.4 150
3.8 0.4 128.3 7.5
0.4 109.4 6.8 7.5
92.9 6.1 6.8 7.5

0 0 0 150
0 0 135 0
0 121.5 0 0

109.4 0 0 0

E
xp

er
ie

nc
ed 1 15.1 36.4 67.5 93.4

2 11.4 30.2 45.3 72.1
3 11.2 25.5 34.2 37.4
4 11.7 16.8 16.0 16.9

7.6 21.8 31.7 48.7
7.6 20.3 25.1 33.6
7.9 18.0 21.3 26.3
9.8 12.4 11.6 13.7

M
ix

ed

1 13.2 28.8 47.1 70.1
2 7.8 21.9 36.0 47.4
3 8.7 19.0 23.0 28.9
4 9.4 12.7 13.1 15.1

6.8 22.0 47.1 72.7
6.9 24.4 34.8 42.3
8.3 22.0 23.7 26.7
12.8 20.2 18.9 21.5

5.7 22.6 43.9 74.8
11.9 32.0 41.3 53.5
13.0 26.0 35.4 37.3
15.0 21.9 23.9 25.5

In
ex

pe
ri

en
ce

d

1 20.1 26.0 66.2 114.3
2 21.6 42.6 46.4 60.8
3 17.7 29.7 39.9 55.7
4 19.9 21.1 26.4 37.1

4 3 2 1

26.0 41.2 56.7 73.0
27.9 43.5 53.3 58.2
24.5 40.0 47.6 55.5
22.9 32.8 37.9 42.4

4 3 2 1

11.2 25.5 62.0 66.0
17.0 29.7 50.1 62.2
13.4 27.8 36.5 50.8
9.6 17.1 20.7 29.8
4 3 2 1

4.2. Fight or Surrender
In analyzing bidding behavior, it is pertinent to identify whether the frontrunner
or the underdog is bidding more aggressively at each stage of the tournament—or
even if there is a difference. If the underdog is engaging in last stand behavior,
then we would expect his bids to increase relative to his opponent’s as he nears an
overall loss. Therefore, we want to compare the underdog’s bid at state (i, j) with
the frontrunner’s bid at the symmetric state (j, i). To do this, we use a fixed effects
regression model with cluster robust standard errors where the dependent variable
is a player’s bid. For the independent variables, we consider two models: one that
only accounts for the different states, and another that also factors in the previous
state of the tournament.
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To account for the different states within the tournament, we include a set of di-
chotomous variables, equal to one if a bid is made from that particular state and
zero otherwise. Since we are interested in comparing bidding behavior at state (i, j)
with state (j, i), we take advantage of the fact that when a categorical variable with
N distinct values is represented by a set of N − 1 dichotomous variables, the coef-
ficients of the N − 1 dichotomous variables can be interpreted directly in reference
to the omitted N th value. Thus, we are interested in the coefficient for state (i, j)
in a regression where (j, i) is the omitted state.8

In factoring in the previous state, we are interested in a similar comparison. The
current and previous state can be represented by a triple (i, j, h) where h denotes
whether Player A arrived at (i, j) by winning or losing the previous round. Equilib-
rium bidding strategies are invariant to the history of the tournament. However, we
are interested in seeing whether there are any clear effects (psychological or other-
wise) from having won the previous round. Thus we want to compare the coefficient
for (i, j, won) when (j, i, lost) is the omitted state with the coefficient for (i, j, lost)
when (j, i, won) is omitted.

Let s(j, i) be the vector of dichotomous state variables which omits state (j, i).
Similarly, let q(j, i,h) be the vector representing current and previous states, but
omitting (j, i, h).9 With this notation, we use the following two fixed effects models
to predict player k’s bid at time t within the experiment:10

Model 1. b̂idk,t = β0 + s(j, i)′

k,tβs + fk + εk,t

Model 2. b̂idk,t = β0 + q(j, i,h)′

k,tβq + fk + εk,t

Table 5 shows the coefficients from Model 1 for bids made at (i, j) relative to (j, i)
for i > j. Corresponding results for Model 2 are given in Tables 6 and 7—the for-
mer comparing (i, j, lost) to (j, i, won), while the latter compares (i, j, won) with
(j, i, lost). Some states cannot be reached by winning, so Table 7 does not include
the states where Player A has yet to win a round (i = 4). Yet, unlike Tables 5 and
6, it does include the states where the players are tied (i = j).

8Alternatively, for two states that are not omitted, we could obtain the relative difference by
subtracting one of the coefficients from the other, taking care to compute the appropriate standard
error for the difference.

9State (4,4) is not included because it has no previous state. Also, for j ∈ {1, 2, 3}, Player A
can only reach state (4, j) by losing, while (j, 4) can only be reached by winning.

10There are two time components: the tournament number and the bids within each tournament.
Since the number of bids per tournament may vary between one and seven, we interpolate the
timing of each bid to be at one-seventh intervals between tournaments.
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Under Model 1, Table 5 shows that for the treatments with a losing penalty, it is
common for players to bid more aggressively when they are behind. This is partic-
ularly true in the experienced and mixed sessions. Moreover, in the Win 15 Lose
285 treatment, subjects tend to bid increasingly more aggressively as they fall far-
ther and farther behind in the tournament. In the experienced group, for instance,
players tend to bid 1.89 more rupees at (4, 3) than at (3, 4); this difference then
increases until by (4, 1), players are submitting bids that average 9.30 rupees higher
than at (1, 4). The mixed group for the Win 15 Lose 285 treatment has a similar
increase. Bids at (4, 3) are 5.02 more than at (3, 4)—a difference that then rises
to 13.42 between (4, 1) and (1, 4). In terms of magnitude, the differences of 9.30
and 13.42 between states (4, 1) and (1, 4) are especially sizable when considering
that the average bids at these states and for these treatments range from 13.2 to
16.9 (see Table 4). We view this as evidence in support of our last stand hypothesis.

There are also a couple of treatments where a last stand happens at (2, 1). A last
stand at (2, 1) is interesting as it occurs at a point where players have a credible
chance of winning the entire tournament; last stands at (4, 1) and (3, 1), on the
other hand, are more likely motivated by the probability that the tournament will
end prematurely. In the Win 15 Lose 285 treatment of the inexperienced group, the
bidding behavior flips from bidding 20 rupees less at (3, 1) than at (1, 3) to bidding
14 rupees more at (2, 1) than at (1, 2). Although less dramatic, in the Win 150 Lose
150 treatment of the mixed group, there is no significant difference between bids at
(4, 1) and (1, 4). However, by (2, 1), players are bidding significantly more than at
(1, 2) by 7.70 rupees.

Last stand behavior continues to persist under Model 2, but with a few interesting
changes. The most prominent pattern is that players who are behind in the tour-
nament compete with renewed vigor when they have won the previous round. For
instance, in the Win 15 Lose 285 treatment of the mixed group, if a player arrives
at (3, 1) by losing at (3, 2), he will bid an average of 5.88 rupees more than at (1, 3)
after winning at (2, 3). However, this difference increases to 23.46 rupees when the
underdog reaches (3, 1) by winning at (4, 1). The bidding difference in Model 1 sits
between at 10.30 rupees. In most cases, the coefficients in Table 7 are larger than
the corresponding coefficients in Tables 5 and 6 for states (3, 2), (3, 1) and (2, 1).
The Table 7 coefficients are also more likely to be significant. Again, using the Win
15 Lose 285 treatment of the mixed group as an example, the difference between
bids at (2, 1) and (1, 2) is not significant in Model 1. Neither is the difference signif-
icant when a player arrives at (2, 1) by losing at (2, 2). However, a player reaching
(2, 1) by winning at (3, 1) will bid significantly more than at (1, 2) after losing at
(1, 3) by an average of 8.70 rupees.
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Table 5: Bidding Behavior at State (i, j) Compared to (j, i): Model 1 (baseline)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

4 3 2
9.30 8.69 −1.19

1 (1.99) (4.16) (4.08)
> 0∗∗∗ > 0∗∗

5.66 1.69
2 (1.41) (1.84)

> 0∗∗∗

1.89
3 (1.04)

> 0∗∗

4 3 2
8.93 7.24 2.31
(2.53) (3.61) (2.49)
> 0∗∗∗ > 0∗∗

10.06 5.72
(1.57) (1.70)
> 0∗∗∗ > 0∗∗∗

6.90
(1.75)
> 0∗∗∗

M
ix

ed

13.42 10.30 4.08
1 (3.09) (3.54) (3.47)

> 0∗∗∗ > 0∗∗∗

8.62 4.73
2 (1.50) (1.30)

> 0∗∗∗ > 0∗∗∗

5.02
3 (0.85)

> 0∗∗∗

1.17 2.66 7.70
(4.29) (1.39) (3.03)

> 0∗∗ > 0∗∗∗

−0.16 0.01
(2.75) (1.43)

−2.38
(2.03)

−3.41 −8.33 −8.78
(3.31) (3.37) (4.21)

< 0∗∗∗ < 0∗∗

2.09 0.92
(2.19) (3.24)

2.29
(1.38)
> 0∗∗

In
ex

pe
ri

en
ce

d

−5.18 −20.23 14.26
1 (9.39) (12.23) (7.34)

< 0∗∗ > 0∗∗

9.46 9.33
2 (3.02) (3.40)

> 0∗∗∗ > 0∗∗∗

6.94
3 (2.61)

> 0∗∗∗

4 3 2

4.17 −3.20 1.44
(6.62) (5.35) (6.64)

8.71 3.23
(4.09) (4.57)
> 0∗∗

8.19
(2.57)
> 0∗∗∗

4 3 2

−10.55 −20.78 −1.34
(3.09) (4.33) (6.99)
< 0∗∗∗ < 0∗∗∗

2.25 −4.82
(2.93) (2.17)

< 0∗∗

−0.17
(1.39)

4 3 2

Significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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Table 6: Losing to get to (i, j) vs. Winning to get to (j, i)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

4 3 2
9.46 9.15 −6.48

1 (2.04) (5.93) (5.83)
> 0∗∗∗ > 0∗

5.39 0.48
2 (1.52) (2.17)

> 0∗∗∗

1.62
3 (1.11)

> 0∗

4 3 2
8.94 5.22 0.42
(2.83) (3.65) (3.05)
> 0∗∗∗ > 0∗

10.22 3.31
(1.90) (2.13)
> 0∗∗∗ > 0∗

6.65
(1.96)
> 0∗∗∗

M
ix

ed

16.44 5.88 1.62
1 (3.31) (4.00) (4.89)

> 0∗∗∗ > 0∗

10.94 4.79
2 (1.62) (2.17)

> 0∗∗∗ > 0∗∗

6.40
3 (0.94)

> 0∗∗∗

4 3 2

0.14 −0.05 7.15
(4.19) (2.76) (3.71)

> 0∗∗

−0.99 −1.18
(2.62) (2.30)

−3.13
(1.96)
< 0∗

4 3 2

−3.28 −8.72 −10.06
(3.29) (3.91) (5.57)

< 0∗∗ < 0∗∗

2.18 −3.07
(2.28) (4.67)

2.18
(1.60)
> 0∗

4 3 2

Significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.

Contrasting the last stand behavior that frequently accompanies large losing penal-
ties, there is a marked tendency in the Win 300 Lose 0 treatment for players to bid
less aggressively when they are nearing defeat. Beginning in Table 5 with Model
1, players in the mixed experience group at (3, 1) and (2, 1) submit bids that are
significantly lower than those at (1, 3) and (1, 2) by roughly 8 to 9 rupees. The bid
reduction can be more than 20 rupees in the inexperienced session. In all of these
cases, there is a clear pattern of relative retreat. This pattern helps to substantiate
our hypothesis of a player surrendering when losing is costless.

Results for the Win 300 Lose 0 treatment are similar with Model 2, but with the
exception that winning the previous round again leads to more aggressive bidding.
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Table 7: Winning to get to (i, j) vs. Losing to get to (j, i)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

3 2 1
9.34 4.73 −0.77

1 (3.78) (7.02) (6.46)
> 0∗∗∗

5.10 −2.60
2 (2.59) (3.21)

> 0∗∗

4.44
3 (1.68)

> 0∗∗∗

3 2 1
10.65 4.98 −2.44
(5.33) (4.06) (5.31)
> 0∗∗

8.21 3.01
(2.37) (2.69)
> 0∗∗∗

1.37
(2.36)

M
ix

ed

23.46 8.70 −4.73
1 (6.46) (3.75) (4.61)

> 0∗∗∗ > 0∗∗

6.60 −1.85
2 (2.01) (2.91)

> 0∗∗∗

1.41
3 (1.63)

3 2 1

4.31 7.45 3.46
(3.00) (5.24) (11.85)
> 0∗ > 0∗

1.49 −12.12
(2.16) (4.24)

< 0∗∗∗

0.10
(3.25)

3 2 1

−4.38 −3.54 −11.33
(4.48) (5.12) (5.97)

< 0∗∗

8.48 5.78
(3.17) (4.43)
> 0∗∗∗ > 0∗

7.94
(2.27)
> 0∗∗∗

3 2 1

Significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.

In the mixed group, for example, the coefficients in Table 6 for when a player ar-
rives at state (i, j) by losing closely mirror the Model 1 results—both in terms of
magnitude and significance. Table 7, however, reveals that winning the previous
round leads to substantial changes in the bidding coefficients. Players no longer bid
significantly less at (3, 1) and (2, 1) than at (1, 3) and (1, 2), and players actually
bid significantly more at (3, 2) than at (2, 3).

A final aspect of Table 7 that is worth mentioning is that it allows for bidding be-
havior to be analyzed at states (1, 1), (2, 2), and (3, 3) based on whether a player
brought the tournament to a tied position by winning or losing. As with all of the
comparisons involving Model 2, whether a player won or lost the previous round
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should not alter the bidding behavior from a theoretical standpoint. After all, equi-
librium bidding distributions are Markov perfect in the sense that they are based on
the present state of the tournament, not on how players arrived at that state. Here,
however, there are many instances where winning or losing the previous round does
indeed matter. In the Win 15 Lose 285 treatment of the experienced group, players
that lost at (4, 4) but then won at (4, 3) bid more aggressively at (3, 3) than had
they won at (4, 4) but lost at (3, 4). There is an element of the defense of the lead
at (2, 2) in the mixed Win 150 Lose 150 treatment. Players that won at (3, 2) to tie
the tournament are likely to be outbid by their counterparts who lost their lead by
losing at (2, 3). A similar defense of the lead occurs at (1, 1) in the Win 300 Lose 0
treatment of the mixed group.

4.3. Winning Margins and Initial Leads

Our final two hypotheses address the implications of making a last stand verses
surrendering—specifically in terms of the size of the winning margin, and also in
terms of the importance of winning the initial battle of the tournament. Last stands
are more pronounced as the relative size of the losing penalty increases, and as a
result the winning margin in the tournament should decrease. The opposite should
occur when players are prone to surrendering. Table 8 reports the distribution of
winning margins for each treatment.11 The most pronounced changes in these dis-
tributions occur at the endpoints where the winning margin is either one or four
battles. For instance, in the experienced group, the percent of tournaments with a
winning margin of two or three is hardly affected by moving between the Win 15
Lose 285 and the Win 150 Lose 150 treatments. However, there is a six percent-
age point increase in tournaments that end by a landslide and a corresponding six
percentage point decrease in neck-and-neck tournaments as the relative size of the
losing penalty decreases. This is in line with our prediction. The result is similar
with the mixed experience group. Landslide victories increase from 28.1% in the
Win 15 Lose 285 treatment to 32.6% in the Win 150 Lose 150 treatment before
finally reaching 39.2% in the Win 300 Lose 0 treatment. Neck-and-neck victories
likewise decrease from 22.4% to 13.8% between the Win 15 Lose 285 and the Win
300 Lose 0 treatments. There is a curious drop to 17.5% at a winning margin of 2
in the Win 150 Lose 150 (Mixed) treatment that then rebounds to 23.5% for the
final winning margin of 1. The last stand at (2, 1), which was previously noted for
this treatment, accounts for this dip. Patterns for the inexperienced group are less
distinct (although there is a 5.1 percentage point decline in neck-and-neck outcomes

11The counts underlying the percentages in Table 8 have been adjusted to account for attrition
with the random ending rule (e.g. a winning margin of 4 is equal to 1/δ winning margins of 3).
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Table 8: Winning Margins by Treatment (in %)

Winning Margin

4 3 2 1

Experienced L285 24.5 25.4 27.2 22.8
L150 30.6 24.6 27.9 16.8

Mixed L285 28.1 26.7 22.9 22.4
L150 32.6 26.4 17.5 23.5
L0 39.2 23.4 23.6 13.8

Inexperienced L285 24.0 26.7 23.4 26.0
L150 21.6 32.9 23.3 22.2
L0 26.3 33.9 18.8 20.9

from the Win 15 Lose 285 treatment to the Win 300 Lose 0 treatment).

The initial battle is often viewed as pivotal in deciding the ultimate outcome of a dy-
namic contest.12 It is strongly advantageous in Gelder (2013) but decisive in Konrad
and Kovenock (2009). In Gelder’s framework, the probability of an upset is increas-
ing in the relative size of the losing penalty (as is the strength of the last stand).
While we cannot support that comparative static, Table 9 confirms that winning
the initial contest is a strong correlate of winning the ultimate tournament—or at
least being in the lead at the time that the tournament ends (whether by winning
or through the random ending rule). Throughout the different treatments, roughly
70% to 80% of all winners at state (4, 4) went on to win the tournament. The one
exception being the Win 300 Lose 0 treatment with the Inexperienced group where
the percentage dropped to 61.9%.

5. Conclusion

While last stands are found in a number of anecdotal accounts, this paper provides
a controlled laboratory framework to actually access this type of behavior. To do so
we examine how aggressively players compete at different stages of a best-of-seven
tournament. When the cost of losing is high, we find that players tend to bid more

12For example, Klumpp and Polborn (2006) examine the disproportionately large amount of
attention that New Hampshire and Iowa receive as the first states to vote in the US presidential
primary elections.
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Table 9: Percent of Initial Battle Winners to Win the Tournament

Win Tournament End in Lead

Experienced L285 73.9 72.7
L150 77.4 77.8

Mixed L285 80.7 79.7
L150 80.5 77.8
L0 74.9 75.8

Inexperienced L285 70.6 70.6
L150 79.7 79.4
L0 61.9 66.7

aggressively as they fall farther behind in the tournament. This is consistent with
theory and embodies the notion of a last stand. Conversely, we find that subjects
bid less aggressively as they fall behind in a tournament with no losing penalty.
Although not as stark as the theoretical prediction of completely giving up, this
pattern of less aggressive bidding is in line with the general prediction of surren-
dering. Players are cutting their overall losses by keeping their bids to a minimum.
While theory suggests that a player will defend his lead if it is threatened, we find
little evidence to support this hypothesis. We do find that the propensity to make
a last stand or surrender leads to reasonable predictions about winning margins.
Just as theory predicts, neck-and-neck tournaments are more likely when the losing
penalty is relatively high, and landslide victories are more common with a relatively
large prize. Finally, there are relatively few upsets with the winner of the initial
battle going on to win the entire tournament roughly three-quarters of the time.

Given that last stands are fundamentally linked with significant loss—be it life,
limb, liberty, or property—there is a natural challenge in designing an experiment
which exposes subjects to a loss that is in some sense meaningful, yet minor enough
to conform with standard institutional review board guidelines. We suggest, there-
fore, that any evidence of last stand behavior in our low stakes experiment would
be magnified in situations that involve more substantive losses.
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Appendix: Instructions

Thank you for your willingness to participate in this experiment. You will have the
opportunity to earn some money as part of this experiment—the exact amount you
earn will be based on both your choices and the choices of the other participants.
Funding has been provided by the Economic Science Institute. You will be paid
privately at the conclusion of the experiment.

In order to preserve the experimental setting, we ask that you DO NOT talk with
the other participants, make loud noises, or otherwise disturb those around you.
You will be asked to leave and will not be paid if you violate this rule. Please raise
your hand if you have any questions.

There are two parts to this experiment.

Part 1

In the first part of the experiment, you will be given a set of 15 choices. You will
be asked to choose between receiving $1 for sure (Option A) and receiving $3 with
some probability and nothing otherwise (Option B). The probability of winning $3
in Option B varies across the 15 choices. You will receive payment for one of your
choices. The computer will draw a number between 1 and 15 at random, and you
will be paid for your choice corresponding to that number. If you chose Option A,
you will receive $1. If you selected Option B, the computer will randomly draw an-
other number between 1 and 20, and the result of that draw will determine whether
you are paid $3 or $0.

Are there any questions?

Part 2

The second part of the experiment consists of 20 best-of-7 tournaments. In each
tournament, you will be paired at random on the computer with another participant.
The winner of each tournament will receive a prize and the loser will incur a penalty.

The currency for this part of the experiment is rupees, and the exchange rate is 50
rupees = 1 US dollar. As part of this experiment you have received an account with
850 rupees (equivalent to $17.00). This account is in addition to the $7.00 show up
fee. The prize for winning a tournament is 150 rupees, and the penalty for losing is
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Round 1 2 3 4 5 6 7
% of Tournaments 100% 90% 81% 73% 66% 59% 53%

150 rupees.

In order to win a tournament you must be the first player to win 4 contests. A
contest consists of entering a bid on the computer screen. The computer will allow
bids that are either whole numbers or have up to one decimal point that are between
0 and 300 inclusive. You win a contest if your bid is higher than your opponent’s (in
case a tie occurs, the computer will decide the winner randomly, giving each player
a 50% chance of winning). Once both players have entered their bids, the computer
will display the two bids and indicate which player is the winner. The computer
will also display past bids and the total number of contests that each player has
won so far in the tournament.

After each contest, there is a 10% chance that the tournament will suddenly end.

The computer will randomly determine whether or not to end the tournament by
selecting an integer between 1 and 10 (each number is equally likely to be drawn).
If a 1, 2, 3,. . ., 9 is drawn, then the tournament will continue, and you will return
to the bidding screen to bid in another contest. However, if the computer draws
a 10, then the tournament will end early. Numbers that the computer has drawn
previously may be drawn again. Given that no player has won 4 contests, there
is always a 90% chance of continuing to the next round of the tournament. The
following table shows the percent of all tournaments that are expected to reach a
given round provided that no player has won 4 contests by that round.

Earnings

Your earnings for each tournament are based on your bids and whether you win or
lose the tournament. All of your bids throughout the tournament will be subtracted
from your earnings. Please note that each of your bids will be subtracted regardless
of whether you win or lose each contest.

The prize of 150 rupees will be added to your earnings if you win the tournament,
and the penalty of 150 will be subtracted from your earnings if you lose.
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Here are some examples to illustrate how your earnings for a tournament are cal-
culated. If you win a tournament in six rounds, then your earnings are as follows:

150 − (Round 1 bid) − (Round 2 bid) − (Round 3 bid)
− (Round 4 bid) − (Round 5 bid) − (Round 6 bid)

Similarly, your earnings for losing a tournament in five rounds are given below:

−150 − (Round 1 bid) − (Round 2 bid) − (Round 3 bid)
− (Round 4 bid) − (Round 5 bid)

If the computer does end the tournament before one of the players has won 4
contests, then neither player receives a prize or incurs a penalty. However, your
bids will still be subtracted from your earnings. For example, if the computer stops
the tournament after three rounds, you earn the following:

− (Round 1 bid) − (Round 2 bid) − (Round 3 bid)

When a tournament ends, either by a player winning 4 contests or by the computer
ending it early, the computer will display your earnings for that tournament. You
will then be paired at random with another participant for the next tournament.

We ask for your patience as there may be a short pause between tournaments. This
may happen, for example, if your tournament ended early, but your next randomly
selected partner is still competing in a tournament.

Payment

At the end of the experiment, 2 of the 20 best-of-seven tournaments will be selected
at random. Your payment will be based on the average of your earnings in those
2 tournaments. The average will be added to your 850 rupee account and then
converted from rupees to dollars (50 rupees = 1 US dollar). Positive earnings will
increase the balance in your account, while negative earnings will decrease it. You
will be paid the balance of your account.

Quiz #1

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.
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Contest 1: Your bid: 45 Your opponent’s bid: 73
Contest 2: Your bid: 92 Your opponent’s bid: 100
Contest 3: Your bid: 21 Your opponent’s bid: 21

Tournament randomly terminated after 3rd contest.

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?

Quiz #2

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.

Contest 1: Your bid: 295 Your opponent’s bid: 23
Contest 2: Your bid: 70 Your opponent’s bid: 150
Contest 3: Your bid: 51 Your opponent’s bid: 40
Contest 4: Your bid: 80 Your opponent’s bid: 20
Contest 5: Your bid: 72 Your opponent’s bid: 80
Contest 6: Your bid: 51 Your opponent’s bid: 70
Contest 7: Your bid: 200 Your opponent’s bid: 175

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?

Quiz #3

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.

Contest 1: Your bid: 27 Your opponent’s bid: 295
Contest 2: Your bid: 41 Your opponent’s bid: 150
Contest 3: Your bid: 200 Your opponent’s bid: 40
Contest 4: Your bid: 20 Your opponent’s bid: 78
Contest 5: Your bid: 31 Your opponent’s bid: 83

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?
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This is the end of the instructions. If you have any questions, please raise your hand
and a monitor will come by to answer them. If you are finished with the instruc-
tions, please click the Start button. The instructions will remain on your screen
until the experiment begins. We need everyone to click the Start button before we
can begin the experiment.
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