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1 Introduction

Over the past few decades, evolutionary game theory has been an active area of research in eco-
nomics, biology, computer science, and sociology, and other fields that study interactions among
large numbers of participants. However, most studies are restricted to settings in which the strategy
space is finite. This restriction limits the use of population games in applications whose strategy
spaces are naturally modeled as continuous, including games of timing, effort choice games, bar-
gaining games, and oligopoly games, among others.

The games mentioned above have the same property that agents’ actions are chosen from some
intervals of real numbers. Another kind of games that involve continuous strategy sets is incomplete
information games with a continuum of types, for example, auctions. This paper provides some
new insights into an increased scope of the use of population games in applications with continuous
strategy settings.1

When the strategy set is finite, a population state can be described by a real-valued vector with
dimension equal to the cardinality of the strategy set. For the case of continuous strategy space,
a population state is described by a probability measure over the strategy space. This introduces
technical challenges.

For population games with continuous strategy sets, Bomze (1990, 1991) defines the replicator
dynamic in the Banach space of finite signed measures with the variational norm. Bomze (1991)
shows that the replicator dynamic is well-defined if certain Lipschitz continuity conditions are
satisfied for the mean payoff function. Oechssler and Riedel (2001, 2002) follow this line of research
on the replicator dynamic. They show that Bomze’s conditions are always satisfied in pairwise
encounters if the underlying pairwise payoff function is bounded, and give a more fruitful result on
evolutionary stability.

Evolutionary dynamics describe the aggregate consequences of individual agents employing sim-
ple myopic rules to decide how to act. Different rules lead to different dynamics. The dynamic
that attracts most people to study and is used most often in applications is the replicator dynamic,
due to its origin from biology. The replicator dynamic is imitative in the sense that, under such
dynamic, when an agent receives an opportunity to switch strategies, he chooses a candidate strat-
egy at random according to the population state, i.e., according to how popular that candidate
strategy is.

This paper introduces pairwise comparison dynamics for games with continuous strategy space.
Unlike the replicator dynamic, pairwise comparison dynamics are direct2 in the sense that a revising
agent chooses a candidate strategy at random according to a fixed reference measure; in particular,
a strategy’s popularity does not influence the probability with which it is chosen as a candidate
strategy.3 Under pairwise comparison dynamics, the revising agent switches to the candidate
strategy at a positive rate if and only if its payoff is higher than his current strategy’s payoff. In
the special case of the Smith (1984) dynamic, the rate is proportional to the difference between the
candidate strategy’s payoff and the payoff of the agent’s current strategy.

1For some examples of the application of evolutionary dynamics in continuous strategy games, see Friedman and
Ostrov (2013), Hofbauer, Oechssler and Riedel (2009), Hu (2011), Lahkar and Riedel (2013), Louge and Riedel (2012),
and Oechssler and Riedel (2001, 2002).

2Cf. Sandholm, 2010a, Section 4.3.2.
3While the replicator dynamic is not direct but imitative (since the reference measure is not fixed but taken to

be the current population state; see Remarks 1 and 2 in Section 2 below), the replicator dynamic is considered in
the general framework and analysis of the present paper (e.g., the global convergence and local stability results for
potential games apply to the replicator dynamic; see Remarks 4 and 5 in Section 5 below).
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In the present paper, we provide a general framework to derive the mean dynamic for popula-
tion games in continuous strategy settings. The framework and derivation are in the same spirit
as those using revision protocols by Sandholm (2005, 2010a, 2010b) in the finite strategy case. Ba-
sically, revision protocols are the rules that individual agents follow to switch strategies. From the
mean dynamic, not only pairwise comparison dynamics but also other deterministic evolutionary
dynamics (such as the replicator dynamic, the BNN dynamic, and logit dynamics) can be derived.4

Thus this paper provides some new insights into the modeling of dynamics when the strategy set
is continuous.

Oechssler and Riedel (2001, 2002) only consider games in which agents are matched to play
a two-player symmetric game. In the present paper, a population game with continuum strategy
set S is defined as a weakly continuous map F from the space of probability measures over S to
the space of bounded continuous functions on S, i.e., F maps from the state space to the space
of assignments of payoffs to each strategy. This broadens the study of population games with
continuous strategy settings beyond matching to play a two-player symmetric game. We find that
under mild Lipschitz continuity conditions, the pairwise comparison dynamic for F is well-defined.
We then take a look at matching to play a two-player symmetric game, as considered by Oechssler
and Riedel (2001, 2002), as an example (see Example 1), and obtain an existence and uniqueness
result for solutions of pairwise comparison dynamics for this class of games.

Pairwise comparison dynamics for games with finite strategy space were first introduced by
Sandholm (2010b). Sandholm (2010b) shows that pairwise comparison dynamics in finite strategy
case have two nice properties: Nash stationarity (NS) and positive correlation (PC). These two
properties relate the dynamics to the population game, and provide some tools for the analysis of
convergence of the dynamics. Nash stationarity (NS) means that the rest points of the dynamic
coincide with the set of Nash equilibria. Positive correlation (PC) means that the inner product of
the payoff vector and the growth rate vector is positive whenever the dynamic is not at rest. In the
present paper, we show that these two properties also hold in the continuous strategy case. Here,
we define positive correlation (PC) for the continuous strategy case in a similar fashion by using
the natural bilinear functional in the weak topology on the space of finite signed measures as the
“inner product” function.

To study stability under evolutionary dynamics, we need to consider “closeness” and “neigh-
borhoods” of population states, which depend on the choice of topology for the space of measures.
One way to measure the distances between population states is to use the variational norm, which
induces the strong topology. Another way is to use the Prohorov metric, which induces the weak
topology. For the reasons outlined in Oechssler and Riedel (2002) and discussed further in Section
4 below, we use the weak topology to study dynamic stability. As a result, our definitions of Lya-
punov stability and asymptotic stability, as well as ω-limit points, are defined in terms of the weak
topology.

It is natural to ask what economic purpose is served by introducing dynamics for games with
continuous strategy space, rather than constructing finite-strategy approximations for such games
via discretization on the continuous strategy space, and then working with the corresponding finite-
strategy dynamics. This question too comes down to topology. We argue in Section 4 that the
appropriate notion of closeness to use for studying convergence and stability for continuous-strategy
dynamics is the weak topology on the space of population states, which accounts for distances be-
tween the strategies themselves. On the other hand, evolutionary dynamics for finite strategy
games are defined with respect to the usual topology on Rn. However, the latter topology cannot

4See Remark 1 in Section 2 below.
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capture the property that two homogeneous population states are close to each other if and only
if their respective strategies are close to each other in the continuous strategy space. Once the
discretization of the continuous strategy space is fixed, the distances between states for the ap-
proximating finite-strategy dynamic have no connection with the underlying metric on the strategy
space. To work with the weak topology, it is most natural to work with continuous strategy spaces
directly, rather than attempting to capture the notion of weak convergence by using increasingly
fine discretizations.

We then focus on two classes of population games whose definitions we extend from the finite
strategy setting to the continuous strategy setting. First, we consider potential games. Evolution-
ary dynamics for potential games in finite strategy case have been fully studied in Sandholm (2001,
2009). In the present paper, we define potential games for the continuous strategy case. We find
that, as in the finite strategy case,5 the potential function acts as an increasing strict Lyapunov
function for dynamics satisfying positive correlation (PC). This allows us to obtain a global conver-
gence result for general deterministic evolutionary dynamics in potential games. We also provide a
local stability result for such dynamics in potential games.

Second, we consider contractive games. Contractive games (also known as stable games and
negative semidefinite games)6 and their dynamics, including pairwise comparison dynamics, in
finite strategy case have been extensively studied in Hofbauer and Sandholm (2009). In the present
paper, we define contractive games for the continuous strategy case. We find that, as in the finite
strategy case,7 contractive games are characterized by self-defeating externalities (SDE): when
agents revise their strategies, the improvements in the payoffs of strategies to which revising agents
are switching are always exceeded by the improvements in the payoffs of strategies which revising
agents are abandoning. We show that the set of Nash equilibria is globally asymptotically stable
for pairwise comparison dynamics in contractive games.

In the present paper, we focus on pairwise comparison dynamics. But most of our definitions
(e.g., the definitions of population games, potential games, contractive games, Nash stationarity
(NS), positive correlation (PC), Lyapunov functions, Lyapunov stability, asymptotic stability, and
ω-limit points) and some of the results (e.g., the results in Lemmas 2–4 and Remarks 4–5) can
certainly be applied to other deterministic evolutionary dynamics, like the replicator dynamic and
the BNN dynamic.

In related work, Hofbauer, Oechssler and Riedel (2009) study the BNN dynamic for the contin-
uous strategy case. They show that Nash stationarity (NS) is satisfied for the BNN dynamic, and
provide stability results for doubly symmetric games (i.e., potential games generated by matching
to play a two-player symmetric game with common interests; see Example 2) and negative semidef-
inite games. Lahkar and Riedel (2013) study logit dynamics with continuous strategy space, and
use these dynamics to study price dispersion. Friedman and Ostrov (2010, 2013) consider pop-
ulation games in which each agent continuously adjusts his strategy at a velocity equals to the
payoff gradient, which leads the resulting dynamic to follow a partial differential equation. Perkins
and Leslie (2014) study stochastic fictitious play in games with continuous strategy spaces using
stochastic approximation to relate the behavior of the stochastic process to a deterministic dynamic
for a game with continuous strategy space.

This paper makes the following contributions to the literature of evolutionary dynamics. First,

5For the detailed results for evolutionary dynamics in potential games in finite strategy case, see Sandholm (2001).
6Cf. Sandholm, 2014, Section 7.2.
7For the detailed results for evolutionary dynamics in contractive games in finite strategy case, see Hofbauer and

Sandholm (2009).
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it extends the general properties8 of pairwise comparison dynamics as well as global convergence
and local stability results from finite strategy settings to continuous strategy settings. Second, it
extends the study of evolutionary dynamics with continuous strategy spaces from games generated
by pairwise matching to more general population games, which are defined as weakly continuous
maps from the state space to the space of assignments of payoffs to each strategy. Third, it provides
a microfoundation for deriving the mean dynamic (and thus microfoundations for the replicator
dynamic, the BNN dynamic, and logic dynamics, etc.) for population games in continuous strategy
settings, and so provides some new insights into the modeling of dynamics when the strategy set
is continuous.

The rest of this paper is organized as follows. In Section 2, we define population games and
pairwise comparison dynamics for the continuous strategy case. We show that, under mild Lipschitz
continuity conditions, the pairwise comparison dynamic is well-defined, i.e., a unique solution exists
for the dynamic from every initial strategy distribution. Section 3 establishes Nash stationarity
(NS) and positive correlation (PC) for pairwise comparison dynamics. Section 4 discusses the
weak and strong topologies on the space of finite signed measures in the context of evolutionary
game dynamics. Section 5 defines potential games for the continuous strategy case, and provides
a global convergence result as well as a local stability result for general deterministic evolutionary
dynamics in potential games. Section 6 defines contractive games for the continuous strategy case,
and provides a global asymptotic stability result for pairwise comparison dynamics in contractive
games. Section 7 concludes.

2 Population Games and Pairwise Comparison Dynamics

2.1 Population Games and Mean Dynamics

Let V be a metrizable topological space with metric d, and let S be a compact convex subset of V.
Consider a unit mass of agents, each of whom chooses a pure strategy from S. Let B be the Borel
σ-algebra on S. For example, V may be R, d the Euclidean metric in R, S a compact interval in
R, and B the Borel σ-algebra on that interval.

If the strategy set S were finite, then the state of an evolutionary dynamic at a particular time
could be described by a vector in R|S|.9 For the continuous strategy case, the state is instead
described by a probability measure over S. Denote by M+

1 (S) the space of probability measures
on (S,B), and byM(S) the space of finite signed measures.10 ThenM(S) is a vector space and is
the linear span of M+

1 (S). A population state is a distribution over strategies and is described by
a probability measure µ ∈M+

1 (S).
We identify a population game with a map

F :M+
1 (S)→ Cb(S)

that is continuous with respect to the weak topology, where Cb(S) is the space of bounded continuous
functions on S with the supremum norm.11 We denote by Fx(µ) the payoff of pure strategy x ∈ S

8I.e., existence and uniqueness of solutions, positive correlation (PC), and Nash stationarity (NS).
9|A| denotes the number of elements in set A.

10Note that M+
1 (S) is a closed convex set in M(S).

11A sequence of measures µn ∈ M(S) converges weakly to µ ∈ M(S), written µn
w−→ µ, if

∫
S f dµn →

∫
S f dµ for

all f ∈ Cb(S). A map F :M+
1 (S)→ Cb(S) is continuous with respect to the weak topology if F (µn)→ F (µ) (in the

supremum norm) for any sequence {µn} ⊆ M+
1 (S) such that µn

w−→ µ. We may call such map F weakly continuous.
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at population state µ ∈ M+
1 (S), and F (µ) specifies payoffs at all strategies in S at state µ. The

(population-weighted) average payoff obtained by the unit mass of agents at state µ ∈M+
1 (S) is

F̄ (µ) =

∫
S
Fx(µ)µ(dx).

A deterministic evolutionary dynamic for population game F on the measurable space (S,B) is
defined by a differential equation on M+

1 (S):

µ̇(A) = V F (µ)(A), ∀A ∈ B,

where V F :M+
1 (S)→M(S) satisfies the following condition:{

V F (µ)(S) = 0, and

∀A ∈ B, V F (µ)(A) ≥ 0 whenever µ(A) = 0.
(FI)

The first condition of (FI) says that any change in the population state does not change the
population’s total mass. The second condition says that any change in the population state does
not reduce the mass on sets with measure zero.

The evolutionary process is described as follows. Suppose that the current state is µ ∈M+
1 (S),

and that the current payoff profile over S is π ∈ Cb(S). Agents are selected uniformly at random, so
that the strategy of the randomly selected agent follows distribution µ, i.e., the probability that the
selected agent is using a strategy in A ∈ B is µ(A). The selected agents are given the opportunity
to switch strategies. Let λ ∈ M+

1 (S) be the reference measure that describes the rates at which
a revising agent chooses the various candidate strategies.12 If the current strategy is x ∈ S and
the candidate strategy is y ∈ S, then the revising agent switches to strategy y with probability
proportional to ρxy(π). The map ρ : S×S×Cb(S)→ R+ describes the rates at which such switches
occur, and thus ρxy(π) is the conditional switch rate from strategy x to strategy y under payoff
profile π. The system (λ, ρ) is called the revision protocol. Throughout this paper, we assume that
ρxy(π) is continuous in x, y and π, and that ρxy is bounded on bounded sets of payoff profiles π.

The mean dynamic with conditional switch rates ρ for population game F is defined as the
following differential equation on M+

1 (S):

µ̇(A) =

∫
z∈S

∫
y∈A

ρzy(F (µ))λ(dy)µ(dz)−
∫
z∈S

∫
y∈A

ρyz(F (µ))µ(dy)λ(dz), (M)

for all A ∈ B. The first term on the RHS of (M) is the “inflow” of agents into strategies in A at
state µ, and the second term is the “outflow” of agents from strategies in A at state µ. Clearly,
condition (FI) is satisfied for the differential equation (M).

Remark 1 From the mean dynamic (M), we can derive different deterministic evolutionary dy-
namics by using different reference measure λ and conditional switch rates ρ. Examples are

• replicator dynamic (cf. Bomze (1990, 1991), Oechssler and Riedel (2001, 2002)) (by putting
λ = µ and ρxy(π) = [π(y)− π(x)]+ into (M)):13

µ̇(A) =

∫
y∈A

(Fy(µ)− F̄ (µ))µ(dy), ∀A ∈ B;

12In fact, we may allow λ to be any finite positive measure in M(S). This is innocuous since it only amounts to a
change of speed in the dynamic. Also, here we do not assume λ to be a fixed measure, i.e., we allow λ to vary across
time. For example, in deriving the replicator dynamic, we put λ = µ (see the first example under Remark 1). Later,
when we define pairwise comparison dynamics, we will assume λ to be a fixed probability measure with full support.

13[a]+ := max{a, 0}.

6



• BNN dynamic (cf. Hofbauer, Oechssler and Riedel (2009)) (by taking λ to be a fixed proba-
bility measure with full support and putting ρxy(F (µ), µ) = [Fy(µ)− F̄ (µ)]+ into (M)):14

µ̇(A) =

∫
y∈A

[Fy(µ)− F̄ (µ)]+ λ(dy)− µ(A)

∫
z∈S

[Fz(µ)− F̄ (µ)]+ λ(dz), ∀A ∈ B;

• logit dynamic with noise level η > 0 (cf. Lahkar and Riedel (2013)) (by taking λ to be a fixed
probability measure with full support and putting ρxy(π) = exp(η−1π(y))/

∫
z∈S exp(η−1π(z))λ(dz)

into (M)):

µ̇(A) =

∫
y∈A exp(η−1Fy(µ))λ(dy)∫
z∈S exp(η−1Fz(µ))λ(dz)

− µ(A), ∀A ∈ B.

2.2 Pairwise Comparison Dynamics

To obtain pairwise comparison dynamics, we assume that the conditional switch rates ρ satisfy
sign-preservation (SP):

sgn(ρxy(π)) = sgn([π(y)− π(x)]+), ∀x, y ∈ S. (SP)

Sign-preservation (SP) says that for any strategies x, y ∈ S, the conditional switch rate from x to y
is positive if and only if the payoff to y exceeds the payoff to x. Also, we assume that the reference
measure λ is a fixed probability measure that has full support, so that a revising agent considers
each strategy as possible candidate.

The pairwise comparison dynamic with conditional switch rates ρ for population game F is
defined as the following differential equation on M+

1 (S):15

µ̇(A) =

∫
z∈S

∫
y∈A

ρzy(F (µ))λ(dy)µ(dz)−
∫
z∈S

∫
y∈A

ρyz(F (µ))µ(dy)λ(dz), (PCD)

for all A ∈ B. The formula in (M) and (PCD) are the same. The only difference between (M) and
(PCD) is the assumptions on the reference measure λ and the conditional switch rates ρ. If we
assume that ρxy(π) = [π(y)− π(x)]+, then (PCD) becomes the Smith dynamic:

µ̇(A) =

∫
z∈S

∫
y∈A

[Fy(µ)−Fz(µ)]+ λ(dy)µ(dz)−
∫
z∈S

∫
y∈A

[Fz(µ)−Fy(µ)]+ µ(dy)λ(dz), (SD)

for all A ∈ B.
In continuous strategy settings, it could be more likely for revising agents to switch to strategies

close to their current strategy (under the metric d) rather than to distant strategies. One example
of conditional switch rates ρ that capture this property is ρxy(π) = w(d(x, y))[π(y)−π(x)]+, where
w : R+ → R+ is a weight function that is continuous, decreasing, bounded, and bounded away from
zero. All results in this paper apply to this special type of ρ.

14Note that, for the BNN dynamic, the conditional switch rates ρ is a map from S × S × Cb(S)×M+
1 (S) to R+.

15Note that by setting S = {1, . . . , n}, A = {i}, µ({i}) = xi, and letting λ be the uniform probability measure
(i.e., λ({j}) = 1/n for all j = 1, . . . , n) into (PCD), we get the usual formulation of pairwise comparison dynamics
for the finite strategy case.
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Remark 2 For imitative dynamics (e.g., the replicator dynamic), the reference measure λ is
taken to be the population state µ. This means that when an agent receives an opportunity to
switch strategies, he chooses a candidate strategy at random according to the population state,
i.e., according to the popularity of the candidate strategy. The main difference between imitative
dynamics and direct dynamics (e.g., pairwise comparison dynamics and the BNN dynamic) is that
for direct dynamics the reference measure is fixed, but for imitative dynamics the reference measure
is the population state and so evolves with the dynamics. Since population states in general are
not of full support, it follows that imitative dynamics do not satisfy Nash stationarity (NS).16

Before discussing any properties of pairwise comparison dynamics, we first study under what
conditions those dynamics are well-defined, i.e., solutions for the dynamics exist and are unique.
Consider the variational norm on M(S) defined by

‖ϕ‖ := sup
g

∣∣∣ ∫ g dϕ
∣∣∣, (1)

where the sup is taken over all measurable functions g : S → R bounded by 1 (i.e., sups∈S |g(s)| ≤ 1).
Endowed with the variational norm, (M(S), ‖ · ‖) is a Banach space. We will use the following
result from functional analysis to prove existence and uniqueness of solutions.

Fact 1 (cf. Zeidler, 1986, Corollary 3.9)17 Consider the ODE

ψ̇(t) = V (ψ(t)), ψ(0) = ψ0 (2)

in a Banach space. Suppose that V (·) is bounded and is Lipschitz continuous. Then, a unique
solution of the above ODE exists on [0,∞).

The derivative in (2) is defined with respect to the variational norm (1). That is, ψ̇(t) ∈M(S)
is defined by the limit

lim
τ→0

∥∥∥∥ψ(t+ τ)− ψ(t)

τ
− ψ̇(t)

∥∥∥∥ = 0,

provided that this limit exists.
The following theorem specifies conditions that guarantee the existence of a unique forward solu-

tion from any initial condition for pairwise comparison dynamics. Moreover, under such conditions,
solutions to the dynamic are continuous in their initial conditions.

Theorem 1 (Existence and Uniqueness of Solutions for Pairwise Comparison Dynamics
for Population Games) Let F : M+

1 (S) → Cb(S) be a population game, and let µ0 = µ(0) ∈
M+

1 (S). Suppose that there is a map F̃ :M(S)→ Cb(S) such that F̃ (µ) = F (µ) for all µ ∈M+
1 (S)

(i.e., F̃ is an extension of F to M(S)), and F̃ and ρ satisfy the following condition: there exist
constants 0 ≤ K,M <∞ such that for any ψ, ξ ∈M(S),18

‖ψ‖, ‖ξ‖ ≤ 2 ⇒


sup
y,z
|ρyz(F̃ (ψ))− ρyz(F̃ (ξ))| ≤ K‖ψ − ξ‖

sup
y,z
|ρyz(F̃ (ψ))| ≤M.

(A)

16For the definition of Nash stationarity (NS), see Section 3.
17See also Oechssler and Riedel, 2001, Theorem 1.
18We emphasize that K,M are independent of ψ and ξ.
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Then the pairwise comparison dynamic with ρ for F is well-defined, i.e., there exists a unique
solution µ(t) ∈ M+

1 (S) of the differential equation (PCD) for t ∈ [0,∞). Furthermore, solutions
to the dynamic are continuous in their initial conditions.

Proof. First, we show existence and uniqueness of solutions. We follow the strategy for proving
existence and uniqueness of solutions for the replicator dynamic in the continuous strategy case
from Oechssler and Riedel (2001).19 Define V :M(S)→M(S) by

V (µ)(A) :=

∫
z∈S

∫
y∈A

ρzy(F̃ (µ))λ(dy)µ(dz)−
∫
z∈S

∫
y∈A

ρyz(F̃ (µ))µ(dy)λ(dz) (3)

for µ ∈ M(S) and A ∈ B. Note that, if µ ∈ M+
1 (S), then V (µ)(A) coincides with the RHS

of (PCD) because F̃ (µ) = F (µ) for all µ ∈ M+
1 (S). Since V (·) is not necessarily bounded and

Lipschitz continuous on (M(S), ‖ · ‖), we cannot directly apply Fact 1. Instead, we construct an
auxiliary function Ṽ (·) (defined later) which has these properties and coincides with V (·) onM+

1 (S)
(and hence coincides with the RHS of (PCD) on M+

1 (S)). Then by Fact 1, the ODE

µ̇(t) = Ṽ (µ(t)), µ(0) = µ0 (4)

has a unique solution (µ(t)). Since µ(0) = µ0 ∈ M+
1 (S) and condition (FI) is satisfied, µ(t) never

leaves M+
1 (S), which implies that (µ(t)) also solves the differential equation (PCD) on M+

1 (S).
So, it remains to find Ṽ (·) such that Ṽ (·) is bounded and Lipschitz continuous on (M(S), ‖ · ‖),

and coincides with V (·) on M+
1 (S). Let Ṽ :M(S)→M(S) be defined by

Ṽ (µ) := [2− ‖µ‖]+V (µ). (5)

Then Ṽ (µ) is zero for ‖µ‖ ≥ 2. Also, Ṽ (·) is bounded and coincides with V (·) on M+
1 (S) because

probability measures have norm 1. It remains to show that Ṽ (·) is Lipschitz continuous, which is
done in Lemma 5 in Appendix A.1.

Next, we show the continuity of solutions in their initial conditions. By Lemma 5, Ṽ (·) is
Lipschitz continuous. Denote by K̃ the Lipschitz constant of Ṽ (·). Gronwall’s lemma (see Zeidler,
1986, Propositions 3.10 and 3.11) implies that, if µ(t) and ψ(t) are solutions to the ODE (4) with
initial conditions µ0 and ψ0 respectively, then

‖µ(t)− ψ(t)‖ ≤ eK̃t‖µ0 − ψ0‖.

Since the solution of ODE (4) is also the solution to the differential equation (PCD), the result
follows.

2

19Note that the class of games studied in Oechssler and Riedel (2001) is restricted to matching to play a two-player
symmetric game, i.e., the class of games that we will study in Example 1. See also Hofbauer, Oechssler and Riedel
(2009) for the proof of existence and uniqueness of solutions for the BNN dynamic in the continuous strategy case.
Same as Oechssler and Riedel (2001), their studies are restricted to matching to play a two-player symmetric game.
The proofs of existence and uniqueness of solutions in Oechssler and Riedel (2001), Hofbauer, Oechssler and Riedel
(2009), and the present paper are similar. The main difference is in the work to show V (ψ) is Lipschitz for ‖ψ‖ ≤ 2
(and hence Ṽ (·) is Lipschitz) because V (·) (and hence Ṽ (·)) are different for different dynamics; see Lemma 5 in
Appendix A.1.
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Remark 3 A sufficient condition for (A) to hold is that F̃ (ψ) is Lipschitz continuous for ‖ψ‖ ≤ 2,20

and ρ is Lipschitz continuous in the payoff profile argument. Note that, when ρyz(F̃ (ψ)) = [F̃z(ψ)−
F̃y(ψ)]+, i.e., in the special case of the Smith dynamic, condition (A) becomes: there exist constants
0 ≤ K,M <∞ such that for any ψ, ξ ∈M(S),

‖ψ‖, ‖ξ‖ ≤ 2 ⇒


sup
y,z

∣∣[F̃z(ψ)− F̃y(ψ)]+ − [F̃z(ξ)− F̃y(ξ)]+
∣∣ ≤ K‖ψ − ξ‖

sup
y,z

[F̃z(ψ)− F̃y(ψ)]+ ≤M.
(A′)

A sufficient condition for (A′) to hold is that F̃ (ψ) is Lipschitz continuous for ‖ψ‖ ≤ 2.

Example 1 Matching to Play a Two-player Symmetric Game. Consider a unit mass of agents who
are matched to play a two-player symmetric game with continuous strategy set S, which is convex
and compact. Each pair of agents is matched exactly once. Let h : S ×S → R be the single match
payoff function, which is bounded and continuous. That is, h(x, y) is the single match payoff of
an agent playing pure strategy x ∈ S against an opponent playing pure strategy y ∈ S. Then the
average payoff of pure strategy x ∈ S at state µ ∈M+

1 (S) is21

Fx(µ) =

∫
S
h(x, y)µ(dy). (6)

Since h is bounded and continuous, we have

i) µ 7→ Fx(µ) is continuous with respect to the weak topology,22 and

ii) x 7→ Fx(µ) is bounded and continuous.

F.(µ) is the payoff profile over S at population state µ ∈ M+
1 (S). We may just denote it as F (µ)

and consider F to be a map fromM+
1 (S) to Cb(S). Thus, the continuous (with respect to the weak

topology) map F :M+
1 (S)→ Cb(S) defines a population game.23

If we define F̃ by

F̃x(µ) :=

∫
S
h(x, y)µ(dy) (7)

for µ ∈ M(S), then F̃ is an extension of F to M(S). So, by Theorem 1, solutions exist and are
unique if condition (A) holds.

Note that F̃ : M(S) → Cb(S) defined by (7) is Lipschitz continuous because, for any ψ, ξ ∈
M(S),

|F̃x(ψ)− F̃x(ξ)| =
∣∣∣ ∫
S
h(x, y) (ψ − ξ)(dy)

∣∣∣ ≤ ‖h‖∞‖ψ − ξ‖, ∀x ∈ S,

20Note that the Lipschitz continuity of F̃ (ψ) for ‖ψ‖ ≤ 2 implies that F̃ (ψ) is uniformly bounded for ‖ψ‖ ≤ 2.
21Instead of assuming a deterministic complete matching, one can alternatively assume that each agent is matched

randomly with another agent in the population. Then Fx(µ) is the expected payoff of an agent playing pure strategy
x ∈ S at state µ ∈M+

1 (S).
22Note that continuity with respect to the weak topology is a stronger condition than continuity with respect to

the strong topology. For the meanings of the weak and strong topologies, see Section 4.
23Note that, by putting S = {1, . . . , n} and h(x, y) = Aij , we get the matching to play a two-player symmetric

game for the finite strategy case. A = (Aij)
n
i,j=1 is the single match payoff matrix and the population game is the

continuous map F : ∆→ Rn defined by F (x) = Ax for x ∈ ∆, where ∆ is the simplex in Rn.
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which implies

‖F̃ (ψ)− F̃ (ξ)‖∞ = sup
x∈S
|F̃x(ψ)− F̃x(ξ)| ≤ ‖h‖∞‖ψ − ξ‖.

Hence, a sufficient condition for (A) to hold is that ρ is Lipschitz continuous in the payoff profile
argument. Since F̃ (ψ) is Lipschitz continuous, from the discussion in Remark 3, the Smith dynamic
for F is always well-defined.

3

3 Nash Stationarity and Positive Correlation

In the finite strategy case, pairwise comparison dynamics (including the Smith dynamic) have two
nice properties: Nash stationarity (NS) and positive correlation (PC). In this section, we will show
that these two properties also hold in the continuous strategy case.

Nash stationarity (NS) means that the rest points of the dynamic coincide with the set of Nash
equilibria. Formally, Nash stationarity (NS) for the continuous strategy case is defined as follows.

Denote by S(µ) the support of measure µ ∈ M(S).24 A population state µ∗ ∈ M+
1 (S) is a

Nash equilibrium (NE) of population game F if the following condition holds:

Fy(µ
∗) ≤ Fz(µ∗), ∀z ∈ S(µ∗), ∀y ∈ S. (NE)

In words, a population state µ∗ ∈ M+
1 (S) is a Nash equilibrium if at state µ∗, the payoffs to the

strategies in the support of µ∗ are no less than the payoffs to any other strategies in S. Equivalently,
µ∗ is a Nash equilibrium of F if and only if

[Fy(µ
∗)− Fz(µ∗)]+ = 0, ∀z ∈ S(µ∗), ∀y ∈ S. (8)

We say the dynamic µ̇ = V F (µ) for population game F satisfies Nash stationarity (NS) if

µ is a NE of F ⇐⇒ V F (µ) = 0 (i.e., V F (µ)(A) = 0 for all A ∈ B). (NS)

That is, the dynamic µ̇ = V F (µ) for F satisfies Nash stationarity (NS) if every Nash equilibrium
of F is a rest point for the dynamic and vice versa.

In the finite strategy case, positive correlation (PC) means that the inner product of the payoff
vector and the growth rate vector (the direction of motion) is positive whenever the dynamic is not
at rest. We define positive correlation (PC) for the continuous strategy case in a similar fashion.

Since we are dealing with the weak topology on the space of finite signed measures, there is a
natural bilinear functional 〈·, ·〉 : Cb(S)×M(S)→ R, which is defined by 〈g, ν〉 =

∫
S g dν, that we

can use as the “inner product” of the payoff profile F (µ) and the direction of motion V F (µ). We
say the dynamic µ̇ = V F (µ) for F satisfies positive correlation (PC) if

V F (µ) 6= 0 ⇒ 〈F (µ), V F (µ)〉 ≡
∫
S
Fx(µ)V F (µ)(dx) > 0. (PC)

24For positive measure µ in M(S), its support S(µ) is defined as the largest subset of S for which every
open neighborhood of every point on this subset has positive µ-measure, i.e., S(µ) := {x ∈ S : µ(U) >
0 for each neighborhood U of x}. Note that S(µ) must be closed. For signed measure µ inM(S), write µ = µ+−µ−,
where µ+ and µ− are positive measures that form the Jordan decomposition of µ, then the support of µ is defined
as the union of the supports of µ+ and µ−, i.e., S(µ) := S(µ+) ∪ S(µ−).
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Intuitively, positive correlation (PC) requires that the covariance between strategies’ payoffs
and growth rates is positive under the uniform probability distribution on strategies whenever the
dynamic is not at rest. To see this, suppose S is a compact convex subset of Rn, fix µ ∈ M+

1 (S).
Let U be the uniform probability measure over S. Suppose that the Radon-Nikodym derivative
dV F (µ)
dU exists. This requires the signed measure V F (µ) to have a density dV F (µ)

dU over S. The density

function dV F (µ)
dU is the (relative) growth rate profile over S at state µ. Then the expected payoff at

state µ with respect to the uniform probability distribution is

EU [F (µ)] =

∫
S
Fx(µ)U(dx),

and the covariance between strategies’ payoffs and growth rates under the uniform probability
distribution is

CovU (F (µ),
dV F (µ)

dU
) =

∫
S
Fx(µ)

dV F (µ)

dU
(x)U(dx)−

(∫
S
Fx(µ)U(dx)

)(∫
S

dV F (µ)

dU
(x)U(dx)

)
=

∫
S
Fx(µ)V F (µ)(dx)−

(∫
S
Fx(µ)U(dx)

)(∫
S
V F (µ)(dx)

)
= 〈F (µ), V F (µ)〉 − EU [F (µ)] · V F (µ)(S)

= 〈F (µ), V F (µ)〉, (9)

which is positive if V F (µ) 6= 0 by (PC).25

The following proposition shows that Nash stationarity (NS) and positive correlation (PC) are
satisfied by any pairwise comparison dynamics.

Proposition 1 (Nash Stationarity and Positive Correlation for Pairwise Comparison
Dynamics) Every pairwise comparison dynamic satisfies Nash stationarity (NS) and positive cor-
relation (PC).

The proof of Proposition 1 relies on the following lemma:

Lemma 1 Let µ̇ = V F (µ) be the pairwise comparison dynamic for population game F . Then the
following are equivalent:

a) V F (µ) = 0, i.e., V F (µ)(A) = 0 for all A ∈ B;

b) 〈F (µ), V F (µ)〉 ≡
∫
S Fx(µ)V F (µ)(dx) = 0;

c) µ is a NE of F .

Proof. First, we claim the following:

Claim: For any µ ∈M+
1 (S),∫

S
Fx(µ)V F (µ)(dx) =

∫
x∈S

∫
z∈S

[Fx(µ)− Fz(µ)]ρzx(F (µ))µ(dz)λ(dx).

25Note that the last equality of (9) is due to V F (µ)(S) = 0 by condition (FI).
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Let V F :M+
1 (S)→M(S) be defined by the RHS of (PCD). We define V I :M+

1 (S)→M(S)
and V O :M+

1 (S)→M(S) by

V I(µ)(A) :=

∫
y∈A

∫
z∈S

ρzy(F (µ))µ(dz)λ(dy), (10)

V O(µ)(A) :=

∫
y∈A

∫
z∈S

ρyz(F (µ))λ(dz)µ(dy), (11)

for µ ∈M+
1 (S) and A ∈ B. Then (PCD) can be written as

µ̇ = V F (µ) = V I(µ)− V O(µ).

V I(µ)(A) is the “inflow” of agents into strategies in A at state µ, and V O(µ)(A) is the “outflow”
of agents from strategies in A at state µ.

Let µ ∈ M+
1 (S). By (10), we have V I(µ) � λ.26 So the Radon-Nikodym derivative dV I(µ)

dλ
exists and

dV I(µ)

dλ
=

∫
z∈S

ρz·(F (µ))µ(dz). (12)

Similarly, by (11), we have V O(µ)� µ. So the Radon-Nikodym derivative dV O(µ)
dµ exists and

dV O(µ)

dµ
=

∫
z∈S

ρ·z(F (µ))λ(dz). (13)

So, we have∫
S
Fx(µ)V F (µ)(dx)

=

∫
S
Fx(µ)V I(µ)(dx)−

∫
S
Fx(µ)V O(µ)(dx)

=

∫
S
Fx(µ)

dV I(µ)

dλ
(x)λ(dx)−

∫
S
Fx(µ)

dV O(µ)

dµ
(x)µ(dx)

=

∫
x∈S

∫
z∈S

Fx(µ)ρzx(F (µ))µ(dz)λ(dx)−
∫
x∈S

∫
z∈S

Fx(µ)ρxz(F (µ))λ(dz)µ(dx)

=

∫
x∈S

∫
z∈S

Fx(µ)ρzx(F (µ))µ(dz)λ(dx)−
∫
z∈S

∫
x∈S

Fz(µ)ρzx(F (µ))λ(dx)µ(dz)

=

∫
x∈S

∫
z∈S

[Fx(µ)− Fz(µ)]ρzx(F (µ))µ(dz)λ(dx).

Hence, the Claim is proved.

Now, we prove the lemma.

(a)⇒(b): Trivial.

26For any signed measure ϕ and any positive measure ν, we say ϕ is absolutely continuous with respect to ν,
written ϕ� ν, if for any A ∈ B, ν(A) = 0 implies ϕ(A) = 0. Note that the definition of absolute continuity requires
ν to be a positive measure.
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(b)⇒(c): 〈F (µ), V F (µ)〉 ≡
∫
S Fx(µ)V F (µ)(dx) = 0. By the Claim, this implies∫

x∈S

∫
z∈S

[Fx(µ)− Fz(µ)]ρzx(F (µ))µ(dz)λ(dx) = 0.

Since λ has full support and [Fx(µ)−Fz(µ)]ρzx(F (µ)) ≥ 0 for any x, z ∈ S, by continuity, we have∫
z∈S

[Fx(µ)− Fz(µ)]ρzx(F (µ))µ(dz) = 0, ∀x ∈ S.

By continuity again, we have

[Fx(µ)− Fz(µ)]ρzx(F (µ)) = 0, ∀z ∈ S(µ), ∀x ∈ S,

which implies

[Fx(µ)− Fz(µ)]+ = 0, ∀z ∈ S(µ), ∀x ∈ S.

This is precisely the condition for Nash equilibrium (see (8)). So, µ is a NE of F .

(c)⇒(a): Let A ∈ B. V F (µ)(A) can be written as

V F (µ)(A) =

∫
y∈A

∫
z∈S

ρzy(F (µ))µ(dz)λ(dy)−
∫
y∈S

∫
z∈A

ρzy(F (µ))µ(dz)λ(dy). (14)

Note that by sign-preservation (SP) and (8), we have for any ρ of the pairwise comparison dynamic
for F , µ∗ is a NE of F if and only if

ρzy(F (µ∗)) = 0, ∀z ∈ S(µ∗), ∀y ∈ S. (15)

So, when µ is a NE, both terms on the RHS of (14) are zero. Hence, V F (µ)(A) = 0 for all A ∈ B.
2

Proof of Proposition 1. Nash stationarity (NS) follows from Lemma 1 since (a) and (c) are
equivalent.

To show positive correlation (PC), it is equivalent to show∫
S
Fx(µ)V F (µ)(dx) ≥ 0, ∀µ ∈M+

1 (S), (16)

and ∫
S
Fx(µ)V F (µ)(dx) = 0 ⇒ V F (µ) = 0. (17)

Let µ ∈M+
1 (S). Using the Claim and the fact that [Fx(µ)−Fz(µ)]ρzx(F (µ)) ≥ 0 for any x, z ∈ S,

we have∫
S
Fx(µ)V F (µ)(dx) =

∫
x∈S

∫
z∈S

[Fx(µ)− Fz(µ)]ρzx(F (µ))µ(dz)λ(dx) ≥ 0.

Hence, (16) holds. Also, (17) holds by Lemma 1 since (a) and (b) are equivalent.
2
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4 Weak Topology and Strong Topology

In order to study stability under evolutionary dynamics, we need to consider “closeness” and
“neighborhoods” of population states (e.g., what it means for a population state µ ∈ M+

1 (S) to
be close to another population state ν ∈ M+

1 (S)), which depend on the choice of topology for the
space of measures. See Oechssler and Riedel (2002) for an extensive discussion on these issues. We
review some of the points therein below for our use.

Recall the variational norm on M(S) defined in Section 2. The topology induced by the
variational norm is called the strong topology. The strong topology has the advantage that it turns
the vector spaceM(S) into a Banach space, as we have seen in Section 2. For any two probability
measures µ, ν ∈M+

1 (S), the distance between them under the variational norm is27

‖µ− ν‖ = 2 sup
A∈B
|µ(A)− ν(A)|.

The variational norm is a very strong measure of distance. For example, under the variational
norm, a population state µ ∈M+

1 (S) is ε-close to a homogeneous population state δx (x ∈ S) only if
µ places at least mass 1−ε on x. Also, the distance between two different homogeneous population
states δx, δu (x, u ∈ S and x 6= u) is always maximal in the strong topology since ‖δx − δu‖ = 2.

So, if we use the strong topology to study dynamic stability, we only consider perturbations
to population states by a (possibly large) change of strategic play from a small fraction of players
(e.g., change from δx to (1 − ε)δx + εδu with x 6= u and ε small). However, in applications, one
would also like to consider perturbations to population states by a small change of strategic play
from a large fraction of players (e.g., change from δx to δu with d(x, u) < ε). To capture this second
kind of perturbation, we need to use the weak topology.

The weak topology is related to weak convergence of measures. The weak topology onM(S) is
the coarsest topology (i.e., the topology with the fewest open sets) onM(S) such that µ 7→

∫
S f dµ

is continuous for all f ∈ Cb(S).28 Suppose that S is separable. Then the weak topology onM+
1 (S)

is metrized by the Prohorov metric κ, which is defined by

κ(µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε, ∀A ∈ B},

where Aε := {x ∈ S : d(x, y) < ε for some y ∈ A}.29 Specifically, µn ∈ M+
1 (S) converges weakly

to µ ∈ M+
1 (S) if and only if κ(µn, µ) → 0. In other words, weak convergence and convergence in

the Prohorov metric are equivalent for separable S.
The weak topology allows us to consider the second kind of perturbation described above. If

µ = (1 − ε)δx + εδu with 0 ≤ ε ≤ 1, then κ(µ, δx) = min{ε, d(x, u)}. In particular, the distance
between two homogeneous population states in the weak topology agrees with the underlying metric
d in the continuous strategy space S, i.e., κ(δx, δu) = d(x, u), when x and u are close to each other
in S. Also, the weak topology has the advantage thatM+

1 (S) is compact in the weak topology (but
is not so in the strong topology).30 The compactness ofM+

1 (S) is important for two reasons. First,

27Cf. Shiryaev, 1995, p. 360.
28Cf. Ekeland and Témam, 1999, p. 6.
29Cf. Billingsley, 1999, p. 72–73.
30The compactness of M+

1 (S) in the weak topology follows from Alaoglu’s theorem (which states that the closed
unit ball of the dual space of a normed vector space is compact in the weak∗ topology; cf. Conway, 1990, Chapter 5,
Section 3), that M(S) and Cb(S) are dual spaces, and that any closed subset of a compact set is compact (clearly,
M+

1 (S) is closed). To see that M+
1 (S) is not compact in the strong topology, consider a sequence of probability

measures µn ∈M+
1 (S) which have densities on S converging weakly to a probability measure µ ∈M+

1 (S) which has
a positive mass at some point in S. Then no subsequence of {µn} converges in the variational norm.
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it ensures the existence of ω-limits (see Section 4.2). Second, it ensures that any closed subset of
M+

1 (S) is compact (see footnote 31), which is needed in the proof of the Lyapunov’s Theorem (see
Theorem 6 and its proof in Appendix A.2).

For the above reasons, we use the weak topology in studying stability under evolutionary dy-
namics. From now on, we assume S is separable and use the Prohorov metric κ to measure the
distances between population states.

4.1 Definitions for the Study of Local Stability

Let µ ∈M+
1 (S) and Y ⊆M+

1 (S). The distance between µ and the set Y in the weak topology is

κ(µ, Y ) := inf{κ(µ, ν) : ν ∈ Y }.

The ε-neighborhood of Y (in the weak topology) is

Y ε := {µ ∈M+
1 (S) : κ(µ, Y ) < ε}.

Let

µ̇ = V (µ) (D)

be a differential equation onM+
1 (S) that admits a unique forward solution from each initial condi-

tion, and suppose that solutions to (D) are continuous in their initial conditions. Let Z ⊆M+
1 (S)

be a closed set.31 We say Z is Lyapunov stable under (D) if for every ε > 0 there exists δ > 0 such
that

κ(µ(0), Z) < δ ⇒ κ(µ(t), Z) < ε for all t ≥ 0,

i.e., every solution (µ(t)) of (D) that starts in Zδ is contained in Zε. We say Z is attracting if there
exists ε > 0 such that

κ(µ(0), Z) < ε ⇒ κ(µ(t), Z)→ 0,

i.e., every solution (µ(t)) of (D) that starts in Zε converges weakly to Z. We say Z is globally
attracting if

κ(µ(t), Z)→ 0 for any µ(0) ∈M+
1 (S),

i.e., every solution (µ(t)) of (D) converges weakly to Z for any initial condition in M+
1 (S). Fi-

nally, we say Z is asymptotically stable if it is Lyapunov stable and attracting, and Z is globally
asymptotically stable if it is Lyapunov stable and globally attracting.

4.2 Definitions for the Study of Global Convergence

Let ξ ∈M+
1 (S), and let {µt}t∈[0,∞) be the solution trajectory to (D) with µ0 = ξ. The ω-limit ω(ξ)

is the set of all points that the solution trajectory from ξ approaches arbitrarily closely infinitely
often in the weak topology:

ω(ξ) := {ψ ∈M+
1 (S) : ∃{tk}∞k=1 with lim

k→∞
tk =∞ such that µtk

w−→ ψ as k →∞}. (18)

31Note that M+
1 (S) is compact in the weak topology and that any closed subset of a compact set is compact. So,

Z is compact in the weak topology.
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Since M+
1 (S) is compact in the weak topology, ω(ξ) is nonempty.32 The set

Ω :=
⋃

ξ∈M+
1 (S)

ω(ξ)

denotes the set of all ω-limit points of all solution trajectories, which provides a basic notion of
recurrence for deterministic dynamics.

4.3 Continuous-Strategy Dynamic vs. its Approximating Finite-Strategy Dy-
namic

To study the behavior of an evolutionary dynamic for a continuous strategy game, one might ask
whether we could construct a finite-strategy approximation for the game via discretization on the
continuous strategy space, and then work with the corresponding finite-strategy dynamic. This
raises the question of whether the behavior, especially the convergence and stability properties, of
the original continuous-strategy dynamic and the approximating finite-strategy dynamic are the
same.

This question comes down to topology. As we have argued, the appropriate notion of closeness
to use for studying convergence and stability for continuous-strategy dynamics is the weak topology
on M+

1 (S), which accounts for distances between the strategies themselves.33 On the other hand,
evolutionary dynamics for finite strategy games are defined with respect to the usual topology on
Rn. However, the latter topology cannot capture the property that two homogeneous population
states are close to each other if and only if their respective strategies are close to each other in the
continuous strategy space. Once the discretization of the continuous strategy space is fixed, the
distances between states for the approximating finite-strategy dynamic have no connection with
the underlying metric on the strategy space.

Denote by N the fineness of the discretization of the continuous strategy space,34 and let
{µNt }t≥0 denote the solution trajectory of the approximating finite-strategy dynamic under dis-
cretization N . If one wanted to capture the notion of weak convergence, one would need to consider
a sequence of discretizations. One possibility is to take t → ∞ and then N → ∞ to look at weak
convergence of the limit points of the corresponding sequence of finite-strategy dynamics. With any
fixed discretization, the limit (as time goes to infinity) in the approximating finite-strategy dynamic
may not agree with the limit (as time goes to infinity) in the original continuous-strategy dynamic.
So at some point one would have to use weak convergence anyway to make the connection. In part
this is a matter of preference or convenience, whether one does this via discretization or directly
works with the continuous-strategy dynamic. However, it may become cumbersome to analyze via
discretization, say, when the continuous strategy space is multi-dimensional (e.g., V = Rm for some
m ≥ 2) or even infinite-dimensional (e.g., V is the space of bounded measurable functions), but
come out cleanly with a continuum.

Alternatively, one can take both limits simultaneously. For taking both limits simultaneously,
one may take a sequence of times {τN}∞N=1 where τN →∞ as N →∞, and look at limN→∞ µ

N
τN

,

32Cf. Robinson, 1995, Theorem 5.4.1. Note that we define ω(ξ) in terms of the weak topology instead of the strong
topology. If we define ω(ξ) in terms of the strong topology (i.e., change µtk

w−→ ψ to µtk → ψ in (18)), then ω(ξ)
could be an empty set since M+

1 (S) is not compact in the strong topology.
33Recall that the distance between two homogeneous population states in the weak topology on M+

1 (S) agrees
with the underlying metric d in the continuous strategy space S, i.e., κ(δx, δu) = d(x, u), when x and u are close to
each other in S.

34What we mean is, e.g., discretizing [0, 1] into {0, 1
N
, 2
N
, . . . , 1}, or {0, 1

2N
, 2
2N
, . . . , 1}.

17



which would be the limit of µNt when N and t are taken to infinity simultaneously. However, this
is not obviously preferable to working directly with the continuous-strategy dynamic.

5 Potential Games

5.1 Definition and Examples

Consider a function

f :M(S)→ R.

Suppose that f is Fréchet-differentiable when M(S) is endowed with the strong topology.35 The
Fréchet-derivative of f at µ ∈M(S) is a continuous linear map

Df(µ) :M(S)→ R

that maps tangent vectors ζ ∈ M(S) to rates of change in the value of f when one moves from
µ in the direction ζ. Since Df(µ) is a linear map from M(S) to R, by the Riesz representation
theorem, there is an element ∇f(µ) of Cb(S) (the dual space of M(S)) that represents Df(µ) in
the sense that

Df(µ)ζ =

∫
S
∇f(µ) dζ ≡ 〈∇f(µ), ζ〉. (19)

This ∇f(µ) is called the gradient of f at µ.
We define potential games for the continuous strategy case as follows:

Definition 1 Population game F :M+
1 (S) → Cb(S) is a potential game if there exists a Fréchet-

differentiable and continuous (with respect to the weak topology) function f : M(S) → R with its
gradient ∇f satisfying

∇f(µ) = F (µ), ∀µ ∈M+
1 (S). (PG)

The function f is called the potential function.36

Condition (PG) says that the gradient of the potential function at µ ∈M+
1 (S) equals the payoff

profile at state µ, which is analogous to the condition for potential games in finite strategy case:
the gradient of the potential function equals the payoff vector.

By Definition 1, if the state moves from µ in direction ζ, the change in potential is

Df(µ)ζ = 〈∇f(µ), ζ〉 = 〈F (µ), ζ〉.

In particular, if agents switch from pure strategy y ∈ S to pure strategy z ∈ S, the change in
potential is

Df(µ)(δz − δy) = 〈F (µ), δz − δy〉 = Fz(µ)− Fy(µ).

Thus profitable changes in strategy increase potential.

35If X and Y are Banach spaces, we say g : X → Y is Fréchet-differentiable at x if there exists a continuous linear
map T : X → Y such that g(x + ϑ) = g(x) + Tϑ + o(‖ϑ‖) for all ϑ in some neighborhood of zero in X. If it exists,
this T is called the Fréchet-derivative of g at x, and is written as Dg(x). Cf. Zeidler, 1986, Chapter 4.

36Note that Fréchet-differentiability implies continuity with respect to the strong topology, but continuity with
respect to the weak topology is a stronger requirement than continuity with respect to the strong topology.
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Example 2 Matching to Play a Two-player Symmetric Game with Common Interests. Consider
the same setting as in Example 1. In addition, we assume that the single match payoff function
h : S × S → R is doubly symmetric, i.e., h(x, y) = h(y, x) for all x, y ∈ S. In this case, we say the
game exhibits common interests since two matched players always receive the same payoffs. We
have the following claim:

Claim: The population game F :M+
1 (S)→ Cb(S) defined by (6) is a potential game with potential

function

f(µ) :=
1

2

∫
S

∫
S
h(x, y)µ(dy)µ(dx).

Note that f : M(S) → R is continuous with respect to the weak topology. In order to prove the
Claim, we need to show

∇f(µ) = F (µ), ∀µ ∈M+
1 (S).

Let µ ∈M+
1 (S) and ζ ∈M(S). Then

f(µ+ ζ) =
1

2

∫
x∈S

∫
y∈S

h(x, y) (µ+ ζ)(dy) (µ+ ζ)(dx)

=
1

2

∫
x∈S

∫
y∈S

h(x, y)µ(dy)µ(dx) +
1

2

∫
x∈S

∫
y∈S

h(x, y)µ(dy) ζ(dx)

+
1

2

∫
x∈S

∫
y∈S

h(x, y) ζ(dy)µ(dx) +
1

2

∫
x∈S

∫
y∈S

h(x, y) ζ(dy) ζ(dx)

= f(µ) +
1

2

∫
x∈S

∫
y∈S

h(x, y)µ(dy) ζ(dx) +
1

2

∫
y∈S

∫
x∈S

h(y, x) ζ(dx)µ(dy) + o(‖ζ‖)

= f(µ) +
1

2

∫
x∈S

∫
y∈S

h(x, y)µ(dy) ζ(dx) +
1

2

∫
y∈S

∫
x∈S

h(x, y) ζ(dx)µ(dy) + o(‖ζ‖)

= f(µ) +

∫
x∈S

∫
y∈S

h(x, y)µ(dy) ζ(dx) + o(‖ζ‖).

So, we have

Df(µ)ζ =

∫
x∈S

∫
y∈S

h(x, y)µ(dy) ζ(dx) =

∫
x∈S

Fx(µ) ζ(dx) = 〈F (µ), ζ〉.

Hence, by (19),

〈∇f(µ), ζ〉 = 〈F (µ), ζ〉. (20)

Since (20) is true for any ζ ∈M(S), we have ∇f(µ) = F (µ) for all µ ∈M+
1 (S). Hence, the Claim

is proved.
Note that, if µ ∈M+

1 (S), then

f(µ) =
1

2

∫
S

∫
S
h(x, y)µ(dy)µ(dx) =

1

2

∫
S
Fx(µ)µ(dx) =

1

2
F̄ (µ).

So, the potential function coincides with one-half of the average payoff function when µ is restricted
on M+

1 (S). Therefore, by Lemma 2 (see below), any evolutionary dynamic satisfying positive
correlation (PC) improves social outcomes.

3
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Example 3 Games Generated by Variable Pricing Schemes.37 When an agent interacts with
other agents in a population game, his choice of strategy affects not only his own payoff, but also
the payoffs of other agents. One way to internalize this kind of externalities among agents is to
introduce pricing schemes. Suppose that population game F : M+

1 (S) → Cb(S) has an extension
to M(S). With an abuse of notation, we denote by F : M(S) → Cb(S) the extension of F to
M(S). We assume that F :M(S)→ Cb(S) is continuous with respect to the weak topology. Also,
we assume that F is Fréchet-differentiable so that the Fréchet-derivative of F , DF , is well-defined.
Recall that the average payoff function F̄ is defined by

F̄ (µ) :=

∫
S
Fx(µ)µ(dx) =

∫
S
F (µ) dµ.

In this example, we allow µ to be any finite signed measure, i.e., F̄ :M(S)→ R.
Consider the augmented game F̂ :M+

1 (S)→ Cb(S) defined by38

F̂x(µ) := Fx(µ) +

∫
S

(DF (µ)δx)(y)µ(dy). (21)

The second term on the RHS of (21) represents the (aggregate) marginal effect that an agent
choosing strategy x ∈ S has on the payoffs of other agents. We interpret it as a price (either
subsidy or tax) imposed by a social planner. We have the following claim:

Claim: The augmented game F̂ is a potential game with potential function being the average payoff
function of the original game F .

Note that F̄ :M(S)→ R is continuous with respect to the weak topology. To prove the Claim, we
will show for any µ ∈M+

1 (S),

∇F̄ (µ)(x) = Fx(µ) +

∫
S

(DF (µ)δx)(y)µ(dy), ∀x ∈ S.

Let µ ∈M+
1 (S) and ζ ∈M(S). Then

F̄ (µ+ ζ) =

∫
S
F (µ+ ζ) d(µ+ ζ)

=

∫
S

(
F (µ) +DF (µ)ζ + o(‖ζ‖)

)
d(µ+ ζ)

=

∫
S
F (µ) dµ+

∫
S
F (µ) dζ +

∫
S
DF (µ)ζ dµ+

∫
S
DF (µ)ζ dζ + o(‖ζ‖)

= F̄ (µ) +

∫
S
F (µ) dζ +

∫
S
DF (µ)ζ dµ+ o(‖ζ‖).

Hence,

DF̄ (µ)ζ =

∫
S
F (µ) dζ +

∫
S
DF (µ)ζ dµ.

Since DF̄ (µ)ζ =
∫
S ∇F̄ (µ) dζ by (19), we have∫

S
∇F̄ (µ) dζ =

∫
S
F (µ) dζ +

∫
S
DF (µ)ζ dµ,

37Cf. Sandholm, 2010a, Example 3.4.1.
38Note that DF (µ) is a continuous linear map from M(S) to Cb(S). For any ζ ∈ M(S), DF (µ)ζ means that the

continuous linear map DF (µ) acts on ζ.
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i.e., ∫
S
∇F̄ (µ)(y) ζ(dy) =

∫
S
Fy(µ) ζ(dy) +

∫
S

(DF (µ)ζ)(y)µ(dy). (22)

Since (22) holds for any ζ ∈M(S), by putting ζ = δx, we have

∇F̄ (µ)(x) = Fx(µ) +

∫
S

(DF (µ)δx)(y)µ(dy).

Hence, the Claim is proved.
Since in potential games profitable changes in strategy increase potential, by the Claim, when

agents switch strategies in response to the combination of original payoffs and prices, average payoff
of the original game (and hence efficiency) increases.

3

The following lemma shows that in potential games, any evolutionary dynamic satisfying posi-
tive correlation (PC) ascends potential.

Lemma 2 Let F be a potential game with potential function f . Suppose that the dynamic µ̇ =
V F (µ) for F satisfies positive correlation (PC). Then along any solution trajectory (µ(t)), we have
d
dtf(µ(t)) > 0 whenever µ̇(t) 6= 0.

Proof. Since F is a potential game with potential function f , (PC) becomes

V F (µ) 6= 0 ⇒ 〈∇f(µ), V F (µ)〉 =

∫
S
Fx(µ)V F (µ)(dx) > 0.

Then, by the chain rule,

d

dt
f(µ(t)) = Df(µ(t))µ̇(t) = Df(µ(t))V F (µ(t)) = 〈∇f(µ(t)), V F (µ(t))〉 ≥ 0,

and the inequality is strict if V F (µ(t)) 6= 0.
2

We say a weakly continuous and Fréchet-differentiable function L :M+
1 (S)→ R is an (increas-

ing) Lyapunov function for the differential equation µ̇ = V (µ) if L̇(µ) ≡ 〈∇L(µ), V (µ)〉 ≥ 0 for all
µ ∈ M+

1 (S). If, in addition, equality holds only at rest points (i.e., only when V (µ) = 0), then we
call L an (increasing) strict Lyapunov function. Thus Lemma 2 shows that for any potential game
F , if the dynamic µ̇ = V F (µ) for F satisfies positive correlation (PC), then the potential function
acts as an increasing strict Lyapunov function for the dynamic.

5.2 Global Convergence

Let F :M+
1 (S)→ Cb(S) be a population game, and let µ̇ = V F (µ) be a deterministic evolutionary

dynamic for F . We denote by RP (V F ) the set of rest points under the dynamic µ̇ = V F (µ), i.e.,

RP (V F ) := {ψ ∈M+
1 (S) : V F (ψ) = 0}.

Also, we denote by NE(F ) the set of Nash equilibria for F , i.e.,

NE(F ) := {ψ ∈M+
1 (S) : [Fy(ψ)− Fz(ψ)]+ = 0, ∀z ∈ S(ψ), ∀y ∈ S}.

The following theorem provides a global convergence result to the set of Nash equilibria for
pairwise comparison dynamics in potential games. It shows that every solution trajectory of such
dynamics converges to the set of Nash equilibria.
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Theorem 2 (Global Convergence for Pairwise Comparison Dynamics for Potential
Games) Let F be a potential game with potential function f , and let µ̇ = V F (µ) be a pairwise
comparison dynamic for F . Suppose that the conditions in Theorem 1 are satisfied so that a unique
forward solution exists from each initial condition and solutions to the dynamic are continuous in
their initial conditions. Then Ω = RP (V F ) = NE(F ).

Proof. By Proposition 1, positive correlation (PC) is satisfied. So by Lemma 2, the potential
function f acts as an increasing strict Lyapunov function for the dynamic. Hence, by Theorem 5
in Appendix A.2, Ω = RP (V F ). Also, Nash stationarity (NS) is satisfied by Proposition 1. Thus,
we have Ω = RP (V F ) = NE(F ).

2

Remark 4 For general deterministic dynamics, if only positive correlation (PC) is satisfied but
not Nash stationarity (NS) (e.g., the replicator dynamic and other imitative dynamics do not satisfy
Nash stationarity (NS)), then we still have Ω = RP (V F ). If both positive correlation (PC) and
Nash stationarity (NS) are satisfied, then we have the same conclusion as in Theorem 2.

5.3 Local Stability

Let F : M+
1 (S) → Cb(S) be a potential game with potential function f : M(S) → R. A set

Z ⊆ M+
1 (S) is a local maximizer set of the potential function f if (i) Z is connected, (ii) f is

constant on Z, and (iii) there exists a neighborhood Y ⊆ M+
1 (S) of Z in the weak topology such

that f(µ) > f(ψ) for all µ ∈ Z and all ψ ∈ Y \Z.39

The following lemma shows that in potential games, all local maximizer sets of the potential
function consist entirely of Nash equilibria of the game.

Lemma 3 Let F be a potential game with potential function f . If µ is a local maximizer of f ,
then µ ∈ NE(F ).

Proof. Let µ̇ = V F (µ) be a pairwise comparison dynamic for F . By Proposition 1, the dynamic
satisfies positive correlation (PC). So by Lemma 2, if µ is not a rest point of the dynamic, i.e.,
V F (µ) 6= 0, then ḟ(µ) > 0, which implies that µ is not a local maximizer of f . Therefore, if µ
is a local maximizer of f , then µ is a rest point of the dynamic, which implies that µ is a Nash
equilibrium of F since the dynamic also satisfies Nash stationarity (NS) by Proposition 1.

2

By Lemma 3, local maximizer sets of f are subsets of NE(F ). Also, since f is continuous
with respect to the weak topology, all local maximizer sets of f are closed. We call a closed set
Z ⊆ NE(F ) isolated in NE(F ) if there exists a neighborhood Y ⊆ M+

1 (S) of Z in the weak
topology such that Y does not contain any Nash equilibria other than those in Z.

The following theorem provides a local stability result for pairwise comparison dynamics in
potential games. It shows that local maximizer sets of the potential function are Lyapunov stable;
and if, in addition, those sets are isolated in NE(F ), then they are asymptotically stable.

Theorem 3 (Local Stability for Pairwise Comparison Dynamics for Potential Games)
Let F be a potential game with potential function f , and let µ̇ = V F (µ) be a pairwise comparison
dynamic for F . Suppose that the conditions in Theorem 1 are satisfied so that a unique forward

39We call Y ⊆M+
1 (S) a neighborhood of Z ⊆M+

1 (S) in the weak topology if Y is open relative toM+
1 (S) in the

weak topology and contains Z.
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solution exists from each initial condition and solutions to the dynamic are continuous in their
initial conditions. Let Z ⊆M+

1 (S) be a local maximizer set of f . Then

i) Z is Lyapunov stable;

ii) if Z is also isolated in NE(F ), then Z is asymptotically stable.

Proof. By Proposition 1, the dynamic satisfies positive correlation (PC) and Nash stationarity
(NS). Then part (i) follows immediately from positive correlation (PC), Lemma 2, and Theorem
6 in Appendix A.2. Since Z is isolated in NE(F ), there exists a neighborhood Y ⊆ M+

1 (S) of Z
in the weak topology such that Y \Z does not contain any Nash equilibrium. By Nash stationarity
(NS), V F (µ) 6= 0 for all µ ∈ Y \Z. Then by positive correlation (PC), ḟ(µ) = 〈∇f(µ), V F (µ)〉 > 0
for all µ ∈ Y \Z. Therefore, by Corollary 2 in Appendix A.2, Z is asymptotically stable.

2

Remark 5 For general deterministic dynamics, if only positive correlation (PC) is satisfied but
not Nash stationarity (NS), then the conclusion in part (i) still holds. If both positive correlation
(PC) and Nash stationarity (NS) are satisfied, then the conclusion in part (ii) also holds.

The following corollary is immediate from Theorem 3.

Corollary 1 Suppose that the conditions in Theorem 2 are satisfied. If the potential game F has
a unique Nash equilibrium µ∗, then {µ∗} is globally asymptotically stable.

Example 2 (Continued) Recall that in Example 2, we have shown that the population game
F :M+

1 (S) → Cb(S) defined by Fx(µ) =
∫
S h(x, y)µ(dy), where h : S × S → R satisfies h(x, y) =

h(y, x) for all x, y ∈ S, is a potential game with potential function

f(µ) :=
1

2

∫
S

∫
S
h(x, y)µ(dy)µ(dx).

State µ∗ ∈ M+
1 (S) is evolutionarily robust40 if there exists ε > 0 such that for all ψ 6= µ∗ (ψ ∈

M+
1 (S)) with κ(ψ, µ∗) < ε,∫

S

∫
S
h(x, y)ψ(dy)µ∗(dx) >

∫
S

∫
S
h(x, y)ψ(dy)ψ(dx). (ER)

We have the following claim:

Claim: If µ∗ ∈ M+
1 (S) is evolutionarily robust, then {µ∗} is asymptotically stable under pairwise

comparison dynamics.

It suffices to show that µ∗ is a local maximizer of the potential function f and that {µ∗} is isolated
in NE(F ). Then by Theorem 3, the result follows. For all ψ 6= µ∗ (ψ ∈M+

1 (S)) with κ(ψ, µ∗) < ε,

f(µ∗) =
1

2

∫
S

∫
S
h(x, y)µ∗(dy)µ∗(dx)− 1

2

∫
S

∫
S
h(x, y)ψ(dy)µ∗(dx)

+
1

2

∫
S

∫
S
h(x, y)ψ(dy)µ∗(dx)

≥ 1

2

∫
S

∫
S
h(x, y)ψ(dy)µ∗(dx)

40Cf. Oechssler and Riedel, 2002, Definition 5.
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>
1

2

∫
S

∫
S
h(x, y)ψ(dy)ψ(dx)

= f(ψ).

The first inequality is due to the fact that evolutionary robustness implies ESS, which in turn
implies Nash equilibrium,41 and the assumption that h(x, y) = h(y, x) for all x, y ∈ S. The second
inequality is by (ER). So µ∗ is a strict local maximizer of f . Also, (ER) implies that all those
ψ 6= µ∗ (ψ ∈ M+

1 (S)) with κ(ψ, µ∗) < ε are not Nash equilibria (see (27) below). Hence, {µ∗} is
isolated in NE(F ).

3

6 Contractive Games

6.1 Definition and Examples

We define contractive games for the continuous strategy case as follows:

Definition 2 Population game F :M+
1 (S)→ Cb(S) is a contractive game if

〈F (µ)− F (ψ), µ− ψ〉 ≡
∫
S

(F (µ)− F (ψ)) d(µ− ψ) ≤ 0, ∀µ, ψ ∈M+
1 (S). (CG)

If the inequality in (CG) holds strictly whenever µ 6= ψ, we call F a strictly contractive game;
whereas if this inequality always binds, we call F a null contractive game.

Given the state spaceM+
1 (S), we can define the tangent space TM+

1 (S) as in the finite strategy
case. The tangent space of M+

1 (S) is

TM+
1 (S) =M0(S) ≡ {µ ∈M(S) : µ(S) = 0}.

Recall that M(S) is a vector space and is the linear span of M+
1 (S). TM+

1 (S) is the smallest
subspace ofM(S) that contains all vectors describing motions between population states inM+

1 (S).
In other words, if µ, ψ ∈ M+

1 (S), then µ − ψ ∈ TM+
1 (S), and TM+

1 (S) is the linear span of all
vectors of this form. The restriction µ(S) = 0 embodies the fact that changes in the population
state leave the population’s mass constant.

Assume that population game F :M+
1 (S)→ Cb(S) is C1 in the sense of Fréchet-differentiability.42

We say F satisfies self-defeating externalities (SDE) if

〈DF (ψ)ζ, ζ〉 ≤ 0, for any ψ ∈M+
1 (S) and ζ ∈M0(S). (SDE)

For intuition, suppose that the measure ζ ∈ M0(S) takes the form ζ = δz − δy, representing
switches by agents from pure strategy y ∈ S to pure strategy z ∈ S. Then (SDE) requires that∫
S DF (ψ)ζ dδz ≤

∫
S DF (ψ)ζ dδy, i.e., (DF (ψ)ζ)(z) ≤ (DF (ψ)ζ)(y). Thus, the improvements

in the payoffs of strategies to which revising agents are switching are always exceeded by the
improvements in the payoffs of strategies which revising agents are abandoning.

The following lemma shows that when the population game F :M+
1 (S)→ Cb(S) is C1, condi-

tions (CG) and (SDE) are equivalent.

41See Oechssler and Riedel, 2002, Proposition 1 and Figure 2.
42To be more precise, we assume that F is C1 in the interior of M+

1 (S), and the values of F on the boundary of
M+

1 (S) are determined such that F and DF are continuous on M+
1 (S).
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Lemma 4 Suppose that the population game F :M+
1 (S)→ Cb(S) is C1. Then F is a contractive

game if and only if it satisfies self-defeating externalities (SDE).

Proof.
(⇒) Suppose that F is a contractive game. Fix ψ ∈ M+

1 (S) and ζ ∈ M0(S). Since F is C1, it is
enough to consider ψ in the interior ofM+

1 (S). Let µε = ψ+ εζ, where ε > 0 is small enough that
µε ∈M+

1 (S). Then

F (µε) = F (ψ + εζ)

= F (ψ) +DF (ψ)εζ + o(ε‖ζ‖),

which implies

F (µε)− F (ψ) = εDF (ψ)ζ + o(ε‖ζ‖). (23)

Integrating both sides of (23) with respect to the measure µε − ψ = εζ, we have∫
S

(F (µε)− F (ψ)) d(µε − ψ) = ε

∫
S
DF (ψ)ζ d(µε − ψ) + o(ε2‖ζ‖2),

i.e.,43

〈F (µε)− F (ψ), µε − ψ〉 = ε2〈DF (ψ)ζ, ζ〉+ o(ε2). (24)

Since µε, ψ ∈M+
1 (S), by (CG), LHS of (24) is nonpositive. So we have

〈DF (ψ)ζ, ζ〉+
o(ε2)

ε2
≤ 0.

Taking ε → 0 yields 〈DF (ψ)ζ, ζ〉 ≤ 0. Since ψ ∈ M+
1 (S) and ζ ∈ M0(S) are arbitrary, (SDE)

holds.

(⇐) Suppose that (SDE) holds. Let µ, ψ ∈M+
1 (S) and α(t) = tµ+(1−t)ψ. Then the fundamental

theorem of calculus implies that44

F (µ)− F (ψ) =

∫
[0,1]

DF (α(t))(µ− ψ) dt. (25)

Integrating both sides of (25) with respect to the measure µ− ψ, we have∫
S

(F (µ)− F (ψ)) d(µ− ψ) =

∫
S

∫
[0,1]

DF (α(t))(µ− ψ) dt d(µ− ψ)

=

∫
[0,1]

∫
S
DF (α(t))(µ− ψ) d(µ− ψ) dt,

i.e.,

〈F (µ)− F (ψ), µ− ψ〉 =

∫
[0,1]
〈DF (α(t))(µ− ψ), µ− ψ〉 dt.

43Note that ζ ∈M0(S) is fixed.
44For the fundamental theorem of calculus in Banach spaces, see, e.g., Hamilton (1982).
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Since α(t) ∈M+
1 (S) for t ∈ [0, 1] and µ− ψ ∈M0(S), by (SDE), we have

〈DF (α(t))(µ− ψ), µ− ψ〉 ≤ 0,

and hence

〈F (µ)− F (ψ), µ− ψ〉 ≤ 0. (26)

Since (26) holds for any µ, ψ ∈M+
1 (S), F is a contractive game.

2

Example 4 Matching to Play a Two-player Symmetric Zero-sum Game. Consider the same setting
as in Example 1. In addition, we assume that the single match payoff function h : S × S → R
satisfies h(x, y) + h(y, x) = 0 for all x, y ∈ S. For any µ, ψ ∈M+

1 (S),

〈F (µ)− F (ψ), µ− ψ〉 =

∫
S

(F (µ)− F (ψ)) d(µ− ψ)

=

∫
S
F (µ) dµ−

∫
S
F (µ) dψ −

∫
S
F (ψ) dµ+

∫
S
F (ψ) dψ.

Note that, since Fx(µ) =
∫
S h(x, y)µ(dy), we have∫

S
F (µ) dψ +

∫
S
F (ψ) dµ =

∫
x∈S

∫
y∈S

h(x, y)µ(dy)ψ(dx) +

∫
x∈S

∫
y∈S

h(x, y)ψ(dy)µ(dx)

=

∫
x∈S

∫
y∈S

h(x, y)µ(dy)ψ(dx) +

∫
y∈S

∫
x∈S

h(y, x)ψ(dx)µ(dy)

=

∫
x∈S

∫
y∈S

(
h(x, y) + h(y, x)

)
µ(dy)ψ(dx)

= 0.

In particular, we have
∫
S F (µ) dµ = 0 =

∫
S F (ψ) dψ. Therefore, 〈F (µ) − F (ψ), µ − ψ〉 = 0 and

hence F is a null contractive game.
3

Example 5 Matching to Play a Two-player Symmetric Game with an Interior ESS or NSS.45

Consider the same setting as in Example 1. Note that

µ ∈ NE(F ) ⇔ Fz(µ) ≥ Fx(µ), ∀z ∈ S(µ), ∀x ∈ S

⇔
∫
S
Fz(µ)µ(dz) ≥ Fx(µ), ∀x ∈ S

⇔
∫
S
Fz(µ)µ(dz) ≥

∫
S
Fx(µ)ψ(dx), ∀ψ ∈M+

1 (S).

Since Fx(µ) =
∫
S h(x, y)µ(dy), we have

µ ∈ NE(F ) ⇔
∫
S

∫
S
h(x, y)µ(dy)µ(dx) ≥

∫
S

∫
S
h(x, y)µ(dy)ψ(dx), ∀ψ ∈M+

1 (S). (27)

State µ ∈M+
1 (S) is an evolutionarily stable state (ESS) if the following two conditions are satisfied:

45Cf. Maynard Smith and Price (1973) and Maynard Smith (1982).
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i)
∫
S
∫
S h(x, y)µ(dy)µ(dx) ≥

∫
S
∫
S h(x, y)µ(dy)ψ(dx), ∀ψ ∈M+

1 (S);

ii)
[ ∫
S
∫
S h(x, y)µ(dy)µ(dx) =

∫
S
∫
S h(x, y)µ(dy)ψ(dx) and µ 6= ψ

]
imply that∫

S
∫
S h(x, y)ψ(dy)µ(dx) >

∫
S
∫
S h(x, y)ψ(dy)ψ(dx).

If condition (ii) is weakened to

ii′)
[ ∫
S
∫
S h(x, y)µ(dy)µ(dx) =

∫
S
∫
S h(x, y)µ(dy)ψ(dx) and µ 6= ψ

]
imply that∫

S
∫
S h(x, y)ψ(dy)µ(dx) ≥

∫
S
∫
S h(x, y)ψ(dy)ψ(dx),

then µ is called a neutrally stable state (NSS). We have the following claim:

Claim: If there exists µ ∈ int(M+
1 (S)) which is an ESS, then F is a strictly contractive game.

The proof of the Claim is presented in Appendix A.3. Similar reasoning shows that, if F admits
an interior NSS, then F is a contractive game.

3

For more examples of contractive games, see Hofbauer, Oechssler and Riedel, 2009, Section 7.

6.2 Global Asymptotic Stability

For pairwise comparison dynamics, we have assumed that the conditional switch rates ρ satisfy
sign-preservation (SP):

sgn(ρxy(π)) = sgn([π(y)− π(x)]+), ∀x, y ∈ S. (SP)

To obtain results for global asymptotic stability (and hence global convergence) for contractive
games, an additional condition is needed, namely, impartiality (IP):

ρxy(π) = τy(π(y)− π(x)) for some continuous functions τy : R→ R+. (IP)

Under impartiality (IP), the conditional switch rate from x to y only depends on the payoff
difference π(y) − π(x) and the strategy to which the revising agent is switching. In particular, it
does not depend on the agent’s current strategy. The differential equation for pairwise comparison
dynamic (PCD) becomes

µ̇(A) =

∫
z∈S

∫
y∈A

τy(Fy(µ)−Fz(µ))λ(dy)µ(dz)−
∫
z∈S

∫
y∈A

τz(Fz(µ)−Fy(µ))µ(dy)λ(dz), (PCD′)

for all A ∈ B. For the special case of the Smith dynamic, ρxy(π) = [π(y)− π(x)]+ depends only on
the payoff difference π(y)− π(x), and thus impartiality (IP) is satisfied.

The following theorem shows that sign-preservation (SP) and impartiality (IP) together ensure
that the set of Nash equilibria is globally asymptotically stable for pairwise comparison dynamics
in contractive games.

Theorem 4 (Global Asymptotic Stability for Pairwise Comparison Dynamics for Con-
tractive Games) Let F : M+

1 (S) → Cb(S) be a contractive game that is C1, and let µ̇ = V F (µ)
be an impartial pairwise comparison dynamic for F . Suppose that the conditions in Theorem 1 are
satisfied so that a unique forward solution exists from each initial condition and solutions to the
dynamic are continuous in their initial conditions. Define the function H :M+

1 (S)→ R+ by

H(µ) :=

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))µ(dz)λ(dy),
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where

ηy(d) :=

∫ d

0
τy(r) dr

is the definite integral of τy. Then H−1(0) = NE(F ). Moreover, Ḣ(µ) ≤ 0 for all µ ∈ M+
1 (S),

with equality if and only if µ ∈ NE(F ), and so NE(F ) is globally asymptotically stable.

The proof of Theorem 4 is presented in Appendix A.3.

7 Conclusion

To summarize, we defined a population game with continuum strategy set S as a weakly continuous
map from the space of probability measures over S to the space of bounded continuous functions
on S. We provided a general framework to derive the mean dynamic for population games in
continuous strategy settings. We showed that, under mild Lipschitz continuity conditions, a unique
solution exists for the pairwise comparison dynamic from every initial strategy distribution, where
solutions are defined with respect to the variational norm. We established two nice properties—
Nash stationarity (NS) and positive correlation (PC)—for pairwise comparison dynamics. We
studied the global convergence and local stability of these dynamics, defining neighborhoods of
population states as well as ω-limit points in terms of the weak topology. We provided global
convergence and local stability results for general deterministic dynamics in potential games, and
a global asymptotic stability result for pairwise comparison dynamics in contractive games.

We defined a population game as a weakly continuous map F : M+
1 (S) → Cb(S). One might

ask whether we could generalize this definition, for example, by

i) defining a population game as a continuous map F : M+
1 (S) → Cb(S) (instead of a weakly

continuous map);46

ii) defining a population game as a weakly continuous map F : M+
1 (S) → Mb(S) (instead of

F : M+
1 (S) → Cb(S)), where Mb(S) denotes the space of bounded measurable functions on

S;

iii) defining a population game as a continuous map F :M+
1 (S) →Mb(S) (instead of a weakly

continuous map F :M+
1 (S)→ Cb(S)).

The definition in (iii) should be the broadest definition of a population game. In all cases, we
assume that F is continuous in the specified sense, because we would like that small changes in
the population state only lead to small changes in the payoffs of strategies in a population game.
In fact, our existence and uniqueness result (Theorem 1) still holds when any one of the above
definitions is being used.

Since F (µ) is an assignment of payoffs to each strategy, one may consider F (µ) to be a bounded
measurable function on S, i.e., F : M+

1 (S) → Mb(S), as in (ii) and (iii) above. However, for
Nash stationarity (NS) and positive correlation (PC) (Proposition 1), we need F (µ) ∈ Cb(S), which
means that there are no jumps in the payoff profile and hence near-by strategies give similar payoffs.
Which one of the assumptions, F (µ) ∈ Cb(S) or F (µ) ∈Mb(S), makes more sense depends on the
application in question.

46Recall that weakly continuous is a stronger condition than continuous.
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Finally, when we consider the global convergence and local stability of the dynamics, we need
to assume that F is weakly continuous, because the weak topology is used in our definitions of
stability and ω-limit points.

A Appendix

A.1 Lipschitz continuity of Ṽ (·)

Lemma 5 Let F : M+
1 (S) → Cb(S) be a population game, and let µ0 = µ(0) ∈ M+

1 (S). Suppose
that the conditions in Theorem 1 are satisfied. Let V (·) be defined by (3), and Ṽ (·) be defined by
(5). We have the following:

a) V (ψ) is Lipschitz continuous for ‖ψ‖ ≤ 2, and

b) Ṽ (·) is Lipschitz continuous.

We need to use some results from Appendix of Oechssler and Riedel (2001). Let ψ, ξ be finite
positive measures. Let ϕ = aψ − bξ, for some 0 ≤ a, b < ∞, be a finite signed measure. Assume
that there is a finite positive measure ν such that ψ � ν and ξ � ν (i.e., ψ and ξ are absolutely
continuous with respect to ν), and hence ϕ� ν. Then the Radon-Nikodym derivatives dψ

dν , dξ
dν and

dϕ
dν = adψdν − b

dξ
dν exist. We have

Fact 2 (cf. Oechssler and Riedel, 2001, Theorem 5) The variational norm of ϕ is given by

‖ϕ‖ =

∫
S

∣∣∣dϕ
dν

∣∣∣ dν.
In particular,

‖ψ − ξ‖ =

∫
S

∣∣∣dψ
dν
− dξ

dν

∣∣∣ dν.
Proof.47 Let g : S → R be a measurable function bounded by 1 (i.e., sups∈S |g(s)| ≤ 1). Then∣∣∣ ∫

S
g dϕ

∣∣∣ =
∣∣∣ ∫
S
g
dϕ

dν
dν
∣∣∣ ≤ ∫

S

∣∣∣gdϕ
dν

∣∣∣ dν ≤ ∫
S

∣∣∣dϕ
dν

∣∣∣ dν.
Taking sup over g, we have ‖ϕ‖ ≤

∫
S
∣∣dϕ
dν

∣∣ dν. To show equality, set A = {dϕdν > 0} and g = 1A−1Ac .
Then g is a measurable function bounded by 1, and hence

‖ϕ‖ ≥
∣∣∣ ∫
S
g dϕ

∣∣∣ =
∣∣∣ ∫

A

dϕ

dν
dν −

∫
Ac

dϕ

dν
dν
∣∣∣ =

∫
S

∣∣∣dϕ
dν

∣∣∣ dν
because dϕ

dν =
∣∣dϕ
dν

∣∣ on A and −dϕ
dν =

∣∣dϕ
dν

∣∣ on Ac.
2

Proof of Lemma 5.

47The proof is simple and can be found in Oechssler and Riedel, 2001, Appendix A.1. We state it here for readers’
convenience.
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Part (a): Define V I :M(S)→M(S) and V O :M(S)→M(S) by

V I(ψ)(A) :=

∫
y∈A

∫
z∈S

ρzy(F̃ (ψ))ψ(dz)λ(dy), (28)

V O(ψ)(A) :=

∫
y∈A

∫
z∈S

ρyz(F̃ (ψ))λ(dz)ψ(dy), (29)

for ψ ∈ M(S) and A ∈ B. Then V (ψ) = V I(ψ) − V O(ψ) for any ψ ∈ M(S). Note that the
definitions of V I(·) and V O(·) are different from those in (10) and (11), because now the domains
are M(S) instead of M+

1 (S).
Let ψ, ξ ∈ M(S). In below, for any φ ∈ M(S), we denote |φ| := φ+ + φ−, where the positive

measures φ+ and φ− form the Jordan decomposition of φ, i.e., φ = φ+ − φ−. We show V (ψ) is
Lipschitz continuous for ‖ψ‖ ≤ 2 in two steps.

Step 1: Show V I(ψ) is Lipschitz for ‖ψ‖ ≤ 2.

Note that V I(ψ)� λ by (28). So the Radon-Nikodym derivative dV I(ψ)
dλ exists and

dV I(ψ)

dλ
=

∫
z∈S

ρz·(F̃ (ψ))ψ(dz).

Using Fact 2 and (A), we have for any ψ, ξ ∈M(S) with ‖ψ‖, ‖ξ‖ ≤ 2,

‖V I(ψ)− V I(ξ)‖ = Eλ
∣∣∣dV I(ψ)

dλ
− dV I(ξ)

dλ

∣∣∣
=

∫
y∈S

∣∣∣ ∫
z∈S

ρzy(F̃ (ψ))ψ(dz)−
∫
z∈S

ρzy(F̃ (ξ)) ξ(dz)
∣∣∣λ(dy)

=

∫
y∈S

∣∣∣ ∫
z∈S

ρzy(F̃ (ψ))ψ(dz)−
∫
z∈S

ρzy(F̃ (ψ)) ξ(dz)

+

∫
z∈S

ρzy(F̃ (ψ)) ξ(dz)−
∫
z∈S

ρzy(F̃ (ξ)) ξ(dz)
∣∣∣λ(dy)

≤
∫
y∈S

∫
z∈S

ρzy(F̃ (ψ)) |ψ − ξ|(dz)λ(dy)

+

∫
y∈S

∫
z∈S

∣∣ρzy(F̃ (ψ))− ρzy(F̃ (ξ))
∣∣ |ξ|(dz)λ(dy)

≤ M

∫
y∈S

∫
z∈S
|ψ − ξ|(dz)λ(dy)

+ K‖ψ − ξ‖
∫
y∈S

∫
z∈S
|ξ|(dz)λ(dy)

= M · λ(S)

∫
S
d|ψ − ξ|+K‖ψ − ξ‖ · λ(S)

∫
S
d|ξ|

≤ Mλ(S)‖ψ − ξ‖+Kλ(S)‖ψ − ξ‖‖ξ‖
≤ (M + 2K)λ(S)‖ψ − ξ‖.

Hence, V I(ψ) is Lipschitz for ‖ψ‖ ≤ 2.

Step 2: Show V O(ψ) is Lipschitz for ‖ψ‖ ≤ 2.
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Note that V O(ψ)� |ψ| by (29).48 So the Radon-Nikodym derivative dV O(ψ)
d|ψ| exists and

dV O(ψ)

d|ψ|
=

∫
z∈S

ρ·z(F̃ (ψ))λ(dz)
dψ

d|ψ|
.

Let ν = |ψ|+|ξ|
2 . Then |ψ|, |ξ| and ν are finite positive measures. Also, ψ, |ψ|, ξ, |ξ| � ν. Hence,

the Radon-Nikodym derivatives dψ
dν ,

d|ψ|
dν ,

dξ
dν and d|ξ|

dν exist. Since V O(ψ) � |ψ| and |ψ| � ν, we

have V O(ψ) � ν. Similarly, V O(ξ) � ν. So the Radon-Nikodym derivatives dV O(ψ)
dν and dV O(ξ)

dν
exist. Using Fact 2 and (A), we have for any ψ, ξ ∈M(S) with ‖ψ‖, ‖ξ‖ ≤ 2,

‖V O(ψ)− V O(ξ)‖ = Eν
∣∣∣dV O(ψ)

dν
− dV O(ξ)

dν

∣∣∣
= Eν

∣∣∣dV O(ψ)

d|ψ|
d|ψ|
dν
− dV O(ξ)

d|ξ|
d|ξ|
dν

∣∣∣
=

∫
y∈S

∣∣∣ ∫
z∈S

ρyz(F̃ (ψ))λ(dz)
dψ

d|ψ|
(y)

d|ψ|
dν

(y)

−
∫
z∈S

ρyz(F̃ (ξ))λ(dz)
dξ

d|ξ|
(y)

d|ξ|
dν

(y)
∣∣∣ ν(dy)

=

∫
y∈S

∣∣∣ ∫
z∈S

ρyz(F̃ (ψ))λ(dz)
dψ

dν
(y)−

∫
z∈S

ρyz(F̃ (ξ))λ(dz)
dξ

dν
(y)
∣∣∣ ν(dy)

=

∫
y∈S

∣∣∣ ∫
z∈S

ρyz(F̃ (ψ))λ(dz)
dψ

dν
(y)−

∫
z∈S

ρyz(F̃ (ψ))λ(dz)
dξ

dν
(y)

+

∫
z∈S

ρyz(F̃ (ψ))λ(dz)
dξ

dν
(y)−

∫
z∈S

ρyz(F̃ (ξ))λ(dz)
dξ

dν
(y)
∣∣∣ ν(dy)

≤
∫
y∈S

∫
z∈S

ρyz(F̃ (ψ))λ(dz)
∣∣∣dψ
dν

(y)− dξ

dν
(y)
∣∣∣ ν(dy)

+

∫
y∈S

∫
z∈S

∣∣ρyz(F̃ (ψ))− ρyz(F̃ (ξ))
∣∣λ(dz)

∣∣∣dξ
dν

(y)
∣∣∣ ν(dy)

≤ M

∫
y∈S

∫
z∈S

λ(dz)
∣∣∣dψ
dν

(y)− dξ

dν
(y)
∣∣∣ ν(dy)

+ K‖ψ − ξ‖
∫
y∈S

∫
z∈S

λ(dz)
∣∣∣dξ
dν

(y)
∣∣∣ ν(dy)

= M · λ(S)

∫
S

∣∣∣dψ
dν
− dξ

dν

∣∣∣ dν + K‖ψ − ξ‖ · λ(S)

∫
S

∣∣∣dξ
dν

∣∣∣ dν
= Mλ(S)‖ψ − ξ‖+Kλ(S)‖ψ − ξ‖‖ξ‖
≤ (M + 2K)λ(S)‖ψ − ξ‖.

Hence, V O(ψ) is Lipschitz for ‖ψ‖ ≤ 2.

From Steps 1 and 2, we conclude that V (ψ) is Lipschitz for ‖ψ‖ ≤ 2. More precisely, for any
ψ, ξ ∈M(S) with ‖ψ‖, ‖ξ‖ ≤ 2,

‖V (ψ)− V (ξ)‖ = ‖V I(ψ)− V O(ψ)− V I(ξ) + V O(ξ)‖
48Note that, for any A ∈ B, |ψ|(A) = 0 ⇒ ψ+(A) = ψ−(A) = 0 ⇒ V O(ψ)(A) = 0.
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≤ ‖V I(ψ)− V I(ξ)‖+ ‖V O(ψ)− V O(ξ)‖
≤ (M + 2K)λ(S)‖ψ − ξ‖+ (M + 2K)λ(S)‖ψ − ξ‖
= 2(M + 2K)λ(S)‖ψ − ξ‖. (30)

Part (b): To show Ṽ (·) is Lipschitz, we need to distinguish between three cases. Let ψ, ξ ∈M(S).

Case 1: ‖ψ‖, ‖ξ‖ ≥ 2.
Then Ṽ (ψ) = Ṽ (ξ) = 0 and there is nothing to show.

Case 2: ‖ψ‖ ≥ 2 ≥ ‖ξ‖.
Then Ṽ (ψ) = 0 and hence

‖Ṽ (ψ)− Ṽ (ξ)‖ = (2− ‖ξ‖)‖V (ξ)‖
= (2− ‖ξ‖)‖V I(ξ)− V O(ξ)‖
≤ (2− ‖ξ‖)(‖V I(ξ)‖+ ‖V O(ξ)‖).

First, we consider ‖V I(ξ)‖. We know from Step 1 of Part (a) that V I(ξ) � λ and dV I(ξ)
dλ exists,

and

dV I(ξ)

dλ
=

∫
z∈S

ρz·(F̃ (ξ)) ξ(dz).

Using Fact 2 and (A), we have

‖V I(ξ)‖ = Eλ
∣∣∣dV I(ξ)

dλ

∣∣∣
=

∫
y∈S

∣∣∣ ∫
z∈S

ρzy(F̃ (ξ)) ξ(dz)
∣∣∣λ(dy)

≤
∫
y∈S

∫
z∈S

ρzy(F̃ (ξ)) |ξ|(dz)λ(dy)

≤ M · λ(S)

∫
S
d|ξ|

≤ Mλ(S)‖ξ‖.

Next, we consider ‖V O(ξ)‖. We know from Step 2 of Part (a) that V O(ξ)� |ξ| and dV O(ξ)
d|ξ| exists,

and

dV O(ξ)

d|ξ|
=

∫
z∈S

ρ·z(F̃ (ξ))λ(dz)
dξ

d|ξ|
.

Using Fact 2 and (A), we have

‖V O(ξ)‖ = E|ξ|
∣∣∣dV O(ξ)

d|ξ|

∣∣∣
=

∫
y∈S

∣∣∣ ∫
z∈S

ρyz(F̃ (ξ))λ(dz)
dξ

d|ξ|
(y)
∣∣∣ |ξ|(dy)

≤
∫
y∈S

∫
z∈S

ρyz(F̃ (ξ))λ(dz)
∣∣∣ dξ
d|ξ|

(y)
∣∣∣ |ξ|(dy)
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≤ M · λ(S)

∫
S

∣∣∣ dξ
d|ξ|

∣∣∣ d|ξ|
= Mλ(S)‖ξ‖.

Hence, we have

‖V (ξ)‖ ≤ ‖V I(ξ)‖+ ‖V O(ξ)‖
≤ Mλ(S)‖ξ‖+Mλ(S)‖ξ‖
= 2Mλ(S)‖ξ‖ (31)

and

‖Ṽ (ψ)− Ṽ (ξ)‖ ≤ (2− ‖ξ‖)(‖V I(ξ)‖+ ‖V O(ξ)‖)
≤ (‖ψ‖ − ‖ξ‖)2Mλ(S)‖ξ‖
≤ 4Mλ(S)‖ψ − ξ‖.

So, in this case, Ṽ (·) is Lipschitz.

Case 3: ‖ψ‖, ‖ξ‖ ≤ 2.
Then

‖Ṽ (ψ)− Ṽ (ξ)‖ = ‖ (2− ‖ψ‖)V (ψ)− (2− ‖ξ‖)V (ξ) ‖
= ‖ (2− ‖ψ‖)V (ψ)− (2− ‖ψ‖)V (ξ) + (2− ‖ψ‖)V (ξ)− (2− ‖ξ‖)V (ξ) ‖
≤ (2− ‖ψ‖) ‖V (ψ)− V (ξ)‖+ ‖V (ξ)‖

∣∣‖ψ‖ − ‖ξ‖∣∣.
Using (30) and (31), we have

‖Ṽ (ψ)− Ṽ (ξ)‖ ≤ 2 · 2(M + 2K)λ(S)‖ψ − ξ‖+ 2Mλ(S)‖ξ‖ · ‖ψ − ξ‖
≤ 4(M + 2K)λ(S)‖ψ − ξ‖+ 4Mλ(S)‖ψ − ξ‖
= 8(M +K)λ(S)‖ψ − ξ‖.

So, in this case, Ṽ (·) is Lipschitz.

Therefore, we conclude that Ṽ (·) is Lipschitz with Lipschitz constant K̃ = 8(M +K)λ(S).
2

A.2 Some theorems from dynamical systems theory

Let

µ̇ = V (µ) (D)

be a differential equation on M+
1 (S) that admits a unique forward solution from each initial con-

dition, and suppose that solutions to (D) are continuous in their initial conditions. We have the
following two theorems:

Theorem 5 (cf. Sandholm, 2010a, Theorem 7.B.3) Let Y ⊆ M+
1 (S), and let L : Y → R be

a decreasing Lyapunov function for (D), i.e., L is weakly continuous and Fréchet-differentiable with
L̇(µ) ≡ 〈∇L(µ), V (µ)〉 ≤ 0 for all µ ∈ Y . Then ω(µ0) ⊆ {µ ∈ Y : L̇(µ) = 0} for all µ0 ∈ Y . Thus,
if L̇(µ) = 0 implies V (µ) = 0 (i.e., L is a strict Lyapunov function), then ω(µ0) ⊆ RP (V ) ∩ Y .
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The proof of Theorem 5 follows similarly as that of Theorem 7.B.3 in Sandholm (2010a), and
thus is omitted. The conclusions of Theorem 5 are the same if L is an increasing Lyapunov function
for (D).

Theorem 6 (Lyapunov’s Theorem)(cf. Oechssler and Riedel, 2002, Proposition 6)49

Let Z ⊆M+
1 (S) be a closed set, and let Y ⊆M+

1 (S) be a neighborhood of Z in the weak topology.
Let L : Y → R+ be a decreasing Lyapunov function for (D), i.e., L is weakly continuous and
Fréchet-differentiable with L̇(µ) ≡ 〈∇L(µ), V (µ)〉 ≤ 0 for all µ ∈ Y . Suppose that L−1(0) = Z.
Then Z is Lyapunov stable under (D).

Proof.50 Let ε > 0 be such that cl(Zε) ≡ {µ ∈ M+
1 (S) : κ(µ,Z) ≤ ε} ⊆ Y . The boundary of

cl(Zε), denoted by bd(Zε), is closed and hence compact in the weak topology. Since L is continuous
with respect to the weak topology, m := minµ∈bd(Zε) L(µ) exists, and m > 0. Now choose δ > 0
such that κ(µ,Z) < δ implies L(µ) < m. If (µ(t)) is a solution trajectory of (D) with κ(µ(0), Z) < δ,
then L(µ(t)) decreases in t because L̇(µ) ≤ 0 for all µ ∈ M+

1 (S). Hence, we have L(µ(t)) < m for
all t ≥ 0, and thus κ(µ(t), Z) < ε for all t ≥ 0.

2

The above two theorems imply the following corollary:

Corollary 2 (cf. Sandholm, 2010a, Corollary 7.B.6) Let Z ⊆ M+
1 (S) be a closed set, and

let Y ⊆ M+
1 (S) be a neighborhood of Z in the weak topology. Let L : Y → R+ be a decreasing

Lyapunov function for (D), i.e., L is weakly continuous and Fréchet-differentiable with L̇(µ) ≡
〈∇L(µ), V (µ)〉 ≤ 0 for all µ ∈ Y . Suppose that L−1(0) = Z. If L̇(µ) < 0 for all µ ∈ Y \Z, then
Z is asymptotically stable under (D). If in addition Y =M+

1 (S), then Z is globally asymptotically
stable under (D).

A.3 Some proofs from Section 6

Proof of the Claim in Example 5. To prove the Claim, it suffices to show that

〈DF (ψ)ζ, ζ〉 < 0, ∀ψ ∈M+
1 (S) and ζ ∈M0(S) with ζ 6= 0. (32)

First, we find DF (ψ)ζ. Let ψ ∈ int(M+
1 (S)), ζ ∈M0(S), and let ε > 0 be small enough such that

ψ + εζ ∈M+
1 (S). Then

Fx(ψ + εζ) =

∫
S
h(x, y) (ψ + εζ)(dy)

=

∫
S
h(x, y)ψ(dy) + ε

∫
S
h(x, y) ζ(dy)

= Fx(ψ) + ε

∫
S
h(x, y) ζ(dy).

So, we have

(DF (ψ)ζ)(x) =

∫
S
h(x, y) ζ(dy). (33)

49See also Sandholm, 2010a, Theorem 7.B.2.
50The proof can be found in Oechssler and Riedel, 2002, Appendix B. We state it here for the sake of clarity because

the definitions of Lyapunov function in Oechssler and Riedel (2002) and in the present paper are a bit different. Also,
we generalize the theorem a bit from “a measure is Lyapunov stable” to “a closed set of measures is Lyapunov stable”.
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Next, we show (32). Since µ is an interior NE, µ has full support. So, we have Fz(µ) = Fx(µ)
for all x, z ∈ S, which implies

∫
S Fz(µ)µ(dz) = Fx(µ) for all x ∈ S, and hence

∫
S Fz(µ)µ(dz) =∫

S Fx(µ)ψ(dx) for all ψ ∈M+
1 (S), i.e.,∫

S

∫
S
h(x, y)µ(dy)µ(dx) =

∫
S

∫
S
h(x, y)µ(dy)ψ(dx), ∀ψ ∈M+

1 (S). (34)

So, by condition (ii), for any ψ 6= µ,∫
S

∫
S
h(x, y)ψ(dy)µ(dx) >

∫
S

∫
S
h(x, y)ψ(dy)ψ(dx),

which implies∫
S

∫
S
h(x, y)ψ(dy) (ψ − µ)(dx) < 0, ∀ψ 6= µ. (35)

From (34), we have∫
S

∫
S
h(x, y)µ(dy) (ψ − µ)(dx) = 0, ∀ψ ∈M+

1 (S). (36)

Subtracting (36) from (35) yields∫
S

(∫
S
h(x, y)ψ(dy)−

∫
S
h(x, y)µ(dy)

)
(ψ − µ)(dx) < 0, ∀ψ 6= µ,

i.e., ∫
S

∫
S
h(x, y) (ψ − µ)(dy) (ψ − µ)(dx) < 0, ∀ψ 6= µ. (37)

Since µ ∈ int(M+
1 (S)), any ζ ∈ M0(S) with ζ 6= 0 is proportional to ψ − µ for some ψ ∈ M+

1 (S)
with ψ 6= µ. So, (37) implies that∫

S

∫
S
h(x, y) ζ(dy) ζ(dx) < 0, ∀ζ ∈M0(S) with ζ 6= 0.

Then, by (33), we have∫
S

(DF (ψ)ζ)(x) ζ(dx) < 0, ∀ψ ∈M+
1 (S) and ζ ∈M0(S) with ζ 6= 0,

i.e.,

〈DF (ψ)ζ, ζ〉 < 0, ∀ψ ∈M+
1 (S) and ζ ∈M0(S) with ζ 6= 0.

2

Proof of Theorem 4. Sign-preservation (SP) and impartiality (IP) together imply that

sgn(τy(d)) = sgn([d]+), ∀d ∈ R.
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The first claim is proved as follows:

µ ∈ NE(F ) ⇔ Fz(µ) ≥ Fy(µ), ∀z ∈ S(µ), ∀y ∈ S
⇔ ηy(Fy(µ)− Fz(µ)) = 0, ∀z ∈ S(µ), ∀y ∈ S
⇔ H(µ) = 0.

The last “⇔” follows from the continuity of ηy(d) in y and d.

To prove the second claim, we calculate Ḣ(µ).

Ḣ(µ) =

∫
y∈S

∫
z∈S

τy(Fy(µ)− Fz(µ))[(DF (µ)µ̇)(y)− (DF (µ)µ̇)(z)]µ(dz)λ(dy)

+

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ)) µ̇(dz)λ(dy)

=

∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(y)µ(dz)λ(dy)

−
∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(z)µ(dz)λ(dy)

+

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ)) µ̇(dz)λ(dy). (38)

We will consider the three terms on the RHS of (38) separately.
Recall the functions V I :M+

1 (S)→M(S) and V O :M+
1 (S)→M(S) defined by (10) and (11)

respectively in the proof of Lemma 1. Using (12), we have∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(y)µ(dz)λ(dy)

=

∫
y∈S

(DF (µ)µ̇)(y)

∫
z∈S

ρzy(F (µ))µ(dz)λ(dy)

=

∫
y∈S

(DF (µ)µ̇)(y)
dV I(µ)

dλ
(y)λ(dy)

=

∫
y∈S

(DF (µ)µ̇)(y)V I(µ)(dy)

=

∫
S
DF (µ)µ̇ dV I(µ).

Using (13), we have∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(z)µ(dz)λ(dy)

=

∫
z∈S

(DF (µ)µ̇)(z)

∫
y∈S

ρzy(F (µ))λ(dy)µ(dz)

=

∫
z∈S

(DF (µ)µ̇)(z)
dV O(µ)

dµ
(z)µ(dz)

=

∫
z∈S

(DF (µ)µ̇)(z)V O(µ)(dz)

=

∫
S
DF (µ)µ̇ dV O(µ).

36



Hence, by Lemma 4 and the fact that

µ̇ = V F (µ) = V I(µ)− V O(µ) ∈M0(S), (39)

we have∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(y)µ(dz)λ(dy)−
∫
y∈S

∫
z∈S

ρzy(F (µ))(DF (µ)µ̇)(z)µ(dz)λ(dy)

=

∫
S
DF (µ)µ̇ dV I(µ)−

∫
S
DF (µ)µ̇ dV O(µ)

=

∫
S
DF (µ)V F (µ) dV F (µ)

= 〈DF (µ)V F (µ), V F (µ)〉
≤ 0.

Denote by K(µ) the last term on the RHS of (38). Using (12), (13) and (39), we have

K(µ) =

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ)) µ̇(dz)λ(dy)

=

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))V I(µ)(dz)λ(dy)−
∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))V O(µ)(dz)λ(dy)

=

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))
dV I(µ)

dλ
(z)λ(dz)λ(dy)

−
∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))
dV O(µ)

dµ
(z)µ(dz)λ(dy)

=

∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))

∫
x∈S

ρxz(F (µ))µ(dx)λ(dz)λ(dy)

−
∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))

∫
x∈S

ρzx(F (µ))λ(dx)µ(dz)λ(dy)

=

∫
y∈S

∫
x∈S

ηy(Fy(µ)− Fx(µ))

∫
z∈S

ρzx(F (µ))µ(dz)λ(dx)λ(dy)

−
∫
y∈S

∫
z∈S

ηy(Fy(µ)− Fz(µ))

∫
x∈S

ρzx(F (µ))λ(dx)µ(dz)λ(dy)

=

∫
z∈S

∫
x∈S

∫
y∈S

[ηy(Fy(µ)− Fx(µ))− ηy(Fy(µ)− Fz(µ))]ρzx(F (µ))λ(dy)λ(dx)µ(dz)

=

∫
z∈S

∫
x∈S

ρzx(F (µ))

∫
y∈S

[ηy(Fy(µ)− Fx(µ))− ηy(Fy(µ)− Fz(µ))]λ(dy)λ(dx)µ(dz).

To evaluate the last expression, first observed that, if Fx(µ) > Fz(µ), then ρzx(F (µ)) > 0 and
Fy(µ)−Fx(µ) < Fy(µ)−Fz(µ); since each ηy is nondecreasing, it follows that ηy(Fy(µ)−Fx(µ))−
ηy(Fy(µ) − Fz(µ)) ≤ 0. In fact, when y = x, the comparison between payoff differences becomes
0 < Fy(µ)− Fz(µ); since each ηy is strictly increasing on [0,∞), it follows that ηy(0)− ηy(Fy(µ)−
Fz(µ)) < 0. Since λ has full support, by continuity, we have

∫
y∈S [ηy(Fy(µ)− Fx(µ))− ηy(Fy(µ)−

Fz(µ))]λ(dy) < 0. One can therefore conclude that, if Fx(µ) > Fz(µ), then ρzx(F (µ)) > 0 and∫
y∈S [ηy(Fy(µ) − Fx(µ)) − ηy(Fy(µ) − Fz(µ))]λ(dy) < 0. On the other hand, if Fz(µ) ≥ Fx(µ), we
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immediately have ρzx(F (µ)) = 0. Altogether, we have

K(µ) ≡
∫
z∈S

∫
x∈S

ρzx(F (µ))

∫
y∈S

[ηy(Fy(µ)−Fx(µ))−ηy(Fy(µ)−Fz(µ))]λ(dy)λ(dx)µ(dz) ≤ 0,

with equality if and only if

ρzx(F (µ)) = 0, ∀z ∈ S(µ), ∀x ∈ S,

i.e., µ ∈ NE(F ) (see (15)).

By the above calculation,

Ḣ(µ) = 〈DF (µ)V F (µ), V F (µ)〉+K(µ), (40)

and both terms on the RHS of (40) are nonpositive. Since this is true for any µ ∈ M+
1 (S), we

have Ḣ(µ) ≤ 0 for all µ ∈ M+
1 (S). By Proposition 1, Nash stationarity (NS) is satisfied and thus

NE(F ) = RP (V F ). So, if Ḣ(µ) = 0, then K(µ) = 0, which implies µ ∈ NE(F ). For the reverse
direction, if µ ∈ NE(F ), then K(µ) = 0; also, since µ ∈ NE(F ) = RP (V F ), we have V F (µ) = 0,
which implies 〈DF (µ)V F (µ), V F (µ)〉 = 0 and hence Ḣ(µ) = 0. Therefore, Ḣ(µ) = 0 if and only if
µ ∈ NE(F ), and so the second claim is proved. Finally, since F : M+

1 (S) → Cb(S) is continuous
with respect to the weak topology, H :M+

1 (S) → R+ is also continuous with respect to the weak
topology. Hence, the function H :M+

1 (S)→ R+ acts as a decreasing strict Lyapunov function for
the dynamic. Therefore, by Corollary 2 in Appendix A.2, NE(F ) is globally asymptotically stable.

2
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