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Abstract

It is well known that the existence and uniqueness of Cournot equilib-
rium would extend to environments where firms prefer to be not active.
However, we show that differentiated Bertrand oligopolies with constant
unit costs and continuous best replies do not need to satisfy supermodu-
larity (Topkis (1979)) or single crossing property (Milgrom and Shannon
(1994)). Moreover, best replies might be negatively sloped and there are
infinitely many undominated Bertrand-Nash equilibria on a wide range of
parameter values when the number of firms is more than two. These re-
sults are very different from the existing literature on Bertrand models,
where uniqueness, supermodularity, and single crossing property usually
hold under a linear market demand assumption and best reply functions
slope upwards. We fully characterize the set of undominated equilibria.
We provide an iterative algorithm to find the set of players that are active
in any equilibrium, and show that this set is the same in all undominated
equilibria.
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1 Introduction

In several markets some firms may not able to actively participate, and many de-

cide to shut down. The exit incentives of firms might be induced by the aggressive

pricing strategies of their rivals by charging below their average costs. This prac-

tice, known as predatory pricing, is considered to be illegal by the main anti-trust

authorities like Federal Trade Commission (FTC) and U.S. Department of Justice

(DOJ). However, the exit behaviour of firms might also be efficiency based driven

in highly competitive markets. A cost reducing innovation by competitors, the

inability to adapt to changing market conditions, a cost-efficient merger among

rival firms, or an increase in fixed costs may induce a firm to exit or to remain idle

temporarily. These kinds of restructuring of the markets might force relatively

more efficient firms to practice efficiency based limit pricing in order to induce

exit of relatively less efficient rivals that have already entered. Efficiency based

limit pricing strategies drive entirely from the non-cooperative nature of firm in-

teractions. Relatedly, it cannot be considered as an illegal activity as all active

firms charge above their average costs without taking into account possible future

profits following the exit of their rivals.

In this paper, we study traditional static price-setting games among firms

that have different levels of cost-efficiencies. The differences between these levels

might due to one of the above factors. Our main aim is to identify the set of

active and inactive firms in any equilibrium and to provide a full characterization

of the equilibrium behaviour of active firms that potentially involves efficiency

based limit pricing strategies. Such a characterization in static quantity-setting

games is trivial because relatively efficient firms cannot be forced to increase their

productions to induce exit of relatively inefficient firms. In particular, standard

existence and uniqueness results for the Cournot equilibrium extend to environ-

ments where firms prefer to be not active (Novshek (1985) and Gaudet and Salant

(1991)). However, the equilibrium behavior of firms constrained by non-negative

production levels in Bertrand models has not been extensively studied. In con-

trast to the quantity-setting games, we argue that allowing pricing at marginal

cost level (i.e., producing zero) sharply changes the set of equilibria in price set-

ting games. We show that differentiated linear Bertrand oligopolies with constant

unit costs and continuous best replies need not satisfy supermodularity (Topkis
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(1979)) or single crossing property (Milgrom and Shannon (1994)). Consequently,

existence and uniqueness results for games satisfying supermodularity or single

crossing-property do not apply in our framework. In particular, Bertrand-best

replies might be negatively sloped and there are infinitely many undominated ef-

ficiency based limit pricing equilibria for a wide range of parameter values when

the number of firms is more than two. These results are different from the exist-

ing literature on Bertrand models, where uniqueness, supermodularity, and single

crossing property hold under a linear market demand assumption and best reply

functions slope upwards.

To explain our results, consider a symmetric three-firm differentiated product

Bertrand-oligopoly where marginal cost levels are ci = ξ for i = 1, 2, 3. All firms

are active, that is their equilibrium production levels are all strictly positive.

Suppose now that there is a process innovation available for firms one and two.

Accordingly, their cost levels reduce to ξ̂ = ĉ1 = ĉ2 < ĉ3 = ξ. If the initial cost

level ξ is high enough, then there are two cutoff levels for ξ̂, say ξ̂1 and ξ̂2 with

0 < ξ̂1 < ξ̂2, such that equilibrium strategies of firms are qualitatively different

when ξ̂ lies in regions [0, ξ̂1], [ξ̂1, ξ̂2], or [ξ̂2, ξ). More specifically, if ξ̂ ∈ [ξ̂2, ξ), then

the level of innovation is not too high and all three firms continue to be active

in the market. On the other extreme, if ξ̂ ∈ [0, ξ̂1], then firm three becomes very

inefficient compared to firm one and two and leaves the market. Accordingly firms

one and two charge unconstrained duopoly prices. The most interesting region

is the intermediate region here ξ̂ ∈ [ξ̂1, ξ̂2). This region involves efficiency based

limit pricing induced by firms one and two to keep firm three out of the market.

If they ignored firm three and charged unconstrained duopoly prices, then firm

three would continue to be active in the market.

In the case of linear demand, limit pricing takes a particularly simple form.

Consider any price combination of firms one and two such that p1 + p2 = M

where M is uniquely determined by the parameters of the model. If either firm

one or firm two charges a higher price, then firm three would start to produce

and the market becomes a triopoly market. On the other hand, when either of

them decreases its price, the market is a duopoly market. For this reason, the

profit functions of firms one and two exhibit kinks at price combinations where

p1 + p2 = M . Moreover, the fact that demand is more sensitive to a change in
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the price that a firm sets in the region where all three firms are active1 implies

that the right hand derivative of the profit of firm 1 with respect to p1 is more

negative (or less positive) than the left hand derivative if p1 + p2 = M as the

demand drop is accelerated for prices where the third firm is active. At such price

combinations, optimality conditions for firm 1 require the left hand derivative of

the profit function to be positive, and the right hand derivative to be negative,

which can be satisfied by multiple combinations of p1 and p2 satisfying p1+p2 = M .

As a result there is a host of equilibria in our price setting game. Relatedly, the

kink implies that the best reply for firm 1 when firm 2 sets p2 satisfies p1 = M−p2,
so firm one’s and two’s price choices are strategic substitutes at such a point.

The usefulness of analyzing efficiency based limit pricing strategies has already

been pointed out in Bertrand-duopoly games. Muto (1993) considers a Bertrand-

type duopoly model with differentiated goods under a linear demand and constant

but different marginal costs. There is a cost-reducing process innovation by an

external patentee and the patentee’s payoff is compared under three licensing

policies (the auction, the fee, and the royalty). A sufficient level of cost reduction

might lead the efficient firm to exercise limit pricing, which induces the relatively

inefficient firm to exit the market. Muto argues that a royalty may be the most

beneficial for a patentee. Our results show that when there are more than two

firms his comparison may drastically change when one considers the possibility

of multiple equilibria. Zanchettin (2006) also studies a Bertrand duopoly model

and considers one cost efficient and one inefficient firm. He mainly compares

Cournot and Bertrand equilibrium prices, quantities, and profits of the efficient

firm. Unlike Singh and Vives (1984), he considers the possibility of firms not

producing as in this paper. He shows that both the efficient firm’s and industry

profits can be higher under Bertrand competition when the firm asymmetry is

low enough. This reverses Singh and Vives’ ranking. Our results show that the

uniqueness of equilibrium in the two-firm case will disappear when there are more

than two firms. It is clear from these arguments that the possibility of limit pricing

and multiple equilibria might give rise to unexpected results in various contexts.

Our paper also contributes to the literature on equilibrium existence in price-

1The reason is that when firm 1 changes its price in the duopoly region (i.e. where p1 + p2 <
M) then its quantity responds relatively mildly since there is only one other firm (firm 2), where
customers divert to. In the region where p1 +p2 ≥M any increase of p1 makes customers divert
to both firms 2 and 3.
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setting games. Roberts and Sonnenschein (1977), Friedman (1983) and Vives

(2001) provide examples of non-existence of equilibrium in non-supermodular price

setting oligopolies. However, unlike our results, their examples depend on discon-

tinuities in the best replies.2 Topkis (1979) shows that if the goods are substitutes

with linear demand and costs and if the players’ strategies are prices constrained

to lie in an interval [0, p], then the game is supermodular.3 Building on Topkis

(1979), Milgrom and Roberts (1990b) show that there is a unique pure strategy

Bertrand equilibrium with linear, CES, logit, and translog demand functions and

constant marginal costs. In both Topkis (1979) and Milgrom and Roberts (1990b),

demand function is assumed to be twice continuously differentiable. We argue that

for standard demand functions, this assumption is only satisfied when all firms

have positive production. Otherwise, demand functions might have kinks as we

show it in our simple linear model.4 More recently, Ledvina and Sircar (2011,

2012) study static entry price setting games, where some firms may not produce

in equilibrium. They show that there is a unique pure strategy Bertrand equilib-

rium in a model that covers our set-up. However, our result establishes that it is

necessary to assume positive production by all firms in order to assure supermod-

ularity and single crossing, and thereby assure the uniqueness of pure strategy

Bertrand equilibrium.

In Section 2 we describe the model and provide preliminary analysis. Section

3 provides the main theoretical analysis. Section 4 discusses implications for limit

pricing models, and how firms may keep out rivals jointly in real world markets.

2 Model and Equilibrium Analysis

LetN = {1, 2, ..., n} be a finite set of firms. Each firm i ∈ N produces an imperfect

substitutable product i at constant marginal cost ci without incurring fixed costs.

2Friedman (1977) shows that when best response functions are contractions, costs are nonde-
creasing, and all firms actively produce imperfectly substitutable goods, then there is a unique
Bertrand equilibrium.

3Later, Vives (1990) extends the result to the case of convex costs.
4Vives (1990, footnote 13) argues that we might alternatively impose positive productions

by all firms rather than allowing zero production to ensure supermodularity. However, sufficient
conditions for positive production levels are hard to provide.
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Without loss of generality assume that c1 < c2 < .... < cn.5 Each firm i ∈ N sets

his price pi simultaneously, knowing all the cost and demand parameters of the

game.

Next we describe the demand side of the economy. The demand for product i

is denoted by qi = Di(p), where p = (p1, p2, ..., pn). The representative consumer

has an exogenous income I and maximizes utility:

U =
∑
k∈N

Aqk −
1

2

∑
k∈N

q2k − θ
∑
k∈N

∑
k∈N,j>k

qkqj + (I −
∑
k∈N

qkqk), (1)

where A is the common demand parameter and θ ∈ (0, 1) is an inverse measure

of product differentiation. Cumbul (2012) shows that U is concave. To obtain

non-trivial results, we assume that for each k ∈ N , it holds that A > ck.

This demand function is symmetric across firms, so it is clear that the consumer

will consume a strictly positive amount of the cheapest s(p) products, which is

offered by firms in set S(p) ⊂ N .6 The first order condition of the consumer’s

problem yields that for all products that are consumed in positive quantity, that

is for all i ∈ S(p) it holds that

pi = A− qi − θ
∑
j∈S\i

qj. (2)

Solving (2) for quantities yields

qi = Di(p) = as − bspi + ds
∑
j∈S\i

pj (3)

where as = A
1+θ(s−1) , bs = 1+θ(s−2)

(1−θ)(1+θ(s−1)) , and ds = θ
(1−θ)(1+θ(s−1)) .

Given price vector p = (p1, p2, ..., pn) one can calculate the profit of each firm

i ∈ N as follows. The profit of firm j, πj(p) is equal to 0 if j ∈ N\S(p). The

profit of i ∈ S(p) can be written as

5All our results are valid for the case where some of the costs are equal, as we assume in
some examples, but the notation becomes much more burdensome, so we do not cover this case
formally.

6A full characterization of S for any price vector is not necessary at this point. We use the
relevant properties of S when we proceed with our analysis.
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πi(p) = (pi − ci)(as(p) − bs(p)pi + ds(p)
∑

j∈S(p)\i

pj) (4)

An equilibrium of the Bertrand-game requires that for all k ∈ N it holds that

pk ∈ arg maxx πk(x,p−k) where we let p−k be the vector of prices set by all firms

other than k. An undominated equilibrium is such that pl ≥ cl for all l ∈ N .

We show that πi is globally quasi-concave, and thus a pure strategy equilibrium

exists. First, the derivative of πi with respect to pi is qi − bs(pi − ci) at all prices

where the set of active firms does not change. As pi increases, a new firm k may

enter the market. At such a point the left hand derivative is still qi − bs(pi − ci),
while the right hand derivative becomes qi−bs+1(pi−ci). Given that bs+1 > bs, the

right hand derivative is strictly lower than the left hand derivative. Therefore,

as pi increases, the derivative either exists and is decreasing or the right hand

derivative is less than the left hand derivative. Therefore, the profit function is

globally quasi-concave in pi. This argument shows that the profit function exhibits

a kink at a point where a new firm becomes active because at such a point the

demand of i becomes more sensitive to changes in i’s price (that is, bs+1 > bs) due

to the fact that the consumer may divert to more firms than before.

Lemma 1. The profit function πi is globally quasi-concave in pi when pi ≥ ci and

qi > 0. Consequently, there exists a pure strategy undominated Bertrand-Nash

equilibrium where each i ∈ N charges pi ∈ [ci, A].

Proof: See the Appendix.

To find an equilibrium, one needs to check all possible combinations of firms

that may be active. To facilitate analysis, we first study a simpler game ignoring

the non-negativity constraint for the output levels. In effect, we use (3) to calculate

the demand even if qi < 0 for some i ∈ S. We find the equilibrium of this modified

game, which we call a naive equilibrium. In the next step, we impose the non-

negativity constraints to find necessary conditions for equilibria of the original

game. Then in Section 3, we propose an iterative algorithm to find the firms

that are active in the equilibrium of the original game. Finally, we characterize

equilibrium prices and quantities.

To provide a definition of a naive-equilibrium we use (3). In the S-firm market,

a price vector p∗S(S) = (p∗i (S))i∈S ≥ 0 is a naive Bertrand-Nash equilibrium if for
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each i ∈ S it holds that

pi = arg max
x

(x− ci)(as − bsx+ ds
∑
j∈S\i

pj). (5)

Given our linearity assumptions, there is a unique such equilibrium, which can

be found by differentiating (5) with respect to x and setting the derivative to

zero. The best response of firm i ∈ S is then given as BRi = (as + bsci +

ds
∑
j∈S\i

pj)/2bs.Letting cT (S) =
∑
S

ci and assuming that all firms best respond, we

obtain the naive equilibrium price and quantity levels:

p∗i (S) =
as(2bs + ds) + bs(2bs − ds(s− 1))ci + bsdscT (S)

(2bs + ds)(2bs − ds(s− 1))
, (6)

and

q∗i (S) = bs(p
∗
i (S)− ci). (7)

We now impose the constraint that the output of each firm is non-negative.

Take any set of firms S ′ ⊂ N with the cardinality of S ′ being s′. Let h =

arg minj∈N\S′ cj. First, we derive a condition that ensures that if the set of active

firms in the market is S ′, then firm h does not want to enter. Our starting point

is that when firm h is inactive, any firm g ∈ N\S ′ that is less efficient than firm

h can be ignored for the analysis as those firms are also inactive. Consequently,

the demand that firm h faces when it sets ph = ch and takes pS′ as given follows

from (3):

DCS′

h (pS′) = as′+1 − bs′+1ch + ds′+1

∑
j∈S′

pj. (8)

It is clear that firm h can profitably enter (produce qh > 0) if and only if

DCS′

h (pS′) > 0 because otherwise even if firm h charges his break even price

ch, it faces a non-positive demand.

Let us derive necessary conditions for an equilibrium where qi > 0 if and only

if i ∈ S ′. Theorem 1 below shows that there are two possible types of equilibria of

which exactly one type occurs for any parameter values. First, an unconstrained

equilibrium is such that firms in S ′ charge the equilibrium oligopoly prices if the

set of firms on the market is S ′, ignoring the presence of other firms completely.

It must be the case that the naive equilibrium outputs of the S ′-market are all
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positive, that is for all i ∈ S ′ it holds that q∗i (S
′) > 0. Moreover, no firm j ∈ N \S ′

has an incentive to disrupt the equilibrium, that is for all j ∈ N \ S ′ it holds that

DCS′
j (p∗S′(S

′)) ≤ 0. Second, a constrained (limit pricing) equilibrium is

such that the active firms are constrained by the presence of some inactive firm h

when they set their equilibrium prices. In this case DCS′

h (p∗S′(S
′)) > 0 for some

h ∈ N \S ′. While firms in N \S ′ have too high marginal costs to be able to enter

in equilibrium, but some of them would enter if firms in S ′ charged the naive

equilibrium price vector p∗S′(S
′).

Theorem 1. Take any set of firms S ′ ⊂ N and let h = arg minj∈N\S′ cj. Let

(p̂i, q̂i) denote an undominated equilibrium price quantity vector of firm i ∈ N . If

the set of active firms is S ′ (that is, qi > 0 if and only if i ∈ S ′) in an undominated

equilibrium, then one of i) or ii) holds:

i) (unconstrained equilibrium) DCS′

h (p∗S′(S
′)) ≤ 0 and for all i ∈ S ′, q̂i =

q∗i (S
′), p̂i = p∗i (S

′);

ii) (constrained equilibrium) DCS′

h (p∗S′(S
′)) > 0 and DCS′

h (p̂S′) = 0, ph = ch.

Proof: See the Appendix.

Theorem 1 states that either the most efficient inactive firm would face a

positive demand if any of the active firms increased their prices by (DCS′

h (p̂S′) = 0

in part ii)), or the active firms charge the prices they would if no firms other than

the active firms existed in the market (p̂i = p∗i (S
′) in i)). The result is intuitive

because if firm h was not at the margin of entering but out of the market for

even slightly higher prices of the active firms, then the active firms would not be

constrained by firms not in S ′ when considering small deviations. In this case the

first-order conditions of the unconstrained equilibrium would apply, pinning down

the equilibrium prices at the unconstrained equilibrium levels.

Example: A simple numerical example helps fixing ideas. There are three firms

with marginal costs c1 = c2 = 15, and c3 = 23.2. The demand is pi = 30 − qi −
0.5(qj + ql) where i, j, l are three different firms. Thus θ = 0.5, a3 = 15, b3 = 1.5,

d3 = 0.5 and a2 = 20, b2 = 1.33, d2 = 0.67. Since the first two firms are identical

and they are the most efficient, they both produce in equilibrium. If firm 3 was

also active then the naive 3-firm equilibrium would apply. But using (6) and (7),

a 3-firm equilibrium calls for production q3 = −0.09 < 0, so firm 3 is not active
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in equilibrium. Is there an unconstrained duopoly equilibrium? Using (6) and

(7), such an equilibrium would call for p1 = p2 = 20, and q1 = q2 = 20/3. Then

p3 = 23.33− q3, and firm 3 is able to enter the market by charging slightly above

his marginal cost of 23.2.

Therefore, the equilibrium must be a constrained equilibrium where p3 = c3

and DC3 = a3 − b3c3 + d3(p1 + p2) = 0 by ii) in Theorem 1. Then using a3 =

15, b3 = 1.5, d3 = 0.5, we find that p1 + p2 = 39.6. By construction, firm 3 cannot

profitably enter if p1 + p2 = 39.6 because firm 3 obtains a zero demand when he

charges c3. We can show that the set of equilibria7 is

19.69 ≤ p1, p2 ≤ 19.91 and p1 + p2 = 39.6.

First, firm 1 should not have an incentive to increase its price and let firm 3 in8

(this implies p1 ≤ 19.69), nor should it have the incentive to reduce his price9

and steal market from firm 2 (this implies p1 ≥ 19.91). To explain equilibrium

incentives, take the pair (19.8, 19.8), which constitutes an equilibrium. By con-

struction, the left hand derivative of the profit function π1 with respect to p1 is

positive, while the right hand derivative is negative. It is not worth charging a

price lower than 19.8 because then only customers from firm 2 can be attracted.

It is not worth charging a higher price either because then customers may defect

to both firms 2 and 3. This kink in the profit function is the key property that

makes multiple equilibria possible.

It is useful to vary c3 and trace out the resulting equilibrium types. First, if

c3 ≥ 23.33, then the unconstrained duopoly equilibrium of firms 1 and 2 (p1 =

p2 = 20) constitutes an equilibrium. This holds because firm 3 faces a demand

of q3 = 23.33 − p3, so firm 3 is not able to upset such an equilibrium when

c3 > 23.33. Second, we can show that firm 3 is active in equilibrium if and only

if c3 < 23.08 holds.10 In the intermediate region where c3 ∈ (23.08, 23.33) the

(multiple) equilibria are constrained, and in all such equilibria DC3 = a3− b3c3 +

d3(p1 + p2) = 0.

7There are only constrained equilibria in this case.
8This condition boils down to q1 − b3(p1 − c1) ≤ 0, see the argument before Lemma 1.
9This condition boils down to q1 − b2(p1 − c1) ≥ 0.

10This is shown by calculating the naive equilibria for all three firms, and setting q3 > 0.
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2.1 Equilibrium Analysis

We provide an algorithm that constructively finds the set of active firms in equi-

librium.

Bertrand Iteration Algorithm (B.I.A.): Let Ni = {1, 2, ..., i}.

Step 1: If q∗2(N2) ≤ 0, then N∗ = N1. Otherwise proceed to the next step.

Step 2: If q∗3(N3) ≤ 0, then N∗ = N2. Otherwise proceed to the next step.

.

.

.

Step k: If q∗k+1(Nk+1) ≤ 0, then N∗ = Nk Otherwise proceed to the next step.

.

.

.

Step n-1: If q∗n(N) ≤ 0, then N∗ = Nn−1. Otherwise N∗ = N .

The algorithm eventually stops and the set N∗ is determined. Our next result

characterizes the set of firms that are active in equilibrium.

Theorem 2. Let N∗ = {1, 2, ..., n∗} be the set identified by the algorithm. In any

undominated equilibrium the set of active firms is N∗.

The algorithm explicitly assumes that the most efficient firms are active, a

necessary condition for any equilibrium. Suppose that the algorithm selects the

first k firms for set N∗. This means that there is a naive-equilibrium in the market

with k firms such that they all enter, but there is no such equilibrium in the

market with the first k+ 1 firms. If the first k firms can play their unconstrained

equilibrium without firm k + 1 having an incentive to enter, then the result is

immediate as all the other inactive firms can be safely ignored. If firm k+1 is not

too inefficient, then it would enter if the first k firms played their unconstrained

(naive) equilibrium strategies. In this case it seems reasonable, and is suggested

by our numerical example, that there is an equilibrium where the first k firms all

decrease their prices just to keep firm k + 1 out.
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The above argument provides an intuition for why an equilibrium exists, in

which the first k firms enter. It is more difficult to rule out equilibria where a

different set of firms are active. First, it is clear that there cannot be two uncon-

strained equilibria with different set of firms active. This follows from comparing

naive equilibria with different number of firms. The novelty is to prove that there

cannot be multiple constrained equilibria, or one unconstrained and at least one

constrained equilibrium with different number of firms active. We cannot use su-

permodularity to argue this (see Theorem 5), but we can show that equilibria with

more active firms feature lower prices on aggregate. This property is sufficient to

pin the set of active firms down.

Next we prove conditions under which an unconstrained equilibrium exists,

and provide full characterization for this case:

Theorem 3. An unconstrained equilibrium exists if and only if

DCN∗

n∗+1(p
∗
1(N

∗), p∗2(N
∗), ..., p∗n∗(N

∗)) ≤ 0. (9)

In such an unconstrained equilibrium each firm i ∈ N∗ charges price p∗i (N
∗) and

firm j ∈ S\N∗ charges pj ≥ cj and qj = 0 for all j ∈ S\N∗.

Proof: The result is a straightforward consequence of Theorems 1 and 2.

We turn to the more interesting case where the equilibrium is constrained. By

Theorem 1 it must hold that pn∗+1 = cn∗+1 and

DCN∗

n∗+1(p1, p2, ..., pn∗) = 0, (10)

which means that the most efficient inactive firm n∗ + 1 is indifferent between

entering or not. Recall that (10) implies that if firm i ∈ N∗ decreases its price,

then firm n∗ + 1 does not produce, but if i slightly increases its price then the

production of firm n∗ + 1 becomes positive. This implies that the profit function

of firm i ∈ N∗ exhibits a kink in pi at the candidate equilibrium price vector as we

discussed before Lemma 1. For (p1, p2, ..., pn∗) to be an equilibrium price vector,

the left hand derivative of firm i’s profit with respect to pi must be positive,

and the right hand derivative must be negative. The first condition translates to
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pi ≤ pi, while the second translates to pi ≥ p
i

where

pi =
(bn∗ + dn∗)cn∗+1 + bn∗ci

2bn∗ + dn∗
, (11)

and

p
i

=
(bn∗+1 + dn∗+1)cn∗+1 + bn∗+1ci

2bn∗+1 + dn∗+1

(12)

as we show it in the proof.

Theorem 4. A constrained equilibrium exists if and only if no unconstrained

equilibrium exists. A price vector (p1, p2, ..., pn∗) is a constrained equilibrium price

vector for active firms if and only if it satisfies (10) and pi ∈ [p
i
, pi] for all i ≤ n∗.

Constrained equilibria occur for a large set of parameter configurations. For

example, in the Example at the end of Section 2 constrained equilibria occur if

c3 ∈ (23.08, 23.33). In general, it is easy to construct games where the equilibrium

is constrained. Fix the set of active firms as the first k firms, and fix their marginal

costs. There is a unique level ck+1 such that DCNk
k+1(p

∗
1(Nk), p

∗
2(Nk), ..., p

∗
k(Nk)) =

0, that is where firm k + 1 is just on the verge of entering if the first k firms

play their naive-equilibrium. Let us denote this cost level by ψ. Then there

exists an interval (ψ, ψ) such that ck+1 ∈ (ψ, ψ) implies that the equilibrium

is constrained. In those situations, firm k + 1 is strong enough to upset the

unconstrained equilibrium of the first k firms but not strong enough to enter

himself.

3 Limit pricing and equilibrium multiplicity

3.1 Multiplicity and robustness

Our main result is the existence of multiple limit-pricing (constrained) equilibria

when there is more than one active firm in equilibrium.

Theorem 5. Assume that a constrained equilibrium exists. There are a continuum

of constrained equilibrium price vectors (p1, p2, ..., pn∗) when n∗ > 1 except for

the non-generic case where qn∗+1(Nn∗+1) = 0. The constrained equilibrium price

vector (p1, p2, ..., pn∗) is unique when n∗ = 1.
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Multiple equilibria occur for a large set of parameter configurations. For ex-

ample, in the example in Section 2.1 when c3 ∈ (23.08, 23.33) there are multiple

(constrained) equilibria.11 As we discussed before, multiple equilibria is induced

by the kink that the profit function exhibits at equilibrium points in constrained

equilibria. The existence of multiple equilibria in simple linear Bertrand-models

is in sharp contrast with the previous literature, which found a unique Bertrand-

equilibrium for a large class of demand functions. The literature assumed that all

firms are active in equilibrium, and showed uniqueness by establishing that the

Bertrand-game is supermodular. We show that supermodularity no longer holds

if some firms may not be active in equilibrium, and best responses may not be

positively sloped (or monotone).

Theorem 6. A linear Bertrand-model with continuous best replies may not be

supermodular or satisfy the single-crossing property. Moreover, best replies may

be non-monotone.

Proof: The proof of this theorem is sketched in Figure 1. Let us revisit our

example from Section 2.1. There are three firms with marginal costs c1 = c2 = 15,

and c3 = 23.2. The demand is pi = 30 − qi − 0.5(qj + ql) where i, j, l are three

different firms. Thus θ = 0.5, a3 = 15, b3 = 1.5, d3 = 0.5 and a2 = 20, b2 = 1.33,

d2 = 0.67. As we have argued there, the equilibrium is constrained in this case

and it involves p3 = c3 and 19.69 ≤ p1, p2 ≤ 19.91 and p1 + p2 = 39.6.

Here we first show that taking p3 = c3 as given, the best reply of firm 1 is

non-monotone. Suppose first that p1 + p2 ≤ 39.6. Then firm 3 is not active and

the profit of firm 1 is

(p1 − c1)(a2 − b2p1 + d2p2).

Setting the derivative of π1 with respect to p1 equal to zero yields a2 − 2b2p1 +

d2p2 + b2c1 = 0 or upon substitution

p1 = 15 +
p2
4

.

In the region where firm 3 is active (p1 + p2 > 39.6) the profit of firm 1 is

(p1 − c1)(a3 − b3p1 + d2(p2 + p3)).

11In all such equilibria DC3 = a3 − b3c3 + d3(p1 + p2) = 0 or p1 + p2 = 3c3 − 30. Further
restriction are given in Theorem 4 in the form of pi ∈ [p

i
, pi] for i = 1, 2.
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Setting the derivative of π1 with respect to p1 equal to zero yields a3 − 2b3p1 +

d3(p2 + p3) + b3c1 = 0 or

p1 =
49.1

3
+
p2
6

.

Since π1 is strictly quasi-concave, so if the first order condition holds as an

equality and the price p1 set conforms to the regime we consider, then it is a

global best reply. For example, take the case where all three firms are supposed

to be active. In this case fixing p2 and letting firm 1 choose his restricted best

reply we obtain

p1 + p2 =
49.1

3
+

7p2
6
≥ 39.6

or p2 ≥ 139.4
7
≈ 19.91. That is, if p2 ≥ 19.91 then firm 1’s best reply is indeed

p1 = 49.1
3

+ p2
6

. Similarly, when there are supposed to be only two firms active

then we need

15 +
p2
4

+ p2 ≤ 39.6,

or p2 ≤ 19.68. That is, if p2 ≤ 19.68 then firm 1’s best reply is p1 = 15 + p2
4

.

When p2 ∈ (19.68, 19.91) the best reply of firm 1 cannot be induced by an interior

solution in either the two-firm regime or in the three-firm regime. Therefore, it

must be that firm 1 charges a price that is at the boundary of the two regimes,

that is p1 = 39.6− p2.
The best reply of firm 1 is then as follows

BR1 =


15 + p2

4
if p2 ≤ 19.68

39.6− p2 if p2 ∈ (19.68, 19.91)
49.1
3

+ p2
6

if p2 ≥ 19.91.

Note, that while this best reply is non-monotone, but it is continuous. The best

reply functions are depicted in Figure 1. The red curve depicts player 2’s best

reply, and the blue curve depicts player 1’s best reply. Take any i ∈ {1, 2}. The

notation Grproj(BRN
i ) denotes the projected three-firm best response of firm i

when fixing p3 at c3, that is Grproj(BRN
i ) = 15 + pj/4, j 6= i. Similarly, Gr(BRS

i )

denotes the duopoly best reply of firm i, where firm 3 is not present, that is,

Gr(BRS
i ) = 49.1/3 + pj/6, j 6= i. The middle segment of the best reply functions

depicts the downward sloping part, where BRi = 39.6 − pj. The intersections of

the two best reply curves, segment CD represents the set of equilibria.
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A game with one-dimensional strategy choices is supermodular if and only if

it possesses the property of increasing differences. Letting p′′1 > p′1, p
′′
2 > p′2 this

property boils down to the following requirement in our game, fixing the action

of firm 3:

π1(p
′′
1, p
′′
2, p3)− π1(p′′1, p′2, p3) ≥ π1(p

′
1, p
′′
2, p3)− π1(p′1, p′2, p3).

The milder single crossing condition only requires that

π1(p
′
1, p
′′
2, p3) ≥ π1(p

′
1, p
′
2, p3)⇒ π1(p

′′
1, p
′′
2, p3) ≥ π1(p

′′
1, p
′
2, p3).

Both conditions require that if the opponent has chosen a higher action, then

I optimally respond with a higher action as well. Let p′2 = p′′1 = 19.8, p′1 =

19.7 and p′′2 = 19.9. In this range firm 1’s best reply is given by 39.6 − p2.

Therefore, π1(p
′
1, p
′′
2, p3) > π1(p

′
1, p
′
2, p3) and π1(p

′′
1, p
′′
2, p3) < π1(p

′′
1, p
′
2, p3) and both

supermodularity and the single-crossing conditions fail. �

We conclude our theoretical analysis by remarks about the robustness of our

result. It is clear that our results are not driven by our linearity assumptions.

For example, if we keep the assumption of linear demand but assume that firms

have increasing marginal costs, then the entire analysis goes through with very

minor modifications. One needs to be more careful when the demand function is

generalized. To make the problem interesting, the demand function should

• exhibit supermodularity for prices where the set of active firms does not

change

• induce the right sort of kink in profits when the set of active firms change.

We believe that a wide range of utility functions of the representative consumer

induces appropriate demand functions but studying this question is beyond the

scope of our analysis.

3.2 Market performance

For welfare analysis, it is important to know how equilibrium multiplicity affects

consumer welfare. Take our original example with c3 = 23.2 and let us study
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which equilibria yield the highest welfare for the consumer. Let V (p1, p2) denote

the indirect utility function of the representative consumer. It is well-known from

the consumer choice literature that V is quasi-convex, and it is easy to show that in

our model V is strictly quasi-convex. Therefore, it follows that the consumers like

extreme price combinations better than balanced prices. In the context of our set

of equilibria, this means the consumers prefer the equilibrium, where p1 = 19.69

and p2 = 19.91 or vice versa over any other equilibrium.

This result has interesting consequences. First, if there is multiple equilibria

when the incumbents keep a potential entrant out then it is better for consumer

welfare if they choose different prices. For example if the incumbents alternate

over time in terms of choosing price combinations so that other firms are kept

out, this behavior enhances consumer welfare. Second, as c3 changes in the range

where the equilibria are constrained, there are equilibria for a higher value of c3

which make the consumers better off than some equilibria that occur when c3 is

lower.

It is straightforward to show that each active firm prefers to be the one with

the lower price. However, the sum of equilibrium profits is maximized at the

symmetric equilibrium where p1 = p2 = 19.8. Therefore, if the active firms are

able to coordinate over how they wish to keep out potential rivals, then they would

choose the equilibrium with equal prices, which incidentally yields the lowest

consumer welfare. Finally, total surplus is also highest when the two active firms

charge the same price. Therefore, we have an interesting case where maximizing

consumer surplus and total surplus over a range of equilibrium alternatives yield

polar opposite recommendations.12

3.3 Implications for markets with limit pricing

{Do two things here: 1. Revisit the limit pricing literature; 2. Talk about real

world examples and how incumbents may need to coordinate to keep out entrants}
12If the active firms have asymmetric costs then welfare calculations become more complicated

but the main insights still hold as long as the marginal costs are not very different.
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4 Conclusion

Price-setting games are an important class of games that have been extensively

studied in the literature. Most of the existing literature assumes that all firms

are active, and shows uniqueness of equilibrium. However, firms might prefer not

to be active in real-life situations. For instance, a cost-reducing innovation or

cost-efficient mergers might induce firms to exit the market. In such settings,

Vives (1990) argues that it is natural to expect that the game is supermodular.

However, our analysis shows that when the number of firms is greater than two,

the game need not satisfy supermodularity or even the single crossing property.

Therefore previous existence and uniqueness of equilibrium theorems regarding

supermodular games do not apply in our framework. We argue that Bertrand

best replies might be negatively sloped and there are (infinite) many undominated

Bertrand-Nash equilibria on a wide range of parameter values with more than two

firms. As far as we know, our paper is the first that studies price-setting games

in the context of potential entrants in a comprehensive way. As compared to

quantity-setting games, we discovered that price-setting games provide a rich set

of comparative statics that can help us finding links between economic theory and

real life problems.
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5 Appendix

Proof of Lemma 1: Note that the derivative of πi with respect to pi exists at all

points where the set of active firms S(pi,p−i) does not change in a neighborhood

of pi. In this case the derivative is qi+(pi−ci) ∂qi∂pi
= qi−bs(pi−ci), which is strictly

decreasing in pi. As pi increases, a new firm k enters the market when pi = p̃i. At

that point the left hand derivative of πi with respect to pi is still qi − bs(pi − ci),
while the right hand derivative becomes qi − bs+1(pi − ci). Given that bs+1 > bs

and pi− ci ≥ 0, we obtain that qi− bs+1(pi− ci) < qi− bs(pi− ci) so the right hand

derivative is strictly lower than the left hand derivative. Therefore, as pi increases

and more and more inactive firms may become active, the derivative of πi with

respect to pi either exists and is decreasing in a neighborhood or it does not exist,

but one sided derivatives always exist, and the right hand derivative is always less

than the left hand derivative. Therefore, as long as firm i remains active as it

increases its price its profit function is strictly concave in pi. However, at a point

where firm i becomes inactive its profit becomes zero, and the profit stays zero

for any pi higher than that. Therefore, the profit function is quasi-concave in pi.

Existence of equilibrium follows from standard results. In particular, note

that pi > A and (2) together with the non-negativity of quantities implies that

firm i cannot be active. Therefore, charging pi > A yields a zero profit, so such

strategies can be ignored because a zero profit can be also achieved by charging

ci. So, the best reply of firm i always intersects with set [ci, A], and we can

restrict the strategy space of firm i to [ci, A] without loss. Then we have a quasi-

concave, continuous objective functions and convex, compact action spaces, so a

pure strategy equilibrium exists.13 �

Proof of Theorem 1: If DCS′

h (p∗S′(S
′)) < 0, then no inactive firm is on

the margin of entering. Therefore, when making a small deviation, the first-

order conditions of the active firms are identical to the first order conditions

that arise in the S ′-firm market naive equilibrium, which then pins down the

equilibrium quantities as the naive equilibrium quantities. If DCS′

h (p∗S′(S
′)) > 0,

then the most efficient inactive firm upsets the naive equilibrium of the S ′-firm

market. If in the resulting equilibrium DCS′

h (p̂S′) > 0, then h would enter, a

contradiction. If DCS′

h (p̂S′) < 0, then h would not enter even if firm i ∈ S ′ charged

13See for example Theorem 2.2 of Reny (2008).
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a slightly higher price. But then the first order conditions of the active firms again

would determine the naive equilibrium prices, which is not an equilibrium when

DCS′

h (p∗S′(S
′)) > 0. Therefore, an equilibrium that involves DCS′

h (p∗S′(S
′)) > 0

must also involve DCS′

h (p̂S′) = 0.

Finally, assume that we are in the non-generic case where DCS′

h (p∗S′(S
′)) = 0.

If in the resulting equilibrium DCS′

h (p̂S′) > 0, then h would enter, a contradic-

tion. If DCS′

h (p̂S′) < 0, then h would not enter even if firm i ∈ S ′ charged

a slightly higher price. But then the first order conditions of the active firms

again would determine the naive equilibrium prices, that is p̂S′ = p∗S′(S
′) and

thus DCS′

h (p̂S′) = DCS′

h (p∗S′(S
′)) = 0, a contradiction. Therefore, DCS′

h (p̂S′) =

0 must hold. Together with DCS′

h (p∗S′(S
′)) = 0, and (8), this implies that∑

j∈S′
p̂j =

∑
j∈S′

p∗j(S
′). Therefore, there exists k ∈ S ′ such that p̂k > p∗k(S

′) if

p̂S′ 6= p∗S′(S
′). But in this case the left hand derivative of πk at p̂S′ with respect

to pk is q̂k− bs′(p̂k− ck) < q∗k(S
′)− bs′(p∗k(S ′)− ck) = 0, where the equality follows

the definition of a naive equilibrium. Therefore, k has an incentive to reduce his

price slightly, a contradiction. Consequently, p̂S′ = p∗S′(S
′) must hold in this case.

�

Proof of Theorem 2:

Let N∗ = {1, 2, ..., n∗} be the set of firms found by B.I.A.. Define

υL =
al(2bl + dl) + bldlcT (L)

(bl + dl)(2bl − dl(l − 1))
(13)

for some L ⊂ N with | L |= l. Throughout the proof let (p∗k, q
∗
k) denote

a generic naive equilibrium price quantity pair for firm k ∈ N . Let (p∗∗k , q
∗∗
k )

denote a generic unconstrained, and let (p∗∗∗k , q∗∗∗k ) denote a generic constrained

equilibrium price and quantity pair for firm k ∈ N .

We prove the result in three steps.

Step 1: In this step we prove that the set of active firms is such that if j is

active and ci < cj, then i is active as well. Suppose not. Then we claim that firm

i could charge a price equal to the equilibrium price of j, pj and achieve a positive

profit. Since pj < cj < ci, we only need to prove that firm i obtains a positive

demand when he charges pj. Firm i’s demand is equal to firm j’s demand by

symmetry, so we need to only show that firm j’s demand remains positive when
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firm i switches to price pj from its previous price that was above pj. If this was

not the case, then firm j’s demand would change when firm i lowered his price

without firm i being able to enter. But this is impossible because if firm i cannot

enter even with the lower price pj, then the price change of i does not change the

demand of the firms active before i’s price change, and in particular the demand

of firm j, a contradiction.

Step 2: Let 1 ≤ n̂ ≤ n∗, and let Y = {1, 2, ..., n̂} and Z = Y ∪ {n̂ + 1}.
We claim that there cannot be an equilibrium where only firms in Y are active.

Assume by contradiction that there is.

2-i) Unconstrained Equilibrium: We have (p∗∗k , q
∗∗
k )k∈Y = (p∗k, q

∗
k)k∈Y ,

that is unconstrained equilibrium prices are by definition the same as the naive

equilibrium prices. Further, note that q∗n̂+1(Z) > 0 by B. I. A. Hence using (6)

and (7), we get

cn̂+1 < υZ (14)

Also remark that,

DCY
n̂+1(p

∗
Y (Y )) = an̂+1 − bn̂+1cn̂+1 + dn̂+1

n̂∑
k=1

pk. (15)

from (8). Substitute p∗k(Y ), k ∈ Y into (15) from (6) and then subtract bn̂+1(υZ−
cn̂+1) from (15) to have

DCY
n̂+1(p

∗
Y (Y ))− bn̂+1(υZ − cn̂+1) = (16)

=
θ3(An̂− cT (Y ))

(1 + θn̂)(1 + θ(n̂− 1))(2 + θ(3((n̂− 1) + θ(1 + n̂(n̂− 1))))
> 0.

Comparing (14) and (16) gives that DCY
n̂+1(p

∗
Y (Y )) > 0 by (8) and thus q∗n̂+1 > 0,

which is a contradiction.

2-ii) Constrained (Limit Pricing) Equilibrium: To ensure that firm

n̂ + 1 is priced out of the market, constrained equilibrium prices of firms in Y

satisfy
∑
i∈Y

p∗∗∗i =
bn̂+1cn̂+1−an̂+1

dn̂+1
and we have DCY

n̂+1(p
∗∗∗
Y ) = 0 and q∗∗∗n̂+1 = 0 from

(3).

We claim that there exists a firm j ∈ Y such that p∗∗∗j <
(bn̂+1+dn̂+1)cn̂+1+bn̂+1cj

2bn̂+1+dn̂+1
.
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Otherwise, summing up equilibrium prices of all firms in Y yields

∑
i∈Y

p∗∗∗i =
bn̂+1cn̂+1 − an̂+1

dn̂+1

≥ (bn̂+1 + dn̂+1)n̂cn̂+1 + bn̂+1cT (Y )

2bn̂+1 + dn̂+1

. (17)

But (17) can be rewritten as cn̂+1 ≥ υZ , which is a direct contradiction to (14).

Using that there exists a firm j ∈ Y such that p∗∗∗j <
(bn̂+1+dn̂+1)cn̂+1+bn̂+1cj

2bn̂+1+dn̂+1
it is

straightforward to show that firm j has an incentive to increase its price. Hence

there cannot be any constrained equilibrium where only firms in Y are active

either.

Step 3: Suppose n∗ < n, and let 1 < n∗ < t, with T = {1, 2, ..., t}. To finish

the proof, we claim that there cannot be any equilibrium where only firms in T

are active. Assume by contradiction that there is and we consider constrained or

unconstrained equilibria again.

3-i) Unconstrained Equilibrium: By B.I.A., qn∗+1(N
∗ ∪ (n∗ + 1)) ≤ 0.

It is sufficient to show that if q∗x(X) ≤ 0 for some X = {1, 2, ..., x} then for all

x′ > x, X ′ = {1, 2, ..., x′} it holds that q∗x′(X
′) < 0. We prove the claim by

induction. Assume that for some X ⊂ N , we have q∗x(X) ≤ 0. We need to show

that q∗x+1(X ∪ {x+ 1}) < 0 holds. Using (6) and (7) and q∗x(X) ≤ 0, we obtain

cx > c =
ax(2bx + dx) + bxdxcT (X\x)

(bx + dx)(2bx − dx(x− 1))− bxdx
. (18)

By construction, when cx = c, it holds that q∗x(X) = 0.

Let cx+1 = cx + ξ for some ξ > 0. Using (6) and (7), we obtain

∂q∗x+1(X ∪ {x+ 1})
∂cx

= −2 + θ(3x− 4 + θ(2 + x(x− 4)))

(2− 2θ + xθ)(2− θ + 2xθ)
< 0, (19)

and
∂q∗x+1(X ∪ {x+ 1})

∂ξ
= −2 + θ(θ − 3 + x(3 + θ(x− 3)))

(2− 2θ + xθ)(2− θ + 2xθ)
< 0. (20)

Hence q∗x+1(X∪{x+1}) takes its maximum when cx and ξ take their lowest possible

values allowed (19) and (20). Those lowest possible values correspond to cx = c

and ξ = 0. Substituting those values, and using (7) yields upon simplifications
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that

q∗x+1(X∪{x+1}) ≤ − bx+1θ
3(1− θ)(Ax− A− CT (X\x))

(2 + θ(x− 2))(2 + θ(2x− 1))(2 + θ(5θ − 6 + x(3 + (x− 5)θ)))
,

which is negative if A > ci, θ ∈ (0, 1) and x ≥ 2 desired. This completes the

inductive step.

3-ii) Constrained (Limit Pricing) Equilibrium: Let X ′′ = X ∪ {x + 1}
assuming that there is a constrained equilibrium where the set of active firms is

X = {1, 2, ..., x} with x > n∗. In a constrained equilibrium, equilibrium prices

of firm in X satisfy
∑
i∈X

p∗∗∗i = bx+1cx+1−ax+1

dx+1
, that is DCX

x+1(p
∗∗∗
X ) = 0 and we also

have q∗∗∗x+1 = 0 by (3). Using (6) and (7), and Step 3-i, q∗x(X) < 0 simplifies to

cx > υX and thus

cx+1 > υX . (21)

We claim that there exists a firm k ∈ X such that p∗∗∗k > (bx+dx)cx+bxck
2bx+dx

. Otherwise,

summing up equilibrium prices of all firms in X and reorganizing terms yields a

contradiction to (21). The firm k for whom p∗∗∗k > (bx+dx)cx+bxck
2bx+dx

has an incentive

to decrease its price by following the same arguments as above. Hence there is

no constrained equilibrium in which the set of active firms is X. Since x was an

arbitrary integer such that x > n∗, our proof is now complete. �

Proof of Theorems 4 and 5: First, by Theorem 2 any undominated equi-

librium has the same set of firms being active. Theorem 1 implies that if an

unconstrained equilibrium exists, then a constrained equilibrium does not exist

because either DCN∗
n∗+1(p

∗
N∗(N

∗)) ≤ 0 holds or DCN∗
n∗+1(p

∗
N∗(N

∗)) > 0 holds but

not both. Lemma 1 implies that an undominated equilibrium exists, so then

Theorem 1 implies that if an unconstrained equilibrium does not exist, then a

constrained equilibrium exist.

The rest of the proof involves straightforward calculations. The most impor-

tant step is to show that the first order conditions of the active firms boil down

to pi ∈ [p
i
, pi] for all i ≤ n∗. Then inspecting the set determined jointly by (10)

and pi ∈ [p
i
, pi] for all i ≤ n∗ we obtain the uniqueness / multiplicity results for

the number of equilibria.

In a constrained equilibrium pn∗+1 = cn∗+1 holds. Moreover, as we argued

in Theorem 1 if firm i ≤ n∗ lowers his price slightly, then firm n∗ + 1 is still
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inactive, but if it increases its price slightly, then qn∗+1 > 0. At such a point

the profit of i exhibits a kink in pi. As we argued in the proof of Lemma 1, the

left hand derivative is πLi = qi − bn∗(pi − ci), while the right hand derivative is

πRi = qi− bn∗+1(pi− ci). For firm i to maximize at such a point it must hold then

that

qi ≥ bn∗(pi − ci), (22)

and

qi ≤ bn∗+1(pi − ci). (23)

By (3) it holds that qi = an∗−bn∗pi+dn∗
∑

j≤n∗,j 6=i
pj. Comparing it with (22) yields

that an∗ − bn∗pi + dn∗
∑

j≤n∗,j 6=i
pj ≥ bn∗(pi − ci) or

an∗ + bn∗ci + dn∗
∑
j≤n∗

pj ≥ (2bn∗ + dn∗)pi (24)

after adding bn∗ci + (bn∗ + dn∗)pi to both sides. The fact that DCN∗
n∗+1 = an∗+1 −

bn∗+1cn∗+1 + dn∗+1

∑
j≤n∗

pj = 0 holds in our equilibrium, implies through (10) that

an∗+1 + dn∗+1

∑
j≤n∗

pj = bn∗+1cn∗+1. (25)

Substituting
∑
j≤n∗

pj into (24) from (25) implies that

an∗ + bn∗ci +
dn∗

dn∗+1

bn∗+1cn∗+1 −
dn∗

dn∗+1

an∗+1 ≥ (2bn∗ + dn∗)pi. (26)

Next, it holds that an∗ − dn∗
dn∗+1

an∗+1 = 0 by construction. Moreover, dn∗
dn∗+1

bn∗+1 =
1+θn∗

1+θ(n∗−1)
1+θ(n∗−1)

(1−θ)(1+θn∗) = 1
1−θ = bn∗+dn∗ . Therefore, (26) can be rewritten as bn∗ci+

(bn∗ + dn∗)cn∗+1 ≥ (2bn∗ + dn∗)pi, which is equivalent to pi ≤ pi.

Now let us study (23), and note that it holds that qi = an∗+1 − bn∗+1pi +

dn∗+1

∑
j≤n∗+1,j 6=i

pj because firm n∗ + 1 is in the verge of entering.14 Comparing it

14To see this, one can use the continuity of qi in pi and note that if pi was increased slightly
then the demand of i is given by qi = an∗+1 − bn∗+1pi + dn∗+1

∑
j≤n∗+1,j 6=i

pj . So, by continuity,

the formula must also hold at the critical point we study.
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with (23) yields that an∗+1 − bn∗+1pi + dn∗+1

∑
j≤n∗+1,j 6=i

pj ≤ bn∗+1(pi − ci) or

an∗+1 + bn∗+1ci + dn∗+1

∑
j≤n∗+1

pj ≤ (2bn∗+1 + dn∗+1)pi (27)

after adding bn∗+1ci + (bn∗+1 + dn∗+1)pi to both sides. Substituting
∑
j≤n∗

pj from

(25), and using pn∗+1 = cn∗+1 implies that an∗+1 + dn∗+1

∑
j≤n∗+1

pj = an∗+1 +

dn∗+1

∑
j≤n∗

pj +dn∗+1cn∗+1 = (bn∗+1 +dn∗+1)cn∗+1. Therefore, (27) can be rewritten

as

bn∗+1ci + (bn∗+1 + dn∗+1)cn∗+1 ≤ (2bn∗+1 + dn∗+1)pi, (28)

which is equivalent to pi ≥ p
i
.

This establishes that the necessary first order conditions for a constrained

equilibrium imply that pi ∈ [p
i
, pi] for all i ≤ n∗. Condition (10) is necessary

for a constrained equilibrium by Theorem 1. These conditions are also sufficient

for two reasons. First, if the most efficient inactive firm cannot profitably enter

then no other inactive firm can profitably enter. Second, by Lemma 1 the profit

functions are quasi-concave so first order conditions are sufficient for an optimum.

The results about equilibrium quantities are direct consequences of the demand

functions we use, so the only result left to prove is equilibrium uniqueness /

multiplicity. When there is only one active firm (10) pins down p1, so uniqueness

of equilibrium holds other than for price choices of inactive firms who are far from

entering.15

Now we turn to the proof of Theorem 5. The interesting case is when there are

at least two active firms. We start the analysis with the non-generic case where

q∗n∗+1(Nn∗+1) = 0. In this case, the naive equilibrium of the market with n∗ + 1

firms is an actual equilibrium where the first n∗ firms produce positive quantities,

and firm n∗ + 1 produces zero. In this equilibrium (23) holds as an equality by

construction. Moreover, firm n∗+ 1 is indifferent between entering or not, so (25)

holds as well. Since (23) holds as an equality, it follows from the above analysis

that (28) holds as an equality as well, and thus pi = p
i

for all i ≤ n∗. In this case

the equilibrium is uniquely pinned down and multiplicity does not occur.

15Firm 2 needs to choose p2 = c2 in equilibrium, while any choice pk ≥ ck for k > 2 would
work in equilibrium. Moreover, any of those choices yields the same outcome for consumers and
profit levels as well.
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Let us assume now that q∗n∗+1(Nn∗+1) < 0. Take a constrained equilibrium

price vector (p1, p2, ..., pn∗). In this constrained equilibrium, we have that pi ≥ p
i

for all i ≤ n∗ with strict inequality for at least one firm j ≤ n∗.16 Take a firm j

such that pj > p
j

and perform a perturbation in which pj is decreased by a small

ε and pk is increased by the same ε for some other k ≤ n∗. Since we started by

satisfying (25) in our original constrained equilibrium and the sum of prices in N∗

did not change, we still satisfy (25) and thus the equivalent (10). Moreover, we still

have pi ≥ p
i

for all i ≤ n∗ by construction. Therefore, we still have a constrained

equilibrium by the (above established) sufficiency claim in the second sentence of

Theorem 4.17 This establishes there are multiple constrained equilibria, in fact a

continuum of them. �

16If all them held as equal, then we would get back to the case where q∗n∗+1(Nn∗+1) = 0.
Formally, if pi = p

i
for all i ≤ n∗ then the equality version of (28) for all i ≤ n∗ and equation (25)

pin down cn∗+1 at the same level that was found in the case where q∗n∗+1(Nn∗+1) = 0. Therefore,
in our iterative B.I.A. procedure we would still find q∗n∗+1(Nn∗+1) = 0, a contradiction with our
starting point that q∗n∗+1(Nn∗+1) < 0.

17Here we use the fact that pl ≤ pl is not binding in the original equilibrium for some firm
l ≤ n∗, otherwise (25) would fail. Indeed, if pl = pl for all l ≤ n∗ and (25) held, then we had an
unconstrained equilibrium.
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Figure 1: The Sketch of the Proof of Theorem 6: Let N = {1, 2, 3} and
S = {1, 2}. Let pi = 30 − qi − 0.5

∑
j∈N\i qj, and c = (15, 15, 23.2). We draw

best responses of firms one and two when p3 = c3, which are piecewise linear as
shown in the figure. Moreover, they intersect at multiple points showing that
each p̂ ∈ X = {p ∈ R3 : (p1, p2) ∈ seg[CD] and p3 = c3} is an undominated
pure-strategy Bertrand equilibria.
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