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Abstract

This paper studies the value of information in theory of decision under uncertainty. I

introduce a novel way to rank signals based on dispersion and integrate it with the previous

three important signal orderings: (1) Lehmann (1988) precision, (2) effectiveness in statistical

decision theory, and (3) informativeness in Bayesian decision theory. By incorporating this

new ordering into the model, I establish the equivalence of these four different orderings within

each of three classes of payoff functions: supermodular, single-crossing, and interval domi-

nance order. As the first consequence of this equivalence theorem, I show that the Lehmann

precision is both necessary and sufficient for one signal to be more valuable than another to

both statisticians and Bayesian decision makers. Second, I exactly characterize the relationship

between more precise signals and higher dispersion: a more precise signal generates more

dispersed predictions about the true state of the world. This justifies another signal orderings

used in the previous literature. Third, I illustrate how this result can be applied to strategic

settings, by analyzing the effects of more precise information in three standard economic

environments: auctions, bilateral contracts, and delegation.
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1. Introduction

Many decisions get made based on imperfect information about relevant variables. An investor

chooses investment portfolios with partial information about the future return of each financial

asset. An employer hires workers with partial information about their innate skills. People

get dressed in the morning with partial information about the weather. In all of these cases,

the decision maker may have several possible sources of information, and before making a

decision, can choose one of them to gather information relevant to her choices. In this paper

I characterize how to value information in economic decision problems under uncertainty,

establishing necessary and sufficient conditions for one source of information—called a signal

hereafter—to be more valuable than another.1

In general, there are two distinctive approaches to deriving a binary relation over a set of

possible signals. The first, the preference-based ordering, ranks signals based on the values they

generate to a decision maker. Given a category of preference, it is natural to think of one signal

being more valuable than another if it leads to higher expected payoffs for all decision makers

whose preferences fall into the category. The second approach, the statistical ordering, focuses

directly on the statistical characteristics of signals and rank s signals according to an apt statis-

tical notion. The question of when one signal can be judged to be more valuable than another

goes back to the pioneering works of Blackwell (1951, 1953), who linked this question to the

statistical notion of sufficiency and showed the equivalence between the statistical ordering

based on sufficiency and the preference-based ordering without any structures on preferences.

Lehmann (1988) developed a more complete statistical ordering, compared to sufficiency, based

on the notion of precision and established the equivalence between the two approaches within

a certain category of preferences, large enough to include most decision problems of interest in

statistics. However, their applications to economics have been limited in that Blackwell suffi-

ciency is an extremely partial order and Lehmann precision is tailored to statistical contexts.

This paper attempts to fill this gap for the case of economic decision problems. I focus on

three rich classes of preferences: supermodular, single-crossing, and interval dominance order.

All of these three classes exhibits a complementarity between the decision maker’s choice vari-

able and the payoff-relevant state of the world.2 More importantly, the classes I consider are

large enough to encompass a variety of the most important economic applications including a

firm’s production planning under demand or cost uncertainty, an investor’s portfolio decision

under uncertainty about the return of a risky asset, and the matching problem in a model of

marriage. Given each of these three preferences, I look for a statistical condition under which

one signal is more valuable than another for all decision makers within the class.

1Whereas the source of information is called a statistical ”experiment” in statistics following Blackwell (1951, 1953),
it is typically referred to as a ”signal” or ”information structure” in economics.

2The class of single-crossing payoff functions, posited in Milgrom and Shannon (1994), exhibits an ordinal com-
plementarity which is independent of order-preserving transformations. The class of supermodular payoff functions,
first introduced by Topkis (1978), exhibits a cardinal complementarity which is not preserved under all such transfor-
mations. The class of interval dominance order payoff functions, recently developed by Quah and Strulovici (2009),
reflects a even weaker ordinal complementarity than the one of single-crossing functions. Therefore, the class of in-
terval dominance order functions includes single-crossing functions, which in turn themselves include supermodular
functions.
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For this purpose, this paper develops a novel statistical ordering based on the notion of

dispersion. More precisely, let α and β be the two signals we want to compare. This new signal

ordering concerns the decision maker’s predictions about the state:

(D) α generates more dispersed predictions about the state of the world than β (α �D β) if for

every nondecreasing function defined on the state, its expected value conditional on α is

more variable than the expected value on β.

The main contributions of this paper are threefold. First, I show that this statistical ordering

provides the necessary and sufficient condition of α being more valuable than β. The value of

a signal, however, hinges upon the decision maker’s decision principle as well as her primi-

tive payoff function. For an illustration, let U ? be a class of payoff functions satisfying some

property ? and u ∈ U ? be a decision maker’s payoff function. Suppose that the decision maker

adopts the minimax principle, a major method of making a decision in statistical decision the-

ory, so she acts to maximize the expected payoff evaluate on the worst-case basis. In order for α

to be more valuable than β in this context, the two signals should meet the following criterion:

(E) α is more effective than β with respect to a class of payoff functions U ? (α �?
E β) if any

expected payoffs attainable with β is also attainable with α for every decision maker

within the class.

In economics, however, it is customary to think of a decision maker as Bayesian who acts to

maximize expected payoffs given her beliefs. Since this different decision principle alludes to

the Bayesian (or economic) value of a signal being different from its statistical value, we need

a different criterion than the effectiveness above:

(I) α is more informative than β with respect to a class of payoff functions U ? (α �?
I β) if α

leads to higher expected payoffs than β for every decision maker within the class.

I show that the dispersion-based ordering provides the sufficient and necessary condition

for α to be more effective and informative than β within each of the three classes: supermodular

U spm, single-crossing U sc, and interval dominance order U ido. Consequently, in common with

Blackwell (1951, 1953) and Lehmann (1988), I establish the equivalence in both Bayesian and

statistical decision theory between ordering signals based on a statistical notion and ordering

signals based on the value to the decision maker.

One striking implication of this equivalence theorem is that we can rank two signals based

on the same statistical notion, despite the fact that U sc is a strict superset of U spm. Athey and

Levin (2001) demonstrated that when we expand the family of decision problems, a more

restrictive statistical condition is required for the preference-based ordering.3 In contrast to

their finding, the results of this paper assert that a more restrictive condition is unnecessary:

The class U spm is rich enough that if α is preferred to β for all decision makers within U spm, β

is never preferred to α for the decision maker within U sc. Hence it is immaterial to comparing

3The idea can be traced back to Lehmann (1988). Unlike Blackwell, who does not place any limitations on the
decision maker’s preferences, Lehmann restricts the scope of payoff functions to the set of Karlin-Rubin Monotone
payoff functions. As a result, his statistical notion of precision is less restrictive than Blackwell’s sufficiency. See Section
2 for its details.
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Figure 1: The Value of Information and Dispersion - The equivalence of four different signal orderings in
theory of decision under uncertainty within each class of payoff functions: supermodular, single-crossing,
and interval dominance order.

the values of signals whether the complementarity between the decision maker’s choice and

the state is a cardinal or an ordinal concept.

The second contribution of this paper is the characterization of this new signal ordering in

terms of the statistical notion developed by Lehmann (1988):

(P) α is more Lehmann precise than β (α �L β) if α is more likely to generate high outcomes

than β when the state is high.

The Dispersion Theorem presented in Section 4 demonstrates that this statistical ordering,

called ”Lehmann precision” hereafter, is equivalent to the dispersion-based signal ordering.

When a decision maker receives information from a more precise signal, she will put more

weight on the signal’s outcome, since the signal conveys more information about the state

of the world. Hence her prediction about the state will change more depending on the out-

come. The theorem states that the other implication is also true: if one signal generates more

dispersed predictions about the states than another, it has to be more precise in Lehmann’s no-

tion. In fact, there are a variety of signal orderings developed in the previous literature based

on this intuition, and they measure the signal’s precision level by the variability of predictions.

The theorem exactly captures this idea by equating α �L β to α �D β, and thus helps to justify

the previous signal orderings in a unified way.

To my knowledge, this theorem is the most general formulation of the link between

Lehmann precision and the dispersion. Theorem 5.2 in Lehmann (1988) provides a similar

characterization result when the associated density functions with signals are logconcave.

However, the theorem of this paper does not impose any conditions on the signal’s structures

we want to compare, so it can be regarded as an extension of his result.

Putting the first two results together, this paper demonstrates that the above signal order-
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ings based on four different concepts are mutually equivalent within each of the three classes

of payoff functions as illustrated in Figure 1-(a). Under the Bayesian frameworks, this result

reduces to the equivalence between the three orderings—Lehmann precision, informativeness,

and dispersion—as depicted in Figure 1-(b). This abridged version is reminiscent of the classic

work of Rothschild and Stiglitz (1970). They argued that two lotteries, X and Y, over monetary

payoffs can be compared based on relative riskiness in three different ways. (i) A statistical

ordering: Y = X + ε where E[ε|X] = 0, (ii) a preference-based ordering: E[u(X)] ≥ E[u(Y)]

for every concave Bernoulli payoff function u, and (iii) a dispersion-based ordering: the prob-

ability distribution of Y is the mean preserving spread of that of X. Hence the result in Figure

1-(b) extends their fundamental idea of comparing two lotteries in state-independent payoff

functions to the idea of comparing two signals in state-dependent payoff functions.

The third contribution is to analyze the effect of more precise information in several strate-

gic environments by utilizing the Dispersion Theorem. The first application is to auctions. I

analyze the effects of more precise information on efficiency, revenue, and bidders’ information

rents. The second application is to the principal-agent model with hidden action. I show that a

more precise contractible variable is necessary and sufficient for the principal to be able to con-

trol the agent’s hidden action with less cost. The third application is to a delegation problem

without bilateral money transfers. I provide a sufficient condition under which more precise

private information for the agent is more valuable to the principal.

The remainder of the paper is organized as follows: Section 2 presents the mathematical

preliminaries. It begins with the basic elements of decision problems under uncertainty and

documents the four different signal orderings, along with some well-known results about the

value of information in decision theory. Section 3 presents the main result of this paper. I shall

demonstrate that the four signal orderings above are mutually equivalent in order illustrated

in Figure 1-(a). First, I show in Theorem 3.1 that Lehmann precision is sufficient for ordering

signals based on their statistical values. For this purpose, I exploit one theorem of Quah and

Strulovici (2009) but give a more succinct and constructive proof based on the idea that when

payoff functions exhibit complementarities, there exists some action which weakly dominates

every nonincreasing strategy. This idea provides a unified way to construct a payoff-improving

strategy with a more precise signal for the three classes of payoff functions I consider.4 After,

it is shown in Theorem 3.5 and Theorem 3.6 that the criterion of informativeness induces the

statistical signal ordering based on the dispersion which, in turn, induces the signal ordering

based on Lehmann precision.

In Section 4 we discuss the three by-products of the equivalence theorem, with emphasis

on the connection between Lehmann precision and another signal orderings developed by

previous literature and the dispersion theorem. In section 5, I illustrate how the dispersion

theorem is applied to auctions, bilateral contracts, and delegation. Section 6 concludes.

4Moreover, I show in Appendix A that the improvement principle, the way to find such a strategy, is essentially
equivalent to the principle developed by Lehmann (1988).
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2. Preliminaries

2.1. Basic Elements

1. State Space and Information Structures: Let 〈Θ,F〉 denote a measurable space that represents

the unknown state of the world.5 A signal α (or a statistical experiment in statistics) is a random

quantity X and a set {Gα(·|θ)}θ∈Θ of possible distributions of X conditioned on the true state

of the world θ. By purchasing the signal α, a decision maker can observe a sample x ∈ X of

the random quantity X, where X—the set of all conceivable outcomes—is called the sample

space. Let β = 〈Y, {Gβ(·|θ)}θ∈Θ〉 be another signal concerning the same state of the world θ.

Similarly, y ∈ Y denotes the observed sample of the random quantity Y. We assume that both

sample spaces X and Y are subsets of real numbers. Additionally, we shall assume without any

loss of generality that the state space Θ is an interval of real numbers [θ, θ].6 It is supposed that

the cumulative distribution of X for each state θ is absolutely continuous and thus it takes a

form of

Gα(x|θ) = Pr(X ≤ x|θ) =
∫
X

1{s≤x}(s)gα(s|θ)ds for each x ∈ X ,

where gα is the density function with respect to Lebesgue measure.7

Throughout the remainder of this paper, we shall be concerned about the signal α with

gα(x|θ) being atomless and possessing the monotone likelihood ratio property (MLRP). The MLRP

requires that gα(x|θ) obey the following inequality:

(MLRP) gα(x1|θ1)gα(x2|θ2)− gα(x1|θ2)gα(x2|θ1) ≥ 0, ∀ x1 > x2 and θ1 > θ2.

In a nutshell, the property states that the signal α gives a higher outcome more likely in

state θ1 rather than in state θ2.8 As is well-known by Karlin and Rubin (1956), the set of

probability distributions with the MLRP involves the class of probability distributions of

the exponential type, to which most of the distributions studied in statistics and economics

5Each element θ in Θ is a complete description of exogenous variables of the model considered. The symbol Θ will
be used to denote the set of all possible states of the world.

6It is notable that this assumption does not cause any loss of generality. Lemma B in Karlin and Rubin (1956)
proves that we can restrict our attention to a statistically connected state space under the environment with the monotone
likelihood ratio property.

7In case X is discrete, Gα need not be continuous. However, as Lehmann (1988) argues, one can construct a new
variable X∗ with a continuous distribution, which is statistically equivalent to X. For instance, suppose that X takes
only a finite number of distinct values {x1, · · · , xn}with probability of Pr(X = xk|θ, α) = πk for each k = 1, · · · , n. One
can define X∗ by the continuous distribution of

Gα(x|θ) =
{

∑k−1
i=1 πi if x ∈ (xk−1, xk)

∑k−1
i=1 πi + πkUk if x = xk,

where {Uk} is the i.i.d sequence of random variables uniformly distributed on (0, 1). Then the new variable X∗ is
continuous and equivalent to X.

8This interpretation coincides with the interpretation of the first-order stochastic dominance. The difference is,
however, while the former imposes a statistical restriction on the density function, the latter on the distribution function.
Milgrom (1981) shows their equivalence when all possible prior beliefs on Θ are taken into account.
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belong.9 We label by E the set of signals of our interest. Therefore, we shall be concerned with

E , {α = 〈X, {Gα(x|θ)}θ∈Θ〉| gα(x|θ) obeys the MLRP}.

2. Action Space and Decision Rules: Let A indicate a set of allowed and undominated actions

that the decision maker can choose in the face of the uncertainty θ.10 For the sake of simplicity,

we shall assume that A is a compact subset of <.11 In a decision problem with a single signal

α, a decision rule or a strategy dα is a measurable mapping from the sample space X into the

action space A. We label by Dα the set of all permissible decision rules based on α. Similarly,

Dβ = {d : Y → A|measurable} is the set of all permissible decision rules based on another

signal β.

3. Payoff Functions: Following Wald (1950), a decision problem can be modeled by a payoff

function. A payoff function u(a, θ), specifying the gain to the decision maker when θ is the true

state and a is the action taken, is a real-valued function defined on A× Θ. We assume that u

is measurable with respect to θ for each a ∈ A and the family of payoff functions {u(·, θ)}θ∈Θ

for all possible states is equicontinuous in a.12 We denote by U the class of all payoff functions

satisfying these two properties.

Most of decision problems of interest in economics exhibit complementarity between the

decision maker’s action choice and the state of the world, in the sense that if a higher action

a′ is desirable at some state θ rather than a, the action a′ would remain desirable at every state

θ′ ≥ θ. For this reason, we shall be concerned with the following three subclasses of payoff

functions of U , which are classified by the strength of complementarity between a and θ.

DEFINITION 2.1 (SPM Family). A payoff function u(a, θ) is supermodular (SPM, and we write

u ∈ U spm) in (a; θ) provided the incremental return from taking higher actions is nondecreasing in

θ. Namely, for every a′ > a in A, u∆(θ) , u(a′, θ)− u(a, θ) is nondecreasing in θ.13

9A probability distribution is said to be of the exponential type if the density function is represented by

g(x|θ) = β(θ)exθr(x) =
exθr(x)∫

X esθr(s)ds
,

where r : X → <+ is measurable and nonnegative. Examples of this type are the binomial and Poisson for the discrete
case, and the normal with known variance and chi square for the continuous case. Refer to Milgrom (1981) for the
application of the MLRP to several economic environments.

10A dominated action a is the action for which there exists a′ ∈ A satisfying u(a′, θ) ≥ u(a, θ) for all θ ∈ Θ. We do
not consider the action space with such an element.

11In decision theory or monotone comparative statics literature, the action space A is frequently given by a partially
ordered set (poset) with a binary relation≥ on A. In this case, the sufficient and necessary condition for A to be compact
(with respect to the interval topology) is that A is a complete lattice, that is, every nonempty subset of A has a supremum
and an infimum in A (See Topkis (1998)). For simple analysis, however, we assume in this paper that A is a subset of
<. All the results below can be extended into the case that A is a complete lattice.

12A family {u(·, θ)}θ∈Θ of real-valued functions u(·, θ) : A → < is said to be equicontinuous at a0 ∈ A if for every
ε > 0, there exists a δ(a0) > 0 such that d(a, a0) < δ(x0) implies |u(a0, θ)− u(a, θ)| < ε for all θ ∈ Θ. Here d is a metric
endowed with the action space A in case A is a metric space. The family of functions is said to be equicontinuous if it is
equicontinuous at every a0 ∈ A. The equicontinuity of the family guarantees the existence of the optimal decision rule
in Bayesian decision theory.

13Since u(a, θ) is defined on the product of the two ordered sets, the concepts of supermodularity and increasing
differences coincide (Topkis (1998)).
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DEFINITION 2.2 (SC Family). A payoff function u(a, θ) obeys the single-crossing property (SC, u ∈
U sc) in (a; θ) provided the incremental return from taking higher actions satisfies the single crossing

property in θ. That is, for every a′ > a in A, u∆(θ) , u(a′, θ)− u(a, θ) ≥ 0 implies u∆(θ′) ≥ 0 for

all θ′ ≥ θ.

The SCP payoff function expresses a weaker complementarity than the SPM one. While the

SCP is an ordinal property that is preserved by any order-preserving transformations, the SPM

is a cardinal property that is not preserved by all such transformations. Note that U spm ⊂ U sc

as every nondecreasing function u∆(θ) clearly crosses the horizontal axis from below at most

once. The next class of payoff functions exhibits an even weaker complementarity than the

SCP, and thus it is the largest among the three classes.

DEFINITION 2.3 (IDO Family, Quah and Strulovici (2009)). A payoff function u(a, θ) obeys the

interval dominance order (IDO, u ∈ U ido) property provided for every a′′ > a′ in A,

u(a′′, θ)− u(a, θ) ≥ 0, ∀ a ∈ [a′, a′′] implies u(a′′, θ′)− u(a′, θ′) ≥ 0, ∀ θ′ ≥ θ.

The IDO property requires the higher action a′′ to be desirable for every θ′ ≥ θ only if it is

more desirable than any other actions belonging to the interval [a′, a′′] = {a ∈ A|a′ ≤ a ≤ a′′}
at θ. Whereas both the IDO and SCP properties have the same consequent, the former has a

weaker antecedent than the latter. Hence U ido includes U sc. Indeed, U ido is large enough to

encompass the most decision problems of interest, not only in economics, but even in statistics

such as the problems of testing a hypothesis or doing point and interval estimation of the

unknown parameter θ.14

4. Decision Problem and its Process: A decision problem concerning θ with a single signal is spec-

ified by the collection of the above elements—the state space, the signal structure, the action

space, and the payoff function—(Θ, 〈X, {Gα(·|θ)}θ∈Θ}〉, A, u(a, θ)). Since we are concerned

about comparison of signals with holding Θ and A fixed, we label the decision problem by

(α, u) for the simple exposition.

The decision problem (α, u) proceeds as follows: A decision maker observes an outcome

x after purchasing an informative signal α. Then she chooses an action a from a given action

space A, on the basis of the observed outcome, before the state of the world is realized. At the

end of the day, the decision maker’s payoff is determined by u(a, θ).

5. The Value of Information in Decision Theory: Theory of decision under uncertainty has two

large branches depending on the assumption of prior information and the decision principle

used. In Bayesian decision theory, the decision maker is endowed with prior beliefs on Θ and

she acts to maximize her Bayesian expected payoff (the conditional Bayes principle). Statistical

decision theory, however, does not call for such a prior belief. Also, the decision maker acts to

14Most of statistical decision problems belong to the Karlin-Rubin Monotone (KRM) payoff functions, extensively
studied by Karlin and Rubin (1956) and Lehmann (1988), but the IDO family involves the KRM family. In Appendix A
and B, we will look more in detail at the inclusive relationship among the several classes of payoff functions studied in
past literature.
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protect her payoff against the worst possible state of the world (the minimax or minimax regret

principle).

Comparison of signals (or statistical experiments), pioneered by the celebrated works by

Blackwell (1951, 1953), characterizes a binary preference relation on the signal space E for

a certain class of payoff functions U ? ⊂ U according to the value generated by each signal.

Formally, the field of inquiry attempts to derive an exact statistical condition under which the

decision problem (α, u) yields more expected values than (β, u) for every payoff function u ∈
U ?. As is highlighted above, however, the differences in the assumption of priors and decision

principles between statistical and Bayesian decision theory give rises to different values of a

signal. Hence we need two preference-based orderings tailored to each branch. Below, we will

go into the details under the statistical and Bayesian frameworks.

2.2. Effectiveness in Statistical Decision Theory

Analysis of statistical decision problems using the minimax or minimax regret principle calls

for one concept of an expected payoff function. For an illustration, consider a given statistical

decision maker (or a statistician) facing the decision problem (α, u). The expected payoff function

of decision d in state θ is the function ρα defined on Dα ×Θ such that 15

ρα(d, θ) ,
∫
X

u(d(x), θ)dGα(x|θ).

Then infθ∈Θ ρα(d, θ) represents the least expected payoff that can happen if the decision rule d

is used. The minimax principle—the major principle of choice in statistical decision theory—

requires the statistician to choose d ∈ Dα so as to maximize infθ∈Θ ρα(d, θ).16 We define the

value function

V(α, u) = max
d∈Dα

inf
θ∈Θ

ρα(d, θ)

as the statistical value generated by the signal α. For the decision problem (β, u) with another

signal β, we define the value function V(β, u) in an analogous manner, together with the set of

decision rules Dβ based on β.

Therefore, given a certain class of payoff functions U ?, it is natural to say that the signal α

is more valuable than β to every statistician within U ? if V(α, u) ≥ V(β, u) for every u ∈ U ?.

The next condition provides a signal ordering in this context:

DEFINITION 2.4 (Effectiveness). The signal α is more effective than another signal β with respect to a

class of payoff functions U ? (in symbols, α �?
E β) provided, for every decision rule d ∈ Dβ, there exists

a decision rule dα ∈ Dα for which ρα(dα, θ) ≥ ρβ(d, θ) for every θ ∈ Θ.

This criterion—the signal ordering based on the statistical values—states that any expected

15This formulation is to treat a decision problem as a (statistical) game against nature, where d ∈ Dα and θ are
regarded as the action chosen by the statistician and by nature, respectively.

16An alternative decision principle—the minimax regret procedure—requires the statistician to choose d so as to
maximize infθ [ρ

α(d, θ)−maxd ρα(d, θ)].
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payoff function attainable with β is also attainable with the more effective signal α regardless

of the state θ. It is immediate that a more effective signal generates more statistical values for

every payoff function concerning θ.

The other way is also true, when the class of payoff functions is invariant to the addition of

every function in the set H = {h : Θ→ <| measurable}, i.e., u ∈ U ? implies u + h ∈ U ? for all

h ∈ H. To see this, let dα ∈ Dα represent a minimax strategy for some payoff function u ∈ U ?.

Then V(α, u) ≥ V(β, u) ∀u ∈ U ? implies

inf
θ
{ρα(dα, θ) + h(θ)} ≥ max

d∈Dβ
inf

θ
{ρβ(d, θ) + h(θ)}, ∀ h ∈ H

≥ inf
θ
{ρβ(d, θ) + h(θ)}, ∀ d ∈ Dβ and h ∈ H,

which is equivalent to ρα(dα, θ) ≥ ρβ(d, θ) ∀ θ and ∀ d. Therefore, for every class U ? invariant

to the addition ofH, α is more effective than β with respect to U ? if and only if α presents more

statistical values than β for every statistician with the payoff function u ∈ U ?.

Observe that the property of complementarity between a and θ is independent of the ad-

dition of h ∈ H. Therefore, for every class of payoff functions introduced in the previous

subsection, the effectiveness becomes the necessary and sufficient condition for α to generate

more statistical values than β.

LEMMA 2.1. For each property ? ∈ {SPM, SC, IDO} and for two signals α and β, α �?
E β if and only

if V(α, u) ≥ V(β, u) for all u within the given class.

Another salient property that the three classes of payoff functions possess is, discovered

by Quah and Strulovici (2009), that one can restrict attention to a reduced set of decision rules

for identifying the minimax decision rule. Formally, given the signal α and a class of payoff

functions U ?, a subset D′ of the set of all permissible decision procedures Dα is called an

essentially complete class provided for every decision rule d ∈ Dα ∼ D′, there exists a d′ ∈ D′

such that ρα(d′, θ) ≥ ρα(d, θ) for every θ. By definition, the minimax strategy dα must belong

to the essentially complete class D′.

THEOREM 2.2 (Essentially Complete Class). For the every decision problem (α, u) with u ∈ U ido,

the set of monotone decision rules Dα,M = {d : X → A| measurable and nondecreasing} constitutes

an essentially complete class.

In statistical decision theory, the essentially complete class theorem is of utmost importance

in ranking two signals based on the criterion of effectiveness. By virtue of this theorem, the

problem of proving the effectiveness of α greatly simplifies into the one of finding a monotone

decision rule dα ∈ Dα,M such that ρα(dα, θ) ≥ ρβ(d, θ) for every monotone d ∈ Dβ,M. That is,

we need only look at the set of monotone decision rules, without any loss of generality, rather

than the set of all permissible decision rules, so the problem becomes much easier.

10



2.3. Informativeness in Bayesian Decision Theory

Bayesian decision theory stems from the assumption that a given decision maker is Bayesian

rational: (i) The decision maker forms a specific prior concerning θ, captured by a probability

measure π on all possible relevant events F . We denote by P(Θ) the set of all possible prior

beliefs on Θ. Note that, given a signal α, each prior belief π yields the marginal distribution

of X by Bayes’ rule, which will be labeled by Mα(x) = Pr(X ≤ x), if necessary.17 (ii) After

observing an outcome x from the signal α, she updates her prior beliefs using Bayes’ rule

whenever possible. The updated beliefs—posterior beliefs—will be described by Fα(t|x) =

Pr(θ ≤ t|X = x), i.e., the conditional probability of the event {θ ≤ t} ∈ F on the outcome

X = x. To be consistent with the prior, the following condition must hold:

(1) EX [Fα(t|X)] = π({θ ≤ t}) ∀ t ∈ Θ,

where EX is the mathematical expectation over the random quantity X. (iii) Lastly, the decision

maker chooses a ∈ A so as to maximize her expected payoffs given her posterior beliefs:

δα(x) ∈ argmax
a∈A

∫
Θ

u(a, θ)dFα(θ|x).

To distinguish it from the minimax decision rule, we label the (optimal) Bayesian decision rule

by δα : X → A. Define the corresponding value function as

Vπ(α, u) , Eθ

[∫
X

u(δα(x), θ)dGα(x|θ)
]

,

where Eθ represents the mathematical expectation over Θ with respect to the prior beliefs π.

We refer to Vπ(α, u) as the Bayesian value of the signal α. Notice that, unlike the statistical value

V(α, u), the Bayesian value of α hinges upon the decision maker’s prior beliefs π ∈ P(Θ).

Similarly, define by Vπ(β, u) the Bayesian value corresponding to another signal β.

In Bayesian decision theory, therefore, it is natural to say that α is more valuable than β if

Vπ(α, u) ≥ Vπ(β, u). The next criterion extends this concept to all Bayesian decision makers

within a certain class.

DEFINITION 2.5 (Informativeness). The signal α is more informative than another signal β with

respect to a class of payoff functions U ? (in symbols, α �?
I β) provided Vπ(α, u) ≥ Vπ(β, u) for all

π ∈ P(Θ) and u ∈ U ?.

Note that free of the decision maker’s prior information is the criterion of informativeness

adopted for ranking signals. In order to meet this criterion, α should yield more ex ante payoffs

to Bayesian decision makers independent of their priors. This prior-free facet of informative-

ness is predicated upon the following two reasons. First, we compare two signals based on

their values not for a single decision maker but for every every decision maker falling within

17Although the marginal distribution of a signal is determined by the prior beliefs as well, I drop the notation π for
the sake of simplicity.
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a certain category of preferences. In view of the fact that prior information is the subjective as-

sessment of a decision maker, therefore, it is hard to support that all of them have the identical

prior beliefs.18

In addition, prior information is generally formed by past experience about similar decision

problems. Hence such information is not available in situations where the decision maker

encounters the source of uncertainty θ for the first time and thus statistical investigation—

purchasing a signal or conducting an experiment—is probably the unique source of gathering

information about θ. The informativeness is designed to address these two issues.19

So far, we presented the way of ordering signals based on the values. In light of Definition

2.4 and 2.5, however, it is immediate that informativeness is implied by effectiveness. More-

over, it is worth noting that this proposition holds no matter what class of payoff functions we

have in mind.

THEOREM 2.3. For every class of payoff functions U ?, α �?
E β implies α �?

I β.

PROOF OF THEOREM 2.3 : Let δβ ∈ Dβ represent a Bayesian decision rule that maximizes her

expected payoffs. By using Fubuni’s Theorem, we can write the Bayesian values of β in terms

of ρβ,

Vπ(β, u) = EY

[∫
Θ

u(δβ(Y), θ)dFβ(θ|Y)
]
=
∫

Θ
ρβ(δβ, θ)dπ(θ)

Since the effectiveness guarantees the existence of a better decision rule dα ∈ Dα for which

ρα(dα, δ) ≥ ρβ(δβ, θ) regardless of θ, the informativeness follows by integrating the inequality

with respect to the measure π. �

Before turning to next signal ordering, we remark one more crucial property that all of the

three classes of payoff functions possess. In order to state this property, we define the set of op-

timal actions for each sample x ∈ X as Aα(x) =
{

a∗ ∈ A| a∗ ∈ argmaxa∈A Eθ [u(a, θ)|X = x]
}

.

THEOREM 2.4 (Monotone Comparative Statics). For every decision problem (α, u) with u ∈ U ido

and for every prior π ∈ P(Θ), the set of optimal actions is nondecreasing in the strong set order. That

is, for x′ > x, the set Aα(x′) is larger than Aα(x) in the strong set order.20

Like the essentially complete class theorem, the monotone comparative statics theorem is

useful in ranking two signals based on the criterion of informativeness. By the aid of this result,

we can select a monotone strategy δα : X → A from the set Dα,M to write the Bayesian value

18In some contexts, however, it is reasonable to assume that they have the same prior information. For example,
experienced employers may very well possess an objective prior about employee’s unknown skills in practice; invest-
ment consultants with expertise may have a definite prior information about the returns of a stock, in particular, issued
by S&P 500 companies. Athey and Levin (2001) analyzed the value of information in Bayesian settings in this regard.
We discuss their results in Section 4.

19It should not be construed from the above statements that a Bayesian decision maker does not have an explicit prior
information. Each decision maker does possess an explicit prior, but we leave open possibilities that her prior beliefs
might be different from others although they have a common source of uncertainty.

20Given two subsets D1 and D2 of A ⊂ <, we say that D1 is larger than D2 in the strong set order (or in the induced
set order) and it is written D1 DD2 provided for every d1 ∈ D1 and d2 ∈ D2, max{d1, d2} ∈ D1 and min{d1, d2} ∈ D2.
In case D1 and D2 are subsets of a lattice A with an order topology≥, D1DD2 provided d1 ∨ d2 ∈ D1 and d1 ∧ d2 ∈ D2.
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of α as

Vπ(α, u) = EX [Eθ [u(δα(X), θ)|X]] =
∫

Θ
ρα(δα, θ)dπ(θ)

In order to prove that α is more informative than β within U ido, therefore, it is enough to

construct a monotone strategy dα ∈ Dα,M such that ρα(δα, θ) ≥ ρβ(d, θ) for every d ∈ Dβ,M.

2.4. Lehmann Precision

The above discussion suggests that, for α = 〈X, {Gα(·|θ)}θ∈Θ}〉 to be more effective or infor-

mative than β = 〈Y, {Gβ(·|θ)}θ∈Θ}〉 with respect to a class of decision problems, the random

quantity X has to be more statistically correlated with the unknown state θ than Y. However,

the degree of correlation necessary for α to be more valuable than β is also dependent upon the

class of payoff functions U ? we consider. Intuitively, as we expand the scope of payoff func-

tions U ?, we need stronger statistical correlation between X and θ for α to be more effective or

informative to every decision problem within U ? .

Blackwell sufficiency—the most standard statistical signal ordering—provides a way to

rank two signals based on the statistical concept of sufficiency. In the influential papers, Black-

well (1951, 1953) showed, without any structures on the class of payoff functions, that α is

Blackwell-sufficient for β if and only if α is more effective than β to every statistician within U .

Consequently, although powerful, the signal ordering based on sufficiency is too restrictive to

provide a reasonable order in the signal space as pointed out by Lehmann (1988).21 This leaves

open possibility that a more complete and intuitive ordering can be found by narrowing down

the scope of payoff functions.22

DEFINITION 2.6 (Lehmann (1988)). The signal α is more Lehmann-precise than β (and we write

α �L β) provided for each outcome y ∈ Y , there exist an increasing function Ty : Θ→ X such that

(P) Gα(Ty(θ)|θ) = Gβ(y|θ).

To better understand why the monotone T-transformation leads to a more statistically pre-

cise signal, consider a simple case of dichotomy : Θ = {θL, θH} with θL < θH . Furthermore,

we suppose that both sample spaces X and Y are a unit interval and Gα(c|θL) = Gβ(c|θL) for

each c ∈ [0, 1]. Refer to Figure 2 where we display the distributions of X and Y. Consider a

distribution Gβ(·|θH) of Y when the state is θH . By the MLRP, it must dominate Gβ(·|θL) in the

21Theorem 3.1 in his paper tells us that when we compare the following two location distributions with

Gα(·|θ) d
=U

[
θ − α

2
, θ +

α

2

]
and Gβ(·|θ) d

=U
[

θ − 1
2

, θ +
1
2

]
,

the sufficient and necessary condition for α to be Blackwell-sufficient for β is 1/α ∈ {1, 2, 3, · · · }, although α conveys
more information on θ for every 0 < α < 1. However, for every 0 < α < 1, it can be shown that α is more Lehmann-
precise than β. See Example 2.2.

22Restricting attention to the class of quasiconcave with increasing peaks payoff functions (See Appendix B for its defini-
tion.), Lehmann (1988) proves that α is more effective than β within the reduced class if and only if α is more Lehmann-
precise than β.
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Gα(x|θL)

10 Tŷ(θL) ≤ Tŷ(θH)

Gα(x|θH)

(a) Signal α

1

pL

pH

Y
10

Gβ(y|θL)

ŷ

Gβ(y|θH)

(b) Signal β

Figure 2: Lehmann (1988) Precision and T-transformation

first-order stochastic dominance (FOSD). Then for each sample ŷ ∈ Y , the signal β assigns two

quantiles pL ≡ Gβ(ŷ|θL) and pH ≡ Gβ(ŷ|zH) to the event {Y ≤ ŷ} when the state is θL and θH ,

respectively.

Given the quantile pL, there is a sample x ∈ X at which Gα(x|θL) = pL, which we label by

Tŷ(θL).23 Since we assume the identical distributions for θL, we have Tŷ(θL) = ŷ. When the

state is θH , however, the monotone T-transformation calls for Tŷ(θH) ≥ ŷ. Hence the graph

of Gα(·|θH) will be uniformly below the graph of Gβ(·|θH) like the FOSD.24 As a consequence,

the signal α assigns relatively more densities to higher outcomes than β when the state is θH ,

so α is more statistically precise than β.

Another simple example of the T-transformation can be found when each signal is gener-

ated by adding a noise.

EXAMPLE 2.1 (Gaussian Learning25). Suppose that a decision maker observes x = θ + εα or y =

θ + εβ from the signal α or from β where εα and εβ are normally distributed, independent of θ, as

N(0, σ2
α) and N(0, σ2

β), respectively. Then converting each conditional distribution into the standard

normal distribution yields

Gα(x|θ) = Φ
(

x− θ

σα

)
and Gβ(y|θ) = Φ

(
y− θ

σβ

)
,

23In general, Lehmann precision imposes no restrictions on Gα(·|θL) in case of dichotomy. In light of this fact, Jewitt
(2007) showed the equivalence between Blackwell sufficiency and Lehmann precision in the two states of the world.

24This statement is indeed true. It can be shown that Gα(·|θH) ≤ Gβ(·|θH) is equivalent to the Lehmann-precision,
assuming the identical distributions for θL and the binary states.

25This signal structure is frequently used, in Morris and Shin (2002) and Angeletos and Pavan (2007), for analyzing
the effect of the precise signal on social welfare in macroeconomic models.
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where Φ, the cumulative distribution function of N(0, 1), is bijective. Hence the associated T-

transformation with the two signals is Ty(θ) = σα/σβ(y− θ) + θ. Therefore, α �L β if and only if

σα < σβ.

The next lemma furnishes us a simple but useful characterization of Lehmann precision.26

LEMMA 2.5. α �L β if and only if Gβ(y|θ)− Gα(x|θ) satisfies the single crossing property in θ for

every pair x ∈ X and y ∈ Y .

PROOF OF LEMMA 2.5 : Suppose α �L β. By definition, there exists an increasing transforma-

tion Ty : Θ→ X for which Gβ(y|θ) = Gα(Ty(θ)|θ) for each y. Assume Gβ(y|θ0)−Gα(x|θ0) ≥ 0

for some θ0. Since the distribution function Gα(·|θ) is nondecreasing, it must be the case that

x ≤ Ty(θ0). Thus, for θ ≥ θ0

Gβ(y|θ)− Gα(x|θ) ≥ Gβ(y|θ)− Gα(Ty(θ0)|θ) ≥ Gβ(y|θ)− Gα(Ty(θ)|θ) = 0,

where the last inequality is due to Ty(θ) ≥ Ty(θ0).

To prove the converse, define the transformation Ty : Θ → X for each outcome y such that

Gβ(y|θ) = Gα(Ty(θ)|θ) holds. Continuity of Gα and Gβ guarantees the existence of such Ty.

We need to show that Ty is increasing with θ. Given a pair of outcomes x and y, suppose that

Gβ(y|θ0)− Gα(x|θ0) = 0 for some θ0 ∈ Θ. Then Ty(θ0) = x by construction. Due to the single

crossing property, we have for every θ ≥ θ0

Gβ(y|θ)− Gα(x|θ) = Gβ(y|θ)− Gα(Ty(θ0)|θ) ≥ Gβ(y|θ)− Gα(Ty(θ)|θ) = 0,

and thus we obtain Ty(θ) ≥ Ty(θ0). �

This lemma provides a simple sufficient condition for α �L β. Recall that if the density

function g(x|θ) satisfies the MLRP, then the corresponding cumulative distribution G(x|θ) is

decreasing in θ, i.e., for θ ≥ θ0, G(x|θ) dominates G(x|θ0) in the FOSD. Therefore, if for every x

and y, Gα(x|θ) is declining in θ with a larger rate than Gβ(y|θ), then Gβ(y|θ)− Gα(x|θ) clearly

satisfies the single crossing property in θ, so α becomes more Lehmann-precise than β.

EXAMPLE 2.2 (Uniform Distributions). Consider the two signals with uniform distributions

X ∼ U
[
θ − α

2
, θ +

α

2

]
and Y ∼ U

[
θ − β

2
, θ +

β

2

]
.

Note that for every pair x ∈ X and y ∈ Y

∂

∂θ
Gα(x|θ) = − 1

α
< − 1

β
=

∂

∂θ
Gβ(y|θ) if and only if α < β.

Therefore, α �L β if and only if α < β.

26In some statistics textbook, the Lehmann precision is defined as the statement in Lemma 2.5.
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EXAMPLE 2.3 (Truth-or-Noise). Suppose that the signal α perfectly reveals the true state of the world

with probability of α, but is independently drawn from a distribution F with the support Θ otherwise.

Similarly, y = θ with probability of β but y ∼ F otherwise. That is, both parameters α and β measure

the precision of each signal. Note that the cumulative distribution of each signal is written Gα(x|θ) =
α1{x≥θ}(x) + (1− α)F(x) and Gβ(y|θ) = β1{y≥θ}(y) + (1− β)F(y), respectively. We use Lemma

2.5 to show that α �L β if and only if α > β.

Suppose that α > β. We want to show that ∆x,y(θ) ≡ Gβ(y|θ)− Gα(x|θ) satisfies the SCP in θ

for every pair x, y ∈ Θ. Case 1: x < y. Note that ∆x,y(θ) is strictly positive for θ ≥ y and that is

nondecreasing for θ < y; it jumps by α at θ = x. Hence the SCP is satisfied. Case 2: x > y. When

∆x,y(θ) is negative for θ ≥ x, the function becomes negative everywhere. When ∆x,y(θ) is positive for

θ ≥ x, it is enough for the SCP to show that ∆x,y(θ) is negative for θ < y. In case θ < y < x, the

function assumes

∆x,y(θ) = β + (1− β)F(y)− α− (1− α)F(x) = (β− α)(1− F(x)) + (1− β)(F(y)− F(x)).

Therefore, α > β and y < x implies ∆x,y(θ) < 0. Case 3: When x = y, ∆x,x(θ) crosses the horizontal

axis from below at θ = x.

To prove the converse, suppose that ∆x,y satisfies the SCP for all x, y. When x = y, the function

takes on the value (β− α)(1− F(x)) for θ ≤ x and (α− β)F(x) for θ > x. Hence α > β is necessary

for the SCP of ∆x,x(θ). �

Compared to Blackwell sufficiency, Lehmann precision is easier to check as seen in the

examples above. More importantly, this signal ordering is applicable to more signal structures

than sufficiency, so that it appeared in many economic settings for analyzing the value of

information.

2.5. Dispersion

The main contribution of this paper is to integrate the above three different concepts of rank-

ing the signals—effectiveness, informativeness, and Lehmann precision—with another concept

based on dispersion. The main idea behind the link to the dispersion can be best understood

by the relationship between the precision of a signal and the dispersion of posterior beliefs:

As a signal gets more statistically precise, its outcome becomes more trustworthy, and thus a

decision maker’s posterior beliefs about θ become more dispersed depending on the outcome.

In order to incorporate this simple idea into our setup, we need introduce a few stochastic

orderings to which the dispersion gives rise.

Let X and Y be two random variables such that E[σ(X)] ≤ E[σ(Y)] for all increasing convex

functions σ, provided that the both expectations exist. Then we say that X is smaller than Y

in the increasing convex order, and we write X ≤icx Y. Roughly speaking, if X ≤icx Y, then X is

”less variable” than Y in the stochastic sense. The increasing concave order ≤icv is defined in a

similar manner, and X ≤icv Y implies that X is more variable than Y.27

27 Note that a function f (x) is increasing and convex if and only if − f (−x) is increasing and concave. Hence the two
variability orders are closely related to each other in the following sense: X ≤icx Y if and only if −X ≥icv −Y. For a
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The following lemma is simply the reflection of the two facts that (x − c) ∨ 0 , max{x −
c, 0} is an increasing and convex function for all constants c and every increasing convex func-

tion belongs to the closed convex cone generated by the family of functions {(x− c)∨ 0|c ∈ <}
up to constants.28

LEMMA 2.6. Let X and Y be two random variables with probability distributions FX and FY, respec-

tively. Then X ≤icx Y if and only if

(2)
∫ ∞

κ
[1− FX(x)]dx ≤

∫ ∞

κ
[1− FY(y)]dy for all κ ∈ <.

The lemma associates with the familiar notion in economics; from the inequality (2) and Roth-

schild and Stiglitz (1970), it follows that X ≤icv Y is equivalent to domination of X by Y in the

second-order stochastic dominance. See footnote 28.

In case the two random variables have the same mean, the two variability orders ≥icx and

≥icv reduce into ≥cx and ≥cv, respectively, where X ≥cx Y implies E[σ(X)] ≥ E[σ(Y)] for

every convex function σ. It is worth noting that whereas ≥cx and ≥cv are dependent on the

locations of random variables in the sense that the orders can be used only for comparing the

variability of random variables with the same mean, both ≥icx and ≥icv are independent of the

locations of random variables.29 Therefore, with ≥icx and ≥icv, we are able to compare much

more distributions in terms of variability.

Let Θ∗ be the set of bounded, nondecreasing and measurable functions from Θ to <. Given

a signal α and prior beliefs π ∈ P(Θ), we define the linear operator Jα : Θ∗ × X → < as

follows:

(3) Jα[ψ](x) ,
∫

Θ
ψ(θ)dFα(θ|x).

That is, the operator Jα represents the conditional expectation of ψ on the basis of the signal’s

outcome x ∈ X . Note that Jα is the integral of ψ with respect to the posterior beliefs. Hence the

value of Jα relies on the prior beliefs π as well, although we suppress π for simple exposition.

In addition, note that the operator Jα[ψ](X), when we replace the sample x with the random

quantity X, is a random variable for each ψ. With a different signal β but the same prior beliefs

π, we define Jβ[ψ](Y) in the same way.

Now we are ready to state the main concept of this paper:

DEFINITION 2.7 (Dispersion). The signal α generates a more dispersed prediction about θ than another

comprehensive discussion of many notions of variability (dispersion) order, refer to Shaked and Shanthikumar (2007).
28Likewise, every increasing concave function can be approximated by {(x − c) ∧ 0|c ∈ <} where (x − c) ∧ 0 ,

min{x − c, 0}. Hence one could get the counterpart to Lemma 2.6 for the increasing concave order: X ≤icv Y if and
only if ∫ κ

−∞
FX(x)dx ≥

∫ κ

−∞
FY(y)dy for all κ ∈ <.

29To see why the convex order ≥cx requires the same mean between two random variables, note that both x and −x
are convex. Hence X ≤cx Y implies E[X] ≤ E[Y] and E[−X] ≤ E[−Y] so E[X] = E[Y]. Also note that X ≤cx Y if and
only if X ≥cv Y.
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signal β (and we write α �D β) provided Jα[ψ](X) ≥icx Jβ[ψ](Y) for every ψ ∈ Θ∗ and π ∈ P(Θ).

The dispersion furnishes us another way to rank the two signals in terms of the variability

of the operator J. α �D β requires the estimated value of every nondecreasing function ψ

based on α to be ”more variable” than the estimated value of ψ based on β, for a given prior

information on θ.

I wish to highlight that the set of nondecreasing functions defined on Θ is large enough that

it subsumes some important predictions about θ as special cases. As an illustration of what can

be gained by taking every nondecreasing function on Θ, note that when ψ(θ) = θ the operator

Jα reduces to E[θ|X]. Hence α �D β leads to more variable conditional expectations of θ. For

another example, note that ψ(θ) = 1− 1{θ≤t}(θ) is nondecreasing with θ for every constant

t ∈ Θ. In this case, Jα assumes

Jα[ψ](X) = 1−
∫

Θ
1{θ≤t}(θ)dFα(θ|X) = 1− Fα(t|X)

Hence Jα[ψ](X) ≥icx Jβ[ψ](Y) implies 1 − Fα(t|X) ≥icx 1 − Fβ(t|Y), which in turn implies

Fα(t|X) ≥cx Fβ(t|Y). Namely, the signal α larger than β in this order generates more dispersed

posterior beliefs.

The above examples are predicated on another signal orderings employed in past literature.

We will revisit them and discuss the connection with Lehmann precision in the next section.

3. The Main Result

We now present the main result of this paper, which states the equivalence of the four different

signal orderings we introduced in the previous section.

THEOREM (Equivalence). For each class of payoff functions—U spm, U sc, or U ido—concerning θ and

for two signals α and β, the following conditions are mutually equivalent:

(P) α is more Lehmann-precise than β.

(E) α is more effective than β with respect to the given class of payoff functions.

(I) α is more informative than β with respect to the given class of payoff functions.

(D) α generates more dispersed predictions about θ than β.

The dispersion theorem, associating (P) a statistically precise signal with (D) high disper-

sion of predictions concerning θ, plays a key role in two aspects. First, sufficiency of the

Lehmann precision provides the relationship between Lehmann precision and other signal or-

derings developed by previous literature. Second, necessity helps to derive the exact condition

under which a signal α is more valuable than another signal β in both Bayesian and statistical

decision theory.

In this section, we prove the equivalence of these four properties for U spm and U sc only.

The class of U ido, the largest of the three classes, is relegated to Appendix B. We organize the

proof in the following order: (P)→ (E)→ (I)→ (D)→ (P), where we have already verified in

Theorem 2.3 that (E)→ (I) holds irrespective of the class of payoff functions.
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3.1. Precision implies Effectiveness

We begin with the following theorem:30

THEOREM 3.1. If α �L β, then α �sc
E β.

For the proof of the theorem, we will utilize the next two lemmas. The first lemma demon-

strates that given a decreasing decision procedure d, there exists a single action which is weakly

dominant over d for every payoff function u ∈ U sc. In Appendix B, we show that the IDO

family also possesses the same property.

LEMMA 3.2. Let u ∈ U sc. Then for every decreasing decision rule d : Θ → A, there exists an action

a? ∈ A such that u(a?, θ) ≥ u(d(θ), θ) for all θ ∈ Θ.

PROOF OF LEMMA 3.2 : Let Ad = {d(θ) ∈ A|θ ∈ Θ} denote the image of the given decision

d. Since u(a, θ) satisfies the SCP in (a; θ), we infer from the Monotonicity Theorem in Milgrom

and Shannon (1994) that there exists an increasing decision rule d? such that

d?(θ) ∈ argmax
a∈Ad

u(a, θ).

Notice that the two strategies d and d? cross only once.31 Let θ? ∈ Θ indicate the state at which

they intersect. Then d?(θ) ≥ d(θ) for θ ≥ θ? and d?(θ) ≤ d(θ) otherwise. Set a? = d?(θ?), i.e.,

the optimal action at the intersection chosen by d?. Then u(a?, θ?) ≥ u(d(θ), θ?) for all θ. For

all θ > θ?, a? ≥ d(θ) since the decision d is decreasing. Hence it follows from the SCP that

u(a?, θ?) ≥ u(d(θ), θ?) implies u(a?, θ) ≥ u(d(θ), θ) ∀ θ > θ?.

The case θ < θ? can be shown in an analogous way. �

The next lemma—dubbed the improvement principle—plays a central role in the proof that

the signal ordering based on the Lehmann precision guarantees the two signal orderings based

on both effectiveness and informativeness. The principle elaborates the way to construct a

monotone decision rule based on a more precise signal, given a monotone decision rule based

on another signal, which benefits the decision maker’s payoffs regardless of θ.32

LEMMA 3.3 (Improvement Principle). Suppose that u ∈ U sc and α �L β. Then for every monotone

decision rule dβ ∈ Dβ,M, there exists a monotone decision rule dα ∈ Dα,M for which

(4) u(dα ◦ Ty(θ), θ) ≥ u(dβ(y), θ) ∀ y ∈ Y , θ ∈ Θ,

30Quah and Strulovici (2009) prove the same statement for the IDO payoff functions, but I present a more succinct
and intuitive proof. It helps us compare the improvement principle for U sc with the principle for U qc in Lehmann
(1988).

31The Monotonicity Theorem in Milgrom and Shannon (1994) states that if the payoff function obeys the single
crossing property in (a; θ), the set of maximizers A?(θ) , argmaxa∈A u(a, θ) is nondecreasing in the induced set
order. Hence the theorem enables us to select a nondecreasing strategy from the maximizer. In case the maximizer
is a singleton, there is nothing to prove.

32Refer to Appendix A for the key idea of this principle.
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Θ

A

d?(θ)

dβ ◦ τx(θ)

dα(x)
dβ ◦ τx′ (θ)

dα(x′)
dβ ◦ τx′′ (θ)

dα(x′′)

θ?x θ?x′ θ?x′′

Figure 3: Improvement Principle - While the decision rule dβ ◦ τx(θ) is decreasing in θ for each x, it is
increasing in x for each θ. This property leads to the increasing sequence of intersections {dα(x)}x∈X with
d?.

where the transformation Ty is from (P) in Definition 2.6.

PROOF OF LEMMA 3.3 : Recall that α �L β requires Ty to be increasing in θ for each outcome

y ∈ Y . Also, for each state θ, there is a unique x ∈ X for which x = Ty(θ), since the distri-

bution function Gα(·|θ) is strictly increasing due to the assumption that its density function is

atomless. Since Ty : Θ → X is bijective, we can write y = τx(θ) where τx is decreasing in θ.

Hence, the inequality (4) is equivalent to

(5) u(dα(x), θ) ≥ u(dβ ◦ τx(θ), θ) x ∈ X , θ ∈ Θ.

Note that since dβ is assumed to be increasing, the composition dβ ◦ τx(θ) is decreasing. Hence

it follows from the preceding lemma that there exists an action a? such that u(a?, θ) ≥ u(dβ ◦
τx(θ), θ) for all states θ. For each x, dα(x) = a? will lead to the desired inequality (5).

It remains to show that the decision rule dα we just constructed is increasing. Note that

dβ ◦ τx′(θ) ≥ dβ ◦ τx(θ) for all θ and for x′ > x, since both functions dβ and τ of the composition

is increasing with x. Hence the intersection with the optimal decision rule d?(θ) in Lemma 3.2

is also increasing (See Figure 3). It proves the lemma. �

PROOF OF THEOREM 3.1 : Note that for every monotone decision rule dβ permissible under β,

ρβ(dβ, θ) =
∫

u(dβ(y), θ)dGβ(y|θ) ≤
∫

u(dα ◦ Ty(θ), θ)dGβ(y|θ)

=
∫

u(dα(x), θ)dGα(x|z) = ρα(dα, θ),
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where the inequality follows from the preceding improvement principle and the next equality

follows from the change of variable x = Ty(θ), whose distribution is Gα(·|θ) for each θ.

Theorem 2.2 allows us restrict attention to the set of monotone strategies for effectiveness.

Therefore, α �L β is sufficient for α to be more effective than β with respect to the class U sc. �

Note that the essentially complete class theorem for U sc, due to Quah and Strulovici (2009),

plays a central role in the proof of Theorem 3.1. The theorem allows us to focus on the set

of monotone decision procedures, in which the task of finding a better decision rule is much

easier than in the set of all permissible decision procedures. As a result, we derived a simple

improvement principle in Lemma 3.3.

Along with Theorem 2.3, one immediate consequence of the preceding theorem is that the

Lehmann precision induces the signal ordering based on the Bayesian values as well.

COROLLARY 3.4. If α �L β, then α �sc
I β.

Without the aid of the essentially complete class theorem, however, one can use Theorem

2.4 and Lemma 3.3 to prove the same result in a direct way, not through the effectiveness. To

this end, we first infer from Theorem 2.4 that there exists a monotone decision rule dβ for which

Vπ(β, u) = EY
[
Eθ [u(dβ(Y), θ)|Y]

]
. By virtue of Lemma 3.3, we can assure that there exists a

decision rule dα for which

Eθ [EY[u(dβ(Y), θ)|θ]] ≤ Eθ [EX [u(dα(X), θ)|θ]] = EX [Eθ [u(dα(X), θ)|X]] .

But the last expression is smaller than EX [Eθ [u(δα(X), θ)|X]] = Vπ(α, u), since the Bayesian

decision rule δα maximizes the expected payoff at each outcome x ∈ X . Here, the key observa-

tion is that δα is a pointwise optimal action for each x.

The discussion presented so far in this subsection tells us that, for every permissible deci-

sion rule based on β, the decision maker with u ∈ U sc is able to find a decision rule based on

α �L β that makes her better off regardless regardless of the decision principle she has in mind.

Since U spm is included in U sc, the above results also hold for the class U spm.

3.2. Informativeness implies Dispersion

Now we link the informativeness to the main concept of this paper, demonstrating that the

informativeness within U spm leads to the signal ordering based on the dispersion. Since U spm ⊂
U sc, the informativeness within U sc induces the same signal ordering.

THEOREM 3.5. If α �spm
I β, then α �D β.

PROOF OF THEOREM 3.5 : Consider an action space A = {0, 1}. For a constant κ ∈ < and a

nondecreasing function ψ ∈ Θ∗ defined on Θ, we define a payoff function uψ,κ : A×Θ → <
as

uψ,κ(a, θ) = a · (ψ(θ)− κ).
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Note that the payoff function uψ,κ is supermodular in (a; θ) for every constant κ and every

ψ ∈ Θ∗ so the family of such payoff functions {uψ,κ(·, θ)}κ∈<, ψ∈Θ∗ , θ∈Θ is a subset of the class

U spm. It is a routine task to derive the (unique) Bayesian decision rule for the decision problem

(α, uψ,κ):

δα(x) =

 0 if Jα[ψ](x) ≤ κ

1 otherwise.

Then we can write the Bayesian value of the signal α as

Vπ(α, uψ,κ) = Eθ

[∫
X

uψ,κ(δ
α(x), θ)dGα(x|θ)

]
=
∫
X

1{Jα [ψ](x)>κ}(x) ·
(∫

Θ
[ψ(θ)− κ] dFα(θ|x)

)
dMα(x)

=
∫
X

1{Jα [ψ](x)>κ}(x) · (Jα[ψ](x)− κ) dMα(x).

Then we use the layer cake representation to rewrite the bottom line as33

(6) Vπ(α, uψ,κ) =
∫ ∞

κ
[1− Hα(ξ)]dξ,

where Hα(ξ) , Pr (Jα[ψ](X) ≤ ξ) stands for the probability distribution generated by the op-

erator Jα[ψ]. Since α is more informative than β with respect to U spm, it must be the case that

Vπ(α, uψ,κ) ≥ Vπ(β, uψ,κ) for all κ, ψ, and all prior beliefs π ∈ P(Θ). By using the representa-

tion result (6), therefore, the informativeness leads us to∫ ∞

κ
[1− Hα(ξ)]dξ ≥

∫ ∞

κ
[1− Hβ(ξ)]dξ, ∀ κ, ψ, π.

Lastly, it is immediate from Lemma 2.6 that Jη [ψ] ≥icx Jθ [ψ] for all ψ and π. Therefore, the

informativeness induces the new signal ordering α �D β based on the dispersion. �

3.3. Dispersion implies Precision

The next result completes the proof of the main theorem.

THEOREM 3.6. If α �D β, then α �L β.

PROOF OF THEOREM 3.6 : For a pair of outcomes x ∈ X and y ∈ Y , suppose that ∆x,y(θ0) =

Gβ(y|θ0) − Gα(x|θ0) ≥ 0 for some θ0. We want to show that ∆x,y(θ) ≥ 0 for every θ ≥ θ0,

which is equivalent to α �L β by Lemma 2.5. To verify this claim, we suppose that there exists

a state θ1 > θ0 at which ∆x,y(θ1) < 0, and derive a contradiction.

33The representation theorem (Folland (1999)) states that for a σ-finite Borel measure ν on <+ = [0, ∞), φ(t) , ν[0, t),
and a nonnegative measurable function f defined on Θ, we have∫

Θ
φ( f (θ)) dπ(θ) =

∫ ∞

0
π{θ ∈ Θ | f (θ) > t}dν(t).
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Let π ∈ P(Θ) be a prior belief that assigns probability π0 and π1 to two possible states θ0

and θ1, respectively. Consider a function ψ defined on Θ taking on the value 0 for θ ≤ θ̂ and

the value c ∈ < otherwise, where c > 0 is an arbitrary constant and θ̂ ∈ (θ0, θ1) is the jump

point of ψ. Note that ψ is bounded, measurable, and nondecreasing for every c > 0, and thus it

belongs to Θ∗. With the given outcome x and ψ, set κ = Jα[ψ](x), i.e., the value of the operator

Jα[ψ] at x. Then κ ≤ c is immediate.

Recall that α �D β implies Jα[ψ] ≥icx Jβ[ψ]. Hence we have

(7) EX [(Jα[ψ](X)− κ) ∨ 0] ≥ EY[(Jβ[ψ](Y)− κ) ∨ 0],

as (x − κ) ∨ 0 is increasing and convex. With the prior belief π, however, we can rewrite the

left-hand side of (7) as

EX [(Jα[ψ](X)− κ) ∨ 0] =
∫

Θ

∫
X

1{ξ≥x}(ξ) [ψ(θ)− κ] dGα(ξ|θ)dπ(θ)

Note that the event of the indicator function above {ξ ≥ x} is the same as the event {Jα[ψ](ξ) ≥
κ}. Thus 1{ξ≥x}(ξ) has the same functional structure as the Bayesian decision rule δα described

in the proof of the preceding theorem. Consequently, EX [(Jα[ψ](X)− κ) ∨ 0] = Vπ(α, uψ,κ).

Applying the same argument to the signal β gives

EX

[
(Jβ[ψ](Y)− κ) ∨ 0

]
≥
∫

Θ

∫
Y

1{ξ≥y}(ξ) [ψ(θ)− κ] dGβ(ξ|θ)dπ(θ),

since the operator Jβ[ψ] may not assume κ at the given outcome y. Simplifying the two iterated

integrals above and substituting them into (7) leads to

−π0κ(1− Gα(x|θ0)) + π1(c− κ)(1− Gα(x|θ1))

≥ −π0κ(1− Gβ(y|θ0)) + π1(c− κ)(1− Gβ(y|θ1)).

Since ∆x,y(θ0) ≥ 0 and ∆x,y(θ1) < 0 reverses the inequality above, we arrive at a contradiction

to Jα[ψ](X) ≥icx Jβ[ψ](Y). This completes the proof. �

4. Discussion

This section will be devoted to the discussion of the main result we established in the previous

section. The equivalence theorem gives rise to numerous important results both in statisti-

cal and Bayesian decision theory. Moreover, the theorem helps to consolidate several signal

orderings in previous literature.

The first implication of the main theorem is that for each class of payoff functions, Lehmann

precision is both necessary and sufficient for every statistician within the class to prefer one

signal to another.

COROLLARY 4.1. For each property ? ∈ {SPM, SC}, α �L β if and only if α �?
E β.

23



This result is an extension of Lehmann (1988) to the two classes of payoff functions. Fo-

cusing on the class of Karlin-Rubin monotone payoff functions UKRm (See Appendix A), he

develops a statistical signal ordering—Lehmann precision ” �L ”—such that α is larger than β

in that order if and only if every statistician with u ∈ UKRm prefers α to β. Corollary 4.1 extends

his result to U spm and U sc, respectively.

EXAMPLE 4.1 (Lehmann (1988)). Consider a quintessential one-tail hypothesis testing problem—

H0 : θ ≤ θ∗ and H1 : θ > θ∗—for a state θ∗ ∈ Θ. The associated primitive payoff function with this

test can be written

u(a0, θ) =

u0 if θ ≤ θ∗

eI I otherwise
and u(a1, θ) =

u1 if θ > θ∗

eI otherwise,

where eI and eI I (eI , eI I < 0) represent disutility from committing type I and II error, respectively, and

the action a0 and a1 represent admitting and rejecting the null hypothesis, respectively. In the action

space A = {a0, a1} endowed with an order structure a1 > a0, it can be easily shown that this payoff

function belongs to U spm, the smallest class of payoff functions we consider.

Due to Theorem 2.2, we can restrict attentions to the set of monotone decision rules, and each

d ∈ Dα,M can be described by a single point x in X at which the assigned action changes from a0

to a1. Hence, given a decision rule d = {x} and signal α, we can write the expected payoffs of d at θ as

ρα(d, θ) =

u0Gα(x|θ) + eI [1− Gα(x|θ)] if θ ≤ θ∗,

eI I Gα(x|θ) + u1[1− Gα(x|θ)] if θ > θ∗.

In order α to be more effective than β in this decision problem, namely, in order for ρα(dα, θ) ≥ ρβ(d, θ)

for all d ∈ Dβ,M, there should exist a x∗ ∈ X , for each y ∈ Y , such that

(8) Gα(x∗|θ) ≥ Gβ(y|θ) ∀ θ ≤ θ∗ and Gα(x∗|θ) ≤ Gβ(y|θ) ∀ θ > θ∗,

which is equivalent to α �L β by Lemma 2.5. Therefore, Lehmann precision is necessary for satisfying

the criterion of effectiveness with respect to U spm. �

It follows from Lemma 2.1 that α generates more statistical values V(α, u) than β if and

only if α is more effective than β. Therefore, Corollary 4.1 tells us that V(α, u) ≥ V(β, u) for

all u ∈ U spm if and only if the same inequality holds for all u ∈ U sc. Recall that U sc is a

strict superset of U spm, which makes this result somewhat contrary to the intuition that when

we narrow down the scope of payoff functions, we can rank signals with a less restrictive

condition.

To understand the insight behind this result, consider a simple decision problem with the

payoff function u(a0, θ) = 0 and u(a1, θ) = u∆(θ) defined on two possible actions. For α to be

more effective than β for this payoff function with u∆(θ) nondecreasing, it must hold that

ρα(dα, θ) = u∆(θ)[1− Gα(x|θ)] ≥ u∆(θ)[1− Gβ(y|θ)] = ρβ(dβ, θ) for every θ,
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equivalent to the condition (8). Hence, even if u∆(θ) satisfies the single-crossing property, we

arrive at the same condition since the single-crossing property of u∆(θ) solely cannot reverse

the above inequality.

Relating (i) Lehmann precision to (iii) the criterion of informativeness from the Bayesian

perspective, we can obtain the second implication of the main theorem:

COROLLARY 4.2. For each property ? ∈ {SPM, SC}, α �L β if and only if α �?
I β.

Although the statistical value of a signal is generically different from its Bayesian value

as discussed in Section 2, Lehmann precision gives a uniform signal ordering necessary and

sufficient for representing a Bayesian decision maker’s preference on the signal space.

The equivalence between α �L β and informativeness within U spm is worthy of remark.

Athey and Levin (2001) explore the value of information in a Bayesian decision problem with

a fixed prior belief π ∈ P(Θ) and U spm. They develop another signal ordering based on

posterior beliefs, named ”MIO-ND” in their paper, sufficient and necessary for α to generate

more Bayesian values than β within U spm.34 Formally, given a prior belief π, Vπ(α, u) ≥
Vπ(β, u) for every u ∈ U spm if and only if α �π

MIO-ND β, defined by

(MIO-ND) α �π
MIO-ND β if Fα(t|Mα(x) > c) ≤ Fβ(t|Mβ(y) > c), ∀ t ∈ Θ and ∀ c ∈ [0, 1].

In words, the posterior distribution of the event {θ ≤ t} conditional on the event Mα(x) >

c dominates the posterior distribution of the same event conditional on Mβ(y) > c in the

FOSD.35 As a result, given that a decision maker receives a large signal outcome, the posterior

distribution generated by α will assign more probabilities to high states compared to β.

To comprehend the relationship between (MIO-ND) condition and Lehmann precision, ob-

serve that α �L β guarantees Vπ(α, u) ≥ Vπ(β, u) for every u ∈ U spm and for every π. Hence

we infer from Corollary 4.2 that (MIO-ND) is implied by Lehmann precision.

PROPOSITION 4.3. For every π ∈ P(Θ), α �L β implies α �π
MIO−ND β.

PROOF OF PROPOSITION 4.3 : Notice that the event {x ∈ X |Mα(x) > c} has the probability of

1− c for each c ∈ [0, 1]. Let xα
c = sup{x ∈ X |Mα(x) ≤ c}. Then we use Fubini’s Theorem and

Bayes’ rule to rewrite the posterior distribution in (MIO-ND) as

Fα(t|Mα(x) > c) =
1

1− c

∫
Θ

1{θ≤t}(θ) · [1− Gα(xα
c |θ)] dπ(θ).

Hence the difference of the two posteriors Fα − Fβ reduces into

1
1− c

∫
Θ

1{θ≤t}(θ) ·
[

Gβ(yβ
c |θ)− Gα(xα

c |θ)
]

dπ(θ).

34(MIO-ND) is the abbreviation of ”Monotone Information Order for payoff functions with NonDecreasing incremen-
tal returns”. Note that we need attach the superscript π to the order, unlike Lehmann precision, since their statistical
condition is dependent upon the decision maker’s prior beliefs. Thus, applications of their result call for exact knowl-
edge of π.

35Jewitt (2007) shows that the signal ordering (MIO-ND) is equivalent to another signal ordering based on a statistical
notion—”concordance”—developed by Tchen (1980).
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We infer from Lemma 2.5 that the expression in the bracket satisfies the single-crossing prop-

erty in θ and from the definition of xα
c and xβ

c that∫
Θ

[
Gβ(yβ

c |θ)− Gα(xα
c |θ)

]
dπ(θ) = Mβ(yβ

c )−Mα(xα
c ) = 0.

Additionally, the indicator function 1{θ≤t}(θ) is nonincreasing in θ. Hence it follows from the

folk single-crossing lemma that Fα − Fβ is nonpositive.36 �

Conversely, if (MIO-ND) holds for every prior beliefs π in P(Θ), the criterion of informa-

tiveness within U spm is satisfied. Hence Corollary 4.2 leads us to the result that if α �π
MIO-ND β

for every π, α must be more Lehmann precise than β. In light of this observation and the

preceding proposition, we obtain the equivalence between Lehmann precision and (MIO-ND).

COROLLARY 4.4. α �π
MIO-ND β for every π ∈ P(Θ) if and only if α �L β.

Just as we discussed above, Corollary 4.2 tells us that α is more valuable than β for every

Bayesian decision maker with u ∈ U spm if and only if the same relation holds for everyone

with u ∈ U sc. While the implication α �sc
I β ⇒ α �spm

I β is trivial, its converse is somewhat

surprising.

From Bayesian perspectives, their equivalence is predicated on the idea that the enriched

set of prior beliefs nullifies the difference between U spm and U sc when comparing two signals

based on their Bayesian values. To be more concrete, go back to the simple decision problem

with u(a0, θ) = 0 and u(a1, θ) = u∆(θ). Suppose that α is more informative than β for every

nondecreasing function u∆(θ). By virtue of Theorem 2.4, It can be stated that for every y ∈ Y ,

there exists a x ∈ X such that∫
Θ

u∆(θ)[1− Gα(x|θ)]dπ(θ) ≥
∫

Θ

u∆(θ)[1− Gβ(y|θ)]dπ(θ) ∀ π ∈ P(Θ),

so we arrive at the same condition (8). Therefore, if there is a u∆̂(θ) crossing the axis at some

point θ̂ but violating the inequality above, there exists a u∆(θ) nondecreasing, crossing the axis

at the same point θ̂ and violating the inequality.

EXAMPLE 4.2 (Portfolio Decision Problem). Suppose that there are two assets, a safe asset with a

return of s per dollar invested and a set of risky assets R = {r : Θ → <|continuously differentiable}
where the unknown return of each risky asset is denoted r(θ) ∈ R per dollar invested. Consider an

investor having initial wealth w to invest and an increasing Bernoulli utility function v. Let a ∈ [0, w]

denote the amounts of money invested in the risky asset with r ∈ R. Then his utility function is

written ur(a, θ) = v(a[r(θ)− s] + ws). Within this family of decision problems, U sc is characterized

by the set of risky assets Rsc = {r(θ)|r(θ)− s obeys the single-crossing property in θ} and U spm by

Rspm = {r(θ)|∂2ur/∂a∂θ ≥ 0} due to Topkis (1978).

36The folk single-crossing lemma states that if a function h : Θ→ < satisfies the single-crossing property in θ and∫
Θ

h dπ = 0 for a measure π on (Θ,F ), then
∫

Θ
φ1h dπ ≥ 0 and

∫
Θ

φ2h dπ ≤ 0

for every φ1 : Θ→ < nondecreasing and φ2 : Θ→ < nonincreasing.
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Suppose that the investor receives a signal α or β by hiring an investment consultant with expertise.

By Corollary 4.2, if the investor faces a risky asset with the return r̂(θ) ∈ Rsc but prefers β to α, there

exists another investor facing a risky asset with r(θ) ∈ Rspm who also prefers β to α, and vice versa. �

The next result we can derive from the main theorem is the heart of a characterization of

Lehmann precision, which we call the dispersion theorem hereafter.

COROLLARY 4.5 (Dispersion Theorem). α �L β if and only if α �D β, i.e., for every increasing and

convex function σ,

(ICX) EX [σ ◦ Jα[ψ](X)] ≥ EY[σ ◦ Jβ[ψ](Y)]

Corollary 4.5 provides a characterization of Lehmann-precision in terms of the dispersion:

The signal α is more statistically precise than β if and only if the former generates a more dis-

persed prediction about θ than the latter. Intuitively, the decision maker with α puts more

weights on the upper or lower tails of the distribution of θ than the one with β, so the dis-

tributions of the linear operator Jα[ψ], generated by every ψ ∈ Θ∗, will be more spread out

than those of Jβ[ψ], since the monotone property of the function ψ ∈ Θ∗ will preserve this

dissemination motion of θ to each tail.

Theorem 5.2 in Lehmann (1988) provides another characterization result of α �L β based on

the dispersion, but the result is specialized to the location problem with log-concave densities

where the distributions of signals take a form of Gα(x|θ) = Gα(x− θ) and Gβ(y|θ) = Gβ(y− θ)

and their densities are log-concave in x for each θ. Since the above dispersion theorem does not

utilize any additional structures on the signal’s primitive distributions, however, it is applicable

to more distributions than the Lehmann’s result.

The dispersion theorem furnishes us with the link between Lehmann precision and several

signal orderings, based on the dispersion of a certain variable, in previous literature. This

link can be found by making a clever choice of the nondecreasing function ψ : Θ → <.

For instance, by setting ψ(θ) = θ, the theorem along with the law of iterated expectation—

EX [Jα[θ](X)] = EX [Eθ [θ|X]] = EY[Eθ [θ|Y]]—gives the second-order stochastic dominance of

conditional expectations:37

COROLLARY 4.6 (Conditional Expectations). If α �L β, E[θ|X] is dominated by E[θ|Y] in the

second-order stochastic dominance. That is, E[θ|X] ≥cx E[θ|Y].

Thus, the signal ordering based on the dispersion of conditional expectations is induced

by Lehmann precision. Using this ordering, Ganuza and Penalva (2010) study the effect of

releasing more precise information by the seller on efficient allocation and the seller’s expected

revenue in a symmetric second-price auction.38 We use the dispersion theorem to revisit their

questions in Section 5.1 and generalize some results to an asymmetric second-price auction.

The theorem can be utilized for the connection between Lehmann precision and the disper-

sion of posterior beliefs. As a signal becomes more precise in Lehmann’s sense, it generates

37Some alternative proofs can be found in Mizuno (2006) and Hernando-Veciana (2009).
38The signal ordering is named ”integral precision” in their paper. That is, α is more integral precise than β if

E[θ|X] ≥cx E[θ|Y].
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Figure 4: Mean Preserving Spread of Posterior Beliefs and Rotation Orders of Johnson and Myatt (2006)
- In subfigure (a), π{θ ≤ t} indicates the prior beliefs of the event {θ ≤ t}. The two curves display the
posterior beliefs of the same event as a function of outcomes x and y. In subfigure (b), however, the two
curves display the posterior beliefs as a function of θ conditional on the same outcome x.

more variable posterior beliefs on Θ as depicted in Figure 4-(a). Put differently, when the de-

cision maker observes an outcome from a less precise signal, her posterior beliefs of the event

{θ ≤ t} would not make a big difference with her prior beliefs π{θ ≤ t}.

COROLLARY 4.7 (Posterior Beliefs). If α �L β, Fα(θ|·) is the mean-preserving spread of Fβ(θ|·) for

each θ ∈ Θ.

PROOF OF COROLLARY 4.7 : Define ψ(θ) = 1{θ≥t}(θ) for each t ∈ Θ. Note that the indicator

function is nondecreasing in θ and the linear operator Jα[ψ](x) = 1− Fα(t|x) gives rise to the

posterior beliefs of {θ ≤ t}. In this case, the dispersion theorem presents

1− Fα(t|X) ≥icx 1− Fβ(t|Y), equivalently, Fα(t|X) ≤icv Fβ(t|Y).

See footnote 27. Since EX [Fα(t|X)] = EY[Fβ(t|Y)] = π{θ ≤ t} by Bayes’ rule, the above

increasing concave order reduces to Fα(t|X) ≤cv Fβ(t|Y). �

Ranking signals based on the dispersion of posterior beliefs, Lewis and Sappington (1994)

study the incentive of a monopolist to provide more accurate private information with poten-

tial buyers. The preceding result verifies that Lehmann precision is sufficient for inducing their

signal ordering.

This result also gives a link to the rotation order which has been developed by Johnson and

Myatt (2006) and applied by Shi (2012) for characterizing an optimal auction with endogenous

information. Formally, α �RO β requires that the posterior beliefs rotate clockwise on some

point θx as we change the signal from β to α, that is, for each x ∈ X ∩ Y , there exists a point
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θx ∈ Θ such that

(RO) F∆x(θ) , Fβ(θ|x)− Fα(θ|x) crosses the horizontal axis once from below at θ = θx.

Refer to Figure 4-(b). Since α �L β implies Fβ(θ|·) ≤cx Fα(θ|·) only, the rotation order is

stronger than Lehmann precision.

In addition, The third corollary of the dispersion theorem concerns the distribution of like-

lihood ratio. To ascertain the impact on the likelihood ratio, we note that, given a signal α, if

the density function gα(x|θ) satisfies the MLRP, then the posterior density function f α(θ|x) also

exhibits the MLRP. To see this, for every x′ > x, Bayes’ rule gives an alternative expression of

the likelihood ratio function

f α(θ|x′)
f α(θ|x) =

mα(x)
mα(x′)

· gα(x′|θ)
gα(x|θ)

Hence both of the likelihood ratios move in the same direction as θ changes. For this result

only, we assume that f α is differentiable with respect to x and let f α
x denote the derivative.

Then substituting nondecreasing function ψ(θ) = 1{ f α
x / f α(θ|x)≥κ} into (ICX) presents the next

result :

COROLLARY 4.8 (Likelihood Ratio). If α �L β, the distribution of the likelihood ratio with α

Lα(κ) , PR

(
f α
x

f α
(θ|x) ≤ κ

)

is the mean-preserving spread of Lβ(κ).

In a principal-agent model with transferable utilities, Kim (1995) asserts that, in order for

the principal to control the agent’s hidden action more efficiently, she has to offer an incen-

tive scheme based on the contractible variable X with better prediction about the likelihood

ratio, and provides an appropriate order on the experiment tailored to the bilateral contract

problem. Although we will examine the exact connection between Lehmann preciseness and

his criterion in Section 5.2, the corollary captures a simple idea that, under more precise ex-

periment, the principal is able to predict the likelihood ratio (hence, the agent’s hidden action)

more accurately.

Lastly, the dispersion theorem provides an alternative way to prove the equivalence be-

tween Lehmann precision and informativeness for U spm. The theorem enables us to present

a simple proof without the aid of the improvement principle even, although the result is im-

mediate from Corollary 3.4 as U spm ⊂ U sc. Furthermore, it plays a key role in proving the

necessity of α �L β and thus in establishing the equivalence of ordering experiments.

COROLLARY 4.9. The signal α is more informative than β with respect to the class of decision problems

U spm if and only if α �L β.

PROOF OF COROLLARY 4.9 : For sufficiency, see Appendix C. Here we establish the necessity

of α �L β for being more informative within U spm. Note that the payoff function uψ,κ presented

in the proof of Theorem 3.5 belongs to U spm for every ψ ∈ Θ∗ and κ ∈ <. The definition of α
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being more informative than β for the decision maker with uψ,κ implies Jη [ψ](X) ≥icx Jθ [ψ](Y)

for every ψ ∈ Θ∗, which is equivalent to α �L β by Corollary 4.5. �

5. Applications

In this section we use the results established above to study the value of precise information in

several important economic environments with strategic interactions; auctions, bilateral con-

tracts, and delegation.

5.1. Auctions

The aim of this subsection is to analyze the value of precise information to an auctioneer when

she is able to supply more precise private information on the object for sale with bidders and

such an information disclosure is observable to every participant.39 The question is closely

related to Ganuza and Penalva (2010). We use the dispersion theorem to extend their results

to the asymmetric auction in this subsection. Before proceeding, one should note that, unlike

the covert information acquisition, gathering precise information is not necessarily valuable to

each participant in case such activity is observable, because the change in distribution can alter

the bidding strategies of others; this second effect may hurt himself in the end.40

Consider an allocation problem where a single indivisible object is auctioned off to N risk-

neutral bidders, indexed by i, through the second-price auction.41 The true private value of the

object to bidder i is denoted by vi(s, θi), where θi ∈ Θi represents his idiosyncratic component

reflecting his preference and s ∈ S [to be added]. We assume that vi(s, θi) is nondecreasing

in θi and unknown till he wins the auction. The prior distribution π(θ1, · · · , θN) over the

space Θ1 × · · · ×ΘN is common knowledge among players, and it satisfies independence across

bidders. That is,

π(θ1, · · · , θN) = ∏
i∈N

πi(θi).

Prior to bidding, each bidder observes an outcome xi ∈ Xi affiliated with θi. The signal’s cu-

mulative distribution is Gα
i (xi|θi), where ηi measures precision level of the signal xi for bidder

i, and the posterior beliefs about θi conditional on Xi = xi is Fαi
i (θi|xi). The winning bidder’s

39Literature on auctions with endogenous information is voluminous. Refer to Bergemann and Välimäki (2006) and
its reference for survey. Following Shi (2012), the related literature segments broadly into four groups according to
whether the information acquisition activity is centralized or decentralized, and according to whether the activity is
covert or overt. Our setup falls into the category where the information acquisition is centralized—the information
structure is controlled by the seller—and the acquisition is overt. For the recent related papers, see Bergemann and
Pesendorfer (2007) and Ganuza and Penalva (2010).

40In Appendix D, the paper examines the decentralized and covert information acquisition case in a general mecha-
nism design setting and proves that the precise information is always valuable in every incentive compatible auction.

41When the information acquisition activity is overt some results depend on the number of bidders. See Proposition
5.3. When the activity is covert, however, the results are independent of the number of bidders so one can focus on
N = 2 case—like Persico (2000)—without loss of generality.
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primitive payoff function is quasilinear: ui(vi, ti) = vi − ti, where ti is a money transfer to the

auctioneer.

We assume that the auctioneer is able to select a N-tuple vector α = (α1, · · · , αN) by releas-

ing some information about the object. We call this activity the auctioneer’s information policy

in this section.42 It is common knowledge that such information release is observed by every

bidder, and thus the information structure {Gα(xi|θi), µi}i∈N of the environment is common

knowledge among the bidders and the auctioneer. Examples of such information disclosures

we have in mind include advertising, self-inspection, and marketing. Their primary function is

to allow the bidders privately to learn of their personal match with the product, i.e., to receive

more accurate information about θi.43,44

Our first result addresses the effect of the information policy on efficiency. To state the

result, we define by vα
i (·) the bidder i’s value estimate under the information policy α. Since,

in the second price auction, the unique dominant symmetric strategy for each bidder is to bid

his own value estimate, we can write the ex-ante surplus generated by α as

(9) E(α) , E [max{vα
1 , · · · , vα

N}]

I wish to remark that the following result also holds in every symmetric auction with indepen-

dent private value : 45

PROPOSITION 5.1 (Efficiency). More Lehmann-precise information generates more ex ante surplus.

The proof is immediate from the next lemma:

LEMMA 5.2 (Shaked and Shanthikumar (2007)). Let {X1, · · · , XN} be a collection of independent

random variables. Let {Y1, · · · , YN} be another collection of independent random variables. Suppose

Xi ≥icx Yi for each i. Then we have

σ(X1, · · · , XN) ≥icx σ(Y1, · · · , YN)

for every increasing and componentwise convex function σ : <N → <.

PROOF OF LEMMA 5.2 : We proceed by induction on N. For N = 1, the result is straightfor-

ward. In order to advance the induction step, we prove that if the result holds for N = k− 1 it

42In this case the information policy η is more-Lehmann precise than θ (denoted η �L θ) if αi �L βi for all i.
43The assumption on the independent prior can be justified in the situation where the ”objective quality” of the

product is unambiguously well-known to every bidder but its ”subjective quality” is uncertain.
44As pointed out by Johnson and Myatt (2006), most advertising inherits the two characteristics: (1) promotional

hype; it highlights the product’s existence, price, availability, and any objective quality, and increases the bidder’s value
estimate in the sense of First-Order Stochastic Dominance; (2) provision of real information; it helps the bidders to evaluate
their subjective preferences. Thus, we concentrate on its second role.

45The symmetric auction implies that every bidder is symmetric in the sense that the common prior and information
structures are identical across bidders, i.e., πi = π and Gα

i (xi|θi) = Gα(xi|θi) for all i ∈ N and it is common knowledge.
In such a symmetric environment, it is natural to focus on the equilibrium where each bidder adopts a symmetric
bidding strategy bi(·) = b(·), that is increasing. Hence the bidder placing the highest bid will be awarded the object,
and therefore the ex ante social surplus takes the same form as (9).
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also holds for N = k. To this end, let ψ : < → < be increasing and convex. Note that

E[ψ(σ(X1, X2, · · · , Xk))|X1 = x] = E[ψ(σ(x, X2, · · · , Xk))]

≥ E[ψ(σ(x, Y2, · · · , Yk))]

= E[ψ(σ(X1, Y2, · · · , Yk))|X1 = x].

The first equality follows from the independence assumption and the inequality from the in-

duction assumption. Integrating over X1 gives σ(X1, X2, · · · , Xk) ≥icx σ(X1, Y2, · · · , Yk). To

complete the proof, we take the same steps but now condition on Y2, · · · , Yk. Since we have

already seen that the result holds for N = 1, we have

σ(X1, X2, · · · , Xk) ≥icx σ(X1, Y2, · · · , Yk) ≥icx σ(Y1, Y2, · · · , Yk).

The proof is complete. �

PROOF OF PROPOSITION 5.1 : Suppose α �L β. For each bidder i, since vi(s, θi) is as-

sumed to be increasing in θi, vα
i ≥icx vβ

i follows from Theorem 4.5. Note that the function

maxi∈N{vα
1 , · · · , vα

N} is increasing and componentwise convex. Since the ICX order is

preserved by such a function, we obtain

max
i∈N
{vα

1 , · · · , vα
N} ≥icx max

i∈N
{vβ

1 , · · · , vβ
N}.

Taking expectation of both sides gives E(α) ≥ E(β). �

The intuition behind the result is quite straightforward: More precise information improves

the efficient allocation by increasing the probability that the object is awarded to the bidder

with the highest true value, so the total surplus increases.

Unlike the efficiency, on the other hand, the effect on the expected revenue is ambiguous. To

go into the details, note that the revenue is determined by the second-highest value estimate in

the second-price auction. However, we cannot arrange it in a variability order unlike the high-

est value estimate; the variability order of the distribution of the second-order statistic varies

depending on the number of bidders and the information structures. Put it in another way, the

dissemination of precise information increases the total surplus as we discussed above, but it

also typically increases each bidder’s information rents since his value estimate is more dis-

persed.46 Since the revenue is determined by their difference but they increase with different

ratios, we need figure out which one grows faster to study the effect on the revenue.

We should make a remark regarding the linkage principle of Milgrom and Weber (1982).

The principle demonstrates that when bidders’ true values are affiliated with additional in-

formation obtained by the seller, public disclosures of such information would increase the

expected revenue in every standard auction. This striking result (”Honesty is the best policy.”)

is predicated upon the idea that, by releasing the additional information publicly, the auction-

46The idea of relating high dispersion to more information rents can be traced back to Lewis and Sappington (1994).
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eer can have each bidder’s value estimates get closer to others’. As a result, the auction will

generate more intense Bertrand price competition between the bidders, which results in higher

expected revenue.47 However, our model assumes the independent information structures

across bidders’ true values. So more information causes the value estimates to move apart and

thus enhances privacy of each bidder’s information. Therefore, it raises the bidder’s informa-

tion rent so the expected revenue can go either way in the independent private value model.

The discussion above provides an incentive for the auctioneer to promote more participa-

tion, since a large number of bidders helps to reduce the winning bidder’s information rent.

In light of this fact, Ganuza and Penalva (2010) found that the auctioneer can benefit from re-

leasing more precise information in the second-price auction when the number of bidders is

sufficiently large. In contrast, the revenue (denoted by R(α) hereafter) is decreasing in α when

there are only two bidders as the next result shows:

PROPOSITION 5.3 (Revenue I). In case N = 2, more Lehmann-precise information is detrimental to

expected revenue.

PROOF OF PROPOSITION 5.3 : Since vα
i ≥icx vβ

i and their ex ante means are the same by the law

of iterated expectation, we have vα
i ≥cx vβ

i for each i = 1, 2, equivalently, vα
i ≤cv vβ

i . It implies

vα
i ≤icv vβ

i . Therefore, by the counterpart of Lemma 5.2 to the ICV order, we have

min{vα
1 , vα

2} ≤icv min{vβ
1 , vβ

2}.

Taking expectation of both sides gives the result. �

The next example shows that for any number of bidders, the auctioneer’s expected profit

can fall as she releases more precise information.48

EXAMPLE 5.1. Let Θi = {θ1, θ2, θ3} for all i, and v(θ1) = 0, v(θ2) = 0.9, and v(θ3) = 1.1. The

bidders’ common prior is π{θ1} = 1− ε and π{θ2} = π{θ3} = ε/2 for ε > 0. With the auctioneer’s

information policy β, each bidder has a partition on Θ {{θ1}, {θ2, θ3}}. The partition corresponding to

information policy α is {{θ1}, {θ2}, {θ3}}. That is,

gα(xk|θk) = 1 for each k = 1, 2, 3, and gβ(y1|θ1) = 1, gβ(yk|θl) =
1
2

for k, l = 2, 3.

Thus, while each bidder receives a perfectly informative signal under α, he cannot distinguish θ2 and θ3

when he receives y2 or y3. Note that we can write the expected profit generated by β as

R(β) =
N

∑
n=2

p(n) ·E[R|n, β] =
N

∑
n=2

(
N

n

)
εn(1− ε)N−n,

where p(n) is the probability that n of N bidders receive an imperfect signal—either y2 or y3—and

E[R|n, β] is the conditional expected revenue given the event n out of N bidders receive the imperfect

47In the words of McLean and Postlewaite (2002), the public disclosure of additional information can reduce the
informational size of the private signal for each bidder, so it alleviates the incentive compatibility for truthful revelation.

48I am deeply indebted to Daniel Quint for this example.
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signals. Since the bidders cannot distinguish θ2 with θ3, they will place a bid as much as the expected

value estimate 1. So E[R|n] = 1 for all n ≥ 2. Similarly, the expected revenue under η can be written

R(α) =
N

∑
n=2

p(n) ·E[R|n, α] =
N

∑
n=2

(
N

n

)
εn(1− ε)N−n ·E[R|n, α].

Note that E[R|2, α] = 0.95 < E[R|2, β] = 1, E[R|3, α] = E[R|3, β] = 1, and E[R|n, α] > E[R|n, β]

for n ≥ 4. Therefore, for arbitrary number of bidders N, there exists a sufficiently small ε such that

ε < ε leads to R(β) > R(α). 49 �

Lastly, we explore the effect on the bidders’ information rents in case N ≥ 3.50 While

it seems quite clear that more precise information increases the rent, Lehmann precision is

not enough for monotone information rents in case of overt information acquisition. To see

this, we first dissect the bidder’s information rents. Given the information policy α, let Yα
i =

maxj 6=i{vα
j } denote the highest value estimates among bidder i’s opponents and Hα

i (y) =

Pr(Yα
i ≤ y) its distribution function. With slight abuse of notations, let Fα

i (v) = Pr(vα
i ≤ v)

denote the distribution of bidder i’s value estimate. We can decompose the bidder i’s expected

payoff generated by α, denoted Ui(α), into three components as follows:

Ui(α) , E [(vα
i −Yα

i ) ∨ 0] =
∫ {∫

{v≥y}
(1− Fα

i (v))dv
}

dHα
i (y)

=
∫ {

E[Vα
i ]− y +

∫
{v≤y}

Fα
i (v)dv

}
dHα

i (y)

= E[vα
i ]−E[Yα

i ] + E[σα
i (Y

α
i )],

where the increasing and convex function σα
i is

σα
i (y) ,

∫
{v≤y}

Fα
i (v)dv.

By the dispersion theorem, α �L β along with E[vα
i ] = E[vβ

i ] implies vα
i ≥cx vβ

i , which in turn

implies σα
i (y) ≥ σ

β
i (y) for every y in the support of Hα

i . Additionally, note that Yα
i ≥icx Yβ

i

follows from Lemma 5.2 and that the function σ
β
i is increasing and convex. Putting them

together, we have

E[σα
i (Y

α
i )] ≥ E[σ

β
i (Y

α
i )] ≥ E[σ

β
i (Y

β
i )], i.e., E[σα

i (Y
α
i )] ≥ E[σ

β
i (Y

β
i )].

The last inequality above can be interpreted as the bidder i’s gain from more precise informa-

tion; since more Lehmann-precise information causes his value estimate to be more dispersed,

49We should make a note that this example does not contradict with the result in Ganuza and Penalva (2010). Theo-
rem 5 in their paper states that given two information structures, i.e., given ε > 0, there exists N such that if the number
of bidders exceed N the revenue is increasing.

50As we already have shown in Proposition 5.3, the revenue falls in case N = 2. As its immediate consequence, the
information rent will increase in this case.
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it is advantageous to the information rent. However, this also applies to his opponents. Hence

E[Yα
i ] ≥ E[Yβ

i ], i.e., precise information would cause his opponents to bid more aggressively,

which becomes disadvantageous to the bidder i’s payoffs.

In addition to Lehmann precision, therefore, the next inequality is essential for the mono-

tone information rents:

(10) E[σα
i (Y

α
i )]−E[σ

β
i (Y

β
i )] ≥ E[Yα

i ]−E[Yβ
i ].

It reduces into a simple inequality in the symmetric second-price auction where πi = π and

Gα
i = Gα for all i, as the next proposition shows.

PROPOSITION 5.4 (Bidder’s Information Rent). In the symmetric second-price auction more

Lehmann-precise information generates more each bidder’s expected payoff, provided the following

inequality holds:

(11)
∫
{v≥α(p)}

(1− Fα(v))dv ≥
∫
{v≥β(p)}

(1− Fβ(v))dv, ∀ p ∈ [0, 1],

where α(p) and β(p) are the p-quantiles of the cumulative distribution functions Fα and of Fβ, respec-

tively. That is, Fα(α(p)) = Fβ(β(p)) = p.

PROOF OF PROPOSITION 5.4 : Note that, in the symmetric auction, the difference between the

benefits and costs to the information rents can be written by

E[σα
i (Y

α
i )]−E[Yα

i ] = (N − 1)
∫ {∫

{v≤y}
Fα(v)dv− y

}
[Fα(y)]N−2 f α(y)dy

= (N − 1)
∫ 1

0

{∫
{v≤α(p)}

Fα(v)dv− α(p)
}

pN−2dp,

where the bottom line is due to the change of variable p = Fα(y). Now we show that the given

condition (11) is equivalent to

(12)
∫
{v≤α(p)}

Fα(v)dv− α(p) ≥
∫
{v≤β(p)}

Fβ(v)dv− β(p) for each p ∈ [0, 1],

which is clearly sufficient for (10) to hold. To see this, we integrate the left-hand side of the

inequality (12) by parts to obtain∫
{v≤α(p)}

Fα(v)dv− α(p) =
∫
{v≥α(p)}

(1− Fα(v))dv−E[vα
i ].

Since E[vα
i ] = E[vβ

i ] by the iterated law of expectation, the desired result follows. �

It is worth comparing the condition (11) with Lehmann precision. To interpret the condi-

tion, note that a simple integration by parts gives∫
{v≥α(p)}

(1− Fα(v))dv = E[(vα
i − α(p)) ∨ 0].
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Hence the condition is equivalent to E[(vα
i − α(p)) ∨ 0] ≥ E[(vβ

i − β(p)) ∨ 0] for every p ∈
[0, 1].51 But it is in accord with high dispersion at least, since the inequality requires that the

random variable vα
i have more weight in the upper tail than vβ

i . The next result shows that the

condition is connected with one variability order:

COROLLARY 5.5 (Ganuza and Penalva (2010)). Suppose that the index set E is the dispersive-

ordered, i.e., α > β implies vα
i ≥disp vβ

i . Then the bidder’s information rent is nondecreasing in α.

PROOF OF COROLLARY 5.5 : Recall that

vα
i ≥disp vβ

i provided Fα(q)−1 − Fα(p)−1 ≥ Fβ(q)−1 − Fβ(p)−1

for all p, q ∈ [0, 1] and p ≤ q.52 Given p, let α(p) = Fα(p)−1 and β(p) = Fβ(p)−1. Then we

integrate the inequality above with respect to q ≥ p = Fα(α(p)) = Fβ(β(p)) to get

∫ 1

Fα(κ1)
(Fα(q)−1 − κ1)dq ≥

∫ 1

Fβ(κ2)
(Fβ(q)−1 − κ2)dq

Changing the variable Fe(q)−1 = x for each e = α, β and integrating by parts yields the

condition (11). Since vα
i ≥disp vβ

i together with their same mean implies vα
i ≥icx vβ

i , it follows

from the dispersion theorem that α is more Lehmann-precise than β. Therefore, the monotone

information rents follow from the preceding proposition. �

It is a routine task to check that the condition (11) is not necessary for the dispersive order

of the value estimates. Hence Proposition 5.4 is a generalization of Ganuza and Penalva (2010).

We conclude this subsection with the following remarks:

REMARK 1 : When the value of estimates are arranged in the dispersive order, Ganuza and

Penalva (2010) show that the auctioneer’s revenue function R(α; N) obeys the supermodular-

ity in (α; N), i.e., there is strategic complementarity between α and N from the auctioneer’s

point of view. Consequently, unless the cost C(α) the auctioneer has to incur for releasing

information α relies on N, the auctioneer will provide more precise information as more

bidders participate.

REMARK 2 : The second remark concerns the auctioneer’s incentive to supply more infor-

mation. If the condition (11) holds, the auctioneer would release less information compared to

the efficient precision level since the condition guarantees that E(α)− R(α) = ∑i Ui(α) is non-

decreasing in α; that is, the marginal revenue from more information would be smaller than

51Recall from the dispersion theorem that α �L β implies vα
i ≥icx vβ

i , but it is equivalent to E[(vα
i − c) ∨ 0] ≥

E[(vβ
i − c) ∨ 0] for every common constant c, while the given condition is based on every p-th quantile. Jewitt (1989)

extended the mean-preserving spread of Rothschild and Stiglitz (1970) to present a location-independent variability
order (also known as dilation order in statistics literature), but it is also based on the quantiles of each distribution.

52In Ganuza and Penalva (2010), the dispersive order is called ”supermodular precision”.
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the corresponding marginal efficiency. Consequently, for any arbitrary cost function C(η), the

following monotone comparative static result holds.

argmax
α∈E

E(α)− C(α) D argmax
η∈E

R(α)− C(α).

This result is readily extended to every symmetric standard auction due to the revenue

equivalence theorem.

REMARK 3 : Bergemann and Välimäki (2002) showed that when bidders gather information

covertly on their own before participating in an IPV auction, the second-price auction provides

the (socially) efficient incentives for information acquisition with the bidders, provided the to-

tal cost incurred by them is additively separable, i.e., C(α1, · · · , αN) = ∑i ci(αi). One important

implication from the preceding remark is, therefore, if a mechanism designer could decide on

the information policy in the IPV auction, the decentralized covert information acquisition is

more beneficial to the efficient information structure than the centralized overt information

acquisition.

5.2. The Principal-Agent Problem

In this subsection we revisit the efficiency of information systems in a principal-agent model.

The main inquiry is to rank two contractible variables for a principal who wants to control an

agent’s unobservable action, and it has been studied by Kim (1995) in the context of the first-

order approach. The aim of this subsection is to examine the relationship between Lehmann-

precision and the MPS criterion developed in his paper. It is shown that these two statistical

notions are equivalent, in case the two contractible variables have a sufficiently smooth distri-

bution function.

Kim (1995) considers a bilateral contract problem between a principal (she) and an agent

(he). The scheme of the contract game is a typical moral hazard problem; the principal designs

a contract to make him an offer, and the agent decides whether to accept, and if he accepts

the contract he chooses a productive but hidden action; as a result, both the participants’ pay-

offs are realized. Before she decides what contract to offer, however, she must ponder which

variable the contract has to be contingent on.

To go into the details, suppose that there are two random variables X and Y, both of which

are contractible and verifiable. Let F(x|a) and G(y|a) denote the X’s and Y’s distribution,

respectively, given the agent’s effort a ∈ A. In this subsection, we assume that the supports

of X and Y—denoted X and Y , respectively—are a unit interval [0, 1]. We assume that both

distributions are absolutely continuous and thus they are endowed with the density functions

f (x|a) and g(y|a) with respect to Lebesgue measure, respectively. In addition, we shall assume

that the density functions obey the MLRP and they are differentiable with respect to a.

Let u(w, a) = v(w)− c(a) denote the agent’s payoff function, where the utility v(w) from

monetary transfer w ∈ <+ is increasing and concave whereas the disutility c(a) the agent

incurs from exerting effort a ∈ A is increasing and convex. For each distribution F(x|a),
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in order to implement an action a at minimum cost, the principal must solve the following

optimization problem:53

min
s∈Ψ

ρF(s, a) ,
∫ 1

0
s(x)dF(x|a)

subject to

∫ 1

0
u(s(x))dF(x|a)− c(a) ≥ U(IR)

a ∈ argmax
a′∈A

∫ 1

0
u(s(x))dF(x|a′)− c(a′).(IC)

Let sa
f ∈ Ψ denote the efficient incentive scheme implementing a under information system

F, i.e., the solution to the optimization problem above. Similarly, let sa
g be the solution under

G. In this context, we say that the information system F is more efficient than G provided

ρF(sa
f , a) ≤ ρG(sa

g, a) for all a ∈ A. That is, the more efficient information system alleviates the

agent’s incentive problem associated with his hidden effort.

In the differentiable environment where the first-order approach is valid, Holmström (1979)

showed that the efficient incentive scheme sa
f under F must satisfy the following first-order

condition:54

(13)
1

u′(sa
f (x))

= λ f + µ f · la
f (x),

where λ f and µ f is the Lagrange multiplier for the (IR) and (IC) condition, respectively, and la
f

is the likelihood ratio function:55

la
f (x) =

∂

∂a
log f (x|a) = fa

f
(x|a).

In this circumstance, the MPS criterion developed by Kim (1995) states that if la
f is the mean-

preserving spread of la
g for all a ∈ A, then F is more efficient than G.56 In terms of a variability

order, we can simply rewrite the criterion as la
f (X) ≥cx la

g(Y) for all a since those two functions

have the identical mean 0; E[la
f (X)] = E[la

g(Y)] = 0. To understand the intuition behind this

comparative static result, observe from (13) that the likelihood ratio function, rather than the

density function itself, directly conveys information on the agent’s action to the principal.57

Hence, for F to be more efficient in a moral hazard problem, the corresponding contractible

53By Grossman and Hart (1983), the principal-agent problem with hidden action should be split into two parts: First,
the principal computes the least expected cost necessary for the agent to take an action a∗, and then she considers which
a∗ ∈ A should be implemented based on her payoff function.

54See Jewitt (1988) for the sufficient and necessary conditions on F(x|a) under which the agent’s expected payoff in
(IC) is strictly concave in a′, and thus the stationary point becomes the solution to (IC).

55When the density function f (x|a) is differentiable with respect to a, Milgrom (1981) shows that f (x|a) has the MLRP
if and only if the likelihood ratio la

f (x) is increasing in x ∀ a.
56Jewitt (2007) shows that the MPS criterion is also necessary for efficiency.
57Grossman and Hart (1983) showed that F is more efficient than G if F is Blackwell-sufficient for G. However, the

sufficiency puts a condition on the density function.
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variable X to F allows the principal to estimate the likelihood ratio la
f more accurately.

The following proposition shows that Lehmann-preciseness is equivalent to the MPS crite-

rion. As a consequence, more Lehmann-precise contractible variable is sufficient and necessary

for reducing the cost of the contract.

PROPOSITION 5.6. F is more Lehmann-precise than G if and only if la
f ≥cx la

g for all a ∈ A.

PROOF OF PROPOSITION 5.6 : (Sufficiency) Recall from Definition 2.6 that F �L G implies that

for each y ∈ [0, 1] there exists an increasing function Ty : A → [0, 1] for which F(Ty(a)|a) =

G(y|a) ∀ a ∈ A. Using Leibniz integral rule, we take the derivative of it with respect to a to

obtain

∫ y

0
ga(t|a)dt = f (Ty(a)|a) · ∂

∂a
Ty(a) +

∫ Ty(a)

0
fa(t|a)dt.

Since Ty(a) is increasing with a, the equation above leads us to:

∫ y

0
la
g(t)g(t|a)dt ≥

∫ Ty(a)

0
la

f (t) f (t|a)dt.

Let cy = la
g(y). Adding cy[1− G(y|a)] = cy[1− F(Ty(a)|a)] to both sides of the last inequality

and integrating the left-hand side by parts yields

∫ 1

0

(
la
g(t) ∧ cy

)
g(t|a)dt ≥ cy[1− F(Ty(a)|a)] +

∫ Ty(a)

0
la

f (t) f (t|a)dt,

Since the likelihood ratio la
f is increasing, for all τ ∈ [0, 1], we have58

cy[1− F(τ|a)] +
∫ τ

0
la

f (t) f (t|a)dt ≥
∫ 1

0

(
la

f (t) ∧ cy

)
f (t|a)dt.

Putting the two inequalities together, we obtain E
[
la
g(Y) ∧ cy

]
≥ E

[
la

f (X) ∧ cy

]
for each

cy ∈ <. Since every concave function lies in the closed convex hull of the set {x ∧ c|c ∈ <} up

to constants, we have la
g ≥cv la

f . Since both the likelihood ratio functions have the same mean,

la
f ≥cx la

g follows.

(Necessity) To show the converse, suppose on the contrary that la
f ≤cv la

g but F is not more

Lehmann-precise than G. Then it follows from Lemma 2.5 that for some x, y ∈ [0, 1], there

exists an ε > 0 such that for all a∗ ∈ (a, a + ε), G(y|a) = F(x|a) but G(y|a∗) < F(x|a∗). Note

58To see this, define the function ψ : [0, 1]→ < as

ψ(τ) = cy [1− F(τ|a)] +
∫ τ

0
la

f (t) f (t|a)dt.

Then its derivative ψ′(τ) is f (τ|a)(la
f (τ)− cy), and thus in case la

f (·) is increasing, it satisfies the single-crossing property
in τ and crosses the horizontal axis when la

f (τ) = cy, where the function ψ assumes the minimum value, E[la
f (X) ∧ cy].

39



that

(14) G(y|a∗)− G(y|a) =
∫ y

0

(
g(t|a∗)
g(t|a) − 1

)
g(t|a)dt.

Let cx = f (x|a∗)/ f (x|a)− 1. By the assumptions we made above, we have

cx [1− G(y|a)] + G(y|a∗)− G(y|a) < cx [1− F(x|a)] + F(x|a∗)− F(x|a).

Using (14), we can rewrite the inequality as

(15)

cx [1− G(y|a)] +
∫ y

0

(
g(t|a∗)
g(t|a) − 1

)
g(t|a)dt

< cx [1− F(x|a)] +
∫ x

0

(
f (t|a∗)
f (t|a) − 1

)
f (t|a)dt.

Note that, by the Lebesgue Dominated Convergence Theorem, the right-hand side of

the inequality converges to E[la
f (X) ∧ cx] as ε goes to 0. Moreover, the left-hand side

is greater than E[la
g(Y) ∧ cx] as we have pointed out in footnote 58. Hence, (15) gives

E[la
g(Y) ∧ cx] < E[la

f (X) ∧ cx], a contradiction. The proof is complete. �

We conclude the value of information in an agency model with the following remarks:

REMARK 1 : Proposition 5.6 generalizes the characterization result (Proposition 5) in Kim

(1995), which demonstrates that Blackwell sufficiency implies the MPS criterion. Additionally,

Kim showed with a counterexample that Blackwell sufficiency is not necessary for the MPS to

hold. However, one can easily check that the counterexample satisfies Lehmann precision.

REMARK 2 : Kim (1995) illustrates via the counterexample that a Bayesian decision problem

is generically different from an agency model in the sense that while the unknown state in a

decision problem is to be estimated by the decision maker, the unobservable agent’s action in

the agency model is to be controlled by the principal. As Lehmann (1988) highlighted, however,

Blackwell sufficiency is too restrictive to compare signals in many situations. Proposition 5.6

is, therefore, in substantial accord with the idea of Grossman and Hart (1983) that more precise

information helps the principal to alleviate the incentive compatibility issue.59

REMARK 3 : When the first-order approach is not valid, Lehmann precision is not a suitable

ordering in an agency model. To see this, recall from the example in Grossman and Hart (1983)

that the MLRP per se does not guarantee monotonicity of the efficient incentive scheme for

every a ∈ A. Intuitively, for a finite action space A = {a1, a2, a3} with a1 < a2 < a3, if

the principal wishes to implement an intermediate level of effort (a2), but if the associated

IC conditions with a1 and a3 are simultaneously binding, she is willing to pay less for higher

59Grossman and Hart (1983) show that the Blackwell sufficient signal guarantees a more efficient information system
in a general environment where the first-order approach is not valid.
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outcomes.60 Consequently, sa
f (x) is not monotone in x, where Lehmann-precise information is

not necessarily more valuable to the principal. Refer to Jewitt (2007) for a concrete example.

5.3. Delegation

The final application concerns the value of information in an organization where internal con-

tingent transfer is infeasible.61 Suppose that a principal and an agent have to make a collective

decision under uncertainty. The principal has the formal authority (a legal right) to make the

decision, but she lacks some of the relevant information required to make the decision. In this

setting, she often delegates the decision process to the agent and allows him to take an action

on her behalf, so that she can utilize the agent’s information.62 The problem is, however, that

their preferences are not necessarily aligned. The delegation problem, initiated by Holmström

(1977, 1984), deals with such a tradeoff between the agent’s superior information and his biased

preference.

To state the problem of our interest formally, consider a project selection problem. Let A =

{a1, · · · , an} denote the set of n possible projects and Θ = [θ, θ] represent the space of unknown

states. The principal’s and the agent’s payoff functions are v(a, θ) and u(a, θ), respectively. For

each selected project ak, both v(ak, θ) and u(ak, θ) are assumed to be measurable mappings from

Θ to <. Furthermore, we shall assume that v(a, θ) is supermodular in (a; θ) and u(a, z) satisfies

the single-crossing property in (a; θ).

Let π ∈ P(Θ) be the common prior on Θ. Without any loss of generality, we assume that

for each ak ∈ A,

π

{
θ ∈ Θ| ak ∈ argmax

a∈A
u(a, θ)

}
> 0 and π

{
θ ∈ Θ|ak ∈ argmax

a∈A
v(a, θ)

}
> 0;

that is, every project is rationalizable for each party in a subset of Θ with a strictly positive

measure.63

Suppose that the agent purchasing the signal α privately receives an outcome x ∈ [0, 1]

affiliated with θ, which is drawn from a distribution Gα(x|θ), before selecting a project. Sup-

pose, in addition, that the marginal distribution of x is uniform on the interval [0, 1] for each

of the two signals we compare.64 Then the agent uses Bayes’ rule to update his belief about

60When the first-order approach holds, however, only IC for the next lower action (a1) is binding. Furthermore, the
monotone property of the optimal scheme immediately follows from the first-order condition (13).

61It might be either because the two parties do not have any contractible variables or because such a transfer rule is
illegal itself. For more specific examples, see Alonso and Matouschek (2008).

62In this case, the principal delegates the agent the real authority (effective control over decision) with commitment.
Refer to Aghion and Tirole (1997) for detailed discussion on the formal and real authorities. If the principal does not
have such a commitment power, the game belongs to a cheap-talk game, developed into a theory by Crawford and Sobel
(1982).

63It is worth noting that this assumption does not cause any loss of generality: let AP ⊂ A denote the set of projects
rationalizable for the principal, and AS ⊂ A for the agent. In a standard delegation problem, it is the principal who
determines the set of possible projects but the agent with real authority will choose one in AS only. Therefore, any
supersets of AP ∩ AS will provide the same expected payoffs with the principal.

64The assumption that the marginal distribution is independent of the signals is crucial in this subsection. Under this
assumption, we regard the cdf Mη(x) as the outcome rather than x itself. If the density function of Mη is atomless, then
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θ which is denoted Fα(·|x), given the signal realization x. Then his optimal project-selection

rule δα : [0, 1] → A can be represented by a n− 1-tuple vector {x1, · · · , xn−1} with x0 = 0 and

xN = 1; for xk−1 ≤ x ≤ xk, the project ak maximizes the interim expected payoffs:

ak ∈ argmax
a∈A

∫
Θ

u(a, θ)dFα(θ|x).

In this context, we can write the principal’s ex ante payoffs from the delegation as

R(α) , Eθ

[∫
X

v(δα(x), θ)dGα(x|θ)
]

.

Similarly, the agent with the signal β privately observes an outcome y ∈ [0, 1] drawn from

a distribution Gβ(y|θ), and his optimal selection rule δβ can be described by another n − 1-

tuple vector {y1, · · · , yn−1}. Let R(β) denote the principal’s ex ante payoffs from delegating

authority to the agent with β.

The central question in this subsection is when the principal benefits from a more informed

agent in the delegation? In other words, we are interested in the condition for R(α) ≥ R(β)

where the signal α is more Lehmann-precise than β. To obtain this comparative static result, it

seems natural that both the parties’ payoff functions are to be sufficiently aligned.

For simple exposition, we define, for each k = 1, · · · , N − 1, the expected incremental

returns from selecting the next project (ak+1) conditional on x as

u∆α
k (x) =

∫
Θ
[u(ak+1, θ)− u(ak, θ)] dFα(θ|x) and v∆α

k (x) =
∫

Θ
[v(ak+1, θ)− v(ak, θ)] dFα(θ|x)

to the agent and to the principal, respectively.

DEFINITION 5.1 (Aligned Preferences). Given the two signals α, β and the agent’s projection selec-

tion rules δα = {x1, · · · , xn−1} and δβ = {y1, · · · , yn−1}, we say that the principal’s preference is

aligned with the agent’s preference provided for each k = 1, · · · , n− 1,

for xk < yk, u∆α
k (x) ≥ 0 ⇒ v∆α

k (x) ≥ 0 but for xk > yk, v∆α
k (x) ≥ 0 ⇒ u∆α

k (x) ≥ 0.

Recall that the function u∆α
k : [0, 1] → < changes its sign from negative to positive at the

cutoff point xk, and that both u∆α
k and v∆α

k satisfy the SCP in x. For xk < yk, the aligned

preferences, therefore, require that the function v∆α
k crosses the horizontal axis before u∆α

k does

as is illustrated in Figure 5. In contrast, for xk > yk, the function u∆α
k has to cross the axis first

for the aligned preferences.

The next proposition shows that the condition is sufficient for the principal to gain from the

better informed agent in the delegation.

PROPOSITION 5.7 (Value of Information in Delegation). Suppose that the two parties’ payoff func-

tions are aligned. Then the principal benefits from the agent with more Lehmann-precise information.

both Mη(x) and x contain the same information. For this reason, many literature (for instance, Szalay (2009)) works
with Mη(x) instead of x itself. Nevertheless, the assumption restricts either the set of possible experiments or the set of
priors.
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X

<

0 xk

u∆α
k (x)

v∆α
k (x)

Figure 5: Aligned Preferences for xk < yk

PROOF OF PROPOSITION 5.7 : See Appendix E.

Proposition 5.7 grasps the basic intuition that when the principal’s and the agent’s interest

are sufficiently congruent, the principal can gain from the better informed agent. The proof ex-

ploits an immediate result of the dispersion theorem that if the principal faces a more informed

agent, more dispersed is the expected incremental returns from taking the next higher project;
v∆α

k (X) ≥icx
v∆β

k (Y). In other words, the choice between the two adjacent projects becomes

riskier. Since a more informed agent will put more weights on the signal realization, his opti-

mal selection rule becomes more sensitive to change in x. Consequently, for such a strategy to

be more beneficial to the principal, their preferences must be aligned.

However, the result is deficient to the extent that it requires a substantial amount of struc-

ture on the primitive payoff functions, since the condition is based on the change in the agent’s

optimal rule responding to change in the information structure. In fact, unless the preferences

are perfectly aligned, a general discussion of the value of information is very problematic with-

out formulating how the agent’s optimal rule changes. The example below illustrates this

point:

EXAMPLE 5.2. Let θ be uniformly distributed on the unit interval (0, 1). From the signal β, the agent

has a partition on Θ as follows: {(
0,

1
2

)
,
(

1
2

,
3
4

)
,
(

3
4

, 1
)}

The information partition corresponding to the signal α is{(
0,

1
4

)
,
(

1
4

,
1
2

)
,
(

1
2

,
3
4

)
,
(

3
4

, 1
)}

On the other hand, the principal’s information partition is {(0, 1)}. Note that α �L β.65

65For θ1 ∈ (0, 1/4) and ŷ ∈ (0, 1/4), the T-transformation isTŷ(θ1) = 1
2 ŷ. For θ2 ∈ (1/4, 1/2), however, Tŷ(θ2) =

2ŷ+1
4 . Accordingly, Tŷ is increasing in θ and thus α is more precise in Lehmann’s notion. In fact, α is Blackwell sufficient
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Let A = {a1, a2, a3} with a1 < a2 < a3. The payoffs are given in the table below, where θi ∈(
i−1

4 , i
4

)
i ∈ {1, 2, 3, 4}. In each entry, the first number indicates the principal’s payoffs and the

second number indicates the agent’s payoffs.

States
Projects θ1 θ2 θ3 θ4

a1 (10,10) (10,4) (0,2) (0,0)
a2 (5,3) (5,7) (5,5) (7,7)
a3 (0,0) (0,5) (1,4) (10,10)

Table 1: A better information may hurt the principal.

It is easy to see that each payoff function belongs to U spm, and that the agent’s optimal project

selection rule is δβ = {1/2, 3/4, 1} under β but δα = {1/4, 3/4, 1} under α. Note that 1/4 = x1 <

y1 = 1/2. The aligned preference requires, in this circumstance, that u∆α
1(x) ≥ 0 imply v∆α

1(x) ≥ 0.

However, for x2 ∈ (1/4, 1/2),

u∆α
1(x2) = u(a2, θ2)− u(a1, θ2) ≥ 0 but v∆α

1(x2) = v(a2, θ2)− v(a1, θ2) < 0.

Now we show that the principal gets worse off as the agent gets more informed, even though she is able

to optimally choose a delegation set D∗, an element of the power set of A.

Under the signal β, the agent’s optimal selection rule is perfectly aligned with the principal’s. Thus,

full delegation D∗ = A is optimal. The expected payoff from the full delegation is R(β) = 8.75. Under

the more precise signal α, it can be shown that full delegation is still optimal, although the agent’s

optimal project is a2 for x ∈ (1/4, 1/2) which is misaligned with the principal’s. The signal α, however,

yields R(α) = 7.5 to the principal. Therefore, the marginal value of precise information for the principal

R(α)− R(β) is negative. �

6. Conclusion

The main purpose of this paper has been to develop a new approach to ordering signals in

a rich class of economic decision problems and integrate it with the three well-known signal

orderings. As a result, I established the equivalence of the four different ways to rank signals

between Lehmann precision, the effectiveness, the informativeness, and the dispersion. I used

this equivalence theorem to find the sufficient and necessary condition for one signal to be

more valuable than another in the two branches of decision theory within several classes of

preferences, frequently used in nearly every subfield of economics and statistics.

Also, I derived from the theorem the exact characterization of precise signals in terms of

dispersion, associating the precision of signals with high dispersion of predictions about un-

certainty. I showed that this characterization result justifies, in a unified way, other signal

orderings developed by previous literature. Furthermore, I showed how the result can be ap-

for β.
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plied to several strategic settings, in each of which I ascertained the impact of precise signals

on players’ payoffs.

This paper provides a natural guide to future research. Built upon the binary preference

relation over the signal space, one natural question ripe for study is the demand for informa-

tion. To this purpose, an essential prerequisite is the systematic analysis of the marginal value of

information. Initial efforts have been done by Persico (2000), but practical applications of his

result are rare at best since it calls for a great deal of structures on payoff functions and even

the decision maker’s optimal decision rules.

While I talked about the value of information from Bayesian perspectives, I in fact adopted

the strong criterion such that for one signal to be more valuable than another, the signal should

yield more ex ante values to every decision maker irrespective of her prior information. How-

ever, in many economic applications, decision makers possess prior beliefs with a common

property such as unimodal densities, and thus it is reasonable to utilize the additional struc-

ture on the set of priors. It will be interesting to investigate how such a structure of prior beliefs

affects the decision maker’s preference over the signal.

Another subject is the value of information in the presence of strategic interaction between

decision makers. Although the dispersion theorem provides a method for analysis in some

environments, a new approach for ordering signals should be developed to accommodate the

strategic interaction. A recent study by Bergemann and Morris (2013) addresses this issue in

a general game environment, in line with Blackwell (1951, 1953), by introducing a new signal

ordering (named the individual sufficiency). A natural question that will arise in mind is what

if we restrict our attention to a subclass of games in the same spirit with Lehmann (1988). The

most interesting class would be the games with strategic complementarities (the supermodular

games) developed by Milgrom and Roberts (1990).
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Appendices

A. The Karlin-Rubin Monotone Property

In this appendix, we introduce another class of payoff functions, to which most of primitive

functions in statistics—such as hypothesis testing and estimation problems—belong. We also

revisit Lehmann’s Theorem to compare his improvement principle with the principle devel-

oped in Lemma 3.3. Also, we establish the equivalence of the four signal orderings within this

class.

We begin with a formal definition of the class of payoff functions to be studied.

DEFINITION A.1 (KRM Family, Karlin and Rubin (1956)). A family {u(·, θ)}θ∈Θ of payoff func-

tions obeys the Karlin-Rubin Monotone property (KRM, and we write u ∈ UKRm) provided (MCS) the

set of maximizers A∗(θ) = argmaxa∈A u(a, θ) is nondecreasing with θ in the strong set order and (SP)

u(a, θ) is nonincreasing with a away from the A∗(θ) for each θ.

The KRM family stems from the two properties: (MCS) for monotone comparative statics

and (SP) for the single peak. Here, the condition (SP) reduces to a quasiconcave payoff function

in a for each θ when the action space is given by a convex set.66

Before proceeding, it is worth noting that the KRM family is distinct with the SCP family

as is pointed by Jewitt (2007). To see that the KRM does not necessarily satisfy the SCP, refer

to the subfigure (a) in Figure 6, where u(a, θ) is described as a function of a for each state θ ∈
{θL, θH} with θL < θH . For each state θ, u(a, θ) has a single peak and the peak at θH—labeled

by a∗(θH)—is larger than a∗(θL). Hence it satisfies the two given conditions so u ∈ UKRm.

However, note that the incremental returns from taking a′′ instead a′ is nonnegative in θL but

is negative in θH , so the payoff function violates the SCP.

Likewise, the SCP does not imply the KRM. The subfigure (b) displays an example, where

for each of three possible actions, the payoff function is sketched as a function of θ.67 The

example provides two possibilities depending on whether the payoff when a2 is taken is either

u(a2, θ) or û(a2, θ), holding u(a1, θ) and u(a3, θ) fixed. In both cases, one can easily verify that

the SCP is satisfied.68 However, in case u(a2, θ) is below the intersection between u(a1, θ) and

u(a3, θ), the payoff function is not a KRM family since it violates the condition (SP) for the state

θ ∈ (θ2, θ1).

We first establish the next two features of the KRM property in a finite action space.

LEMMA A.1. Suppose that A = {a1, · · · , an} is the set of n possible actions. For every u ∈ UKRm, the

incremental returns from the next higher action rather than ak, denoted u∆k(θ) , u(ak+1, θ)−u(ak, θ),

satisfy the single crossing property in θ.69

66In light of this fact together with (MCS), this family is dubbed ”quasiconcave payoff functions with increasing peaks” in
Quah and Strulovici (2009). The term ”Karlin-Rubin Monotone” is taken from Jewitt (2007).

67Quah and Strulovici (2009) provides another interesting example of production planning with a state-dependent
cost where the producer’s profit function satisfies the KRM but violates the SCP.

68Note that both of them are supermodular in (a; θ). Therefore, the examples in Figure 6 also tell us that there is no
relationship between U spm and UKRm, either.

69It should be clear that this property does not imply UKRm ⊂ U sc, since the single-crossing property does not
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<

A
a′ a′′a∗(θH)a∗(θL) a′′

u(a, θL)

u(a, θH)

(a) A convex action space

<

Θ
θ̂1 θ̂2θ2 θ1

u(a3, θ)

u(a1, θ)

u(a2, θ)

û(a2, θ)

(b) A finite action space A = {a1, a2, a3}

Figure 6: The KRM and SCP Family - There is no relationship between the two classes. The both classes
are included in the IDO class, however.

PROOF OF LEMMA A.1 : Suppose that u∆k(θk) ≥ 0 for some θk. By (SP) in Definition A.1,

it must be the case that min A∗(θk) ≥ ak+1 > ak, where min A∗(θk) indicates the smallest

element in A∗(θk). For every θ ≥ θk, (MCS) implies min A∗(θ) ≥ min A∗(θk) ≥ ak+1. Hence
u∆k(θ) ≥ 0 is immediate from (SP). �

An intrinsic feature of UKRm that U sc does not possess is the following:

LEMMA A.2. Let u ∈ UKRm and A = {a1, · · · , an}. For the three adjacent actions ak+2 > ak+1 > ak

in A, suppose that u∆k and u∆k+1 cross the horizontal axis at θk and θk+1, respectively. Then θk+1 ≥ θk.

PROOF OF LEMMA A.2 : We argue by contradiction. Suppose to the contrary that θk+1 < θk.

Then there exists a state θ∗ ∈ (θk+1, θk) at which u∆k+1(θ
∗) ≥ 0 but u∆k(θ

∗) < 0. u∆k+1(θ
∗) ≥ 0

implies ak < ak+1 < ak+2 ≤ min A∗(θ∗), which in turn implies u∆k(θ
∗) ≥ 0, a contradiction. �

The preceding lemma clarifies why the payoff function depicted in Figure 6-(b) is not an

element of UKRm; when u(a2, θ) is below the intersection of u(a1, θ) and u(a3, θ), we have

θ2 < θ1 where θ1 and θ2 denote the points at which u∆1 and u∆2 change the sign from negative

to positive, respectively.70

Focusing on this class of payoff functions, Lehmann (1988) proves that the signal α is more

effective than another signal β with respect to the class UKRm if and only if α �L β. Put differ-

necessarily hold for any other higher actions than ak+1. In a binary action space, however, the inclusion UKRm ⊂ U sc

holds. Furthermore, since (MCS) is implied by the SCP and (SP) is always true in a binary action space, the two classes
are equivalent. Therefore, this result provides an alternative proof of necessity of the SCP, in a binary action space, for
the monotone comparative statics in Milgrom and Shannon (1994).

70However, by reassigning higher values than the intersection to u(a2, θ) or by simply ruling it out, the KRM property
can be obtained.
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ently, he develops a statistical signal ordering which is equivalent to the signal ordering based

on the statistical values within UKRm.71 Like the proofs of Theorem 3.1 for U sc, he suggested

one way to find a monotone decision rule dα that makes every statistician within the class bet-

ter off for every monotone decision rule d ∈ Dβ,M, and then exploited the essentially complete

class theorem to complete the proof.

Before turning to the next result, it is instructive to compare his improvement principle

with the principle developed in Lemma 3.3. To go into details, we work with a finite action

space A = {a1, · · · , an}. Given a payoff function u ∈ UKRm, let θ̂k ∈ Θ denote the state at

which the function u∆k(θ) changes its sign for each k = 1, · · · , n− 1. By Lemma A.2, it follows

θ̂1 ≤ · · · ≤ θ̂n−1.

Now consider a monotone decision rule dβ : Y → A based on β. In every finite action

space, such a monotone decision rule can be represented by a nondecreasing sequence of

n − 1 cutoff points in Y , {y1, · · · , yn−1}, where dβ assigns the action ak to y ∈ (yk−1, yk) for

each i. The improvement principle of Lehmann (1988) argues that the monotone decision rule

dα = {x1, · · · , xn−1} based on α, dominant over dβ, can be found by the T-transformation in

Definition 2.6 and the set of the change points {θ̂k}n−1
k=1 as follows:

xk = Tyk (θ̂k) for each k = 1, 2, · · · , n− 1.

The constructed decision rule is indeed monotone, since

xk = Tyk (θ̂k) ≤ Tyk (θ̂k+1) ≤ Tyk+1(θ̂k+1) = xk+1,

where the inequalities are due to the monotone property of the T-transformation.

The above principle, however, does not apply to u ∈ U sc since the SCP imposes no or-

dering structures on the change points {θ̂k}.72 Instead, we can take advantage of the prop-

erty that there exists an increasing best response to the primitive payoff function, d?(θ) ∈
argmaxa∈A u(a, θ), which comes up with a partition of Θ = [θ, θ]—θ = θ∗0 ≤ θ∗1 ≤ · · · ≤
θ∗n−1 ≤ θ∗n = θ—such that d?(θ) = ak for θ ∈ (θ∗k−1, θ∗k ). Furthermore, it should be clear from

the proof of Lemma 3.3 that dα(x) = ak if and only if d?(θ) = dβ ◦ τx(θ) = ak. From d?(θ) = ak

and dβ ◦ τx(θ) = ak, we infer that θ belongs to (θ∗k−1, θ∗k ) and τx(θ) to (yk−1, yk), equivalently,

x ∈ (Tyk−1(θ), Tyk (θ)). Putting them together, we have

dα(x) = ak if and only if x ∈ (Tyk−1(θ
∗
k−1), Tyk (θ

∗
k )).

Therefore, dα is monotone and, in addition, the way to find a such strategy for both U sc and

UKRm is virtually identical, except one difference that the partition of Θ is determined by the

inherent nature of the primitive function for UKRm on the basis of Lemma A.2, while it is

determined by the monotone property of d? for U sc.

71Like the three classes of payoff functions, even UKRm is invariant to the addition of h ∈ H in Lemma 2.1. Therefore,
the criterion of effectiveness validates the signal ordering based on the statistical values within UKRm as well.

72Recall the example in the subfigure (b) above. Despite u(a2, θ) being lower than the intersection, the SCP is pre-
served.
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We conclude our discussion on the class UKRm with the next result:

COROLLARY A.3. Within the class of payoff functions UKRm, the four signal orderings stated in the

main theorem are equivalent.

PROOF OF COROLLARY A.3 : Since (i) Precision ⇒ (ii) Effectiveness is done by Lehmann

(1988) and both implications—(ii) ⇒ (iii) Informativeness and (iv) Dispersion ⇒ (i)—hold

universally, it suffices to establish (iii) ⇒ (iv). To this end, we need show that the primitive

uψ,κ ∈ UKRm defined in the proof of Theorem 3.5 for every κ ∈ < and ψ ∈ Θ∗. But it is

straightforward from Lemma A.1. �

Corollary A.3 is a generalization of the Lehmann’s Theorem with another two equivalent

signal orderings, one based on the Bayesian values and another based on the dispersion.

B. The Interval Dominance Order Property

In this section, we extend the equivalence theorem to the interval dominance order (IDO) fam-

ily, the largest of all classes considered in this paper.

To illustrate the IDO family in an arbitrary compact action space, we must introduce the

concept of an interval. To state formally, consider a compact action space A and let a′, a′′ ∈ A

with a′ < a′′. The interval [a′, a′′] between the two actions indicates [a′, a′′] = {a ∈ A| a′ ≤ a ≤
a′′}. Definition 2.3 requires, therefore, that if a′′ is dominant over every other action within the

interval [a′, a′′] in state θ, a′′ remains dominant over a′ in every θ′ > θ.

By comparing their definitions, U sc ⊂ U ido is straightforward, since the two classes have

the same consequent but the latter places stronger restrictions on the antecedent. Note that U sc

is a proper subset of U ido. The example displayed in the Figure 6-(a) clarifies this fact.

The IDO class also contains the KRM class as well. To see UKRm ⊂ U ido formally, consider a

payoff function u ∈ UKRm. When there is no action within the interval (a′, a′′) = {a ∈ A|a′ <
a < a′′}, the IDO property is immediate from Lemma A.1. Thus we suppose that (a′, a′′) is

nonempty and for some θ

(F) u(a′′, θ) ≥ u(a, θ) ∀ a ∈ [a′, a′′].

Let a∗(θ) = min A∗(θ) at each state θ. When a′′ /∈ A∗(θ), the inequality (F) leads us to

a′ < a′′ < a∗(θ) ≤ a∗(θ′) ∀ θ′ > θ due to the (MCS) and (SP) conditions of UKRm. Hence

u(a′′, θ′) ≥ u(a′, θ′) follows by the condition (SP). When a′′ ∈ A∗(θ), suppose to the contrary

that u(a′′, θ′) < u(a′, θ′) for some θ′ > θ. Then a′′ /∈ A∗(θ′). Since A∗(θ′)D A∗(θ) and a′′ ∈
A∗(θ), however, it must be the case that a′′ < a∗(θ′). Thus the inequality u(a′′, θ′) < u(a′, θ′)

contradicts with u ∈ UKRm so we prove that U ido is the largest class among the ones taken into

account.

The first result of this section shows that U ido is equivalent to UKRm under the additional

assumption of the condition (SP). For this purpose only, we denote by USP the set of payoff

functions satisfying (SP).
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Action Space Payoff Function Space Inclusion

A = {a1, a2} U U spm ⊂ U sc = UKRm = U ido = UMCS

Compact A
U SP U spm ⊂ U sc ⊂ UKRm = U ido = UMCS

U U spm ⊂ U sc ⊂ U ido and UKRm ⊂ U ido

Table 2: Payoff Functions Relationship between SPM, SCP, KRM, and IDO

PROPOSITION B.1. Within the class of payoff functions USP, the condition (MCS) holds if and only if

u obeys the IDO property.

PROOF OF PROPOSITION B.1 : We provide the proof under the additional assumption that A

is a convex set. In case A is a finite action space, the result can be shown in an analogous way.

Recall, in this circumstance, that u ∈ USP is equivalent to saying that u is quasiconcave in a for

each θ.

By Theorem 1 in Quah and Strulovici (2009), the IDO property is sufficient for (MCS) with-

out the aid of the quasiconcavity. To prove the converse, given a state θ, we suppose that

u(a′, θ) ≥ u(â, θ) for all â ∈ [a, a′]. Then it follows from the quasiconcavity that u(λa + (1−
λ)a′, θ) ≥ u(a, θ) ∧ u(a′, θ) = u(a, θ) for all λ ∈ [0, 1]. Thus, u(a, θ) is nondecreasing with a on

the interval [a, a′].

Now we claim that u(a, θ′) is also nondecreasing on the same interval [a1, a2] for every

θ′ > θ, which is a sufficient condition for u(a, θ) to satisfy the IDO property. We prove this

claim by contradiction. Suppose to the contrary that there exist a pair of actions a1 < a2 in

[a, a′] for which

u(a2, θ′) < u(a1, θ′) ≤ u(a∗, θ′), where a∗ ∈ A∗(θ′) and a∗ ≥ a′.

Note that A∗(θ′)D A∗(θ) guarantees the existence of a∗. Hence there exists some λ∗ ∈ [0, 1] for

which a2 = λ∗a∗ + (1− λ∗)a1 since we assume that the set A is convex. Then, it follows from

the quasiconcavity of u that u(a2, θ′) ≥ u(a∗, θ′)∧ u(a1, θ′) = u(a1, θ′), which is a contradiction.

Accordingly, u(·, θ) is nondecreasing over the interval [a, a′] and therefore u(a′, θ′) ≥ u(a, θ′)

for all θ′ > θ. �

Table 2 summarizes the discussion about the classes of payoff functions concerning θ. In a

binary action space, Lemma A.1 tells us that the three classes—SCP, KRM, and IDO—are mu-

tually equivalent to the class of payoff functions—labeled by UMCS—satisfying the condition

(MCS). When we focus on the class of payoff functions with (SP) defined on a compact action

space, the preceding proposition demonstrates that the three classes with KRM, IDO, and MCS

are mutually equivalent. The example in Figure 6-(a) also shows that the class of SCP is a

proper subset of them. Without any structures on A and U , however, there is no relationship

between the two classes KRM and SCP as discussed above.

Now we turn to the equivalence of the signal orderings within U ido. The next result is an
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extension of Lemma 3.2 to U ido.

LEMMA B.2. Let u ∈ U ido. Then for every decreasing function d : Θ → A, there is an action a∗ ∈ A

for which u(a∗, θ) ≥ u(d(θ), θ) for every state θ ∈ Θ.

PROOF OF LEMMA B.2 We infer from Theorem 1 in Quah and Strulovici (2009) that for every

u ∈ U ido, there is a nondecreasing strategy d?(θ) ∈ A∗(θ) ≡ argmaxa∈A u(a, θ) . Suppose that

d and d? intersect at a point (θ?, a?). Then d?(θ?) = a? implies

u(a?, θ?) ≥ u(a, θ?) ∀ a ∈ A.

In particular, we have u(a?, θ?) ≥ u(a, θ?) on each interval [a′, a?] for every a′ ≤ a?. Hence, it

follows from the IDO property that u(a?, θ) ≥ u(a, θ) for all a ∈ [a, a∗] and θ > θ?, equivalently,

u(a?, θ) ≥ u(d(θ), θ) for all θ > θ? since d is decreasing. Similarly, since u(a?, θ?) ≥ u(a, θ?)

for all a ∈ [a?, a], it follows from the IDO property that u(a?, θ) ≥ u(a, θ) for all a ∈ [a?, a] and

θ < θ?, namely, u(a?, θ) ≥ u(d(θ), θ) for all θ < θ?. �

Therefore, the improvement principle (Lemma 3.3) holds even for U ido, and therefore, we

extend the equivalence theorem to the IDO class. This result completes the proof of the main

theorem in Section 3.

COROLLARY B.3. Within the class of payoff functions U ido, the four signal orderings stated in the main

theorem are equivalent.

PROOF OF COROLLARY B.3 : It suffices to show that (i) Precision⇒ (ii) Effectiveness and (iii)

Informativeness ⇒ (iv) Dispersion. (i) ⇒ (ii) follows from Theorem 2.2 and the preceding

lemma. (iii)⇒ (iv) also holds since the set of payoff functions {uψ,κ |ψ ∈ Θ∗, κ ∈ <} is a subset

of U ido. �

C. Informativeness for Supermodular Payoff Functions

In this section, we use the dispersion theorem (Corollary 4.5) to provide a more concise proof of

the informativeness for a decision maker with supermodular payoff functions. To this end, we

shall work with a finite action space, A = {a1, a2, · · · , an}. The extension to a general infinite

action space follows via a limiting argument.

Suppose that a decision maker has a payoff function u(a, θ) supermodular in (a; θ). Recall

that supermodularity is preserved under stochastic integrations with the MLRP. Hence, given

a signal α, there is an optimal Bayesian decision rule δα : X → A nondecreasing which maxi-

mizes the expected payoffs Eθ [u(a, θ)|X = x] for each x ∈ X . In a finite action space, therefore,

δα can be represented by a (n− 1)-tuple vector {x1, · · · , xn−1}; to each outcome x ∈ (xk−1, xk)

δα assigns ak. It enables us to write the Bayesian value of α as

Vπ(α, u) = Eθ

[∫
X

u(δα(x), θ)dGα(x|θ)
]
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= Eθ

[
N

∑
k=1

∫ xk

xk−1

u(ak, θ)dGα(x|θ)
]

= Eθ

[
u(a1, θ) +

N−1

∑
k=1

∫
X

1{x≥xk}(x) [u(ak+1, θ)− u(ak, θ)] dGα(x|θ)
]

= Eθ [u(a1, θ)] +
N−1

∑
k=1

∫
X

1{x≥xk}(x)
{∫

Θ
[u(ak+1, θ)− u(ak, θ)] dFα(θ|x)

}
dMα(x).

For simple exposition, we define the inner integral of the iterated integral above as

u∆α
k (x) ,

∫
Θ
[u(ak+1, θ)− u(ak, θ)] dFα(θ|x).

For every u ∈ U spm, the incremental return u(ak+1, θ)− u(ak, θ) is nondecreasing in θ. Thus,

it is immediate from the dispersion theorem that α �L β implies u∆α
k (X) ≥icx

u∆β
k (Y). Observe

that the function u∆α
k : X → < crosses the horizontal-axis at the cutoff point xk.73 Hence we

can simplify the iterated integral into

(16)
∫
X

1{x≥xk}(x)u∆α
k (x) dMα(x) = E [u∆α

k (X) ∨ 0] .

Since the function σ(x) = x ∨ 0 is increasing and convex, u∆α
k (X) ≥icx

u∆β
k (Y) gives us

E [u∆α
k (X) ∨ 0] ≥ E

[
u∆β

k (Y) ∨ 0
]

.

Consequently,

Vπ(α, u)−Vπ(β, u) =
N−1

∑
k=1

E [u∆α
k (X) ∨ 0]−E

[
u∆β

k (Y) ∨ 0
]
≥ 0 ∀ π ∈ P(Θ), u ∈ U spm,

and therefore, α is more informative than β with respect to the class U spm. �

D. Covert Information Acquisition in Auctions

This section addresses the value of information to bidders in an auction, where each bid-

der covertly obtains more precise information on the object for sale prior to participating in

the auction. We show that more Lehmann-precise information is valuable in every incentive-

compatible auction. Although this result is well-known in some standard auction mechanisms

(such as the first- and second-price auction), the previous proof heavily depends on the single-

crossing condition (SCC) of the bidder’s payoff function in each auction setting.74 Rather

than the SCC condition, we use the dispersion theorem to extend this result to all incentive-

73Even in the case it does not cross the axis at a single point, the function u∆α
k will assume 0 at the cutoff point and so

the equation (16) must hold.
74The single-crossing condition requires in game environments that each player i’s payoff function satisfies the single-

crossing property in (ai; θi) if his opponents adopt a nondecreasing strategy. Athey (2001) develops this condition to
prove the existence of pure-strategy Nash equilibria in games with incomplete information.
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compatible auctions.

For an illustration, suppose that there are two risk-neutral bidders who compete for a single

indivisible object.75 The actual value of the object to bidder i = 1, 2 is given by vi(θi, θj), where

(θ1, θ2) ∈ Θ1 ×Θ2 = Θ denotes the informational variable pertaining to the value of the object.

We assume that the function vi is increasing in each argument.

Prior to the bidding stage, each bidder i is able to acquire information on θi by purchasing

a signal α. As a result, he privately observes an outcome xi ∈ Xi = [xi, xi], which is drawn

from the distribution Gα
i (xi|θi). Let π denote the common prior on the space Θ, πi(·|θi) the

conditional belief on Θj on θi, and Fα
i (·|xi) the posterior belief on Θi given Xi = xi. Given the

information structure of α, we write the expected value of the object to bidder i conditional on

xi as

vα
i (xi) = E [vi(θ1, θ2)|Xi = xi] =

∫∫
Θ

vi(θ1, θ2) dπi(θj|θi) dFα
i (θi|xi).

An auction mechanism is characterized by a pair 〈p, t〉 where p = (p1, p2) is a assignment

scheme with 0 ≤ pi ≤ 1 and ∑i pi ≤ 1 indicating the probability that the bidder i is awarded the

object, and t = (t1, t2) is a payment scheme with ti ∈ < indicating the transfer from the bidder i

to the auctioneer.

Due to the celebrated revelation principle, we can focus on the direct mechanism in which

both the assignment and the transfer schemes are mappings defined a vector of announced

types. That is, pi : X1 × X2 → [0, 1] and ti : X1 × X2 → < for each i. Given the direct

auction mechanism 〈p, t〉, we define for each bidder i the conditional expected assignment and

payment schemes on the signal’s outcome xi ∈ Xi as follows:

p̂i(xi) , E
[
pi(xi, Xj)|Xi = xi

]
=
∫∫
Θ

EXj

[
pi(xi, Xj)|θj

]
dπi(θj|θi)dFα

i (θi|xi),

t̂i(xi) , E
[
ti(xi, Xj)|Xi = xi

]
=
∫∫
Θ

EXj

[
ti(xi, Xj)|θj

]
dπi(θj|θi)dFα

i (θi|xi).

These two functions help us simplify the bidder i’s expected payoffs from 〈p, t〉, conditioned

on xi, into

uα
i (τi, xi) , E

[
pi(τi, Xj) · vα

i (xi)− ti(τi, Xj)
∣∣Xi = xi

]
= p̂i(τi) · vα

i (xi)− t̂i(τi),

when he reports another outcome τi ∈ Xi.

We say that the direct auction mechanism 〈p, t〉 is individual rational if (IR) uα
i (xi) ,

uα
i (xi, xi) ≥ 0 for all xi ∈ Xi and i = 1, 2, and incentive compatible if (IC) xi ∈ argmaxτi∈Xi

uα
i (τi, xi).

By the constraint simplification theorem,76 the mechanism satisfies the (IC) condition if and

75Like Persico (2000), we consider the two-bidder case only for clean exposition. In case of overt information acqui-
sition, however, the result depends on the number of bidders as illustrated in Section 5.1.

76Refer to p105 in Milgrom (2004).
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only if (M) p̂i(·) is nondecreasing for all i and the next envelope formula holds:

(ET) uα
i (xi) = uα

i (xi) +
∫ xi

xi

d
dτ

vα
i (τ) p̂i(τ) dτ.

Then we apply the change of variable, pi(v
α
i (·)) = p̂i(·), to rewrite (ET) in terms of the esti-

mated values vα
i . For this purpose, we note that vα

i (·) is increasing, since logsupermodularity

of the posterior beliefs implies the First Order Stochastic Dominance. It implies in turn that

vα
i (xi) is a sufficient statistic for xi. Hence the direct auction mechanism 〈p̂, x̂〉 is equivalent to

〈p, x〉.
Hence we can characterize the (IC) condition as follows: the auction mechanism is incentive

compatible if and only if (M’) pi(·) is increasing for all i and the next envelope theorem holds:

(ET’) Ui(vα
i ) = Ui(vα

i ) +
∫ vα

i

vα
i

pi(τ) dτ,

where vα
i = vα

i (xi) is the lower bound of value estimates to bidder i and Ui(vα
i (xi)) = uα

i (xi)

for each xi. We write the ex ante payoffs to the bidder i, generated by the signal α, as

Ui(α) , E[Ui(vα
i )] =

∫
Ui(v) dHα

i (v),

where Hα
i (v) , Pr(vα

i (X) ≤ v) = Mη{xi ∈ Xi|vα
i (xi) ≤ v} is the distribution function gener-

ated by vα
i . We are now ready to state the following result:

PROPOSITION D.1 (Value of Information to Bidders). If α �L β, then Ui(α) ≥ Ui(β).

PROOF OF PROPOSITION D.1 : Notice that, by (ET’), in the incentive compatible auction

mechanism 〈p, x〉 the interim expected payoff Ui(·) is the define integral of the monotone

function pi. Hence it is twice differentiable almost everywhere and is increasing convex. By

Corollary 4.5, α �L β implies vα
i ≥icx vβ

i , and thus Ui(α) ≥ Ui(β). �

Intuitively, more precise information about each bidder’s true value results in the higher

dispersion of his value estimates and thus it will increase his information rents. The envelope

theorem plays a central role in deriving this result along with the dispersion theorem. The

theorem provides an alternative expression to the bidder’s information rents as an increasing

convex function of the value estimates in every incentive compatible auction mechanism.

E. Proof of Proposition 5.7

The proof begins with a simple property of the ≥icx order:

LEMMA E.1. Let X be a random variable with the distribution F and σ1, σ2 : < → < be nondecreasing.

Suppose that σ1(X) ≥icx σ2(X). Then for every c in the support of F, we have∫
1{x≥c}(x)σ1(x)dF(x) ≥

∫
1{x≥c}(x)σ2(x)dF(x).
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PROOF OF LEMMA E.1 : Given a constant c in the support of F, define c1 = σ1(c). Since

σ1(X) ≥icx σ2(X), E [σ1(X) ∨ c1] ≥ E [σ2(X) ∨ c1]. Using integration by parts, we can rewrite

the inequality as

c1F(c) +
∫

1{x≥c}(x)σ1(x)dF(x) ≥ c1F(τ) +
∫

1{x≥τ}(x)σ2(x)dF(x),

where the constant τ is determined by σ2(τ) = c1. Moreover, since σ2 is nondecreasing, the

integral on the right-hand side is larger than

c1F(c) +
∫

1{x≥c}(x)σ2(x)dF(x).

Therefore, the desired result follows. �

PROOF OF PROPOSITION 5.7 : Using the same methods in Appendix C, we can write the ex-

pected payoff of the principal from α as

R(α) = Eθ [v(a1, θ)] +
N−1

∑
k=1

∫ 1

xk

v∆α
k (x)dx,

where the sequence of the cutoff points {x1, · · · , xN−1} represents the optimal strategy of the

agent with the signal α. Similarly, the expected payoff of the principal from another signal β

can be written

R(β) = Eθ [v(a1, θ)] +
N−1

∑
k=1

∫ 1

yk

v∆β
k (y)dy.

Note that for each k = 1, · · · , N − 1, the above integral in R(α) can be decomposed into

∫ 1

xk

v∆α
k (x)dx =

∫ 1

yk

v∆α
k (x)dx +

∫ yk

xk

v∆α
k (x)dx.

Observe that the aligned preference is sufficient for the second integral of the right-hand side

to be nonnegative. Furthermore, since v ∈ U spm, it follows from Corollary 4.5 that α �L β

implies v∆α
k (X) ≥icx

v∆β
k (Y). By Lemma E.1, therefore, we have

∫ 1

xk

v∆α
k (x)dx ≥

∫ 1

yk

v∆α
k (x)dx ≥

∫ 1

yk

v∆β
k (y)dy.

As a result, the marginal value of precise information for the principal

R(α)− R(β) =
N−1

∑
k=1

{∫ 1

xk

v∆α
k (x)dx−

∫ 1

yk

v∆β
k (y)dy

}

is nonnegative. The proof is complete. �
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