
Dynamic Choice Over Menus

A companion to Francetich and Kreps (2013)

Alejandro Francetich ∗†

Department of Decision Sciences and IGIER, Bocconi University, Italy

April 9, 2014

Abstract

A decision maker can choose up to two alternatives, or “tools,” over time. The
rewards from these choices depend on an unobserved state of nature. There are two
possible states, and one and only one tool is profitable in each state. Opportunities
to “employ” or draw value from the favored tool obey a Poisson process with known
arrival rate, but the identity of the favored tool is unobserved. The decision maker
only observes the realized rewards of the tools chosen, and choosing each tool entails
a “rental” cost. The problem is a multi-armed bandit problem, where the arms
are the possible subsets of tools. These arms are not independent: Choosing both
tools simultaneously provides information about each individual tool. Applications
include hiring of experts by professional-services firms.
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1 Introduction

Imagine a hiker who has recently moved to a cabin near the woods, and who goes

out hiking every day. She faces challenges while out in the wilderness, challenges she

can overcome using tools. These tools are to be rented for the day from a local hardware

store, so it is costly to be “well equipped”; alternatively, if the tools are owned by the

decision maker, they may be too heavy to carry them all at once all the time. Once

faced with the current challenge, the hiker can employ the tool that best serves the day’s

challenge out of those that she has in her possession. However, she is uncertain about how

useful a tool is on any given day. Her problem is to select, every morning, which tools to

rent for her walk. By the end of each day, she observes the value of the tools she carried,

and can use this information to guide future rental decisions.

Alternatively (and perhaps less fancifully), consider the problem of a professional-

services firm, such as a consultancy or a legal partnership, employing a pool of experts

to serve their clients. Imagine that only one case is handled on each day, and that this

case can only be dealt with by a single staff member. The manager, after an initial

interview with the client, learns the specifics of the case and assigns it to the member

of her staff who is best suited for the specific job. Of course, only experts who are on

staff are available for this specific job; hiring new experts takes time. But keeping a large

staff, one that can handle all conceivable cases, is costly: Experts that remain idle during

any period must nonetheless be paid a wage.

These problems share the following basic structure. A decision maker (hiker, firm

manager) faces a set of alternatives (tools, experts), and chooses subsets or “menus”

(tool bundles, teams of experts) from this set. Opportunities to “employ” or draw value

from the chosen menu (hiking hazards, firm clients) obey an unknown stochastic process.

The decision maker only observes the realizations of these process corresponding to the

alternatives in the chosen menu (tools/experts performance), and choosing larger menus

is costly (in terms of rental cost or wages).

Thus, there is a trade-off between gathering more information by choosing larger

menus, on the one hand, and saving on cost by choosing smaller menus, on the other

hand. This “exploration-exploitation” trade-off makes the problem a multi-armed ban-

dit problem, where the arms are the possible menus.1 However, these “arms” are not

independent: Rewards from overlapping menus are correlated, even if the rewards from

individual elements are independent.

1Alternatively, if we identify each tool with an arm, we can think of the problem as a multi-choice
multi-armed bandit problem; the decision maker faces a finite set of arms and may choose several of them
at a time. On multi-choice multi-armed bandits, see Bergemann and Valimaki (2001).

2



This paper analyzes the following continuous-time instance of this formal structure.

There are two tools and two possible states of nature. Opportunities to employ these

tools arrive over time according to a known Poisson process, but correspond to each

of the tools according to the unobserved state of nature. Over any time interval, the

decision maker can only observe the arrival of opportunities for tools selected. Therefore,

by choosing a single tool, she cannot distinguish between the arrival of an opportunity

for the other tool from failure of arrival altogether.

Of course, while she may only observe the realization for a single tool, the decision

maker can still make inferences about the distribution of values for the other tool due to

their correlation. In general, these forms of dependence can preclude a complete charac-

terization of optimal strategies in multi-armed bandit problems. In fact, the problem of

characterizing optimal strategies in general dependent multi-armed-bandit problems is

an open problem. Therefore, beyond the relatively simple structure of the problem in this

paper, the traditional approach to analyzing such problems is extremely limited. Thus,

in Francetich and Kreps (2013), we turn to heuristics: simple rules of behavior featuring

self-correcting techniques based on past experience to improve future performance.

While the spirit of the problem studied in this paper is closely related to Francetich

and Kreps (2013), the formal techniques employed to analyze the problem, as well as

the mathematical structure of the solutions, borrow heavily from Keller and Rady (2010)

and Klein and Rady (2011).

The rest of the paper is organized as follows. Section 2 describes the formal frame-

work of the problem. Section 3 describes Bayesian updating and presents the Bellman

equation for the problem. Section 4 describes the solution to the Bellman equation.

Finally, section 5 concludes. Proofs are relegated to the appendix.

2 Framework

There is a set of alternatives X = {x0, x1}, representing “tools” a decision maker

(henceforth, DM) can employ. DM allocates her time between the different subsets of X.

The set of allocations of a unit of time between the bundles {x0}, {x1}, and {x0, x1} is

denoted by A := {α ∈ [0, 1]3 : α1 + α2 + α3 ≤ 1} — if α ∈ A, the residual 1 − α1 − α2 − α3

is the fraction of time spent on the empty set.

Tools must be rented to be employed; c > 0 is the per-tool rental rate. A tool em-

ployed yields a gross reward of 1. Opportunities to employ these tools arrive as follows.

There are two possible states of nature ω ∈ {0, 1}, the realization of which is unobserved

by DM. Employment opportunities for tool x0, x1 arrive according to Poisson processes
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with arrival rates λ0ω and λ0(1 − ω), respectively, where λ0 > 0 is a known arrival rate.

Figure 1 describes the timing and information structure of the problem.

A more flexible specification would allow for ω ∈ (0, 1). Under this alternative spec-

ification, opportunities can arrive for both tools. We can think of this alternative process

as having nature first drawing an opportunity from a Poisson process with arrival rate

λ0, and the “allocating” this opportunity to tool x0 or x1 with probabilities ω, 1 − ω,

respectively, independently of past arrivals and allocations. Thus, we get a partitioning

of the Poisson process. However, this additional flexibility comes at the cost of slowing

down the learning process without providing significant new insights. In this alternative

scenario, the arrival of an opportunity for a tool is no longer indicative of the tool being

the superior one, and the information previously conveyed by a single success on a tool

is now conveyed by a larger frequency of arrivals for said tool relative to the other tool

over a long period of time.

(a) DM chooses no tools (b) DM chooses tool x0

(c) DM chooses tool x1 (d) DM chooses booth tools

Figure 1: DM’s observations and payoffs under each of her possible choices. The dotted
lines represent information sets, namely, nodes among which DM cannot distinguish.
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3 Bayesian Updating and the Bellman Equation

Let π ∈ [0, 1] represent the belief of DM that ω = 1. Expected instantaneous rewards

are 0 from choosing the empty set; λ0π − c from choosing {x0}; λ0(1 − π) − c from

choosing {x1}; λ0 − 2c from choosing X. Assume that λ0 > 2c; even in the absence of

learning, the full bundle is more profitable than the empty bundle. Future payoffs are

discounted by δ ∈ (0, 1).

The prior of the DM that ω = 1 is denoted by π0 ∈ (0, 1); her corresponding posterior

at the beginning of period t is denoted by πt. The event of arrival makes the posterior

jump to 1, if the arrival is for x0, or to 0, if the arrival is from x1. If no arrival results from

spending a fraction αt of time on x0 over the period [t, t + Δt), the posterior becomes:

πt+Δt =
πte−αtλ

0Δt

πte−αtλ0Δt + 1 − πt
.

As Δt shrinks, we obtain π̇t = −αtλ
0πt(1 − πt). If no arrival results from spending a

fraction βt of time on x1, we get π̇t = βtλ
0πt(1 − πt). Finally, by spending time on both

tools, either nothing new is learned or the model uncertainty is resolved immediately.

The problem is stationary, and the state is π ∈ [0, 1]. The state space would still

be [0, 1] if ω can take interior values, as long as it can take only two possible values

0 < ω < ω < 1. However, as soon as we move to a larger set of states of nature, the state

space of the problem becomes higher-dimensional.

Expected immediate rewards from allocating a unit of time according to α ∈ A are:

I(α, π, dt) : = λ0 [α1π + α2(1 − π) + α3] dt − (α1 + α2 + 2α3) c,

= α1

(
λ0π − c

)
dt + α2

(
λ0(1 − π) − c

)
dt + α3(λ0 − 2c)dt.

Let w : [0, 1] → R denote the (optimal, average) value function. The expected continua-

tion value from allocating time according to α ∈ A is:

C(α, π, dt) := (α1 + α3) λ0π dt w (1) + (α2 + α3) λ0(1 − π)dt w (0)

+
(

1 − (α1 + α3)λ0 − (α2 + α3)λ0(1 − π)dt
) [

w(π) + (α2 − α1)λ0π(1 − π)w′(π)dt
]

,

where w(0) = w(1) = λ0 − c.

Thus, the Bellman equation of the problem is:

w(π) = max
α∈A

{
δI(α, π, dt) + e−δdtC(α, π, dt)

}
.
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By invoking the approximations e−δdt ≈ 1 − δdt and (dt)n ≈ 0 for all naturals n ≥ 2 and

rearranging terms, we can rewrite the Bellman equation as:

w(π) = max
α∈A

{

α1

[

λ0π − c +
λ0π [w (1) − w(π)] − λ0π(1 − π)w′(π)

δ

]

+ α2

[

λ0(1 − π) − c +
λ0(1 − π) [w (0) − w(π)] + λ0π(1 − π)w′(π)

δ

]

+α3

[

λ0 − 2c +
λ0(λ0 − c) − w(π)

δ

]}

.

4 Optimal Strategy

Since the expression in braces in the Bellman equation is linear in α, optimal strategies

will involve spending the full unit of time on the most promising bundle. Information

is more valuable when the DM is sufficiently unsure about the true state. I look for an

optimal cutoff strategy α∗ : [0, 1] → A with the following properties:

• There is some π ∈ (0, 1) such that, for all π ∈ [0, π), α∗(π) = (0, 1, 0).

• There is some π ∈ (0, 1), π > π, such that, for all π ∈ (π, 1] , α∗(π) = (1, 0, 0).

• For all π ∈ (π, π), α∗(π) = (0, 0, 1).

Under such strategy α∗, on (0, π), we have:

−λ0π(1 − π)w′(π) + (δ + λ0(1 − π))w(π) = λ0(1 − π)(δ + λ0 − c) − δc.

This equation is similar to Equation (1) in Keller and Rady (2010). The homogeneous

part of the solution is wH(π) := πρ(π)−
δ

λ0 , where ρ(π) = 1−π
π . Notice that

wH ′(π) =
1 − π + δ

λ0

π(1 − π)
wH(π).

For the particular part of the solution, we guess and verify an affine function wP(π) =

a(1 − π) + b. For this guess to be correct, we must have:

λ0π(1 − π)a + (δ + λ0(1 − π))(a(1 − π) + b) = λ0(1 − π)(δ + λ0 − c) − δc.

This gives b = −c and a = λ0. Up to a constant of integration C1, the solution is

w(π) = C1πρ(π)−
δ

λ0 + λ0(1 − π) − c.
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On (π, 1), we have:

λ0π(1 − π)w′(π) + (δ + λ0π)w(π) = λ0π(δ + λ0 − c) − δc.

This equation is almost identical to Equation (1) in Keller and Rady (2010); up to a

constant of integration C0, the solution is

w(π) = C0(1 − π)ρ(π)
δ

λ0 + λ0π − c.

Finally, on (π, π), we have:

(λ0 + δ)w(π) = δ(λ0 − 2c) + λ0(λ0 − c);

solve for w(π) to get w(π) = λ0 − c − δc
λ0+δ

.

To identify a specific candidate for an optimal strategy, we need to pin down the

thresholds and the constants of integration. We do so by means of the value-matching

(VM) and smooth-pasting (SP) conditions.

Condition (VM). w(π) = λ0 − c − δc
λ0+δ

= w(π)

Condition (SP). w′(π) = 0 = w′(π)

The first equality in Condition (VM) is:

C1πρ(π)−
δ

λ0 + λ0(1 − π) − c = λ0 − c −
δc

λ0 + δ
,

which gives:

C1 = C1(π) :=
λ0(λ0 + δ)π − δc

π(λ0 + δ)
ρ(π)

δ
λ0 .

The second equality is very similar to the first, and gives:

C0 = C0(π) :=
λ0(λ0 + δ)(1 − π) − δc

(1 − π)(λ0 + δ)
ρ(π)−

δ
λ0 .

The first equality in Condition (SP) is:

1 − π + δ
λ0

π(1 − π)

(

λ0π −
δc

λ0 + δ

)

− λ0 = 0;
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solve for π to get:

π =
λ0 + δ

λ0 + δ + c
c

λ0 ∈ (0, 1).

With this expression for π, we can write C1(π) as C1(π) = λ0c
λ0+δ

ρ(π)
δ

λ0 +1. The second

equality in Condition (SP) is analogous to the first, and solving for π gives:2

π =
(λ0 + δ)(λ0 − c) + λ0c

λ0(λ0 + δ + c)
= 1 − π ∈ (0, 1).

This expression allows us to write C0(π) as C0(π) = λ0c
λ0+δ

ρ(π)−
δ

λ0 −1.

Putting all of the pieces together, the solution candidate is:

w0(π) =






λ0cρ(π)
λ0+δ

π
(

ρ(π)
ρ(π)

)− δ
λ0

+ λ0(1 − π) − c π ∈ [0, π);

λ0 − c − δc
λ0+δ

π ∈ [π, π];

λ0c
(λ0+δ)ρ(π) (1 − π)

(
ρ(π)
ρ(π)

) δ
λ0

+ λ0π − c π ∈ (π, 1].

This function is continuously differentiable, strictly decreasing on [0, π), and strictly

increasing on (π, 1] (See Lemma A1 in the appendix). Figure 2 shows the plot of w for

the case λ0 = 0.7, c = 0.3, and δ ∈ {0.9, 0.99}.
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Figure 2: Graph of w0; λ0 = 0.7, c = 0.3, and δ ∈ {0.9, 0.99}.

2We have π > π if and only if λ0 − 2c > − λ0c
λ0+δ

, which is true under the assumption that λ0 > 2c.
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Since π = 1 − π, and since these two cutoffs determine the integration constants, we

can summarize the cutoff-strategy solution candidate by the lower cutoff, π. Figure 3

plots this cutoff as a function of c, for λ0 = 0.7 and δ ∈ {0.9, 0.99}.

The next theorem states that the solution candidate is indeed a solution. The proof is

in the appendix.

Theorem 1. Assume that λ0 > 2c. The function w0 solves the Bellman equation. Thus, the

cutoff strategy identified by lower cutoff π = λ0+δ
λ0+δ+c

c
λ0 ∈ (0, 1) is an optimal strategy.

5 Conclusion

This paper analyzes a continuous-time variation of the problem described in Francetich

and Kreps (2013). A decision maker can choose up to two options over time. Only one

of this alternatives is valuable, but the decision makes does not observe which one. I

characterize the optimal cutoff strategy.

The structure of the problem studied here is extremely simple. However, while some

directions of extensions are feasible (for example, allowing for asymmetries in costs), the

problem can become intractable or very cumbersome very quickly. For instance, allowing

for a larger set of tools would require expanding the dimensionality of the state space.

While some work has been done dealing with vector-valued states (see Klein and Rady,

2011), the limitations to this direction are substantial. Thus, Francetich and Kreps (2013)

explores an alternative direction: heuristics.
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Figure 3: Lower cutoff π as a function of c, given λ0 = 0.7 and δ ∈ {0.9, 0.99}.
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A Proofs

Lemma A1. The function w0 : [0, 1] → R given by

w0(π) =






λ0cρ(π)
λ0+δ

π
(

ρ(π)
ρ(π)

)− δ
λ0

+ λ0(1 − π) − c π ∈ [0, π);

λ0 − c − δc
λ0+δ

π ∈ [π, π];

λ0c
(λ0+δ)ρ(π) (1 − π)

(
ρ(π)
ρ(π)

) δ
λ0

+ λ0π − c π ∈ (π, 1].

is continuously differentiable, strictly decreasing on [0, π), and strictly increasing on (π, 1].

Proof. Continuous differentiability follows from value matching and smooth pasting. On

[0, π), we have:

w0′(π) =
λ0cρ(π)
λ0 + δ

(
ρ(π)
ρ(π)

)− δ
λ0
(

1 +
δ

λ0(1 − π)

)

− λ0

<
λ0cρ(π)
λ0 + δ

(

1 +
δ

λ0(1 − π)

)

− λ0 = 0.

Finally, on (π, 1],

w0′(π) = −
λ0c

(λ0 + δ)ρ(π)

(
ρ(π)
ρ(π)

) δ
λ0
(

1 +
δ

λ0π

)

+ λ0

> −
λ0c

(λ0 + δ)ρ(π)

(

1 +
δ

λ0π

)

+ λ0 = 0.
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This concludes the proof.

Proof of Theorem 1. We want to verify that w0 solves the Bellman equation; namely,

that:

w0(π) = max

{

λ0π − c +
λ0π

[
λ0 − c − w0(π)

]
− λ0π(1 − π)w0′(π)

δ
,

λ0(1 − π) − c +
λ0(1 − π)

[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

δ
,

λ0 − 2c +
λ0
[
λ0 − c − w0(π)

]

δ

}

for all π ∈ [0, 1]. To this end, define:

R0
w0(π) : = λ0π − c +

λ0π
[
λ0 − c − w0(π)

]
− λ0π(1 − π)w0′(π)

δ
;

R1
w0(π) : = λ0(1 − π) − c +

λ0(1 − π)
[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

δ
;

R2
w0(π) : = λ0 − 2c +

λ0
[
λ0 − c − w0(π)

]

δ
.

We must check the following conditions:

1. On (0, π), R1
w0(π) − R0

w0(π) > 0 and R1
w0(π) − R2

w0(π) > 0.

2. On (π, π), R2
w0(π) − R0

w0(π) > 0 and R2
w0(π) − R1

w0(π) > 0.

3. Finally, on (π, 1), R0
w0(π) − R1

w0(π) > 0 and R0
w0(π) − R2

w0(π) > 0.

Start with π ∈ (0, π). In this region, we have: λ0π(1 − π)w0′(π) = −[λ0(1 − π) +

δ](λ0 − c − w0(π)) + λ0δπ. Thus,

R1
w0(π) − R0

w0(π) = λ0(1 − 2π) +
λ0(1 − 2π)

[
λ0 − c − w0(π)

]
+ 2λ0π(1 − π)w0′(π)

δ

= λ0 −
(λ0 + 2δ)

[
λ0 − c − w0(π)

]

δ

> λ0 −
(λ0 + 2δ)

[
λ0 − c − w0(π)

]

δ

= λ0 −
λ0 + 2δ

λ0 + δ
c > 0,

where the first strict inequality follows from the fact that w0 is strictly decreasing on
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[0, π). Similarly,

R1
w0(π) − R2

w0(π) = −(λ0π − c) −
λ0π

[
λ0 − c − w0(π)

]
− λ0π(1 − π)w0′(π)

δ

= c0 −
(λ0 + δ)

[
λ0 − c − w0(π)

]

δ

> c0 −
(λ0 + δ)

[
λ0 − c − w0(π)

]

δ
= 0.

Next, consider π ∈ (π, π). In this region, w0′(π) = 0. Now,

R2
w0(π) − R0

w0(π) = λ0(1 − π)
λ0 + δ + c

λ0 + δ
− c

> λ0(1 − π)
λ0 + δ + c

λ0 + δ
− c = 0;

R2
w0(π) − R1

w0(π) = λ0π
λ0 + δ + c

λ0 + δ
− c

> λ0π
λ0 + δ + c

λ0 + δ
− c = 0.

Finally, take π ∈ (π, 1]; now, we have λ0π(1 − π)w0′(π) = (λ0π + δ)(λ0 − c − w0(π))−

λ0δ(1 − π). Hence,

R0
w0(π) − R1

w0(π) = λ0(2π − 1) +
λ0(2π − 1)

[
λ0 − c − w0(π)

]
− 2λ0π(1 − π)w0′(π)

δ

= λ0 −
λ0 + 2δ

δ

[
λ0 − c − w0(π)

]

> λ0 −
λ0 + 2δ

δ

[
λ0 − c − w0(π)

]

= λ0 −
λ0 + 2δ

λ0 + δ
c > 0,

where the strict inequality follows because w0 is strictly increasing on this region;

R0
w0(π) − R2

w0(π) = −[λ0(1 − π) − c] −
λ0(1 − π)

[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

δ

= c −
(λ0 + δ)

[
λ0 − c − w0(π)

]

δ

> c −
(λ0 + δ)

[
λ0 − c − w0(π)

]

δ
= 0.

This concludes the proof.
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