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Abstract

In this paper, we compare an n-firm Cournot game with a Stackelberg
model, where n-firms choose outputs sequentially, in a stochastic demand
environment with private information. The Stackelberg perfect revealing
equilibrium expected output and total surplus are lower while expected
price and total profits are higher than the Cournot equilibrium ones irre-
spective of how noisy both the demand shocks and private demand signals
of firms are. These rankings are the opposite to the rankings of prices, to-
tal output, surplus, and profits under perfect information. Our Stackelberg
model identifies the presence of four effects, which are absent under the
Cournot model. Because of i) the signaling effect, early-mover firms would
like to set low quantities to signal to their followers that the demand is low.
This effect reduces ii) first-mover advantages. Moreover, as followers infer
the demand signals of their predecessors, they are better informed about
demand compared to Cournot oligopolists. But this iii) information ac-
quisition of followers also imposes iv) negative externalities on their rivals
as rivals have less value from exploiting their demand information. Only
i) and iv) favor Cournot over Stackelberg in welfare terms and they are
the dominant ones. We also study a number of implications of our results
in examining the relationships of prices, profits, and welfare with market
concentration.
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1 Introduction

The Stackelberg- and the Cournot models are two of the leading frameworks in

which economists have studied oligopolistic competition. Among others, Ander-

son and Engers (1992) have argued that the simultaneous-move Cournot model is

applicable to characterize an industry where lags in the observation of output de-

cisions are long, whereas the sequential-move Stackelberg model applies when the

reverse holds. While many industries fit the Cournot framework better1, Shinkai

(2000) has argued that the DRAM market (i.e., the market for the main memory

component of most computers and many electronic systems) is better described by

the Stackelberg model because firms make sequential capacity choices. Typically,

manufacturers produce highly substitutable products and they need to make huge

investments in an irreversible manner at least in the short-run in this market.2, 3

As a second example for a Stackelberg industry, consider that broadband tech-

nology is about to enter a telecommunication market (De Miguel and Xu, 2009).

The new entrants (i.e., leaders) must decide whether to invest in expanding their

network capacity (or install a network) and offer the new service to the market.

Since the network expansion process is time consuming, these companies have to

make a decision in advance and thus realize the demand for the new technology

only in distribution. However, the incumbent firms (i.e., followers) have the flexi-

bility to wait until they observe the leaders’ supply decisions to infer signals about

the potential demand before deciding how much of their network capacity to al-

locate to the new service. Following the same example, the Cournot competition

is likely to be associated with the situation where the new entrants are allowed

to connect their equipment to the incumbents’ network directly. This type of

regulation is referred to as “interconnection (collocation).” The government may

intervene the market by adopting this type of public promotions policies in the

diffusion of broadband networks by providing subsidies (Gentzoglanis and Ara-

1For instance, Lopex et al. (2002) show that the Cournot competition is widespread in 32
US food processing industries over the 1972-1992 period.

2Another example of an industry in which the credible-quantity commitment assumption is
valid would be the alumina-refining industry. (Ghemawat and Nalebuff, 1985)

3Kadiyali et al. (2001) point out three structural new empirical industrial organization
(NEIO) approaches that can identify competitive interactions among firms (e.g., Cournot or
Stackelberg) in a given industry. These approaches are 1) The menu approach, 2) The conjectural
variations (CV) approach, and 3) The conduct parameter and the weighted profit approaches.
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vantinos, 2008). As a policy implication, if the Cournot competition creates more

total output than the Stackelberg competition (as in our paper), then this implies

that broadband deployment is higher under the interconnection regulations than

under non-interconnection. Such a relation would be consistent with many em-

pirical findings in OECD countries and European Union4. Similarly, it has been

argued that “unbundling” regulations, which allow entrants to have access to the

incumbent’s facilities, promote broadband adoption in France, Japan, and South

Korea (Wallsten, 2007).

We argue that the first-mover firm in a Stackelberg game tends to be the

biggest player in industries where there is a fairly stable and predictable demand.

For example, in the copying-machine industry, Xerox has always been the top since

it introduced the world’s first plain-paper copier in 1959 (Liu, 2005). But in some

markets whose demand is rather unpredictable, such as the markets of DRAM,

first generation PC’s and medical devices and drugs, it seems that there are late-

mover advantages. This is because the followers can wait and see customer’s

response to a new product introduced by the first movers, as well as move along

the learning curve of innovation (Liu, 2005). For instance, during the 1970s, Intel

led the DRAM market (Kang, 2010). After the 1980s, new emerging Japanese

conglomerates such as Hitachi and Mitsubishi took a chance to lead the market.

Following its entry, the South-Korean firm Samsung took the lead in 1992 when

competing with three major competitors Hynix, Micron and Infeneon. It has

continued to lead the market since then.5 A second example of a successful follower

is in the medical device market. Boston-scientific (a global manufacturer and

supplier of medical devices) claimed that it seizes 70% market share of drug-

coated stents just one year after Johnson & Johnson first introduced this product

(Abelson, 2004). These real-life observations are consistent with Cumbul (2014)’s

recent theoretical finding that in a market with n firms (n ≤ 4), the last mover

firm always gets the highest profit in the same Stackelberg model studied in this

paper. However, if the number of firms is greater than four, then the leader

can still get the highest profit especially when firms have sufficiently low demand

uncertainties. This can also partially explain Samsung’s first-mover advantages in

4For reference, we refer to Flamm (2005), Distaso et al. (2006) and Wallsten (2007).
5As of May 2012, the top five players that have approximatively 91% of the global mobile

DRAM market shares are Samsung (41.4 %), Hynix (23.9%), Elpida (12.4%), Micron (11.6%),
and Winbond (1.7%) (DrameXchange, 2012).
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the DRAM market based on its technological leadership starting from 1992 until

today as not only the number of followers of Samsung increase6 but also demand

uncertainties might have relatively decreased compared to the early stages of the

product development.

Given the real life examples above, it is apparent that the follower firms might

enjoy late-mover advantages by learning about demand from first-mover firms’

strategies in industries where firms face demand uncertainties. In this paper, we

want to compare Cournot and Stackelberg models with respect to total output,

welfare and producer surplus in such an environment. This comparison is impor-

tant for at least three reasons. First, such an understanding provides insights into

the mechanics of those important theoretical models. Relatedly, it also helps us

in deciding which framework (if either) is more appropriate for studying a given

industry given the observed price and output levels. Second, once it has been

decided which model fits a given industry better, the policy maker can assess bet-

ter whether mergers or other industry developments may help or hurt consumers.

The answer may very well depend on which model one thinks is more appropriate

to describe an industry. Third, comparing these models also have implications on

the relationship between market concentration and welfare, which is affected by

the asymmetries among firms. When all firms are identical except for the tim-

ing of production (as in our model), the Stackelberg model yields a higher HHI

(Herfindahl-Hirschman Index), which indicates a higher degree of concentration

of the market, than does the Cournot model.7 Hence total welfare comparison

between these models helps us understand whether concentration is beneficial or

not for the society.

Unfortunately, the current literature compares the Stackelberg and Cournot

equilibrium outcomes under the assumption that the demand is known.8 An

important lesson learned is that total output and welfare under the Stackelberg

competition are greater than or equal to the ones under the Cournot competition

when the demand is known by the firms and costs are symmetric and linear. In

6Many Taiwanese firms such as Winbond, Nan ya, Promos, and Powerchip entered into the
market following Samsung’s success. (Kang, 2010)

7Besides firm asymmetries, there are other factors that can affect the degree of market con-
centration, e.g., the number of firms in the market. However, those factors are not in the scope
of this paper.

8Please visit the related literature section for more discussion about these papers.
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a leader-follower game with perfect information, the leader typically produces a

larger quantity and makes larger profits whereas the follower produces a lower

quantity and makes lower profits than in a simultaneous-move game. Strategic

substitutability among firm quantity decisions is the main driving force behind this

result. Therefore, as we move from simultaneous-move games to sequential-move

ones, this reallocation of firms’ output decisions increases total output, consumer

surplus and total welfare, while it decreases total profits.

We argue that the above output, profit, and welfare rankings between Cournot

and Stackelberg competitions, which can be found in most microeconomics text-

books, are reversed in a world of incomplete information about demand. To obtain

these results, we compare an n−firm Cournot game with a Stackelberg model,

where n firms choose outputs sequentially, in a stochastic demand environment

with private information. Demand is linear and stochastic in the intercept. Firms

have private information about the state of the demand. We assume prior and

posterior distributions that generate posterior expected values that are linear in

the observable signals. In that regard, our model will be quite general because

it accommodates a rich class of distributions.9 In this model, we show that the

Stackelberg perfect revealing equilibrium expected price is higher, so expected

output is lower than in Cournot equilibrium ones for any finite number of firms.

Although the same ranking also holds in terms of expected consumer surplus and

total surplus comparisons, Stackelberg performs better than Cournot in expected

total profit comparisons up to five firms.10 Moreover, our results hold regardless of

how (symmetrically) noisy the private demand signals of firms are. In particular,

they hold when the noise converges to zero. Therefore, our results also imply that

the first-mover advantage of the leader is reduced if there is even a slight noise in

the observation of demand.11

In our proposed Stackelberg perfect revealing equilibrium, firms’ optimal de-

cisions might involve both strategic substitutability and complementarity rela-

tionships. We discuss that while the quantity strategy of any follower firm is a

9For example, the prior-posterior distribution pairs that satisfy this linearity assumption
would include the Gamma-Poisson, Beta-Binomial, and Normal-Normal distributions.

10We could not provide a more general proof because of the complexity of the calculations.
However, we conjecture that these results will also hold with more than five firms.

11Please reference the related literature section of this paper for an overview of the value of
commitment theory.
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strategic complement to the quantity strategy of the firm that moves just before

it, it is a strategic substitute to the quantity strategy of all his other preceding

movers. For example, the follower firm produces more than the leader firm by

strategic complementarity when there are two firms in the market. This finding

is consistent with the discussed real-life observations that the second-mover firm

achieves a higher market share than the first-mover firm.

We demonstrate four effects that explain our main result about the total wel-

fare rankings between Cournot and Stackelberg mode of conducts12. The first

effect is the traditional first-mover advantage strategic effect. Since followers’

production decisions are strategic substitutes of their predecessors’ production

decisions in the absence of demand signaling through outputs, early-mover firms

preempt their followers by investing in a large capacity compared to Cournot.

Therefore, the first-mover advantage induces total output and total welfare to

increase under the Stackelberg competition (as compared to Cournot).

The second effect is the information acquisition effect. In a leader-followers

game, followers perfectly infer the private demand signal of their predecessors

by observing their predecessors’ output choices in the perfect revealing equilib-

rium. Therefore, they are better informed about demand compared to a Cournot

oligopolist. Accordingly, followers are likely to produce more when the demand

is high and produce less when it is low under the Stackelberg competition rela-

tive to the Cournot competition. This implies that prices are less responsive to

the underlying demand shock under the Stackelberg competition. This greater

price stability induces higher welfare, implying this effect favors Stackelberg over

Cournot in welfare terms.

The third effect, so called the signaling effect, accounts for the negative output

effect of information acquisition by the followers on their predecessors. Under this

effect, any non-last mover firm is reluctant to choose a high quantity to avoid

signaling high demand to its successor(s). The last mover, on the other hand,

12As these effects appear only under the Stackelberg competition, the introduction of them
has at least two more consequences. First, they are also useful to understand the profit rankings
between firms under the Stackelberg game. Second, consider a Stackelberg game between a
manufacturer and two retailers when demand is stochastic. The manufacturer’s (i.e., leader’s)
price can send a signal to the retailers (i.e., followers) about the potential demand. In such a
setting, our introduced effects can be reintroduced under a price-setting set-up. For instance,
Gal-or et al. (2008, 2011) only show the presence of inference effect in this game. This effect is
closely related to the signaling effect as discussed in the text.
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does not face any signaling effect because there is no firm following it. This effect,

which is also absent under Cournot competition, is one of the main effects that

makes simultaneous move games more favourable to society than sequential move

games.

The last effect is the negative externalities of information acquisition effect.

Since demand shocks are common for all firms, a more informed follower firm

lead the residual demand of its competitor(s) less variable. Therefore, the rival

firms will have less value from exploiting their demand information. This lower

variability in the demand intercept of the competitor firms would translate into

lower total welfare if they have some prior of demand initially as in our set-up.

That implies that negative externalities of information acquisition effect favor the

Cournot competition over the Stackelberg competition in welfare terms.

In sum, only the first two effects favor the Stackelberg competition over the

Cournot competition in terms of welfare. Nevertheless, the impact of the signaling

and negative externalities of information acquisition effects dominate the impact

of the remaining two effects on total welfare. Accordingly, the simultaneous-move

quantity setting game generates more total welfare than its sequential counterpart.

Our results lead to a number of implications. First, there are implications

on market concentration and welfare. The traditional view is that the oligopoly

power effects of having a higher market concentration13 induce less competition

in the market and is therefore harmful for the society. Nevertheless, Daughety

(1990) and several other authors following him argue that the Stackelberg mode

of conduct is both more concentrated and more efficient in total welfare terms

than the Cournot mode of conduct. Therefore, concentration is beneficial to the

society. But our reversal total welfare ranking between Stackelberg and Cournot

competitions suggests that this result would be the opposite when firm’s strategies

involve learning about demand from the actions of their competitors. As a result,

the traditional view is reobtained in this paper.

Second, there are implications on the relationship of prices and average firm

profits with market concentration. The often observed empirical result is that the

correlation of prices and average firm profits with various measures of concentra-

13There might also be cost-efficiency effects of a change in concentration. However, concen-
tration is only generated by the non-cooperative nature of competitive interactions among firms
in our set-up. Therefore, those kinds of effects are absent here.
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tion is positive.14 Unfortunately, perfect information about demand models may

fail to give intuition about these empirical results. Specifically, the Stackelberg

model generates lower average total firm profits and lower prices than does the

Cournot model under perfect information about demand. Hence, there is a nega-

tive correlation of concentration with both average firm profits and prices for some

particular domain of problems. Nevertheless, we can give partial explanation to

these empirical results by using our incomplete information demand setting as

the more concentrated Stackelberg industries create not only higher average firm

profit but also higher prices than do the less concentrated Cournot industries.15

Lastly, there are implications on the impact of market concentration on the

merger incentives of firms. We consider a cost-efficient horizontal merger to

monopoly in both Cournot and Stackelberg duopoly markets. As both firms

merge to monopoly, the highest level of concentration is achieved under both

types of markets. Hence, market concentration is likely to be increased more after

a merger in less concentrated pre-merger industries (i.e., Cournot). In addition, if

the Cournot-Nash mode generates higher pre-merger welfare than the Stackelberg

mode of conduct (as in our model, but not under perfect information), then a

lower level of efficiency gains would be sufficient to allow mergers in the Stack-

elberg markets than in the Cournot markets. That also partially explains why

the U.S. Federal Trade Commission (FTC) directs its resources toward mergers

made among firms that most increased market concentration16 as it requires more

efficiency gains to allow mergers. Altogether, mergers are more likely in more

concentrated (i.e., less competitive) industries.17

We also argue that there is a discontinuity between the Stackelberg equilib-

rium of the perfect information game and the limit of Stackelberg perfect revealing

equilibria of the incomplete information games as the noise of the demand infor-

mation vanishes to zero.18 For intuition, consider a two-firm set-up. There are

14Visit Weiss (1974), Sherer (1980), and many others (will be added) for profit-concentration
studies. For a survey of around 25 articles about price-concentration studies between 1989-2004,
we refer to Newmark (2004).

15A more complete analysis would be comparing prices, profits, and welfare with concentration
indexes among different asymmetric market structures. We will be focusing on this important
policy question in a separate research paper.

16This observation is based on a January 2013 report of FTC about its horizontal merger
investigations from 1996 to 2011.

17See Hackbarth and Miao (2012) for a similar finding.
18This discontinuity existed in Gal-Or (1987), Shinkai (2000), and Gal-Or et al. (2008, 2011).
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two counter effects, namely the signaling effect and the first-mover advantages.

First, as the leader has more information about demand, the information value

of the additional observation about demand is more significant to the follower.

Therefore, the follower firm relies more on the leaders’ selected output in updat-

ing his beliefs about demand. But when the leader’s signal gets very precise, this

dependency is very high and therefore the leader loses its preemptive capability

through the indirect revelation of information through output observation by its

follower. The signaling effect is the highest in such a case and leads the leader to

not produce. Second, as the followers’ signal gets also very precise, the first-mover

advantages is also the highest and the leader is willing to produce the perfect infor-

mation outcome. Altogether, these two counter effects lead the leader to produce

a level lower than the perfect information level as both firms’ precisions get very

precise. Hence, we have the observed discontinuity. However, we also argue that

if the leader is sufficiently uninformed about demand as compared to the follower

and firms have access samples from the same distribution, then the first-mover

advantages can still dominate the signaling effect.

In the last section of the paper, we study the robustness of our results to

the product differentiation. We show that our main results are mostly valid in a

duopoly model, where firms produce imperfectly substitutable products.

This article is organized as follows. In Section 2, we survey some related lit-

erature. In Section 3, we provide the set-up. In Sections 4 and 5, we state the

Cournot and Stackelberg quantity setting oligopoly models respectively and derive

equilibrium outputs. Section 6 compares the Stackelberg model with the Cournot

model according to price, total output, total profit, consumer surplus and total

welfare. Concluding remarks including extensions and policy implications of the

analysis follow in Section 7. Section 8 concludes. Proofs are in the Appendix.

However, they did not point it out. For example, in the latter two companion papers, as
the noise of demand information of the manufacturer’s and two retailers’ signals converge to
zero (i.e., as s0, s1, s2 → 0), the limit of manufacturer’s perfect revealing equilibrium expected
wholesale price under the no-sharing of information and one-sided information sharing regimes

respectively go to E[pw] = aE[yNS ]→ a(2b+d)
8b−2d and E[pw] = aE[yPSi]→ a(6b2−bd+d2)

4b(4b−d) by Lemma

1 of Gal-Or et al. (2008). But when the products are differentiated, i.e., 0 < d < b, both of
these limit equilibrium prices are different than the perfect information wholesale price of the
manufacturer, namely a/2. This argument shows that there is, indeed, such a discontinuity.
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2 Related Literature

Over the last three decades, there has been a growing research literature that

compares Cournot and Stackelberg equilibrium outcomes under perfect, imperfect,

and incomplete information settings. Nevertheless, demand is known in all of these

papers. To start with, Boyer and Moreaux (1986) argue that both total output

and welfare are higher while total profits are lower in the Stackelberg competition

than in the Cournot competition when demand is linear and costs are constant

in an n−firm set-up. Later, Boyer and Moreaux (1987) show that these rankings

are robust to the product differentiation. Both Anderson and Engers (1992) and

Okuguchi (1999) conclude that the same result holds when the demand function

has a more general structure. Robson (1990) allow for decreasing average costs

(by considering fixed costs) and show that if a Cournot equilibrium has three or

more firms, it is necessarily less efficient than the Stackelberg equilibrium, in a

total surplus sense. However, when the number of firms is two, the rankings are

unambiguous. Albaek (1990) shows that the Stackelberg competition creates more

welfare as compared to the Cournot competition in a duopoly market where firms

face cost uncertainty. However, as firms are not interested in the competitor’s

costs per se, the Stackelberg game being considered is not a cost signaling game.

Several researchers also studied two-stage generalized Stackelberg models wherein

m leaders and n−m followers, where m ∈ [0, n], compete. In such a model, m = 0

or m = n corresponds to the Cournot model. When m = 1 and n = 2, the set-up

becomes the usual one leader-one follower Stackelberg game. When there is full

information about demand, Daughety (1990) finds that the above rankings be-

tween Cournot and Stackelberg competitions are preserved under linear demand

and symmetric constant marginal costs. In that regard, concentration is benefi-

cial to the society. When this model is generalized by assuming general demand

and (symmetric) cost structures, Ino and Matsumura (2012) shows that when

the number of followers is endogenized by considering the free entry of followers,

beneficial concentration always occur and the Stackelberg game generates more

welfare than the Cournot game. Later, Ino and Matsumura (2013) consider the

same general demand and cost structures, but rather they exogenize entry. They

demonstrate that if m is sufficiently high, the rankings are preserved. However, if

m is low enough, the Cournot model might create higher welfare than the Stack-
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elberg model with linear demand and quadratic costs. The intuition is that when

marginal costs are increasing, total production costs are minimized when all firms

produce the same output level in the Cournot model.

There is also a rich literature about stochastic Stackelberg games, where m

leaders and n −m followers compete and only the leader firm faces demand un-

certainties. However, a comparison of Cournot and Stackelberg competitions is

not presented in these papers. For instance, De Wolf and Smeers (1997, m = 1,

n is general), Xu (2005, m = 1, n is general), and De Miguel and Xu (2009, m

and n are general) compute and characterize the Stackelberg equilibrium in such

set-ups by using general demand and cost structures. Liu (2005, m = 1, n = 1),

however, investigates whether there are first- or second-mover advantages when

both demand and costs are linear.

Some researchers also explore relationships between commitment and observ-

ability in Stackelberg theory literature. Those would include Bagwell (1995), Van

Damme and Huckers (1997), Güth et. al (1998), Maggi (1999), Várdy (2004), and

Morgan and Várdy (2007). For example, Bagwell (1995) considers noisy-leader

games where there is uncertainty about the leader’s discrete action. He shows that

the set of pure-strategy Nash equilibrium outcomes for the Stackelberg game coin-

cides exactly with the set of pure-strategy equilibrium outcomes for the associated

Cournot game. Hence commitment (i.e., first-mover advantage) may have no value

if there is (even a slight) noise in the observation of the leader’s action. Similarly,

Maggi (1999) considers two types of uncertainty faced by the follower about both

the leader’s action and the leader’s type (i.e., cost uncertainty). He shows that as

the ratio of the noise about the leader’s action to the noise about cost uncertainty

goes to zero (infinity, respectively), the leader’s output approaches the Stackelberg

output (the simultaneous move output). Hence the value of commitment under

private information is restored for low noise levels.

To the best of our knowledge, our paper is the first to compare Cournot and

Stackelberg models by introducing a welfare analysis when there is demand un-

certainty. It is well known from Gal-Or (1987), Mailath (1993), Shinkai (2000),

and Gal-Or et al. (2008, 2011) that the first-mover advantage is reduced due to

signaling distortions when there is demand uncertainty under a two-firm (three-

firm in the latter three) Stackelberg setting.19 But the Cournot competition is not

19Similar kinds of signaling distortions are also discussed in Spence (1973) and Milgrom and
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presented in these papers. Moreover, we show most of our results in an n−firm

setting, where the Stackelberg competition is challenging to study as one can re-

alize from the above market settings. Our paper also contributes to the value

of commitment literature by presenting the discontinuity argument in the case

of demand uncertainty. In particular, first-mover advantages decrease even for a

slight noise in the observation of demand in the perfect revealing equilibrium.

3 Set-Up

We use similar notation as Gal-Or (1987) and Shinkai (2000). Let N = {1, 2, ..., n}
be a finite set of firms. We consider an oligopolistic market where n ≥ 2 firms sell

a homogeneous good (or service) at a price of p and compete in quantities. Each

firm i produces at a production level of qi. Let Q =
∑

i∈N qi be the aggregate

output of production in the market.

There is a continuum of identical consumers with quadratic utility function

U(q1, q2, ..., qn) + q0, where q0 is the quantity of the numeraire good. Imagine

there is a representative consumer. She maximizes consumer surplus:

max
qi

CS = U(q1, q2, ..., qn)− pQ = (a− µ+ u)Q− bQ2

2
− pQ, i = 1, 2, .., n (1)

where a > µ > 0, u is a random variable with mean µ and variance σ, a is the

observed market demand parameter by all firms, and b > 0 is the slope of the

demand curve.

The maximization problem in (1) with respect to qi ≥ 0 gives that the market

demand is linear and stochastic of the form20, 21:

p = a− µ+ u− bQ (2)

Each firm faces an identical technology and exhibits constant returns to scale.

Roberts (1982).
20Having the constant term −µ in the demand function will later lead to notational simpli-

fications. We could have equivalently considered a combined constant term, e.g., A, which is
equal to a− µ.

21It is common in oligopoly literature with incomplete information to assume linear demand.
For example, see Vives (1984), Li (1985), Gal-Or (1987), Raju and Roy (2000), Gal-Or et al.
(2008, 2011), and Vives (2011).
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We normalize the unit cost of production to zero.22 These symmetry assumptions

about firms’ technologies will later ensure that each firm is active in the market.

Profit of each firm is expressed as πi and defined by πi = pqi under zero cost

normalization. Each firm is risk-neutral and maximizes its expected profits.

No firm can observe the realized value of the prior random variable u, but each

firm i can observe the realized value of its own private signal yi on u. Firms have

access to samples from the same distribution. Therefore, each private signal is the

sum of true demand and additional “white noise,” namely yi = u + ei. Assume

that conditional on u, y1, y2,...,yn are independent and identically distributed

random variables and

E(yi|u) = u, V ar(yi|u) = m, i = 1, 2, ..., n (3)

Hence each firm observes a private signal, which is an unbiased estimator

of the true demand. The precision of each signal is symmetric and given by

1/m. Whereas a signal is uninformative as m → ∞, it is perfectly informative

when m = 0 and we return to the full information case. Hence, a lower (higher,

respectively) m means that all firms are more (less) informed about the market

demand at the same magnitude.

Note that E(yi) = E(E(yi|u)) = E(u) = µ by the law of iterated expectations

and E(u2) = V ar(u) + (E(u))2 = σ + µ2. Together with (3), we get

E(y2
i |u) = V ar(yi|u) + (E(yi|u))2 = m+ u2

V ar(yi) = E(y2
i )− (E(yi))

2 = E(E(y2
i |u))− µ2 = E(m+ u2)− µ2 = σ +m

E(yiyj) = E(E(yiyj|u)) = E(E(yi|u)E(yj|u)) = E(u2) = σ + µ2, i 6= j

E(uyi) = E(E(uyi|u)) = E(uE(yi|u)) = E(u2) = σ + µ2

(4)

The following linearity and symmetry assumptions about the posterior ex-

pected values in an n−firm oligopoly generalize the respective assumptions of

Shinkai (2000) in a three-firm oligopoly.

Assumption 1. Let (i1, i2, ..., in) be an order on the set of firms N .

22With positive unitary costs, a − µ should be interpreted as the difference between the
deterministic intercept of the demand and the unit cost.
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i) For all j ∈ N , there exist constants αj0, αj1 ∈ R such that

E(u|yi1 , yi2 , ..., yij) = αj0 + αj1(yi1 + yi2 + ...+ yij) (5)

ii) For all k ∈ N , all l ∈ N \ {1, 2, ..., k}, there exist constants βj0, βj1 ∈ R such

that

E(yil |yi1 , yi2 , ..., yik) = βk0 + βk1(yi1 + yi2 + ...+ yik) (6)

Since the variance term m is a common parameter for all firms, then it is

natural to make the symmetry assumption.23 Specifically, the constant terms in

(5) and (6) depend only on the number of signals in the expectations but not on

the identity of them.

The linearity assumption is crucial for the derivation of our results and is fre-

quently assumed in the oligopoly literature with private information.24 Assump-

tion 1 together with the linear demand and constant marginal costs assumptions

will ensure that the equilibrium quantities of the Cournot and Stackelberg models,

which will be formally defined in the next section, are linear in their arguments.

Linear equilibria are tractable, particularly in the presence of private informa-

tion, have desirable properties like simplicity, and have proved to be very useful

as a basis for empirical analysis (Vives, 2011). The prior-posterior distribution

pairs that satisfy Assumption 1 include the Gamma-Poisson, Beta-Binomial, and

Normal-Normal distributions (DeGroot (1970), Gal-Or (1987), Shinkai (2000)).

Since we wish to impose non-negativity constraints on the intercept of the de-

mand function, the most appropriate distributions are the first two, where both

u and each yi (i = 1, 2, ..., n) have a positive support. The coefficients of the

posterior expectations given in Assumption 1 are derived in the following lemma.

Lemma 1. Let m,σ ∈ R+ and Assumption 1 hold. Let also (i1, i2, ..., in) be an

order on the set of firms N .

i) For all j ∈ N ,

E(u|yi1 , yi2 , ..., yij) =
mµ

m+ jσ
+

σ

m+ jσ
(yi1 + yi2 + ...+ yij) (7)

23This symmetry assumption cannot be valid when each firm i’s signal has a different precision,
i.e., 1/mi 6= 1/mj for i 6= j. See Gal-Or (1987) for more discussion.

24For instance, the linearity assumption is also assumed by Vives (1984), Li (1985), Gal-Or
(1987), Raju and Roy (2000), Gal-Or et al. (2008, 2011).
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ii) For all k ∈ N , all l ∈ N \ {1, 2, ..., k},

E(yil |yi1 , yi2 , ..., yik) =
mµ

m+ kσ
+

σ

m+ kσ
(yi1 + yi2 + ...+ yik) (8)

Proof: See the Appendix.

Ex-ante expected total welfare is expressed as the sum of consumer surplus,

which is specified by (1), and producer surplus (pQ):

E[TW ] = E[U(q1, q2, ..., qn)] = E[(a− µ+ u)Q− bQ2

2
] (9)

For example, when price is zero, total quantity would be (a−µ+u)/b. There-

fore, expected ex-ante total welfare is E[TW ] = (a2 + σ)/(2b) by (4) and (9).

Next, we present Cournot and Stackelberg oligopoly models, after which we

compare both types of equilibria and derive the conclusions.

4 The Cournot Oligopoly Model

In the Cournot game, firms simultaneously set quantities after privately observing

their signals. A Bayesian equilibrium of the Cournot game is that for all k ∈ N ,

it holds that qk ∈ argmaxxE[πk(x,q−k)|yk], where we let q−k be the vector of

quantities produced by all firms other than k. We next derive the equilibrium

quantities.

Theorem 1. The unique Bayesian equilibrium of the Cournot game is (q∗1,C(N),

, q∗2,C(N), ..., q∗n,C(N)), where

q∗i,C(N) =
a

b(n+ 1)
+

σ(yi − µ)

b(2m+ σ(n+ 1))
, i = 1, 2, ..., n (10)

where C denotes the Cournot competition.

Proof: See the Appendix.

We also show that the expected Cournot output always equal the Cournot

certainty output. In the perfect information case, m = 0 and yi = µ. In

such a case, (10) simplifies to q∗i,C(N) = a
b(n+1)

. In addition, since E(yi) = µ,
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E(q∗i,C(N)) = a
b(n+1)

, as desired. Having said that, total expected production in

the Cournot game is therefore given by

E(Q∗C(N)) =
na

b(n+ 1)
(11)

In what follows, we calculate expected Stackelberg equilibrium values in a stochas-

tic demand environment and then compare total expected equilibrium outputs

under both types of competition.

5 The Stackelberg Oligopoly Model

We assume that each firm chooses its output level after observing the private signal

but before realizing the actual demand in a hierarchical Stackelberg quantity

setting oligopoly game. Without loss of any generality, suppose firms choose

outputs sequentially in the order of their firm numberings. In that regard, firm

one, being the Stackelberg leader, first chooses its output quantity, then firm two

(a follower) does, then firm three does and so on. Firms are assumed to pre-commit

to their production of outputs. Let R+ and Yi denote the pure strategy space and

firm i’s private signal’s strategy space respectively. Firm one chooses its optimal

quantity of output after observing its private signal y1. Its strategy is denoted

by F1(y1) where F1 : Y1 → R+. Firm two can condition its quantity of output

on both its private signal y2 and on the output quantity q1 chosen by the leader.

Hence, its optimal strategy is denoted by F2(y2, q1) where F2 : Y2 × R+ → R+.

In general, firm k, k > 1, being the (k − 1)th follower, conditions its quantity of

output on its private signal yk and the output quantities q1, q2,...,qk−1 chosen by

the previous firms. Accordingly, the optimal strategy (or say the quantity decision

rule) followed by the (k − 1)th follower is denoted by Fk(yk, q1, q2, ..., qk−1) where

Fk : Yk ×R+ × ...×R+ → R+.

As also discussed in Gal-Or (1987) and Shinkai (2000), there might be two

possible kinds of equilibria, 1) Perfect revealing equilibria and 2) Partially re-

vealing equilibria.25 In the first one, the follower firm k can always invert the

25Tirole (1995, Chapter 11, pp. 450-453) argues that when the state of market demand can
be two types (e.g., high and low) and n = 2, among all separating and pooling equilibria, the
only kind of equilibria that survives intuitive criterion in the Stackelberg model is the separating
(perfect revealing) equilibria. Assume now that n = 2 and only the follower firm faces demand
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functions F1, F2, ..., Fk−1 and perfectly infers the private information of its pre-

decessors. Gal-Or (1987) further demonstrates the existence and uniqueness of

perfect revealing equilibrium for a wide range of parameter values in a duopoly

set-up. The uniqueness of equilibrium is desirable for answering policy relevant

questions. In the second type of equilibria, the leader’s decision rule is mostly

discontinuous and includes flat regions. But if it is continuous and bounded, then

partially revealing equilibria may arise only at the boundaries of permitted quan-

tities of output. Moreover, there are infinitely many partially revealing equilibria,

which creates further equilibrium selection problems. Besides these arguments, we

want to compare Cournot-Bayesian equilibrium with the Stackelberg equilibrium.

Since the Cournot equilibrium is continuous and linear in the firm’s signals, it is

reasonable to study a continuous and linear equilibrium in the Stackelberg case.

Lastly, several researchers such as Gal-Or (1987), Shinkai (2000), and Gal-Or et

al. (2008, 2011) studied perfect revealing equilibrium in this literature to answer

many policy relevant questions. This type of equilibrium turns out to be a very

useful tool to provide a link between real life observations and theory. We would

also like to extend the first two paper’s analyses to an n−firm oligopoly setting.

The bottom line is that many economists desire the separating equilibrium for a

variety of reasons (for example, intuition about the result) and often many of the

refinements cooperate with this objective. In the light of these arguments, it is

more appealing for us to study perfect revealing equilibria.

DEFINITION. A strategy combination (q∗1(N), q∗2(N), ..., q∗n(N)) is a Stack-

elberg perfect revealing equilibrium if it satisfies the following n-system of equa-

tions:

uncertainties. Under this assumption, Mailath (1993) shows that there is a unique perfect
revealing equilibrium and this equilibrium is the only type of equilibrium that survives D1
criterion in the Stackelberg model, where the state of the demand can take three discrete types.
Moreover, both Mailath (1989) and Janssen and Maasland (1997) show that the same result also
holds when the state of market demand is continuum of types (as in our paper). We conjecture
that the perfect revealing equilibrium is also the only type of equilibrium that survives D1
criterion in our model but proving this claim requires an involved analyses and therefore, we
leave it as an open question for a separate research paper.

16



∀y1 ∈ Y1,

q∗1(N) = F1(y1) = argmax
q1∈R+

E[π1(q1, F2(y2, q1), ..., Fn(yn, q1, q2, ..., qn−1), u)|y1]

∀i ∈ N \ {1},∀yi ∈ Yi,∀F1(y1) = q1 ∈ R+,∀F2(y2, q1) = q2 ∈ R+, ...,

, ...,∀Fi−1(yi−1, q1, q2, ..., qi−2) = qi−1 ∈ R+,

q∗i (N) = Fi(yi, q1, q2, ..., qi−1) = argmax
qi∈R+

E[πi(q1, q2, ..., qi, Fi+1(yi+1, q1, q2, ..., qi),

..., Fn(yn, q1, q2, ..., qn−1), u)|yi, q1, q2, ..., qi−1]

In what follows, we show that there is a unique linear perfect revealing equi-

librium and we then derive it.

5.1 Derivation of the Stackelberg Equilibrium

In this subsection, we derive the equilibrium output strategies and the correspond-

ing equilibrium prices and profits of firms. In order to guarantee non-negativity

of the equilibrium quantities of output, we assume that yi (i = 1, 2, ..., n) are ran-

dom variables whose supports are the entire or any non-negative real space. The

equilibrium strategies F1(.) through Fn(.) are necessarily monotone functions of

their signal(s) for a perfect revealing equilibrium to exist in the first place. Since

the functional form of the expected profit of firm i is quadratic in qi by Lemma

1, we conjecture that the best responses are linear in their arguments.

Let S = {1, 2, ..., s} ⊆ N with s ≥ 2 be an ordered non-empty subset of N and

denote it market S. To derive the equilibrium of the original leader-followers game

played among firms in N , consider first the equilibrium of the one played with

firms in S. Accordingly, define individual and total industry outputs in market

S respectively as qi(S) and Q(S) =
∑

i∈S qi(S), and for each non-empty S
′ ⊂ S,

let QS\S′ (S) =
∑

i∈S\S′ qi(S). Individual and total equilibrium output levels in

market S are respectively denoted by q∗i,SQ(S) and Q∗SQ(S) =
∑

i∈S q
∗
i,SQ(S), where

SQ denotes the Stackelberg quantity setting game.

Let m ∈ R+ so that the perfect revealing equilibrium is well defined.26 Firms’

26Since m = 0 refers to the perfect information case, equilibrium quantities cannot depend on
private signals. Therefore, our assumed linear functional form for equilibrium quantities in (12)
is not valid. Gal-Or (1987) also argues the non-existence of perfect revealing equilibrium when
m = 0. However, she points out that we might still have partially revealing equilibrium, where
the leader’s decision rule is discontinuous.
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private signals are assumed to be independent of the number of firms in the market.

Accordingly assume that for each i ∈ S, firm i’s Stackelberg equilibrium strategy

is linear of the form

q∗i,SQ(S) = F S
i (yi, q1, q2, ..., qi−1) = γi0s + γi1sq1 + γi2sq2...+ γi,i−1,sqi−1 + γiisyi(12)

where for k < i, γjks denotes firm i′s output reaction to the changes in the

production level of firm k, qk, ceteris paribus; γiis > 0 is firm i’s own production

sensitivity to the changes in its private signal; and s = |S| denotes the coefficient

identity for the game that is considered. Hence in an n−firm problem, there are

n(n+ 3)/2 unknown coefficients and it is very difficult to find them in an efficient

manner especially when n is high.27

Since we are particularly interested in perfect revealing equilibrium, the inverse

functions of F S1
1 (y1), F S1

2 (y2, q1),..., F S1
s−1(ys−1, q1, q2, ..., qs−2) exist by the definition

of equilibrium and are linear by (12). Hence the information set that each player

has depends on both her private signal and its predecessors’ signals inferred from

their output observations. Consequently firm i’s information vector is an i−
dimensional vector of the form28

yi = (yi, y1 = F S1
−1

1 (q1), y2 = F S1
−1

2 (q1, q2), ..., yi−1 = F S1
−1

i−1 (q1, q2, ..., qi−1)) (13)

The way we find the equilibrium is more constructive than that of Gal-Or

(1987) and that of Shinkai (2000). Let n ≥ 3 and consider any s ∈ {2, 3, ..., n− 1}.
We consider two Stackelberg games played among firms in markets S1 = {1, 2, ..., s}
and S2 = {1, 2, ..., s+ 1}. In both pre-entry and post-entry markets, firms move

according to their number orderings and firms in S1 are assumed observe the same

private signal. We proceed in two steps. First, we will show that the expected

profit maximization problems of each firm i ∈ {1, 2, ..., s− 1} in S1 and S2 mar-

kets are constant multiples of each other. Thus, its best reply remains the same

after the entry. The main intuition is that the residual demand left to firms in

S1 \ {s} remains the same following the entry. Because of the iterative nature of

27Even three-firm calculations require Mathematica calculations several pages long to derive
the equilibrium coefficients. See Shinkai (2000) for more discussion.

28Here for each j = {1, 2, ..., s − 1}, FS1
j (.) is inverted with respect to qj . Since the yi’s are

independent of the number of firms in the market, so is yi.
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the problem, each such firm acts as if it were a monopolist facing the residual de-

mand curve inherited from the preceding movers. Hence, each such firm’s output

is independent of the number of firms that follow it in the hierarchy. This obser-

vation is similar to the one in the full information case where the same equivalence

is also present for firm s for a wide class of demand functions (See Anderson and

Engers (1992)).

Second, we show that firm s’s optimal quantity, q∗s,SQ(S1), decreases to q∗s,SQ(S2) =
σ

m+σ(s+1)
q∗s,SQ(S1) following the entry of firm s+1 into the market as a last mover.

These two findings are then sufficient for us to derive the equilibrium quantities

of the original game with N firms. All of these claims will be derived in the proof

of the next section’s theorem.

5.2 The Stackelberg Equilibrium Quantities

The Stackelberg equilibrium quantities are derived in the next theorem29:

Theorem 2. Let n ≥ 2 and m,σ ∈ R+ . A unique linear perfect-revealing equilib-

rium (q∗1,SQ(N), q∗2,SQ(N), ..., q∗n,SQ(N)) exists in the n-player Stackelberg quantity

competition game. These equilibrium quantity strategies (best responses) are given

by

q∗1,SQ(N) = F1(y1) =
aσm+ σ2(a− µ) + σ2y1

2b(σ +m)(2σ +m)
,

29One can easily show that when n = 2 or n = 3, then the equilibrium quantities of firms are
positive for any positive realization of the signals, y1, y2, and y3. However, if n ≥ 4, then the
quantity of any follower of firm three might be negative for some extreme positive realizations of
signals and other parameters of the model. Firms are constrained to choose positive quantities.
For convenience and analytical tractability, we can ignore this and get negative quantities for
certain combinations of a and the signals. The probability of such an event can be made
arbitrarily small by appropriately choosing the variances of the model (e.g., see Vives (1984),
pp. 77, Vives (1999), Chapter 8, Raju and Roy (2000)).
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For each i ∈ {2, 3, ..., n− 1},

q∗i,SQ(N) = Fi(yi, q1, q2, ..., qi−1)

=
b(iσ +m)((2i− 3)σ + 2m)qi−1(N)− bσ2

∑
j≤i−2 qj(N) + σ2(a− µ) + σ2yi

2b(iσ +m)((i+ 1)σ +m)
,

q∗n,SQ(N) = Fn(yn, q1, q2, ..., qn−1)

=
b(nσ +m)((2n− 3)σ + 2m)qn−1(N)− bσ2

∑
j≤n−2 qj(N) + σ2(a− µ) + σ2yn

2bσ(nσ +m)

Equilibrium quantities are iteratively calculated as q∗1,SQ(N) = F1(y1) and for

each i ∈ N \ {1}, q∗i,SQ(N) = Fi(yi, q
∗
1,SQ(N), q∗2,SQ(N), ..., q∗i−1,SQ(N)).30

Proof: See the Appendix.

Note that when n = 2, this theorem is a special case of Gal-Or (1987)’s result.31

On the other hand, Shinkai’s (2000) result is a special case of this theorem when

n = 3 and b = 1.32 Gal-Or (1987) further shows the uniqueness of perfect revealing

equilibrium in the two-firm case.33

5.3 Strategic Substitutes versus Strategic Complements

We say that quantity strategy qi is a strategic substitute (or complement respec-

tively) to quantity strategy qj, i 6= j, if the best response of firm i to an increase

in the quantity of firm j is to decrease (increase) its production (equivalently if
∂2πi
∂qi∂qj

< 0 (> 0) ). In this section, we investigate strategic substitutability versus

30In the proof of Lemma 5(ii), which is stated in the Appendix, we provide expected equilib-
rium quantities of firms, which are all positive for all a,m, σ > 0.

31Gal-Or (1987)’s set-up coincides with ours when we let h = σ, and m1 = m2 = m in her
paper. Note that the constant deterministic demand parameter a in that paper is changed to
a− µ in this paper to simplify the notations.

32Shinkai (2000) did not check whether the second order conditions are satisfied or not in his
proof. Our proof of Theorem 2 further completes his proof by showing that the second order
conditions are, indeed, fulfilled.

33Theorem 2 shows that there is a unique linear perfect revealing equilibrium. We also con-
jecture that there is a unique perfect revealing equilibrium that is linear with more than two
firms.
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complementarity relationships among firms’ strategies in our Stackelberg setting.

One can use the best responses provided in Theorem 2 to find these relationships.

Lemma 2 summarizes our results.

Lemma 2. Let m,σ ∈ R+.

i) for each k ∈ N \ {1, n} and l = k − 1,
∂q∗k,SQ
∂ql

= 2m+(2k−3)σ
2(m+σ(k+1))

> 0,

ii)
∂q∗n,SQ
∂qn−1

= 2m+(2n−3)σ
2σ

> 0,

iii) for each n ≥ 4, each k ∈ N \ {1, 2, n}, each l ∈ {1, 2, ..., k − 2},
,−1

2
<

∂q∗k,SQ
∂ql

= − σ2

2(m+kσ)(m+σ(k+1))
< 0,

iv) for each n ≥ 3 and l ∈ N \ {n− 1, n}, −1
2
<

∂q∗n,SQ
∂ql

= − σ
2(m+nσ)

< 0.

These derivations show that although the quantity of any follower firm is a

strategic complement to the quantity of the one that moves just before it (parts i

and ii), it is a strategic substitute to all other preceding movers to that follower

firm (parts iii and iv). In the following figure, we depict these findings with four

firms.

Figure 1: Strategic Effects: In this figure, we provide the strategic relationships
among quantity strategies of four firms in the Stackelberg setting based on Lemma
2. Whereas the quantity of any follower is a strategic complement to his immediate
predecessor, it is a strategic substitute to the one of all his other preceding movers.

In order to provide our intuition for the observed relationships, we introduce

the direct revelation benchmark game, where firms directly reveal their private
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information to their followers instead of letting them infer it from their observable

quantity of output.34 In this game, there is no signaling of information through

output observations as in our Stackelberg model. Therefore, a comparison of the

equilibrium quantities of Stackelberg and direct revelation games will show us that

how information acquisition affects the followers’ optimal decisions.

In a direct revelation game, let the equilibrium strategies of each firm i ∈ N
be linear of the form

q∗i,D(N) = Hi(y1, y2, ..., yi, q1, q2, ..., qi−1)

= ξ0 + ξ1y1 + ξ2y2 + ...+ ξiyi + ξi+1q1 + ...+ ξ2i−1qi−1

(14)

where subscript D denotes direct revelation. In Lemma 3, we derive the equilib-

rium strategies and equilibrium payoffs of the game with direct revelation.

Lemma 3. A unique linear equilibrium (q∗1,D(N), q∗2,D(N), ..., q∗n,D(N)) exists in

the direct revelation game. These equilibrium strategies are given by, for each

i ∈ N ,

q∗i,D(N) = Hi(y1, ..., yi, q1, ..., qi−1) =
a− µ− b

∑
j∈{1,2,...,i−1} qj + E[u|yi]

2b
(15)

Equilibrium quantities are iteratively calculated as q∗1,D(N) = Hi(y1) and for each

i ∈ N \ {1}, q∗i,D(N) = Hi(y1, y2, ..., yn, q
∗
1,D(N), q∗2,D(N), ..., q∗n,D(N)).

Proof: The proof is very similar to the proof of Theorem 2 and is therefore

skipped.

Observe by Lemma 3 that the quantity strategies of any follower is a strategic

substitute to the quantity strategy of its predecessors, i.e.,
∂q∗i,D
∂qj

= −1
2

, i > j.

Accordingly comparing this observation with the findings in Lemma 2 shows that

there exists a positive conjectural variation effect that is beneficial to the follower

firms in our Stackelberg model. This effect increases all slope parameters in the

best response functions of followers compared to a benchmark level of −1/2. From

the perspective of the last-mover, it does not really matter whether the information

34This benchmark is not really implementable because it requires that the follower is capable
of verifying the information transmitted by the leader. If a mechanism of verification does not
exist, then there might be an incentive for early-mover firms to report untruthfully signals lower
than their true realizations (Gal-Or et al., 2008). Thus, the followers generally suspect the
accuracy of the signaling information received from their predecessors (Gal-Or, 1987).
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is directly or indirectly revealed. However, indirect inferences about demand will

decrease non-last-movers’ preemptive abilities (i.e., first-mover advantages). It is,

therefore, this positive effect that might convert strategic substitutability relations

into strategic complementarity ones.

Consider now an increase in any non-last mover firm’s, say firm j, output level

associated with a positive demand shock. This increase initiates chain reactions

in the optimal output strategies of the followers of firm j. Firm j+1 is the first to

respond to this increase by further increasing its output level through its strategic

complementarity relationship with firm j. But an increase in both firm j’s and

j + 1’s quantities induce prices to decrease too much if firms from j + 2 up to n

do not react. They, however, find it optimal to make a negative adjustment by

decreasing their output levels. Consequently, there will be a moderate increase

in the market price. If, otherwise, all followers of firm j increase their quantities

following this positive demand shock, then price will be too low, which will create

incentives for them to deviate by reducing their productions.

6 Stackelberg versus Cournot Oligopoly

6.1 Total Output and Price Comparisons

As prices are negatively correlated with total output, it is sufficient to show the

ranking of total equilibrium output between Cournot and Stackelberg compe-

titions. In that regard, define ∆E(Q∗(N)) as the difference of total expected

equilibrium production in the Cournot market from the one in the Stackelberg

market, i.e., ∆E(Q∗(N)) = E(Q∗C(N)) − E(Q∗SQ(N)). Our next theorem estab-

lishes that the simultaneous move game lead to higher total expected output and

lower expected price than the sequential move game irrespective of how noisy both

the demand shocks and firms’ private signals are.

Theorem 3. Let n ≥ 2 and m,σ ∈ R+. Whereas total expected equilibrium

market output is higher, the expected equilibrium price is lower in the Cournot

game than in the Stackelberg game. (i.e., ∆E(Q∗(N)) > 0)

Proof: See the Appendix.
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We identify two effects that induce our result about output rankings between

Cournot and Stackelberg equilibrium outcomes. The first effect is the tradi-

tional first-mover advantage effect. Recall that the firms’ optimal decisions involve

strategic substitutability relationships in the absence of demand signaling through

outputs by Lemma 2. For this reason, each firm (save the last mover) selects a

high output in order to induce subsequent movers to cut back. Consequently,

the first-mover advantage induces total output to increase under the Stackelberg

competition (as compared to Cournot).

The second effect is the signaling effect35, which is absent under the Cournot

competition. As noted in the last section, followers become more responsive to the

output changes of their preceding movers under the positive conjectural variation

effect. That creates an incentive to invest in a lower capacity for the firms that

signal their demand information. Therefore, under the signaling effect, any non-

last mover firm would like to produce a low quantity to signal its followers that

the demand is low. In that regard, this negative output effect favors the Cournot

competition over the Stackelberg competition. In sum, there is one effect favoring

Stackelberg over Cournot and one effect favoring Cournot over Stackelberg. It

turns out that total negative output effects due to signaling information domi-

nate total positive output effects due to moving early. Thus, the total expected

equilibrium output is unambiguously higher in the Cournot case.

We finally consider the impact of these effects on the individual output levels

of firms when n = 2. Our results are summarized in Lemma 4.

Lemma 4. Let n = 2 and m,σ ∈ R+.

E[q∗2,SQ({1, 2})] > E[q∗C({1, 2})] > E[q∗1,SQ({1, 2})]

Proof: See the Appendix.

The leader firm faces both signaling and first-mover advantages effects unlike a

Cournot duopolist. Remark by Lemma 2 that the reaction function of the follower

is upwards sloping. Therefore, the leader firm’s output reduction incentive, which

35In a set-up where two retailers infer demand information from the price chosen by one
manufacturer., Gal-Or et al. (2008, 2011) identify the presence of an inference effect, which is
the cousin of signaling effect in price setting games. Specifically, because of this inference effect,
the manufacturer would like to set a low wholesale price to signal to the retailer that the demand
is low.
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is induced by the signaling effect, is likely to dominate its output expansion incen-

tive, which is induced by the first-mover advantages. Consequently, it produces

less than a Cournot duopolist in expectation. Nevertheless, since the follower firm

does not face any of above effects, it can increase its output aggressively through

strategic complementarity. Indeed, it produces more than a Cournot duopolist in

expected terms.

6.2 Profit, Consumer- and Total Surplus Comparisons

In this section, we provide our main results. We compare total expected equi-

librium profit, consumer surplus and total surplus between the Stackelberg and

Cournot competitions. We start with the total expected profit comparisons. Total

expected equilibrium profit is defined as

E[Π∗(N)] = E[p∗Q∗(N)] = E[(a− µ+ u− bQ∗(N))Q∗(N)] (16)

Now, let the total expected profit difference between these models be denoted as

∆E(Π∗(N)) = E(Π∗C(N))− E(Π∗SQ(N)) = nE(π∗C(N))−
∑

i∈N E(π∗i,SQ(N)).

Theorem 4. Let n ∈ {2, 3, 4, 5} and m,σ ∈ R+. Total expected profit is higher

in the Stackelberg game than in the Cournot game.36 (i.e., ∆E(Π∗(N)) < 0)

Proof: See the Appendix.

Before providing the main effects that generate the total profit rankings in

this theorem, we derive consumer surplus and total welfare rankings between our

models. Ex-ante total expected equilibrium welfare can be deduced by summing

up consumer and producer surplus, which are respectively defined in (1) and (16),

as:

E[TW ∗(N)] = E[(a− µ+ u)Q∗(N)− b(Q∗(N))2

2
] (17)

36Proving this claim in a general n−firm framework requires tedious algebraic calculations.
Given this constraint, we prove the claims up to a 5−firm set-up and conjecture that the claims
hold with more than five firms.
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Based on this definition, let ∆E(TW ∗(N)) be the difference of the Cournot

competition total equilibrium welfare from the Stackelberg competition total equi-

librium welfare, i.e., ∆E(TW ∗(N)) = E(TW ∗
C(N)) − E(TW ∗

SQ(N)). Similarly,

the same difference for the consumer surpluses is defined as ∆E(CS∗(N)) =

E(CS∗C(N))− E(CS∗SQ(N)). Next, we present a main result.

Theorem 5. Let n ∈ {2, 3, 4, 5} and m,σ ∈ R+. Both consumer and total ex-

pected equilibrium welfare are higher under the Cournot competition than under

the Stackelberg competition.37 (i.e., ∆E(TW ∗(N)) > 0 and ∆E(CS∗(N)) > 0.)

Proof: See the Appendix.

As previously discussed, first-mover advantages increase early-mover firms’

production incentives to capture a bigger pie of the market. This increase in out-

put levels translates into not only higher consumer surplus and total welfare but

also lower total profits as noted under perfect information models that compare

Stackelberg and Cournot competitions. By analogy, the adverse consequences of

the signaling effect on output investment incentives of the early-mover firms is

expected to generate lower consumer surplus and total welfare; and higher total

profits. As a result, the domination of the signaling effect over the first-mover

advantages effect partially explains the observed rankings between two types of

competition in Theorem 5.

Apart from the above two opposite output effects, we finally point out two wel-

fare effects in order to completely justify the rankings in Theorem 5. These two

effects are called as the information acquisition effect and negative externalities of

information acquisition effect. They do not account for total output differences,

but rather they give the possibility that even when the expected outputs are the

same between two types of competition, total profit, consumer surplus, and total

welfare rankings are likely to be different. Specifically, the followers are better

informed than their predecessors in a leader-followers game. Therefore, they are

likely to produce more when the demand is high and produce less when it is low

under the Stackelberg competition compared to the Cournot competition. This

implies that prices are less responsive to the underlying demand shock under the

37See Footnote 36.
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Stackelberg competition. This greater price stability (and higher output produc-

tion volatility) induces higher welfare, implying that the information acquisition

effect favors Stackelberg over Cournot in terms of total profits, consumer surplus

and total welfare.38

Information acquisition of a follower firm also imposes a negative externality to

its competitor(s) in the following sense. Since demand shocks are common for all

firms, a more informed follower firm lead the residual demand of its competitor(s)

less variable. This lower variability in the demand intercept of the competitor

firms would translate into lower total welfare if they have some prior of demand

initially as in our set-up. Therefore, this effect is likely to decrease total welfare.

That implies that negative externalities of information acquisition effect favors

the Cournot competition over the Stackelberg competition in welfare terms.

Among these four effects, the signaling and negative externalizes of information

acquisition effects are the dominant ones. Accordingly, the Cournot mode of

conduct is socially desirable compared to the Stackelberg mode of conduct from

both consumer and total welfare point of views. This result sharply diverges from

traditional efficiency rankings between these two game settings.

We now study two simple examples in order to better understand these two

welfare effects. In the first one, we let each firm a monopoly for the good it pro-

duces in a duopoly set-up. Since demand intercepts are common for both firms,

the follower firm still learns the signal of the leader firm in a perfect revealing

equilibrium. Hence this type of information acquisition affects the welfare anal-

ysis between Cournot and Stackelberg competitions. In the second example, we

provide more intuition about the welfare effects of the negative externalities of

information acquisition of firms on their competitors.

Example 1: Let N = {1, 2} and pi = a− µ+ u− bqi, i = 1, 2, where b > 0 is

the slope of demand. We follow all other assumptions of our original model. The

Stackelberg perfect revealing equilibrium outputs of firms will be derived in the

extension Section 7.5 as

q∗1,DS =
a

2b
+
σ(y1 − µ)

2b(m+ σ)
and q∗2,DS =

a

2b
+
σ(y1 + y2 − 2µ)

2b(m+ 2σ)
(18)

38The intuition is similar to the welfare effects of third degree price discrimination, where third
degree price discrimination (lower price stability) reduces welfare when the expected quantities
are the same.
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where DS refers to the differentiated Stackelberg game. Similarly, Cournot-

Bayesian equilibrium outputs of firms are given as

q∗i,DC =
a

2b
+

σ(yi − µ)

2b(m+ σ)
i = 1, 2 (19)

where DC corresponds to the differentiated Cournot game. Note that from the

perspective of the first firm, it does not make any difference whether the type of

competition is Cournot or Stackelberg. It simply produces the monopoly level of

output in both set-ups. Therefore, q∗1,DS = q∗1,DC . However, since the signal of the

leader is revealed to the follower under the Stackelberg competition, the follower

is more informed about demand as the compared to the Cournot competition.39

Comparing (18) and (19) shows that the follower is able to produce more when

the observed signal of the leader is greater than mµ+σy2
m+σ

as compared to a Cournot

duopolist. For example, consider y2 = µ. Firm two produces a/2b under the

Cournot competition. However, the Stackelberg follower produces more than a/2b,

when the observed signal of the leader is greater than the average (i.e., y1 > µ).

That implies that there is additional consumer surplus, producer surplus and total

surplus generated by producing more in the high states of demand. The opposite

is true when the leader’s realization of the state of demand is lower than mµ+σy2
m+σ

.

Nevertheless, the gain in higher states of demand in welfare grounds overwhelms

the loss in lower states of demand with a linear demand curve.40 Therefore,

although the expected output of a firm under both mode of conducts are the

same, expected- total profits, consumer surplus, and total welfare are all higher

under sequential move games. To put the arguments formally, we have

E[TW ∗
DS]− E[TW ∗

DC ] = 3(E[CS∗DS]− E[CS∗DC ]) = 3/2(E[Π∗DS]− E[Π∗DC ]) =

=
3mσ2

8b(m+ σ)(m+ 2σ)
> 0 (20)

39Despite of its usefulness, this example might not be very realistic at first glance. When the
goods are totally differentiated, one might think that the follower firm does not care about the
demand information revealed by the leader. However, the production decision of the leader firm
can still send a signal to the follower firm about the general macroeconomic conditions in an
economy, which can affect the common demand parameter among firms.

40Kühn and Vives (1995) provide an excellent graphical analysis in a two discrete state of
demand set-up to explain why providing more information about demand to a monopoly firm
induces higher welfare in quantity-setting games under linear demand structures.
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This example is useful in two ways. First, it shows the pure effect of informa-

tion acquisition on welfare grounds. Since the follower’s decision rule is indepen-

dent of the leader’s action and the follower’s decision does not affect the residual

demand function of the leader, all other three effects are absent here. Second,

when the degree of differentiation is high enough in the market, both the con-

sumer surplus and total welfare are no longer higher in simultaneous move-games

by continuity of the parameter values. In other words, some of our main results

of the paper will not be robust when firms produce almost monopoly products.

Nevertheless, we will see in Section 7.5 that our main results hold for a very wide

range of parameter values in a differentiated good environment.

Example 2: We finally give the intuition for the discussed welfare effects of

the negative externalities of information acquisition of the follower firm on the

leader firm in our original set-up when n = 2. We define the residual demand

function that the leader firm faces as R1(q2) = a − µ + u − bq2 and plot the

expected residual demand by the red dotted line in Figure 1. We also draw

the representative residual demands in high and low states as compared to the

expected demand curve, which are respectively denoted by RH
1 and RL

1 . Now

consider that the follower is more informed about demand. Accordingly, the

residual demand function of the leader becomes less volatile and both RH
1 and

RL
1 will lie more closer to the expected residual demand curve. This can be

seen through noting that firms have interactions through having common demand

intercepts and producing substitutable products. Intuitively, the acquisition of

information by the follower makes the leader react more actively in terms of output

to the demand shock. This gives the leader firm less value from exploiting the

information it has about demand. As a result, the leader firm charges a lower price

when the demand is higher than the expected residual demand.41 That creates a

loss in the leader firm’s expected profit of an amount equivalent to Area B + D

in Figure 1. However, consumers are not affected from this change because the

linearity of the demand curve ensures that the loss in consumer’s surplus (Area

B) is exactly equal to the gain in consumer surplus (Area C). In sum, expected

total welfare is expected to decrease in high states of demand. By analogy, the

leader charges a higher price when the demand is lower than the expected residual

41We also refer to Kühn and Vives (1995, pp. 13-18) for a geometrical representation of similar
arguments when the state of demand is two in a monopolistic competition set-up.
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demand, which creates a gain in expected total welfare. But the loss in both the

leader firm’s profits and total welfare in high states of demand is greater than the

gain in them in bad states of demand if the leader initially has some information

about demand.42 Altogether, having less variable residual demand is likely to

decrease not only the leader’s profits but also total welfare while leaving consumer

surplus unchanged.

6.3 Discontinuity of Equilibria in the Noise of the Signals

As m → 0, the precision of the signals converges to infinity and therefore we

approach the perfect information case. It is straightforward to see that the Stack-

elberg oligopoly expected equilibrium quantities in a world of perfect information

coincide with the limit of direct revelation equilibrium quantities, which are given

by (15), as m → 0.43 In particular, perfect information expected equilibrium

quantities can be calculated by letting m = 0 and yi = µ, i = 1, 2, ..., n in (15) as

E[q∗PQ] = (E[q∗1], E[q∗2], ..., E[q∗n]) = (
a

2b
,
a

4b
, ...,

a

2ib
, ...,

a

2nb
) (21)

where PQ refers to the perfect information quantity-setting game. However, as

m → 0, expected Stackelberg equilibrium quantities in the indeterministic case

do not converge to (21):

limm→0E[q∗SQ] = ( a
4b
, a

8b
, ..., a(2i−1)!!

2i(i+1)!b
|i<n, ..., a(2n−3)!!

2n−1(n)!b
, a(2n−1)!!

2n(n)!b
) (22)

from Lemma 5(ii) (See Appendix), where (2n− 1)!! =
∏

i∈N(2n− 1). Immediate

comparisons between (21) and (22) show that that there is a discontinuity be-

tween the Stackelberg equilibrium of the perfect information game and the limit

of perfect revealing equilibria of the incomplete information games as the noise of

the demand information vanishes to zero. Indeed, this kind of divergence might

lead to some unexpected results.

We extend our model by considering firm specific accuracies of signals in order

42If the leader has no prior about demand, the gain in the leader’s profit in bad states is
exactly equal to the loss in its profit in good states.

43The corresponding linear demand functional form in the deterministic case is also given by
p = a − µ + u −Q. Although the demand is still stochastic, firms know exactly which state of
the demand they are in. The perfect information output levels of firms under the Stackelberg
competition is provided in Vives (1988).
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to provide our intuition for this discontinuity result in the two-firm case. As in

Gal-Or (1987), let 1/mi, i = 1, 2, denotes the precision of the signal of firm i.

Under this generalization, the unique pure strategy separating equilibrium of the

game can be derived by letting h = σ, a = a − µ, and θ = µ in Proposition 1 of

Gal-Or (1987) as44,45

q∗∗1,SQ({1, 2}) =
m1σ((a− µ)(σ +m1) +m1µ+ σy1)

2b∆(σ +m1)

q∗∗2,SQ({1, 2}) =
m1σ(a− µ+ y2)

2b∆
+ q1(−1

2
+
m2(σ +m1)

m1σ
) (23)

where ∆ = σ(m1 +m2) +m1m2. Expected quantities are:

E[q∗∗1,SQ({1, 2})] =
aσm1

2b∆
(24)

E[q∗∗2,SQ({1, 2})] =
aσm1

2b∆
(
1

2
+
m2(m1 + σ)

m1 + σ
) (25)

We subsequently consider two extreme cases, where perfect revealing equilibrium

is not formally defined. We, indeed, make the arguments in ε neighbourhoods of

the selected m1 and m2 parameter values.

As an extreme case, when m2 = 0, the follower does not use the quantity

of output selected by the leader as a source of information about the demand.

But then both the leader and the follower choose the expected quantity of output

that would have been selected in a world of perfect information. Indeed, as m2

goes to 0,
∂q∗∗2,SQ
∂q1

converges to −1
2

by (23). Hence, positive conjectural variation

effect vanishes. In such a case, there is not any signaling effect and first-mover

advantages are the highest (i.e., limm2→0E[q∗∗1,SQ] = a/(2b) and limm2→0E[q∗∗2,SQ] =

a/(4b).).

The other extreme case is when m1 = 0.46 In this case, the follower relies

heavily on the observation of q1 in updating his beliefs about the demand. That

imposes an extra constraint on the leader’s decision rule. As limm1→0
∂q∗∗2,SQ
∂q1

=∞
from (23), the follower becomes very responsive to the changes in the production of

44h = σ refers to the case where each firm has access samples from the same distribution as
in our model. Further, a is replaced with a− µ and θ = µ in our paper.

45When m1 = m2 = m, these equilibrium quantities coincide with Theorem 2 for n = 2.
46For a similar discussion, see paragraph 5 at pp.288 of Gal-Or (1987).
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the leader. Accordingly, the leader is forced to contract its output so as to induce

reduced production by the follower. As a result, the leader loses its preemptive

capability and E[q∗∗1,SQ] becomes zero. This is the case where the signaling effect

has the highest pressure on the leader’s production decision.

Now consider any identical pair of precision of signals (m̃1, m̃2) with m̃1 =

m̃2 = m. As m converges to zero,
∂q∗∗2,SQ
∂q1

converges to 1/2 by (23). Hence, the

positive conjectural variation effect will be bigger than -1/2. In such a case,

although the first-mover advantage leads the leader to produce a/(2b) (in expected

terms), the jump down (signaling) effect forces the leader to not produce based

on the above discussion made for the extreme cases. In sum, the leader ends up

producing at an intermediate level, which is a/(4b). That induces the follower to

produce 3a/(8b) in expected terms rather than the perfect information outcome

a/(4b). Hence we get the observed discontinuity as m approaches to zero and the

signaling distortions play an important role in this nontrivial result. We conjecture

that a similar argument to above can be made in an n−firm case and therefore

we skip it.

Based on the above discussion, the study herein does not have a conclusion

that perfect information outcomes are never achievable as a limit of Stackelberg

perfect revealing equilibria. Note to see that for each m1 ∈ R+, there always

exists a positive m∗2 = m1σ
2(m1+σ)

, which is smaller than m1, such that the first-

mover advantage dominates the signaling effect if and only if m2 < m∗2. This

can be seen by observing that m2 < m∗2 if and only if
∂q∗∗2,SQ
∂q1

< 0 by (23). Thus,

if the precision of the follower’s signal is sufficiently more informative than the

precision of the leader’s signal and the firms have access samples from the same

distribution, then the Stackelberg duopoly perfect revealing equilibrium strategies

might still be close to the Stackelberg perfect information outcomes. Essentially,

any firm’s expected production is increasing in the precision of its rival’s signal

(i.e.,
∂E[q∗∗i,SQ]

∂mj
< 0 for i 6= j by (24) and (25)). The leader, therefore, prefers

to compete with a more informed follower firm to less suffer from the signaling

distortions.

The presence of negative signaling distortions also rises the loss in the value of

commitment issues in leader-follower games with demand uncertainties. For mak-

ing our arguments more concrete, consider Mailath’s (1993) similar Stackelberg

model to us, where only the follower firm faces three discrete types of demand un-
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certainties47. Typically, the sequencing decision of firms itself depends on a firm’s

private information. Therefore, in a game with endogenous sequencing, a choice

of Cournot sequencing leaves the follower firm with the problem of inferring not

only the informed (leader) firm’s information but also the quantity the informed

firm intends to select. In that regard, the leader firm is not able to avoid the

negative signaling distortion by moving simultaneously with the follower because

the follower would view a choice of Cournot sequencing as an attempt to hide high

demand. Consequently, although the leader may earn lower ex-ante profits than

it would earn if it was choosing quantities with the follower (as in our model), it

always chooses to move first regardless of its private information in the unique

stable (perfect revealing) equilibrium of this described game48.

Lastly, Gal-Or argues that if the firms have access to samples from possibly

different populations that are partially correlated, then we still have significant

divergences from perfect information outcomes for a wide range of parameter

values even with asymmetric precision of signals. To be more precise, let ui be

the random variable that affects the demand in the segment observed by firm i.

Let u = (u1 + u2)/2 and p = a − µ + u − Q. Further, assume that E[yi|ui] = ui

and V ar[yi|ui] = mi. Let h measures the degree of correlation between u1 and

u2. Similar linearity assumptions to our paper are assumed on the distributions

of u and yi’s. When h = σ, firms have access distributions from the same samples

as in our original set-up. She shows that if h changes between 0 and 2σ/3, then

the reaction function of the follower is upwards sloping at any m1,m2 ∈ R+.

This is because the less the degree of correlation between u1 and u2, the more

the signaling effect is felt by the leader. Having said that, our proposed rankings

between the Cournot and Stackelberg equilibrium outcomes are also expected to

be valid for this very large set of parameter values.49

47Mailath (1989) shows that all results of Mailath’s (1993) would hold in the case of continuum
types of demand as in this paper.

48For more discussion, we refer to Mailath (1993).
49For instance, we first introduce the Cournot competition in Gal-Or-’s two-firm set-up with

demand uncertainty. After some involved calculations, one can show that total expected (unique)
Cournot equilibrium quantity is 2a/3b as in our baseline Cournot model. Subtracting total
expected Stackelberg equilibrium outputs (provided in the proof of Observation 2 of Gal-Or’s

paper) from total expected Cournot equilibrium quantity yields a(h2+(m1+σ)(2σ−3h+2m2))
12b∆ , which

is positive at any h ∈ (0, 2σ/3] and m1,m2 ∈ R+. Accordingly, the equilibrium price is higher
under the Stackelberg competition than under the Cournot competition.
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7 Discussions and Extensions

7.1 Firm Asymmetries and Concentration

Concentration is mostly thought to be a cause for concern.50 This concern is

based on an intuition derived mainly from considering the symmetric equilibrium

of oligopoly models. As the number of firms in the symmetric equilibrium in-

creases, some measures of welfare rises (e.g., total surplus) and some measures

of concentration falls (e.g., The Herfindahl-Hirschman Index (or HHI)). However,

the differences in firm sizes can also be a cause of concentration. Daughety argues

that the foregoing intuition does not carry over to the asymmetric equilibria which

seemingly reflect a more realistic picture of the world. His findings in a world of

perfect information about demand suggest that social optimality may involve ex-

tensive asymmetries in firm sizes. These contradicting results indicate that the

sign of the correlation between concentration indexes and welfare is ambiguous.

In the light of these concerns, we analyze how firm asymmetries affect social

optimality in our set-up. The HHI is a measure of the size of firms in relation

to the industry and is widely accepted by the anti-trust agencies to be an in-

dicator of the amount of concentration among firms. Typically, the Agencies

measure each firm’s market share based on annual data. They can also consider

projected market shares in the relevant market to take into account firms’ fu-

ture competitive significance51. Thus, we can slightly extend the definition of

HHI to capture the demand uncertainties in market shares. In that regard, let

H =
∑n

i=1(E[si])
2, where E[si] = E[qi]/E[Q(N)] is the expected market share

of firm i with
∑n

i=1E[si] = 1. Substituting
∑n

i=1 E[si] = 1 into H(.) and taking

minimization over it gives

min
E[si]

(E[s1])2 + (E[s2])2 + ...+ (E[sn−1])2 + (1− E[s1]− E[s2]− ....− E[sn−1])2 (26)

As ∂2H
∂2E[si]

= 4 > 0, H(.) is convex in E[si]. Using the symmetric first-order condi-

tions from (26), one can find that H(.) is minimized at (E[si])
∗ = 1/n for i ∈ N .

Remark that as the timing of producing is different under the Stackelberg model,

firms have asymmetric expected market shares. This can be seen analytically from

Lemma 5(ii) (see the Appendix). Therefore, on average, the Stackelberg model

50This paragraph is mostly adopted from Daughety (1990).
51See 2010 Horizontal Merger Guidelines for more discussion about the calculation of the HHI.
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yields a higher HHI than does the Cournot model, where firms behave symmet-

rically. In other words, the market is, on average, more concentrated under the

Stackelberg mode of conduct than under the Cournot mode of conduct. In what

follows, we relate our main findings with concentration.

7.2 Welfare and Concentration

Daughety (1990) argues that concentration measures (such as HHI) provide little

insight about welfare. His findings reflect that increases in such measures some-

times reflect increases in welfare and sometimes reflect decreases in welfare. For

example, as we switch from Cournot to Stackelberg model, both the HHI index

and total welfare increase.52 In that regard, asymmetry, thus concentration, is

beneficial from society’s viewpoint. This observation contradicts to the standard

IO paradigm that a higher market concentration leads to less competition in the

market and therefore is harmful for the society. Nevertheless, this result does

not take into account the possibility that early moving firms’ quantity strategies

might send demand signals to the late-movers in a stochastic demand environ-

ment. In such a set-up, total welfare ranking between Stackelberg and Cournot

competitions are reversed in an n−firm oligopoly model (n ≤ 5) irrespective of

how noisy both the demand shocks and private demand signals of firms are by

Theorem 5. This result suggests that the traditional IO paradigm is likely to be

preserved when firm’s strategies involve learning about demand from the actions

of their competitors. Therefore, HHI provides significant amount of insight about

welfare. A policy maker would then prefer the less concentrated Cournot indus-

tries over the more concentrated Stackelberg industries if he/she has an impact

on the determination of market’s mode of conduct.

7.3 Profits, Prices and Concentration

A similar implication holds for the relationships of prices and profits with con-

centration. In study after study, a positive correlation of prices and average firm

52It has already been stated in the related literature section that Daughety studies a two-stage
model, where m leaders and n −m followers compete. Apart from the incomplete information
about demand extension, our model coincides with his model at m = 0 or m = 2 (Cournot) and
m = 1 (Stackelberg) when n = 2. In the future, we are planning to study Daughety’s model in
our incomplete information setting to better assess the link between concentration and welfare.
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profits with various measures of concentration has been found as we have already

noted in the introduction.53 Unfortunately, perfect information about demand

models may fail to support these empirical results. Specifically, a higher concen-

tration, which is caused by switching from the Cournot model to the Stackelberg

model, is likely to be associated with both lower average firm profits and lower

prices. But remark by Theorems (3) and (4) that the more concentrated Stackel-

berg competition generates both higher total profits and higher prices than does

the less concentrated Cournot competition. Therefore, our foregoing analysis in a

world of incomplete information can partially support these empirical results.

7.4 Merger Incentives and Concentration

As a last application, we perform a merger analysis to answer an important policy

question: Are mergers easier to be allowed under more concentrated or less con-

centrated industries? We consider a cost-efficient horizontal merger to monopoly

in both Cournot and Stackelberg duopoly markets.54 Our previous set-up and

assumptions about the parameters of the model is still valid. However, we con-

sider firms that have symmetric marginal costs, i.e., c, in the pre-merger case.

Accordingly, the deterministic demand parameter a can be considered as net of

the marginal cost level of firms, i.e., a = ā − c. Following a merger, we assume

that there are efficiency gains and the merged firm’s marginal cost level becomes

ce, where ce ∈ [0, c). Accordingly, let â = ā − c + ce. Our welfare analysis and

comparisons between simultaneous and sequential move settings performed in the

main text corresponds to the pre-merger case. We now let two firms merge to a

monopoly horizontally. Under both Cournot and Stackelberg competitions, the

merged firm maximizes the expected joint profits of firms one and two.

max
q1,q2

E[πM ] = E[(â− µ+ u− b(q1 + q2))(q1 + q2)|y1, y2] (27)

53Price-concentration studies are widely thought to overcome potential problems on profit-
concentration ratios. For example, prices are much more easily observed than economics profits.
Further, they are not subject to the many accounting conventions that complicate studying
profits.

54Since our main concern of the paper is not to explain the relationship between merger
incentives of firms and market concentration, we just wanted to give the main intuition by
studying a simple horizontal merger model. One can come up with a more sophisticated merger
model that does not necessarily lead mergers to monopoly.
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where πM denotes the total profits of the merged firm. Since the merged firm’s

problem is symmetric between its facilities, then FOC’s yield equilibrium quanti-

ties as

q∗1 = q∗2 =
â− µ+ E[u|y1, y2]

4b
(28)

Based on (4) and (28), the post-merger expected welfare under both types of

competitions reduces to

TW ∗
M =

3â2(m+ 2σ) + 6σ2

8b(m+ 2σ)
(29)

We assume that a merger is allowed if it generates sufficiently large efficiency gains

to increase total welfare.

Theorem 6. Let n = 2. The minimum level of efficiency gains to allow mergers

to monopoly is lower under the Stackelberg competition than under the Cournot

competition.

Proof: See the Appendix.

Based on this lemma, anti-trust authorities can be more suspicious about

mergers in symmetric industries. The main intuition is easy to see. Since the

post-merger welfare is the same under both Cournot and Stackelberg competi-

tions, then the pre-merger welfare is the determinant factor in answering our

policy question. But since the pre-merger welfare is lower under the Stackelberg

competition than under the Cournot competition (but not under perfect informa-

tion about demand), then it would be reasonable to require less efficiency gains

to allow mergers in more concentrated Stackelberg industries. In addition, the

highest level of post-merger concentration is achieved under both types of mar-

kets as both firms merge to monopoly. Hence, market concentration is likely to

be increased more after a merger in less concentrated pre-merger industries (i.e.,

Cournot). That also partially explains why FTC directs its resources toward

horizontal mergers that are made among firms that most increased market con-

centration as it requires less efficiency gains to allow mergers. Altogether, mergers

are more likely in more concentrated industries.
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7.5 Differentiated Products

We have assumed that firms produce homogeneous products until this section.

We would like to discuss the robustness of our results in an environment where

two firms produce heterogeneous products. Let there be two firms competing in

quantities. Each firm i (=1,2) produces a differentiated product at a price level

of pi and at a production level of qi. The representative consumer maximizes

consumer surplus

max
qi

CS = (a− µ+ u)(q1 + q2)− b(q21+q22)

2
− bλq1q2 −

∑2
j=1 pjqj (30)

where a > µ > 0, u is a random variable with mean µ and variance σ, a is the

observed market demand parameter by all firms, b is the slope of the demand, and

λ ∈ [0, 1] is an inverse measure of product differentiation in the market. When

λ = 1, products are perfect substitutes and no longer differentiable as in the main

text. On the other hand, when λ = 0, products are unrelated and each firm is a

monopoly for the product it produces. The maximization problem in (30) yields

a linear demand curve with a stochastic term in the intercept:

pi = a− µ+ u− bqi − bλqj, i 6= j, i, j = 1, 2 (31)

We normalize the unit cost of production to zero.

No firm can observe the realized value of the prior random variable u, but each

firm i can observe the realized value of its own private signal yi on u. Let both u

and each yi (i = 1, 2, ..., n) have a full positive support. we refer to Section 3 for

further assumptions on the prior u and private signals y1 and y2.55

We now present both Cournot and Stackelberg duopoly models with heteroge-

nous products. Later, we compare both models.

7.5.1 Differentiated Cournot Duopoly Model

We first assume that two firms simultaneously decide their quantities after getting

their private signals about demand. Since firms cannot draw inferences about the

private signals of their competitors, each firm’s equilibrium quantity strategy only

depends on its own signal.

55We apologize for this economic way of presenting this model.
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Theorem 7. Let n = 2 and m,σ ∈ R+ . The unique Bayesian equilibrium of the

differentiated Cournot game is (q∗1,DC , q
∗
2,DC), where

q∗i,DC =
a

b(2 + λ)
+

σ(yi − µ)

b(2m+ σ(2 + λ))
, i = 1, 2 (32)

Proof: See the Appendix.

When λ = 1, the competition among firms is fierce as goods are perfect sub-

stitutes of each other as we assumed in the baseline model. Note also that the

Cournot equilibrium quantities in Theorem 1 at n = 2 coincide with the ones in

Theorem 7 at λ = 1. On the other extreme, when firms are monopolies for the

good they produce (λ = 0), the expected monopoly quantity is a/2 which is the

same with the one in the perfect information case. This observation is consistent

with our findings under quantity competition stated in Section 4.

7.5.2 Differentiated Stackelberg Duopoly Model

In the Stackelberg model, we assume that each firm chooses its quantity level after

observing the private signal but before realizing the actual demand. Without loss

of any generality, suppose firm one, being the Stackelberg leader, first chooses

its quantity level, then does firm two (follower) after observing the quantity level

chosen by the leader. Let R+ and Yi denote the pure strategy space and firm i’s

private signal’s strategy space respectively. Firm one chooses its optimal quantity

level after observing its private signal y1. Its strategy is denoted by G1(y1) where

G1 : Y1 → R+. Firm two can condition its optimal quantity level on both its

private signal y2 and on the quantity level q1 chosen by the leader. Hence, its

optimal strategy is denoted by G2(y2, p1) where G2 : Y2 ×R+ → R+.

As before, we focus on perfect revealing equilibria, which can be defined in a

similar fashion to the one in the main text. Formally,

DEFINITION. A strategy combination (q∗1,DS, q
∗
2,DS) is a Stackelberg perfect

revealing equilibrium if it satisfies the following two-system of equations:
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∀y1 ∈ Y1,

q∗1,DS = G1(y1) = argmax
q1∈R+

E[π1(q1, G2(y2, q1), u)|y1]

∀y2 ∈ Y2,∀G1(y1) = q1 ∈ R+,

q∗2,DS = G2(y2, q1) = argmax
q2∈R+

E[π2(q1, q2, u)|y2, q1]

(33)

where DS refers to the differentiated Stackelberg quantity competition.

In order to derive the Stackelberg perfect revealing equilibrium, we conjecture

that firms have linear equilibrium quantity strategies. Accordingly, let q∗1,DS =

α0 + α1y1 and q∗2,DS = β0 + β1y2 + β3q1 for some constants α0, α1, β0, β1, β1 ∈ R+.

In the proof of Theorem 8, we derive these constants and obtain the equilibrium

quantities.

Theorem 8. Let n = 2, m,σ ∈ R+, and λ ∈ [0, 1]. Under Assumption 1, a unique

linear perfect revealing equilibrium (q∗1,DS, q
∗
2,DS) exists in the two-player differen-

tiated Stackelberg (DS) quantity competition game. These equilibrium quantity

strategies (best responses) are given by

q∗1,DS = G1(y1) = (2m(1−λ)+σ(4−3λ))(am+(a−µ+y1)σ)
2b(m+σ)(m+2σ)(2−λ2)

,

q∗2,DS = G2(y2, q1) = (a−µ+y2)σ
2b(m+2σ)

+ q1( (2−λ2)(m+σ)
2(1−λ)m+(4−3λ)σ

− λ
2
)

Equilibrium quantities are iteratively calculated as q∗1,DS = G1(y1) and q∗2,DS =

G2(y2, q
∗
1,DS).

Proof: See the Appendix.

As a > µ by assumption, both q∗1,DS and q∗2,DS are positive for any posi-

tive realizations, namely, y1 and y2. Observe also by Theorem 8 that
∂q∗2,DS
∂q1

=
(2−λ)(2m+(2−λ)σ)
4(1−λ)m+2(4−3λ)σ

> 0. Therefore, the equilibrium quantity of the follower is a

strategic complement to the leader’s quantity for any degree of heterogeneity

among products.

We are now ready to compare differentiated Cournot and Stackelberg quantity

competitions in terms of expected- quantities, total profits, consumer surplus, and
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total welfare.

7.5.3 Differentiated Cournot versus Differentiated Stackelberg

Define expected equilibrium total profits as E[ΠD] = E[p1q1 + p2q2] where the

subscript D refers to product differentiation. Adding profits to consumer surplus

given in (30) and taking an expectation over the resulting equation yields expected

total welfare as

E[TWD] = E[(a− µ+ u)(q1 + q2)− b(q2
1 + q2

2)

2
− bλq1q2] (34)

Now denote the difference between differentiated- Cournot and Stackelberg

equilibrium outcomes as ∆E[l∗D] = E[l∗DC ]− E[l∗DS] for l ∈ {Q,Π, CS, TW}. The

next theorem compares expected- total outputs and total profits of firms between

differentiated Stackelberg and Cournot competitions.

Theorem 9. Let n = 2 and m,σ ∈ R+.

i) For λ ∈ (0, 1], ∆E[Q∗D] > 0 and for λ = 0, ∆E[Q∗D] = 0.

ii) For λ ∈ [0, 1] and a ≥ σ, we have ∆E[Π∗D] < 0.56

Proof: See the Appendix.

Based on Theorem 9, both expected total outputs and total profits are higher

under the Cournot competition than under the Stackelberg competition for any

degree of substitution between products. This result suggests that output and

total profit rankings stated respectively in Theorems 3 and 4 are robust to the

product differentiation.

Theorem 10. Let n = 2 and m,σ ∈ R+.

i)
∂∆E[CS∗D]

∂a
> 0 and

∂∆E[TW ∗D]

∂a
> 0.

ii) For a ≥ 3σ and λ ∈ [0.1, 1], we have ∆E[CS∗D] > 0 and ∆E[TW ∗
D] > 0.57

56In this result, we require the standard deviation of the demand intercept is not too large and
smaller than its mean. Shinkai (2000) argues that when the distribution of the demand intercept
is approximated by a normal one, the probability of the realized value of it being positive is
almost one under the more restrictive assumption that a ≥ 3σ.

57We refer to Footnote 56.
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Proof: See the Appendix.

We have already concluded in Example 1 of Section 6.2 that when λ = 0, both

rankings stated in Theorem 10(ii) are reversed. However, this theorem shows that

for sufficiently high and reasonable deterministic demand parameter a, homoge-

neous good model rankings of equilibrium welfare and consumer surplus between

Cournot and Stackelberg models are preserved for a degree of substitution level

greater than 0.1 between firms’ products. Hence, even when firms produce differ-

entiated products, the effects of signaling and negative externalities of information

acquisition outweighes the effects of information acquisition and first-mover ad-

vantages on consumer surplus and total welfare.

8 Conclusion

The purpose of this article is to compare the industry performances of symmetric

Cournot and asymmetric Stackelberg mode of conducts in an n−firm oligopoly

setting when there is incomplete information about demand. We provided sub-

stantial amount of findings that social optimality between these two types of mode

of conducts involves extensive symmetry. Moreover, the Stackelberg competition

generates higher prices and total profits, yet lower output and consumer surplus

than the Cournot competition. These rankings are the opposite to the rankings

provided in the previous studies, which were written under perfect information

about demand assumption. This divergence drastically changes previous policy

recommendations about several real-life case studies.

The industry concentration, which is measured by the HHI, is typically higher

in a Stackelberg industry than in a symmetric Cournot industry. In that regard,

this study is also a first step towards understanding the relations of concentration

(generated by the disparities in firm sizes) to prices, total profits, and welfare in a

stochastic demand environment. As the Stackelberg competition creates a lower

total welfare than the Cournot competition, concentration is harmful for the soci-

ety. This harmfulness does not depend on scale economies, marketing advantages,

or learning by doing. It derives entirely from the noncooperative nature of firm

interactions. Furthermore, the price and profits rankings between two types of

mode of conducts support the often observed empirical result that there is a posi-

tive correlation of prices and average firm profits with concentration. In the light
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of these arguments, perfect information models might not fully provide the real-

istic picture of the world. We hope that our introduction of private information

about demand leads us one step closer to understand the connections between

real life observations and theory. Our analysis is also not complete in the sense

that one still need to analyze how market concentration changes within different

asymmetric mode of conducts.

We determine four effects that explain our results: 1) Information acquisition

effect 2) First-mover advantage effect 3) Signaling effect 4) Negative externalities

of information acquisition effect. Among these four effects, only the last two ef-

fects favor the Cournot competition over the Stackelberg competition in terms of

consumer and total welfare. As a consequence of the signaling effect, early-mover

firms invest in lower capacity to not signal high demand to their followers in a

sequential move setting. As the followers’ output reactions to their predecessors’

productions increase and sometimes become positive, this negative output effect

will typically dominate the positive output effect of traditional first-mover advan-

tages. Further, a follower will have better information compared to a Cournot

oligopolist as it learns the private signal of its predecessors in a perfect revealing

equilibrium. Having more informed players about demand is expected to generate

higher consumer surplus, total profits, and total welfare in a Stackelberg quantity

setting game as compared to a Cournot game. Nevertheless, this type of informa-

tion acquisition by the followers also leads the residual demand function of their

competitors less variable as all firms share a common demand intercept. There-

fore, the rival firms will have less value from exploiting their demand information.

That will translate into not only lower profits but also lower welfare. It turns out

that the effects of signaling and negative externalities of information acquisition

always dominate the effects of other two on industry performances and we have

the observed rankings.

We finally show that there is a discontinuity between the Stackelberg equilib-

rium of the perfect information game and the limit of Stackelberg perfect reveal-

ing equilibria of the incomplete information games as the noise of the demand

information vanishes to zero. Hence, the first-mover advantage is reduced at any

symmetrical noise level of firms’ demand signals. This result contributes to the

value of commitment literature in Stackelberg models.

We also challenge the robustness of our results in various dimensions in a
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duopoly set-up. Our main model assumes that firms produce homogenous prod-

ucts and the precision of the firms’ private signals are symmetric. When we allow

for differentiation among firms’ products, we see that our main results of the pa-

per hold for a very wide range of parameter values. We also argue that if the

follower’s signal is very precise as compared to the precision of the leader’s signal

and the firms have access samples from the same distribution (as in our main

model), then the Stackelberg perfect revealing equilibrium outcomes are close to

the perfect information equilibrium outcomes. In such a case, the follower firm

is reluctant to use the quantity selected by the leader as a source of information

about the demand. Therefore, the positive output effect of the first mover ad-

vantages is expected to dominate negative output effect of signaling. However, a

decrease in the correlation of signals pronounce the signaling effect more. Accord-

ingly, if firms’ signals are sufficiently uncorrelated, then the follower’s quantity

can be still a strategic complement for any degree of asymmetries in firm specific

precisions. In sum, one can also expect significant difference between the equilib-

rium outcomes of perfect and private information about demand environments in

such cases.
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APPENDIX

Proof of Lemma 1:

Let Assumption 1 hold. Take any i ∈ N . Since the posterior expectations are

linear, a result in Erikson (1969) shows that:

E(u|yi) =
zi

zi +R
yi +

R

zi +R
E(u) (.1)

where

zi =
1

E(V ar(yi|u))
and R =

1

V ar(u)
(.2)

Since E(V ar(yi|u)) = m and V ar(u) = σ, (.1) simplifies to

E(u|yi) = α11yi + α10 =
σ

σ +m
yi +

mµ

σ +m
(.3)

Now, take any h ∈ N \ {i}. Note that E(yh|yi) = β10 + β11yi by Assumption 1.

By using the law of iterated expectations,

E(yhyi) = E(E(yhyi|yi)) = E(yiE(yh|yi)) = β10E(yi) + β11E(y2
i )

E(yh) = E(E(yh|yi)) = β10 + β11E(yi)
(.4)

Since E(yh) = E(yi) = µ, E(yhyi) = σ + µ2, and E(y2
i ) = m+ σ + µ2 by (4), one

can solve the system of equations in (.4) for β10 and β11 to have

E(yh|yi) = β11yi + β10 =
σ

σ +m
yi +

mµ

σ +m
(.5)

Now let (i1, i2, ..., in) be an order on the set of firms N . Let Nr = {i1, i2, ..., ir}.
i-) For any j ∈ N , E(u|yi1) = E(E(u|yi1 , yi2 , ..., yij)|yi1) = αj0+αj1

∑
l∈Nj E(yil |yi1)

by the law of iterated expectations and Assumption 1(i). Using the symmetry in

(.5),

E(u|yi1) = αj0 + αj1(yi1 + (j − 1)(
mµ

σ +m
+

σ

σ +m
yi1)) (.6)

Solving (.3) (at i = i1) and (.6) for the constants yields αj0 = mµ
m+jσ

and αj1 =
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σ
m+jσ

.

ii-) For all k ∈ N , all l ∈ N\{1, 2, ..., k}, E(yil |yi1) = E(E(yil |yi1 , yi2 , ..., yik)|yi1) =

βk0 + βk1(yi1 + (j − 1)( mµ
σ+m

+ σ
σ+m

yi1)) by the law of iterated expectations and

Assumption 1(ii). One can solve this equality and (.5) (at i = i1) for the constants

to have βk0 = mµ
m+jσ

and βk1 = σ
m+jσ

as desired.

Proof of Lemma 4: We claim that E[q∗2,SQ({1, 2})] > E[q∗C({1, 2})] >
E[q∗1,SQ({1, 2})] for any m,σ ∈ R+. Remark that E[q∗C({1, 2})] = a

3b
from Sec-

tion 4. Using Lemma 5(ii), which will be stated just after the proof of The-

orem 2, we have E[q∗1,SQ({1, 2})] = aσ
2b(m+2σ)

and E[q∗2,SQ({1, 2})] = a(2m+3σ)
4b(m+2σ)

.

Hence E[q∗2,SQ({1, 2})] − E[q∗C({1, 2})] = a(2m+σ)
12b(m+2σ)

> 0 and E[q∗1,SQ({1, 2})] −
E[q∗C({1, 2})] = − a(2m+σ)

6b(m+2σ)
< 0 at any m,σ ∈ R+ as claimed.

Proof of Lemma 1:

We first show that if each k ∈ N \ {n} uses q∗k,C(N) = a
b(n+1)

+ σ(yk−µ)
b(2m+σ(n+1))

,

then the unique best response for firm n is to use q∗n,C(N) = a
b(n+1)

+ σ(yn−µ)
b(2m+σ(n+1))

.

To see this, notice that the expected profit of firm n choosing quantity strategy

qn given other firms strategies and the signal yn is

E[(a− µ+ u− bqn − b
∑

k∈N\{n}

q∗k,C(N))qn|yn] (.7)

So the optimal choice of firm n is

q∗n,C(N) =
a− µ+ E(u|yn)− b

∑
k∈N\{n}E(q∗k,C(N)|yn)

2b
(.8)

which, after some computations, equals q∗n,C(N) = a
b(n+1)

+ σ(yn−µ)
b(2m+σ(n+1))

by the

initial supposition and Lemma 1. Uniqueness follows similarly as in Li (1985).

Proof of Theorem 2:

We proceed in four steps to find the equilibrium quantities. To start the

analysis, we first consider the pre-entry market.

Step 1) Pre-entry market (S1 = {1, 2, ..., s})
In this step, we derive firms s − 1 and s’s best reply functions in the pre-

entry market by using backwards induction. We start out by considering the

maximization solved by the last follower, firm s. His objective is to:
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max
qs

E[πs(q1, ..., qs, u)|ys, q1, ..., qs−1] = E[(a− bQ(S1) + u− µ)qs|ys, q1, ..., qs−1] (.9)

The first-order condition is:

∂E[πs(.)|.]
∂qs

= a− bQS1\{s}(S1)− 2bqs + E(u|ys, q1, ..., qs−1)− µ = 0 (.10)

In the light of (13), (.10) can be rewritten as58

q∗s,SQ(S1) = F S1
1 (ys, q1, ..., qs−1) =

a− bQS1\{s}(S1) + E(u|ys)− µ
2b

(.11)

Similarly, we substitute q∗s,SQ(S1) in firm s− 1’s optimization problem to have:

max
qs−1

E[πs−1(q1, ..., qs−1, q
∗
s,SQ(S1), u)|ys−1, q1, ..., qs−2]

= 1
2
E[(a− bQS1\{s} − E(u|ys) + 2u− µ)qs−1|ys−1, q1, ..., qs−2]

(.12)

The first-order condition after some manipulations becomes

q∗s−1,SQ(S1) =
a− bQS1\{s,s−1}(S1)− E(E(u|ys)|ys−1) + 2E(u|ys−1)− µ

2b+ ∂E(u|ys)
∂qs−1

(.13)

where ∂E(u|ys)
∂qs−1

= σ
(sσ+m)γs−1,s−1,s

by (12), (13), and Lemma 1. Note that E(E(u|ys)|ys−1) =

E(u|ys−1) by Lemma 1(i). Altogether, (.13) simplifies to

q∗s−1,SQ(S1) =
a− bQS1\{s,s−1}(S1) + E(u|ys−1)− µ

2b+ σ
(m+sσ)γs−1,s−1,s

(.14)

But since γs−1,s−1,s is the coefficient in front of ys−1 in q∗s−1(S1) from (12), we have

58To illustrate things more clearly, consider s = 2. E(u|y2) = σ
2σ+m (y2 +FS1

−1

1 (q1))+ mµ
m+2σ =

σ
m+2σ (y2+ q1−γ10s

γ11s
)+ mµ

2σ+m by Lemma 1(i) and (12). In the text, we sometimes replace FS1
−1

1 (q1)
by y1, which are technically equal, to simplify the notation. However, we stress that firm two
does not observe y1 directly but it can perfectly infer it by observing firm one’s choice of output

level, q1. In that regard, the partial derivative ∂E(u|y2)
∂q1

is equal to σ
(m+2σ)γ11s

rather than zero.
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γs−1,s−1,s = σ/(m+(s−1)σ)
2b+σ/((m+sσ)γs−1,s−1,s)

by (.14) and Lemma 1, which can be solved as:

γs−1,s−1,s =
σ2

2b(m+ σ(s− 1))(m+ σs)
(.15)

Lastly, substituting (.15) into (.14) yields

q∗s−1,SQ(S1) = F S1
1 (ys−1, q1, ..., qs−2) =

σ(a− bQS1\{s,s−1}(S1) + E(u|ys−1)− µ)

2b(m+ sσ)
(.16)

Step 2) Post-entry market (S2 = {1, 2, ..., s, s+ 1})
In this step, we let firm s + 1 enter into the market and become the last

mover. Other firms preserve the order of their moves. In the post-entry market

(S2 = {1, 2, ..., s, s+ 1}), we deduce firm s− 1’s best reply in addition to the best

replies of firms s and s + 1. In the end, we show that the best responses and

therefore the equilibrium output levels of all firms from 1 to s − 1 are the same

between the pre-entry and post-entry markets.

We can find the best responses of firms s + 1 and s as in the above pre-entry

set-up in a symmetric way. Accordingly, replacing s with s + 1 and S1 with S2

respectively in (.11) and (.16) would give

q∗s+1,SQ(S2) =
a− bQS2\{s+1}(S2) + E(u|ys+1)− µ

2b
(.17)

and

q∗s,SQ(S2) =
σ(a− bQS2\{s,s+1}(S2) + E(u|ys)− µ)

2b(m+ σ(s+ 1))
(.18)

Next, we write down the optimization problem of firm s− 1 as

max
qs−1

E[πs−1(q1, ..., qs−1, q
∗
s,SQ(S2), q∗s+1,SQ(S2), u)|ys−1, q1, ..., qs−2]

= E[(a− bQS2\{s,s+1}(S2)− bq∗s,SQ(S2)− bq∗s+1,SQ(S2) + u− µ)qs−1|ys−1, q1, ..., qs−2]

(.19)

Substituting (.17) and (.18) into the above maximization and letting E(u|ys+1) =
sσ+m

(s+1)σ+m
E(u|ys) + σ

m+(s+1)σ
ys+1 by Lemma 1(i) and rearranging terms yields

max
qs−1

1
2
E[(θs(a− bQS2\{s,s+1}(S2)− µ− E(u|ys))− σ

m+(s+1)σ
ys+1 + 2u)qs−1|ys−1](.20)
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where 0 < θs = σ(2s+1)+2m
2(σ(s+1)+m)

< 1. Note that E(u|ys−1) = E(ys+1|ys−1) by Lemma 1

and both u and ys+1 are independent of qs−1. In that regard, it is valid to replace

ys+1 by u in (.20) to have

max
qs−1

θs
2
E[((a− bQS2\{s,s+1}(S2)− µ− E(u|ys) + 2u)qs−1|ys−1] (.21)

Comparing (.12) and (.21) shows that firm s − 1’s maximization problem is just

multiplied by a constant term θs following the entry. That implies that the best

reply of firm s − 1 in both markets are the same. Now note that all firms face

the same price. Accordingly, one can substitute the best reply of firm s − 1 into

the prices given in (.12) and (.21) to derive firm s − 2’s optimization problem in

the related markets. As firm s − 1’s problems in the pre-entry and post-entry

markets are constant multiples of each other, so does firm s − 2’s problems in

both markets. Therefore, firm s − 2’s best reply also remains the same after the

entry. The recursive nature of the Stackelberg game eventually ensures that the

maximization problem of each firm i (i ∈ {1, 2, ..., s − 1}) in pre-entry market is

a constant multiple of its problem in the post-entry market. Consequently, firm

i’s best response does not change due to entry and we therefore have

q∗i,SQ(S1) = q∗i,SQ(S2), i = 1, 2, ..., s− 1 (.22)

at the perfect revealing equilibrium. Using (.22), dividing (.18) by (.11) and

rearranging terms gives

q∗s,SQ(S2) =
σ

m+ σ(s+ 1)
q∗s,SQ(S1) (.23)

Step 3) The Derivation of Equilibrium Quantities

We are now ready to derive the Stackelberg game equilibrium quantities. We

analyze three cases.

Case 1: Leader’s best reply:

We start from a pre-entry market with firm one and add new firms one by

one as last movers until reaching N . But we have q∗1,SQ(N) = q∗1,SQ({1, 2}) =
σ

m+2σ
q∗1,SQ({1}) by (.22) and (.23). Also note that q∗1,SQ({1}) can be derived by
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letting s = 1 in (.11) to have

q∗1,SQ({1}) =
σ(a− µ) + am+ σy1

2b(m+ σ)
(.24)

Multiplying both sides of (.24) by σ
m+2σ

gives q∗1,SQ(N) as claimed.

Case 2: Firm n’s best reply:

Let s = n and S1 = N in the pre-entry market analysis. Best replies of firms

n and n− 1 are respectively given from (.11) and (.14) as

q∗n,SQ(N) =
a− µ− bQN\{n}(N) + E(u|yn)

2b
(.25)

and

q∗n−1,SQ(N) =
σ(a− µ− bQN\{n−1,n}(N) + E(u|yn−1))

2b(m+ σn)
(.26)

Rearranging (.26) gives

E(u|yn−1) =
2b(m+ σn)q∗n−1,SQ(N)

σ
− (a− bQN\{n−1,n}(N)− µ) (.27)

Finally note that

E(u|yn) =
σyn

m+ σn
+
m+ σ(n− 1)

m+ σn
E(u|yn−1) (.28)

by Lemma 1(i). First substitute (.27) into (.28) and then put the resulting value

of E[u|yn] into (.25) to have

q∗n,SQ(N) =
b(m+nσ)(2m+(2n−3)σ)qn−1(N)−bσ2

∑
j≤n−2 qj(N)+σ2(a−µ)+σ2yn

2bσ(m+nσ)
(.29)

as desired.

Case 3: Best replies of firms in {2, 3, ..., n− 1}:

Consider any two non-empty ordered subsets of N , i.e., S = {1, 2, ..., s} and

S
′

= {1, 2, ..., s′} with s, s
′ ∈ {3, 4, ..., n} and s 6= s

′
. W.L.O.G. let s

′ ≤ s. For

each i ∈ S ∩ S ′ \ {s′}, q∗i,SQ(S) = q∗i,SQ(S
′
) according to the logic given in (.22).
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Therefore, for each j ∈ N \ {1, n}, firm j − 1 and j’s best replies in the market of

N firms can be produced from (.18) as

q∗j−1,SQ({1, 2, ..., j}) = q∗j−1,SQ(N) =
σ(a− µ− bQN\{j−1,j,...,n}(N) + E(u|yj−1))

2b(m+ σj)
(.30)

q∗j,SQ({1, 2, ..., j + 1}) = q∗j,SQ(N) =
σ(a− µ− bQN\{j,j+1,...,n}(N) + E(u|yj))

2b(m+ σ(j + 1))
(.31)

Rearranging (.30) gives

E(u|yj−1) =
2b(m+ σj)q∗j−1,SQ(N)

σ
− (a− µ− bQN\{j,j+1,...,n}(N)) (.32)

But by Lemma 1(i),

E(u|yj) =
σyj

m+ σj
+
m+ σ(j − 1)

m+ σj
E(u|yj−1) (.33)

First put (.32) into (.33) and then replace the resulting value of E(u|yj) in (.31)

to have

q∗j,SQ(N) =
b(m+jσ)(2m+(2j−3)σ)qj−1(N)−bσ2

∑
k≤j−2 qk(N)+σ2(a−µ)+σ2yj

2b(m+jσ)(m+(j+1)σ)
(.34)

as desired.

Step 4) Second Order Conditions

We finally prove that the second order conditions are satisfied, i.e., for all i ∈ N ,
∂2E[πi|yi,q1,...,qi−1]

∂2qi
< 0. Note first that as b > 0, ∂2E[πn|.]

∂2qn
= −2b < 0 by (.9) for

s = n. For i < n, the profit function of firm i is:

E[πi(q1, ..., qi, q
∗
i+1,SQ, ..., q

∗
n,SQ, u)|yi, q1, ..., qi−1] =

= E[(a− b
∑j=i

j=1 qj − b
∑k=n

k=i+1 q
∗
k,SQ + u− µ)qi|yi, q1, ..., qi−1]

(.35)

The second order condition is:

∂2E[πi|.]
∂2qi

= −2b(1 +
n∑

j=i+1

∂q∗j,SQ
∂qi

) (.36)
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First let i = n− 1. Plugging in the value of
∂q∗n,SQ
∂qn−1

from (.29) into (.36) yields

∂2E[πn−1|.]
∂2qn−1

= −2b(1 +
2m+ (2n− 3)σ

2σ
) (.37)

which is negative for n ≥ 2. Lastly, let i ≤ n − 2. After finding the partial

derivatives in (.36) by using (.29) and (.34), we plug them into (.36) to have

∂2E[πi|.]
∂2qi

= −2b(1 + 2m+(2i−1)σ
2(m+(i+2)σ)

−
∑n−1

j=i+2
σ2

(m+jσ)(m+(j+1)σ)
− σ

2(m+nσ)
) (.38)

Note that the second term in the parenthesis is positive for m,σ ∈ R+. Therefore,

it is sufficient to show that the absolute value of last two subtraction terms in

(.38) is smaller than 1. The absolute value of this term is maximized at m = 0

and given by

1

2n
+

n−1∑
j=i+2

1

j(j + 1)
=

1

2n
+

n−1∑
j=i+2

(
1

j
− 1

j + 1
) (.39)

The first term in (.39) gets a maximum value of 1/4 when n = 2. The second

term in (.39) is decreasing in j and increasing in n. As i ≥ 1, the second is

maximized at j = 3 and n → ∞ and gets a maximum value of 1/3. Altogether,

the maximum value of (.39) is smaller than 1/4+1/3=7/12, which is smaller than

1. This observation completes the proof of Theorem 2.

We next prove three technical results. We use the first result in the proof of

the second result; and use the second result in the derivation of the third result.59

These results will later be used in the proof of Theorem 3.

Lemma 5. Let m,σ ∈ R+.

i) E(Q∗SQ(N)) = a/b− E(q∗n,SQ(N)).

ii) For each i ∈ N \ {n},

E(q∗i,SQ(N)) =
aσ

∏
j∈{3,5,..,2i−1}(2m+ jσ)

b2i
∏

j∈{2,3,4,...,i+1}(m+ jσ)
(.40)

59As we use some derivations from the proof of Theorem 2 in the proofs of the following
lemma, we did not want to put this lemma together with other lemmas in the Appendix.
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For i = n,

E(q∗n,SQ(N)) =
a
∏

j∈{3,5,..,2n−1}(2m+ jσ)

b2n
∏

j∈{2,3,4,...,n}(m+ jσ)
(.41)

iii) For any n ≥ 2,
∂E(q∗n,SQ(N))

∂m
> 0.

Proof of Lemma 5:

Proof of Lemma 5(i): We claim that E(Q∗SQ(N)) = a/b − E(q∗n,SQ(N)).

Recall that bQ∗SQ(N) = a−bq∗n,SQ(N)−µ+E(u|yn) from the first order condition

of the last follower given by (.10) for s = n. Taking expectations of both sides of

this equality yields

bE(Q∗SQ(N)) = a− bE(q∗n,SQ(N))− µ+ E(E(u|yn)) (.42)

Since E(E(u|yn)) = µ by the law of iterated expectations, (.42) reduces to our

claim as desired.

Proof of Lemma 5(ii): Let n ≥ 1 and m,σ ∈ R+. Take any non-empty

S1, S2 ⊂ N with S2 ≡ S1 ∪ {s+ 1} ≡ {1, 2, ..., s, s+ 1}. Note that

E[q∗s,SQ(S2)] =
σ

m+ σ(s+ 1)
E[q∗s,SQ(S1)] (.43)

from (.23). Moreover, for each S ∈ {S1, S2}, we have

E[Q∗SQ(S)] = a/b− E[q∗s,SQ(S)] (.44)

from Lemma 5(i). Finally, note that for each i ∈ S1 \ {s},

q∗i,SQ(S1) = q∗i,SQ(S2) (.45)

from (.22). Thus, subtracting E[Q∗SQ(S1)] from E[Q∗SQ(S2)] by using (.44) and

substituting the value of E[q∗s,SQ(S2)] from (.43) into the resulting equation, rear-
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ranging terms yields

E[q∗s+1,SQ(S2)] =
(2m+ σ(2s+ 1))E[q∗s,SQ(S1)]

2(m+ σ(s+ 1))
(.46)

But remark that the expected monopoly output is given by

E[q∗1,SQ({1})] =
a

2b
(.47)

from (.24). Hence, starting from the monopoly market, when we allow entry of

new firms as last-movers one by one until reaching n, then we can iteratively cal-

culate the expected quantities of firms by using (.43), (.45), and (.46) to have (.40)

and (.41). Hence all expected quantities are strictly positive for any m,σ ∈ R+.

Proof of Lemma 5(iii): We prove that
∂E(q∗n,SQ(N))

∂m
> 0 by induction. Let

Ni = {1, 2, ..., i}. Note first that
∂E(q∗2,SQ(N2))

∂m
= aσ

4b(m+2σ)2
> 0 by (.41). Now

assume that
∂E(q∗k,SQ(Nk))

∂m
> 0 for some k ∈ {2, 3, ..., n − 1}. We want to show

that
∂E(q∗k+1,SQ(Nk+1))

∂m
> 0 as well. Derive from (.41) that E(q∗k+1,SQ(Nk+1)) =

2m+(2k+1)σ
2m+2(k+1)σ

E(q∗k,SQ(Nk)). Derivating both sides of this equality with respect to m

gives

∂E(q∗k+1,SQ(Nk+1))

∂m
= 2m+(2k+1)σ

2m+2(k+1)σ

∂E(q∗k,SQ(Nk))

∂m
+ σ

2(m+(k+1)σ)2
E(q∗k,SQ(Nk)) (.48)

As
∂E(q∗k,SQ(Nk))

∂m
> 0 by the initial assumption and E(q∗k,SQ(Nk)) > 0 at m,σ ∈

R+ by (.41), then
∂E(q∗k+1,SQ(Nk+1))

∂m
> 0 from (.48) as desired.

Proof of Theorem 3:

The expected monopoly output is the same under both competitions and is

given by E(Q∗C({1})) = E(Q∗SQ({1})) = a/2 from (.40). Therefore, let n ≥ 2.

Remark that E(Q∗SQ(N)) = a/b − E(q∗n,SQ(N)) by Lemma 5(i). Together with

(11), we have ∆E(Q(N)) = E(Q∗C(N)) − E(Q∗SQ(N)) = E(q∗n,SQ(N)) − a
b(n+1)

.

Since
∂E(q∗n,SQ(N))

∂m
> 0 by Lemma 5(iii), it is sufficient to consider m = 0. Plugging

in the value of E(q∗n,SQ(N)) from (.41) into ∆E(Q(N)) and evaluating the resulting
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equation at m = 0 gives

∆E(Q(N)) =
a

b
(
(2n− 1)!!

(2n)!!
− 1

n+ 1
) (.49)

where (2n− 1)!! = 1 ∗ 3 ∗ ...(2n− 3) ∗ (2n− 1) and (2n)!! = 2 ∗ 4 ∗ ...(2n− 2) ∗ (2n).

We prove that (.49) is positive by induction. Let Ni = {1, 2, .., i}. Note that

∆E(Q(N2)) = a/(24b) > 0 by (.49). Now suppose that ∆E(Q(Nk)) > 0 for some

k ∈ {2, 3, ..., n − 1}. We want to show that ∆E(Q(Nk+1)) > 0 as well. Simple

algebra shows that 1
k+1
− 2(k+1)

(k+2)(2k+1)
= k

(k+1)(k+2)(2k+1)
> 0. Since (2k−1)!!

(2k)!!
> 1

k+1
by

the initial supposition that ∆E(Q(Nk)) > 0, we then have (2k−1)!!
(2k)!!

> 2(k+1)
(k+2)(2k+1)

as well. But that is equivalent to say that E(Q(Nk+1)) > 0 by (.49) as desired.

Hence the claim is proven.

Proof of Theorem 4:

Let a,m, σ ∈ R+. Define ∆E(Π∗(N)) = nE(π∗C(N)) −
∑

i∈N E(π∗i,SQ(N)).

The leader and follower’s profits in a Stackelberg duopoly are respectively given

by

E(π∗1,SQ({1, 2})) =
σ(2m+ 3σ)(a2(m+ σ) + σ2)

8b(m+ σ)(m+ 2σ)2
(.50)

E(π∗2,SQ({1, 2})) =
a2(m+ σ)(2m+ 3σ)2 + σ2(8m2 + 20mσ + 9σ2)

16b(m+ σ)(m+ 2σ)2
(.51)

based on (4), (16), and equilibrium quantities of the leader and follower provided

by Theorem 2. Similarly, using Theorem 1, expected per firm Cournot profits are

symmetric:

E[π∗i,C(N)] = E[π∗C(N)] =
a2

b(n+ 1)2
+

σ2(m+ σ)

b(2m+ σ(n+ 1))2
(.52)

First sum up (.50) and (.51) to have total Stackelberg duopoly equilibrium ex-

pected profits and then subtract the summation from 2E[π∗C(N)] to get
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∆E(Π∗({1, 2})) = −a2(m+σ)(2m+σ)(2m+3σ)2(2m+7σ)+9σ4(4m2+12mσ+7σ2)
144b(m+σ)(m+2σ)2(2m+3σ)2

< 0

Similar calculations at n = 3, 4, 5 yield

∆E(Π∗({1,2,3}))=−a
2(m+σ)(2m2+6mσ+3σ2)(2m2+14mσ+21σ2)+7σ4(4m2+16mσ+9σ2)

64b(m+σ)(m+2σ)2(m+3σ)2
< 0

∆E(Π∗({1,2,3,4}))=− 9a2(m+σ)(2m+5σ)2(8m3+52m2σ+98mσ2+47σ3)(8m3+92m2σ+318mσ2+337σ3)

6400b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(2m+5σ)2

− 25σ4(1408m6+21184m5σ+127072m4σ2+386752m3σ3+623020m2σ4+493000mσ5+142551σ6)

6400b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(2m+5σ)2
< 0

∆E(Π∗({1,2,3,4,5}))=−a
2(m+σ)(32m4+352m3σ+1336m2σ2+2000mσ3+915σ4)(32m4+544m3σ)

9216b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2

−a
2(m+σ)(32m4+352m3σ+1336m2σ2+2000mσ3+915σ4)(3208m2σ2+7856mσ3+6765σ4)

9216b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2

− 9σ4(3200m6+57920m5σ+411136m4σ2+1448560m3σ3+2628668m2σ4+2271864mσ5+687775σ6)

9216b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2
< 0

Proof of Theorem 5:

Let a,m, σ ∈ R+. Let ∆E(TW ∗(N)) = E(TW ∗
C(N)) − E(TW ∗

SQ(N)) and

∆E(CS∗(N)) = E(CS∗C(N)) − E(CS∗SQ(N)). Based on (4), (17), and equilib-

rium quantities of Cournot and Stackelberg games, which are respectively given

by Theorems 1 and 2, total duopoly expected equilibrium welfare under both

competitions are derived as

E(TW ∗
C({1, 2})) =

4a2(2m+ 3σ)2 + 9σ2(3m+ 4σ)

9b(2m+ 3σ)2
(.53)

E(TW ∗
S({1, 2})) =

a2(m+ σ)(2m+ 5σ)(6m+ 11σ) + σ2(24m2 + 76mσ + 55σ2)

32b(m+ σ)(m+ 2σ)2
(.54)

Subtracting (.54) from (.53) yields

∆E(TW ∗({1, 2})) = a2(m+σ)(2m+σ)(2m+3σ)2(10m+17σ)+9σ3(16m3+60m2σ+64mσ2+17σ3)
288b(m+σ)(m+2σ)2(2m+3σ)2

> 0

Similar calculations at n = 3, 4, 5 give
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∆E(TW ∗({1,2,3}))=a2(m+σ)(2m2+6mσ+3σ2)(6m2+26mσ+27σ2)+s3(48m3+236m2σ+296mσ2+81σ3)

128b(m+σ)(m+2σ)2(m+3σ)2
> 0

∆E(TW ∗({1,2,3,4}))= 25σ2(512m8+11776m7σ+114816m6σ2+620352m5σ3)

6400b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(2m+5σ)2
+

+ 25σ2(2033568m4σ4+4145472m3σ5+5135956m2σ6+3537464mσ7+1037097σ8)

6400b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(2m+5σ)2

+a2(m+σ)(2m+5σ)2(1472m6+26496m5σ+199376m4σ2+799152m3σ3+1792076m2σ4+2124156mσ5+1037097σ6)

6400b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(2m+5σ)2
> 0

∆E(TW ∗({1,2,3,4,5}))= 9σ(89039120m3σ6+65894692m2σ7+20927176mσ8+483425σ9)

18432b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2
+

+ 9σ(5120m9+129280m8σ+1388800m7σ2+8270720m6σ3+29794560m5σ4+66343584m4σ5)

18432b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2
+

+a2(m+σ)(32m4+352m3σ+1336m2σ2+2000mσ3+915σ4)(64m4+800m3σ+3608m2σ2+6928mσ3+4755σ4)

18432b(m+σ)(m+2σ)2(m+3σ)2(m+4σ)2(m+5σ)2
> 0

But since ∆E(TW ∗(N)) = ∆E(CS∗(N)) + ∆E(Π∗(N)), then it becomes a

corollary that ∆E(CS∗(N)) > 0 at n = 2, 3, 4, 5 by Theorem 4 and the above

total welfare analysis.

Proof of Theorem 6: Let n = 2 and c1 = c2 = c be the pre-merger marginal

cost level. Let also a = ā − c. Let c̄e,C and c̄e,S be the minimum level of

efficiency gains under Cournot and Stackelberg competitions respectively such

that the merger to the monopoly is total welfare enhancing. Accordingly, let

âS = ā − c + c̄e,S and âC = ā − c + c̄e,C . We claim that c̄e,C > c̄e,S. To see that

note that âC solves TW ∗
C{1, 2} = TW ∗

M and therefore is given by

âC = a

√
32

27b2
+

√
18σ3(4m+ 5σ)

27b2(m+ 2σ)(2m+ 3σ)2
(.55)

where TW ∗
M and TW ∗

C({1, 2}) are respectively provided in (29) and (.53). Simi-

larly, âS solves TW ∗
S({1, 2}) = TW ∗

M and is given by

âS = a

√
(2m+ 5σ)(6m+ 11σ)

12b2(m+ 2σ)2
+

√
σ3(4m+ 7σ)

12b2(m+ σ)(m+ 2σ)2
(.56)

where TW ∗
S({1, 2}) is given by (.54). Subtracting (.56) from (.55), after some

simplifications, reduces to

a

√
(2m+ σ)(10m+ 17σ)

108b2(m+ 2σ)2
+

√
σ3(16m3 + 60m2σ + 64mσ2 + 17σ3)

12b2(m+ σ)(m+ 2σ)2(2m+ 3σ)2
> 0 (.57)
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which is positive for m,σ ∈ R+. In sum, âC > âS. This implies that c̄e,C > c̄e,S

as desired.

Proof of Theorem 8: The proof is very similar to the proof of Proposition

2 in Vives (1984). We first show that if firm one uses q∗1,DC({1, 2}) = a
b(2+λ)

+
σ(y1−µ)

b(2m+σ(2+λ))
, then the unique best response for firm 2 is to use q∗2,DC({1, 2}) =

a
b(2+λ)

+ σ(y2−µ)
b(2m+σ(2+λ))

. To see this, notice that the expected profit of firm 2 choosing

quantity strategy q2 given firm one’s strategy and the signal y2 is

E[(a− µ+ u− bq2 − bq∗1,DC({1, 2}))q2|y2] (.58)

Therefore, the optimal choice of firm 2 is

q∗2,DC({1, 2}) =
a− µ+ E(u|y2)− bE(q∗1,DC(N)|y2)

2b
(.59)

which, after some computations, is equal to q∗2,DC({1, 2}) = a
b(2+λ)

+ σ(y2−µ)
b(2m+σ(2+λ))

by the initial supposition and Lemma 1 (at n = 2). Uniqueness follows similarly

as in Vives (1984).

Proof of Theorem 8: We proceed in two steps to derive the equilibrium quan-

tities of firms, who sell differentiated products.

Step 1: Deriving Equilibrium Productions:

We start out with writing down firm two’s maximization problem:

max
q2

E[π2(q1, q2, u)|y2, q1]

The first-order condition yields

q∗2,DS =
a− µ− bλq1 + E(u|y2, q1)

2b
(.60)

The inverse functions of firm strategiesG1(y1) andG2(y2, q1) exist by the definition

of equilibrium and are linear by our conjecture. In essence, firm two can perfectly

infer y1 after observing q1 from the definition of perfect revealing equilibrium.

Hence substituting E[u|y2, q1] = σ(y1+y2)
m+2σ

+ mµ
m+2σ

, where y1 = G−1
1 (q1) = q1−α0

α1
, in

(.60) by Lemma 1(i) and rearranging terms give
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q∗2,DS = G1(y2, q1) =
a

2b
− σ(α0 + 2α1µ)

2bα1(m+ 2σ)
+

σy2

2b(m+ 2σ)
+ (
−λ
2

+
σ

2bα1(m+ 2σ)
)q1

We first substitute q∗2,DS from above in the leader firm’s optimization problem

as

max
q1

E[π1(q1, q
∗
2,DS, u)|y1] = E[(a− µ+ u− bq1 − bλq∗2,DS)q1|y1] (.61)

After further substituting E[u|y1] = E[y2|y1] = σy1
m+σ

+ σµ
m+σ

in (.61) by Lemma

1, one can solve for α0 and α1 from the first order conditions for the maximization

problem in (.61) and obtain equilibrium quantities of both firms.

STEP 2: Second Order Conditions for the Differentiated Good Model

Observe first that ∂2E[π2(.)|y2,q1]
∂2q2

= −2b < 0 and the second order condition for

the follower is satisfied.

Finally note that ∂2E[π1(.)|y1]
∂2q1

= −2b(1 + λβ3) by (.61). As β3 =
∂2q∗2
∂2q1

=
(2−λ)(2m+(2−λ)σ)
4(1−λ)m+2(4−3λ)σ

> 0 for any λ ∈ [0, 1] andm,σ ∈ R+ from Theorem 8, ∂
2E[π1(.)|y1]

∂2q1
<

0. Hence, all second order conditions are satisfied.

Proof of Theorem 9:

i) Let E[∆Q∗D] = E[Q∗DC ] − E[Q∗DS]. By using (4) and equilibrium quanti-

ties of firms in differentiated Cournot and Stackelberg models respectively from

Theorems (7) and (8), it can be shown that

E[∆Q∗D] =
aλ(2− λ)(2m+ σ(2− λ))

4b(2 + λ)(2− λ2)(m+ 2σ)
(.62)

which is positive for λ ∈ (0, 1] and is equal to zero when λ = 0.

ii) Let a ≥ σ and λ ∈ [0, 1]. We claim that E[∆Π∗D] = E[Π∗DC ]− E[Π∗DS] < 0.

By using (4) and the equilibrium quantities of firms in differentiated Cournot and

Stackelberg models respectively stated in Theorems (7) and (8), it can be shown

that

∂E[∆Π∗D]

∂a
= −2a(m(2(1− λ)(4− λ2) + 2λ3) + σ(2− λ)(12− 5λ2))

g
< 0 (.63)

59



at λ ∈ [0, 1] and m,σ ∈ R+ where g = 16b(2+λ)2(2−λ2)2(m+σ)(m+2σ)2(2m+

2σ + λσ)2. Therefore, it is sufficient to prove that E[∆Π∗D(a =
√
σ)] < 0. Calcu-

lating E[∆Π∗D(.)] at a =
√
σ and rearranging terms yields

E[∆Π∗D(a =
√
σ)] = −σ(m+2σ)(16λ2(λ3+(1−λ)(4−λ2))m4+32(8(1−λ)+2λ5+λ2(2−λ2))m3σ)

g
− ...

−σ(m+2σ)(8(16λ2+32(1−λ)(2−λ−λ2)+λ3(2+(3+λ)(10(1−λ)+λ3)))m2σ2)
g

− ...
−σ(m+2σ)(8(2−λ)(2+λ)(8(1−λ)2+2λ2+(6−5λ)λ3+2λ3(3−λ2))mσ3+λ2(12−5λ2)(4−λ2)2σ4)

g

which is negative at λ ∈ [0, 1] and m,σ ∈ R+ as desired.

Proof of Theorem 10: Letm,σ ∈ R+. LetE[∆TW ∗
D] = E[TW ∗

DC ]−E[TW ∗
DS].

By using (4) and the equilibrium quantities of firms in differentiated Cournot and

Stackelberg models respectively stated in Theorems (7) and (8), it can be shown

that the partial derivative
∂∆E[TW ∗D]

∂a
reduces to

2a(8(2− λ)m+ 4(1− λ2)(9σ + 4m) + 4σ + 24σ(1− λ) + 3σλ4 + λ3(2m+ 10σ))

32b(2 + λ)2(2− λ2)2(m+ σ)(m+ 2σ)2(2m+ σ(2 + λ))2

which is positive at m,σ ∈ R+. In that regard, it is sufficient to show that

E[∆TW ∗
D(a = 3

√
σ)] > 0 at λ ∈ [0.1, 1] to conclude the proof. Substituting

a = 3
√
σ into E[∆TW ∗

D] and rearranging terms yield

E[∆TW ∗D(a=3
√
σ)]=

144λ(4+4(1−λ)+λ3+8(1−λ2))m5σ+16(f1+λ
4(22+λ(22+3λ)))m4σ2

32b(2+λ)2(2−λ2)2(m+σ)(m+2σ)2(2m+2σ+λσ)2
+

+ 8(f2+λ(76(1−λ
3)+λ4(268+λ(33−2λ))))m3σ3+4(f3+λ604(1−λ

3)+λ5(1204+λ(1+34(1−λ)+3(35−λ2))))m2σ4

32b(2+λ)2(2−λ2)2(m+σ)(m+2σ)2(2m+2σ+λσ)2
+

+ (2−λ)(2+λ)(f4+496λ(1−λ3)+3λ5(96+17λ))mσ5+10λ(4−λ2)2(16(2−λ2)+λ(4−3λ2))σ6

32b(2+λ)2(2−λ2)2(m+σ)(m+2σ)2(2m+2σ+λσ)2

(.64)

where
f1 = −48 + 896λ− 124λ2 − 492λ3

f2 = −384 + 4276λ− 128λ2 − 2704λ3

f3 = −960 + 9700λ+ 608λ2 − 7424λ3

f4 = −384 + 5392λ+ 624λ2 − 3520λ3

Note that ∂2f1
∂2λ

= −8(31 + 369λ), ∂2f2
∂2λ

= −32(8 + 507λ), ∂2f3
∂2λ

= 64(19 − 696λ),

and ∂2f4
∂2λ

= 96(13 − 220λ). Therefore, all f functions are concave at λ ≥ 0.1.

Furthermore, at λ = 0.1, f1 = 39.9, f2 = 39.6, f3 = 8.66, and f4 = 157.9,

which are all positive. Similarly, at λ = 1, f1 = 232, f2 = 1060, f3 = 1924, and
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f4 = 2112, which are also positive. Altogether, all f functions are positive when

λ ∈ [0.1, 1] by concavity. It is then easy to see from (.64) that E[∆TW ∗
D(a =

3
√
σ)] > 0 at λ ∈ [0.1, 1].

By using Theorem 9(ii) and the above results, it is trivial to see thatE[∆CS∗D] >

0 at a ≥ 3σ and
∂∆E[CS∗D]

∂a
> 0.
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