
Multi-unit Procurements with Budgets, and

An Optimal Truthful Mechanism for Bounded Knapsack

Hau Chan Jing Chen
Department of Computer Science, Stony Brook University

{hauchan, jingchen}@cs.stonybrook.edu

Abstract

We study procurement games where each seller has multiple units of the item he supplies,
and the buyer can purchase any number of units for each seller’s item. Each seller has a cost
for one unit of his item, which is his private information. The buyer has a budget B and the
total payment he makes to the sellers cannot exceed B.

Procurement games have been studied in the framework of budget feasible mechanisms [27].
However, all the studies of budget feasible mechanisms so far have focused on settings where,
each seller has only one unit of his item, and the buyer decides from whom to buy instead of
how many to buy for each item. This is the first time where budget feasible mechanisms are
studied in multi-unit settings.

For a special class of procurement games, namely, the bounded knapsack problem, we show
that no (randomized) dominant-strategy truthful (DST) budget feasible mechanism can approx-
imate the value of the optimal allocation within better than lnn, where n is the total number
of units of all items available. This is very different from single-unit settings, where constant
approximation is known for many scenarios, including knapsack.

We then construct a polynomial-time randomized DST budget feasible mechanism that gives
a 4(1 + lnn) approximation for procurement games with additive valuations, which include
bounded knapsack as a special case. Our impossibility result implies that our mechanism is
optimal up to a constant factor. Moreover, for the bounded knapsack problem, given the well
known FPTAS, our results imply that there is provably a gap between the optimization domain
and the mechanism design domain.

Finally, for a much broader class of procurement games, those with sub-additive valuations,

we construct a randomized DST budget feasible mechanism that gives an O(log2 n
log logn) approx-

imation. The mechanism runs in polynomial time given a demand oracle —a standard oracle
for dealing with sub-additive valuations.

Keywords: procurement auction, budget feasible mechanism, optimal mechanism, approximation

1 Introduction

In a procurement auction, m sellers compete for providing their items (which are referred to as
products or services in particular scenarios) to the buyer. Each seller i has one item and can provide
at most ni units of it, with a fixed cost ci per unit which is known only to him. The items need
not be substitutions of each other and the buyer may purchase any combination of them with any
number of units each. For example, a local government may decide to buy 50 displays from Dell, 20
laptops from Lenovo, and 30 printers from HP.1 The buyer has his own value function for possible
ways of combining the items, which is publicly known. He also has a budget B, publicly known

1In reality Dell also sells laptops and Lenovo also sells displays. But for the purpose of this paper we consider
settings where each seller has one item to supply, but has many units of it.

1

as well, and the total amount spent in the procurement cannot exceed B. The buyer’s goal is to
maximize his value from the items bought, subject to the budget constraint. Since the true cost of
each seller is not known by anybody else, as mechanism designers we look for dominant strategy
truthful (DST) mechanisms which elicit these costs. The mechanisms should produce outcomes
(namely, how many units to buy from and how much to pay to each seller) that meet the budget
constraint and are approximately optimal for the buyer.

Procurement auctions with budgets have been studied in the framework of budget feasible
mechanisms (see, e.g., [27, 14, 12, 7]). Yet, all the studies so far have focused on settings where
each seller has only one unit of his item. In such settings there are only two possibilities from a
seller’s point of view: either his item is taken and he gets paid, or it is not taken.2 When a seller
has multiple units of the same item and may benefit from selling any number of them, there are
more possibilities for him to deviate into, and it becomes harder to provide incentives for him to be
truthful, as demonstrated by our impossibility result. However, many interesting mechanisms can
be constructed for multi-unit settings, and in some cases they are actually optimal, as demonstrated
by our positive results. To the best of our knowledge, we are the first to explore budget feasible
mechanisms in the more general multi-unit settings.

Multi-unit procurement auctions with budgets can be used to model many interesting problems.
For example, the classic bounded knapsack problem can be considered as a special case of such an
auction, where the buyer has a value vi for one unit of item i, and his total value is the sum of his
value for each unit he has bought. Here each item’s cost is its private information and has to be
elicited by a DST mechanism. Even for this very special case of multi-unit procurement auctions,
we are not aware of any study in the mechanism design literature.

Also, in a job scheduling problem the central planner may want to assign multiple jobs to a
machine, and his value not only depends on which machines are used but also on how many jobs
each machine gets. Here a machine has a private cost for one unit of the workload, and the number
of units available at a machine may be decided by the machine’s own constraints or may be taken
as the total number of jobs to be scheduled.

As another example, in the Provision-after-Wait problem in healthcare as introduced by [8], the
government needs to serve n patients at m hospitals in each time unit. Each patient has his own
value for being served at a particular hospital, and the value of the government is the social welfare
generated from the patients. Again here a hospital has a private cost for serving one patient. Each
hospital may have its own physical capacity on how many patients it can serve in one time unit,
or this capacity can be taken to be the total number of patients. But the study in [8] focused on
the structure of the optimal solution and the dynamics between hospitals and patients, instead of
eliciting the hospitals’ true costs by DST budget feasible mechanisms.

1.1 Our main results

An impossibility result. Although DST budget feasible mechanisms with constant approxi-
mation ratios have been constructed in single-unit procurements for additive valuations (namely,
the knapsack problem) and sub-modular valuations [27, 12], our first result shows this is impos-
sible for multi-unit settings, even for the special case of bounded knapsack, even for randomized
mechanisms:

Theorem 1. (rephrased) No randomized mechanism can do better than a lnn approximation for
bounded knapsack, where n is the total number of units of all items.

2In the coverage problem a player has a set of elements, but still the outcome is binary for him: either his whole
set is taken or none of the elements is taken.

2

This theorem applies to all classes of multi-unit procurements we consider in this paper because
they all contain bounded knapsack as a special case.

An optimal mechanism for additive valuations. Theorem 1 gives us a guide on what to
expect when constructing DST budget feasible mechanisms for multi-unit settings. In fact, for
additive valuations —where the buyer has a value vij for each item i’s j-th unit and his total value
is the sum of his value for each unit he gets—, it is surprising that we can construct a simple
mechanism which is almost optimal.

Theorem 2. (rephrased) There is a polynomial-time mechanism which is a 4(1 + lnn) approxima-
tion for additive valuations.

Since bounded knapsack is a special case of additive valuations, our mechanism is optimal within
a constant factor. More interestingly, given that bounded knapsack has an FPTAS when there is
no strategic considerations, our results show that there is a gap between the optimization domain
and the mechanism design domain for what one can expect when solving bounded knapsack.

The main idea of our mechanism is a greedy algorithm based on each unit’s marginal value-cost
rate. Indeed, greedy algorithms are natural choices when constructing budget feasible mechanisms
in single-unit settings, because it is obviously monotone: when a seller lowers his cost his item gets
ranked better, thus if it was taken by the greedy algorithm before it will still be taken now. In
single parameter settings (which cover both single-unit and multi-unit procurements), monotonicity
is the first thing one need for a DST mechanism. For multi-unit additive valuations, the greedy
algorithm is still monotone and thus can be used as a building block for DST mechanisms. Yet we
need to be careful about how to compute the payments to the sellers, and proving that the total
payment is budget feasible also need new ideas, as shown by the analysis in Section 4.

Beyond additive valuations. We do not know how to use greedy algorithms to construct DST
budget feasible mechanisms for more general classes of valuations. The fundamental reason is that
they are not monotone anymore. Intuitively, after lowering his cost a seller i’s first unit may be
picked up by the algorithm in an earlier step, say in step 2 instead of the previous step 3. But now
the first two units picked up by the algorithm are different from before, and the marginal values of
all remaining units of all sellers, including those of seller i’s, have to be re-calculated with respected
to these new units.3 Depending on how the buyer’s valuation function is defined, the re-calculated
marginal values may completely change how the sellers’ units are ranked. Accordingly, other sellers’
remaining units may become more preferable than seller i’s second unit, and seller i may not get
any other unit he got before. Notice that this does not happen in single-unit settings: seller i has
only one unit, and once this unit is picked up by the algorithm, how the other sellers’ marginal
values are re-calculated and re-ordered with respect to it does not affect seller i at all.

To demonstrate the non-monotonicity of greedy algorithms clearer, in Section 5.1 for valuations
with diminishing return (which is a natural generalization of single-unit sub-modular values and is
defined in Section 2), we give a concrete example where the greedy algorithm on marginal value-cost
rates is not monotone: by lowering his cost a seller actually gets fewer units in the final outcome.
Thus for more general settings, such as multi-unit sub-modular and sub-additive valuations (also
defined in Section 2), the greedy algorithm cannot be used either.

Given this intrinsic limitation of greedy algorithms, we turn to a different approach, random
sampling [7, 18, 13, 11, 4, 5], for constructing DST budget feasible mechanisms in settings beyond
additive valuations. In particular we have the following theorem.

3The marginal values do not change for additive valuations, and that is why the greedy algorithm is still monotone
there.

3

Theorem 4. (rephrased) There is a polynomial-time mechanism which is an O(log2 n
log logn) approxi-

mation for sub-additive valuations.

Notice that for bounded knapsack and additive valuations our results are presented using the
natural logarithm, since those are the precise bounds we achieve. While for sub-additive valuations
we present our asymptotic bound under base-2 logarithm, to be more consistent with the literature.

In Theorem 4 the running time is measured when given access to a demand oracle, which is a
standard assumption for handling sub-additive valuations [14, 7], since such a valuation takes expo-
nentially many numbers to specify. Since sub-additivity includes sub-modularity and diminishing
return as special cases, Theorem 4 applies to those settings as well.

Our mechanism is a generalization of the budget feasible mechanism constructed by [7], which
gives an O(logn

log logn) approximation for single-unit sub-additive valuations. But finding the correct
way of bringing their mechanism to multi-unit settings requires a good understanding of the new
problem and new ideas to deal with scenarios that did not occur before. In particular, before
an item and the unique unit of it are the same thing, but in multi-unit settings they are totally
different. Thus in both our mechanism and our analysis we need to be very careful about when we
are dealing with an item (thus all units of it) and when we are dealing with a unit.

Moreover, to obtain the desired approximation ratio we need to first construct a mechanism for
approximating the optimal single-item outcome: namely, an outcome that only takes units from a
single seller. We believe this mechanism is of its own interest, and will be a useful building block
for constructing budget feasible mechanisms in multi-unit settings.

1.2 Open problems

There are many problems in multi-unit procurements that are not the focus of this paper but
worth studying in the future. For example, for sub-additive valuations there is a gap between the
upperbound in Theorem 1 and the lowerbound in Theorem 4. It would be interesting to see how
this gap can be closed: either by a better upperbound for sub-additive valuations or by a better
mechanism, or both. As another example, online procurement with budget has been studied, both
in strategic settings [6] and in optimization settings [19]. But in the strategic setting again only
single-unit scenarios are considered. It is natural to ask what if a seller with multiple units of the
same item can show up at different time points in the game and the buyer needs to decide how
many units he wants to buy each time. Furthermore, various constraints can be imposed to the
original setting, such as the buyer having different budgets for different sellers. Finally, one can
ask what if a seller’s cost for one unit of his item is not fixed but decreases as he produces more
units. But this setting is not a single-parameter setting anymore, and presumably very different
approaches will be needed there.

1.3 Related work

Various procurement auctions have been studied in the literature, but without budget considera-
tions (see, e.g., [23, 26] and the references there). In particular, [25, 16, 17] study the minimization
of total cost of the sellers for the items bought, instead of the total payment actually made by the
buyer. The framework of frugality as introduced by [3] aims at finding mechanisms that minimize
the payment in procurement auctions, and has been extensively studied by [9, 15, 20, 28, 10, 21].
But the problems studied there are very different from multi-unit procurement auctions, and there
is no hard budget constraints that the outcomes must meet.

As mentioned in our discussion above, the problems we study generalize the framework of
budget feasible mechanisms for single-unit procurements as introduced by [27]. In [27] DST budget
feasible mechanisms that achieves constant approximation ratio for sub-modular valuations were

4

constructed, and the author also showed impossibility results for fractional sub-additive valuations
and for the problem of hiring a team of agents. Later [12] improved the approximation ratio of [27],
for both randomized mechanisms and deterministic mechanisms. Variants of knapsack problems
were also studied there, but the setting is still such that each seller only has a single item. In [14] the
authors studied budget feasible mechanisms for single-unit sub-additive valuations, and constructed
a randomized mechanism that is an O(log2 n) approximation and a deterministic mechanism that
is an O(log3 n) approximation. It is interesting to notice that their randomized mechanism can also
be generalized to multi-unit settings, resulting in a mechanism that is an O(log3 n) approximation.
For deterministic mechanisms, as will be discussed in our Section 3, it is impossible to obtain any
approximation ratio better than n in multi-unit settings, and an n-approximation is trivial. Thus we
focus on randomized mechanisms. Moreover, in [7] the authors study budget feasible mechanisms in
both prior-free models and Bayesian models. For the former, they provide a constant approximation
for XOS valuations and a O(logn

log logn) approximation for sub-additive valuations; and for the latter,
they provide a constant approximation for the sub-additive case. As we have discussed before, we
generalize their mechanism for the prior-free worst case mechanism to multi-unit settings, but we
need to give up a log n factor in the approximation ratio. It would also be interesting to study
multi-unit budget feasible mechanisms in the Bayesian model.

Finally, knapsack auctions have been studied by [1], where the underlying optimization problem
is the knapsack problem, but a seller’s private information is the value of his item, instead of the
cost. Thus this is a very different problem from ours or those studied in the budget feasibility
framework in general.

2 The Procurement Game

Let us now specify the parameters of a procurement environment4 and the goal we want to achieve.
There is one buyer who is the central planner or the mechanism designer, and m sellers who are

the players of the procurement game. There are m items and they may or may not be different.
Each player i can provide ni units of item i, where each unit is indivisible. The total units of all
the items that can be provided is n ,

∑
i ni. The true cost for providing one unit of item i is ci ≥ 0

and the true cost profile is c = (c1, . . . , cm). The value of ci is player i’s private information. All
other information in a procurement environment is publicly known by both the players and the
buyer.

An allocation A is a profile of integers, A = (a1, . . . , am), where ai ∈ {0, 1, . . . , ni} for each
i ∈ [m] and it denotes the number of units (of item i) bought from player i. An outcome ω is
specified by a pair, ω = (A,P), where A is an allocation and P is the payment profile, a profile of
non-negative reals with Pi being the amount of money the buyer pays to player i. The utility of
player i at outcome ω is ui(ω) = Pi − aici. As usual, the players are risk-neutral and will act to
maximize their expected utilities.

The value of an allocation to the buyer is specified by his valuation function V , mapping
allocations to non-negative reals, such that V (0, . . . , 0) = 0. We shall consider monotone valuation
functions: namely, for any two allocations A = (a1, . . . , am) and A′ = (a′1, . . . , a

′
m) such that ai ≤ a′i

for each i, V (A) ≤ V (A′).
The buyer has a budget B and he wants to maximize his value while keeping the total payment

within the budget. An allocation A is (budget) feasible if its total cost,
∑

i∈[m] ciai, does not exceed

4An environment specifies what the designer knows in order to design an mechanism: the players, the items, the
possible outcomes, which parameters are publicly known, which are the players’ private information, etc. Also, from
now on we shall use the more general term “procurement games” instead of “procurement auctions”.

5

B. We denote by
A∗ ∈ argmax

A is a feasible allocation
V (A)

an optimal feasible allocation, whose value we want to approximate. From the buyer’s point of
view, it is not enough for the allocation in the final outcome to be budget feasible: it is the total
payment that has to meet the budget constraint. In particular, an outcome ω = (A,P) is (budget)
feasible if

∑
i∈[m] Pi ≤ B.

A mechanism is dominant-strategy truthful (DST) if it asks each player to reveal his cost and,
for each player i, announcing his true cost ci is a dominant strategy: namely,

ui(ci, c
′
−i) ≥ ui(c′i, c′−i) ∀c′i, c′−i.

Throughout this paper, we only consider DST mechanisms that are also individually rational,
namely, ui(c) ≥ 0 for each i.

A DST mechanism is budget feasible if its outcome under c is budget feasible. For randomized
mechanisms, dominant-strategy truthfulness and individual rationality are defined with respect
to the players’ expected utilities, and budget feasibility is defined with respect to the expected
payment.5 We are interested in DST mechanisms that approximate the optimal value for the buyer
while meeting the budget constraint:

Definition 1. Let C be a class of procurement environments and f be a non-negative function
defined on the total number of units n. A DST mechanism is an f(n)-approximation for class C
if, for any environment in C, the mechanism is budget feasible and individually rational, and the
outcome under the true cost profile c has (expected) value at least V (A∗)

f(n) .

Below we define several classes of procurement environments, based on the structure of the
valuation functions.

Additive valuations and the bounded knapsack problem. An important class of valuation
functions in the procurement game are the additive ones. For such a valuation function V , there
exists a value vik for each item i and each unit k ∈ [ni], such that vi1 ≥ vi2 ≥ · · · ≥ vini and, given
an allocation A = (a1, . . . , am), V (A) =

∑
i∈[m]

∑
k∈[ai] vik. Indeed, vik is the marginal value the

buyer receives from an extra k-th unit of item i given that he has already gotten k − 1 units, no
matter how many units he has gotten for other items.

A special case of additive valuations is the bounded knapsack problem, one of the most classical
problems in computational complexity. Here for each item i, all the units have the same value vi:
that is, vi1 = vi2 = · · · = vini = vi.

Sub-additive valuations. A much more general class of valuation functions are the sub-additive
ones. A valuation function V is sub-additive if for any two allocations A = (a1, . . . , am) and
A′ = (a′1, . . . , a

′
m),

V (A ∨A′) ≤ V (A) + V (A′),

where ∨ is the item-wise max operation: A ∨A′ = (max{a1, a′1}, . . . ,max{am, a′m}).
5One can also define ex-post budget feasibility, requiring that, under a randomized outcome, with probability 1

the total payment does not exceed the budget. But one can convert a randomized outcome into another one with
the same randomized allocation and a deterministic payment profile where the payment for a player is the expected
payment in the former. Since the players are expected-utility maximizers, these two outcomes are equivalent for
them. Thus considering ex-post budget feasibility is the same as considering budget-feasibility in expectation.

6

Notice that in multi-unit procurement settings, being sub-additive is a very weak assumption.
Indeed, when there is only one item, sub-additivity does not impose any constraint on the valuation,
not even decreasing marginal.

Sub-additivity clearly implies additivity. Between them, two other classes of valuation functions
have been defined in multi-unit settings [19], but to the best of our knowledge no budget-feasible
mechanisms have been considered for them:

• Diminishing return: for any two allocations A and A′ such that ai ≤ a′i for each i, and for
any item j, V (A+ ej)− V (A) ≥ V (A′ + ej)− V (A′), where A+ ej means adding one extra
unit of item j to A unless aj = nj , in which case A+ ej = A.

• Sub-modularity: for any A and A′, V (A ∨ A′) + V (A ∧ A′) ≤ V (A) + V (A′), where ∧ is the
item-wise min operation.

Diminishing return implies sub-modularity, and both collapse to sub-modularity in single-unit
settings. The reason why diminishing return has been considered when generalizing single-unit
sub-modularity to multi-unit settings is that, multi-unit sub-modularity as we just introduced is
a very weak condition: when there is only one item it does not impose any constraint, just like
sub-additivity. While diminishing return reflects the basic idea behind single-unit sub-modularity
more precisely: the buyer’s value for getting one extra unit of any item becomes smaller as he gets
more.

Since the valuation classes defined above are nested:

bounded knapsack ⊆ additivity ⊆ diminishing return ⊆ sub-modularity ⊆ sub-additivity,

any impossibility result for one class automatically applies to all classes above it, and any positive
result for one class applies to all classes below it.

Demand oracle. In general, a sub-additive valuation function V takes exponentially many num-
bers to specify, and one has to assume the existence of some query oracles to access V . As in the
studies of single-unit sub-additive valuations [27, 7], we consider a demand oracle, which takes as
input a set of players {1, . . . ,m}, a profile of numbers of units (n1, . . . , nm), and a profile of costs
(p1, . . . , pm), and returns an allocation

Â ∈ argmax
A=(a1,...,am):ai≤ni∀i

V (A)−
∑
i∈[m]

aipi,

regardless of the budget.6

Our goal. We shall construct (randomized) DST mechanisms that are individually rational,
budget feasible, and approximately achieve the optimal value for the buyer. The mechanisms run
in polynomial time for additive valuations, and in polynomial time given the demand oracle for
sub-additive valuations.

Single-parameter settings with budgets. Since the cost ci is player i’s only private infor-
mation, we are considering single-parameter settings [2]. Following Myerson’s lemma [24] or the
characterization in [2], the only DST mechanisms are those with a monotone allocation rule and

6In single-unit settings a demand oracle takes as input a set of players and a cost profile. For multi-unit settings
it is natural to add the number of units for each item as part of the input as well.

7

threshold payments. In multi-unit settings, each unit of an item i has its own threshold and the total
payment to i will be the sum of the thresholds for all units of his item bought by the mechanism.

With budget, this characterization still holds, but the problem becomes harder: the monotone
allocation rule must be such that, not only (1) it provides good approximation to the optimal value,
but (2) the unique total payment induced by the allocation rule satisfies the budget constraint.
Therefore, as for single-unit budget-feasible mechanisms, we shall construct monotone allocation
rules while keeping an eye on the structure of the threshold payments. We need to make sure that
when the two are combined, both (1) and (2) are satisfied.

3 Impossibility results for bounded knapsack

For deterministic mechanisms, the following observation for bounded knapsack is immediate.

Observation 1. No deterministic DST mechanism can be an n-approximation for bounded knap-
sack.

Proof. Consider the case where m = 1, n1 = n, and v1 = 1. When c1 = B, the optimal allocation
is to buy one unit from player 1. Thus any DST mechanism that is an n-approximation must buy
at least 1 unit. Given the budget constraint, it must buy exactly 1 unit and pay B to player 1 (by
individual rationality). Therefore when c1 = B/n, the mechanism, seeing bid B/n, must also buy
one unit and pay B: otherwise player 1 can get a better utility by bidding B, contradicting the
fact that the mechanism is DST. Thus with true cost B/n the value generated by the mechanism
is 1 while the optimal value is n.

Of course there is an n-approximation, which buys 1 unit from a player i ∈ argmaxj vj and
pays B to player i, without looking at the players’ bids.

For randomized mechanisms, we have the following theorem.

Theorem 1. No randomized DST mechanism can be an f(n)-approximation for bounded knapsack
with f(n) < lnn.

Proof. For the sake of contradiction, assume there exists a function f(n) < lnn and a randomized
DST mechanism which is an f(n)-approximation. Again consider the case where m = 1, n1 = n,
and v1 = 1.

For any b, c ∈ [0, B], let u1(b; c) be player 1’s expected utility by bidding b while the true cost
is c. For each k ∈ [n], consider the outcome under bid B

k : denote by P k the expected payment,
and by pkj the probability that the mechanism buys j units from player 1 for each j ∈ [n].

Notice that when the true cost is B
k , the optimal value is k. Since the mechanism is an f(n)-

approximation, we have ∑
j∈[n]

pkj · j ≥
k

f(n)
∀k ∈ [n]. (1)

Because the mechanism is DST and individually rational, we have u1(
B
k ; Bk) ≥ u1(

B
k−1 ; Bk) for

each 1 < k ≤ n, and u1(B;B) ≥ 0. That is,

P k − B

k

∑
j∈[n]

pkj · j ≥ P k−1 −
B

k

∑
j∈[n]

pk−1j · j ∀1 < k ≤ n,

and
P 1 −B

∑
j∈[n]

p1j · j ≥ 0.

8

Summing up these n inequalities, we have∑
k∈[n]

P k −
∑
k∈[n]

B

k

∑
j∈[n]

pkj · j ≥
∑

1≤k<n
P k −

∑
1≤k<n

B

k + 1

∑
j∈[n]

pkj · j,

which implies

Pn ≥ B

n

∑
j∈[n]

pnj · j +
∑

1≤k<n

B

k(k + 1)

∑
j∈[n]

pkj · j.

By Equation 1, we have

Pn ≥ B

f(n)
+
∑

1≤k<n

B

(k + 1)f(n)
=

B

f(n)

∑
k∈[n]

1

k
≥ B lnn

f(n)
.

Since f(n) < lnn, we have Pn > B, contradicting the fact that the mechanism is budget feasible.
Thus Theorem 1 holds.

4 An optimal mechanism for additive valuations

Let us now construct a polynomial-time DST mechanism MAdd that is a 4(1 + lnn)-approximation
for procurement games with additive valuations. Our mechanism is very simple, and the basic
idea is a greedy algorithm with proportional cost sharing, as have been used in budget feasible
mechanisms for single-unit settings [12, 27]. However, the key here is to understand the structure
of the threshold payments and to show that the mechanism is budget feasible, which requires ideas
not seen before. Moreover, given our impossibility result, this mechanism is optimal (up to a
constant factor). In particular, it achieves the optimal approximation ratio for bounded knapsack.
The simplicity and the optimality of our mechanism make it attractive to be actually implemented
in real-life scenarios.

Notations and Conventions. Without loss of generality, we assume vij > 0 for each item i and
j ∈ [ni], since otherwise the mechanism can first remove all units with value 0 from consideration.
Since we shall show the mechanism is DST, we shall describe it only with respect to the truthful
bid (c1, . . . , cn). Since the threshold payments are uniquely determined by the allocation rule, we
shall only describe the allocation rule. An algorithm for computing the thresholds will be given in
the analysis. Finally, let i∗ ∈ argmaxi vi1, ei∗ be the allocation with 1 unit of item i∗ and 0 unit of
other items, and A⊥ = (0, . . . , 0) be the allocation where nothing is bought.

The mechanism works as follows.

Mechanism MAdd for Additive Valuations

1. With probability 1
2(1+lnn) , go to Step 2; with probability 1

2 , output ei∗ and stop;
and with the remaining probability, output A⊥ and stop.

2. For each i ∈ [m] and j ∈ [ni], let the value-rate rij = vij/ci.

(a) Order the n pairs (i, j) according to rij decreasingly, with ties broken lexico-
graphically, first by i and then by j.

For any ` ∈ [n], denote by (i`, j`) the `-th pair in the ordered list.

(b) Let k be the largest number in [n] satisfying
cik
vikjk

≤ B∑
`≤k vi`j`

.

(c) Pick up the first k pairs in the list: that is, output allocation A = (a1, . . . , an)
where ai = |{` : ` ≤ k and i` = i}|.

9

Theorem 2. Mechanism MAdd runs in polynomial time, is DST and individually rational, and is
a 4(1 + lnn)-approximation for procurement games with additive valuations.

Proof. We break the proof of Theorem 2 into the following lemmas.

Lemma 1. Mechanism MAdd is DST and individually rational.

Proof. This mechanism is a convex combination of three deterministic sub-mechanisms: the one
outputs A⊥, the one outputs ei∗ , and the one in Step 2. Obviously the first two are monotone.

For the one in Step 2, notice that for any k′ ≤ k we have

cik′
vik′jk′

≤ cik
vikjk

≤ B∑
`≤k vi`j`

≤ B∑
`≤k′ vi`j`

,

and for any k′ ≥ k + 1 we have

cik′
vik′jk′

≥
cik+1

vik+1jk+1

>
B∑

`≤k+1 vi`j`
≥ B∑

`≤k′ vi`j`
.

Thus a pair (ik′ , jk′) is picked up if and only if

cik′
vik′jk′

≤ B∑
`≤k′ vi`j`

. (2)

For any player i and any pair (i, j) picked up by the mechanism, when ci decreases, (i, j)’s rank is
smaller than or equal to its previous rank. Since (i, j) satisfied Inequality 2 before, it continues to
satisfy under the new ordering because the left-hand side gets smaller and the right-hand side can
only gets bigger. Accordingly, (i, j) will still be picked up under the new ordering. Therefore the
number of units of player i picked up by the mechanism will never decrease when i’s cost decreases.
Hence the mechanism is monotone.

Since each sub-mechanism pays the players according to the thresholds, each one of them is
DST, and thus MAdd is DST.

It is easy to see that MAdd is individually rational. Indeed, the sub-mechanism outputting A⊥
pays 0 to every player and the sub-mechanism outputting ei∗ pays B to player i∗ and 0 to others.
Thus the players get non-negative utilities in both of them. For the sub-mechanism in Step 2
and for any player i, even without giving the explicit formula of the threshold payments, by the
monotonicity of the allocation rule one can see that, any pair (i, j) picked up under i’s true cost ci
will still be picked up under any cost c′i < ci, and thus the threshold for picking up (i, j) is at least
ci. Accordingly, the total payment to i is at least ciai, giving player i a non-negative utility.

Lemma 2. Mechanism MAdd runs in polynomial time.

Proof. The only thing that is not clear from the mechanism’s description is how to compute the
threshold payments for the sub-mechanism in Step 2. For each player i and each j ≤ ai, letting θij
be the threshold for the j-th unit of i, we compute θij using the following algorithm ATh.

10

Algorithm ATh for Computing the Threshold θij

1. Order the n−ni pairs (i′, j′) with i′ 6= i according to the value-rate ri′j′ ’s, with ties
broken lexicographically. Denote by (i′`, j

′
`) the `-th pair in the list.

2. Set t′n−ni+1 = +∞.

3. For α from n− ni to 0, compute tα =
vijB∑

`≤j vi`+
∑
`≤α vi′

`
j′
`

and t′α =
vijci′α
vi′αj′α

, except for

α = 0 where t′0 = 0.

(a) If tα < t′α, continue to the next round.

(b) If t′α ≤ tα ≤ t′α+1, set θij = tα and stop.

(c) If tα > t′α+1, set θij = t′α+1 and stop.

4. Output ⊥.

Claim 1. The algorithm ATh computes the correct threshold θij.

Proof. We first show the algorithm does not output ⊥, namely, the condition in Step 3a does not
hold in some round. Let (i, j) be the β-th pair in the ordered list produced by the mechanism, that
is, (i, j) = (iβ, jβ). We have β ≥ j as there are j − 1 pairs of player i before (i, j). Accordingly,
there are β − j pairs of other players before (i, j), denoted by (i′1, j

′
1) through (i′β−j , j

′
β−j) in the

algorithm. By the construction of the mechanism and the algorithm,

t′β−j
vij

=
ci′β−j

vi′β−jj
′
β−j

≤ ci
vij
≤ B∑

`≤j vi` +
∑

`≤β−j vi′`j
′
`

=
tβ−j
vij

.

Thus t′β−j ≤ tβ−j and in this round the condition in Step 3a does not hold. If the algorithm has
not already stopped in some earlier round, it will stop here. Accordingly, the algorithm does not
reach Step 4 and does not output ⊥. Moreover, from this analysis we also know when the algorithm
stops, α ≥ β − j.

We now show that if player i bids c′i > θij then the mechanism will not pick up pair (i, j).
Indeed, if the algorithm stops in Step 3b, then θij = tα and c′i > tα ≥ t′α. Accordingly,

c′i
vij

>
t′α
vij

=
ci′α
vi′αj′α

,

and pair (i, j) is ranked after pair (i′α, j
′
α). Therefore Inequality 2 is violated for pair (i, j) because

c′i
vij

>
tα
vij

=
B∑

`≤j vi` +
∑

`≤α vi′`j
′
`

.

Notice that pair (i, j) may be ranked after pair (i′α+1, j
′
α+1) and so on, but then Inequality 2 remains

violated, since the right-hand side of the inequality will only get smaller, with more terms added
to the denominator.

If the algorithm instead stops in Step 3c, then c′i > θij = t′α+1, which implies

c′i
vij

>
t′α+1

vij
=

ci′α+1

vi′α+1j
′
α+1

.

11

Accordingly, pair (i, j) is ranked after pair (i′α+1, j
′
α+1). But the algorithm did not stop at α + 1,

which means tα+1 < t′α+1. Again Inequality 2 is violated for pair (i, j), since

c′i
vij

>
t′α+1

vij
>
tα+1

vij
=

B∑
`≤j vi` +

∑
`≤α+1 vi′`j

′
`

.

Notice that pair (i, j) may be ranked even further down, but then Inequality 2 remains violated,
since the right-hand side of the inequality will only get smaller.

In sum, pair (i, j) will not be picked up by the mechanism for any c′i > θij .
Finally, we show if player i bids c′i < θij then the mechanism will pick up pair (i, j). To do so,

notice that no matter whether the algorithm stops in Step 3b or 3c, we have

c′i < θij = min{t′α+1, tα}.

Accordingly,
c′i
vij

<
t′α+1

vij
=

ci′α+1

vi′α+1j
′
α+1

and
c′i
vij

<
tα
vij

=
B∑

`≤j vi` +
∑

`≤α vi′`j
′
`

.

Thus (i, j) is ranked before (i′α+1, j
′
α+1), and Inequality 2 is satisfied for (i, j). Again, (i, j) may

be ranked even earlier on, but then the right-hand side of the inequality will only get bigger, with
some terms taken out from the denominator. Thus (i, j) will be picked up by the mechanism for
any c′i < θij .

Putting everything together, Claim 1 holds.

The algorithm ATh clearly runs in polynomial time, thus the mechanism MAdd runs in polyno-
mial time as well, and Lemma 2 holds.

Lemma 3. Mechanism MAdd is budget feasible.

Proof. We provide an upperbound for the total payment made by the sub-mechanism in Step 2
of MAdd, namely, ∑

i≤m

∑
j≤ai

θij ≤ (1 + lnn)B.

To do so, recall that the mechanism picks up the first k pairs in the ordered list according to the
value-rates rij ’s, denoted by (i1, j1) through (ik, jk). (By definition k =

∑
i≤m ai.)

Re-order these k pairs according to vij ’s decreasingly with ties broken lexicographically. We
denote by (̂is, ĵs) the s-th pair in this new ordering. We have

vî1ĵ1 ≥ vî2ĵ2 ≥ · · · ≥ vîk ĵk (3)

and ∑
`≤k

vi`j` =
∑
`≤k

vî`ĵ` . (4)

Below we show θîsĵs ≤
B
s for any s ≤ k.

Assume for the sake of contradiction that there exists s ≤ k such that θîsĵs >
B
s . Consider the

pair (ik, jk) in the mechanism’s ordering. We have

cik
vikjk

≤ B∑
`≤k vi`j`

=
B∑

`≤k vî`ĵ`
≤ B∑

`≤s vî`ĵ`
≤ B

s · vîsĵs
<
θîsĵs
vîsĵs

,

12

where the first inequality is by the construction of the mechanism, the equality is by Equation 4,
the second inequality is because s ≤ k, the third inequality is by Equation 3, and the last inequality
is because θîsĵs >

B
s . Therefore when player îs bids some c′

îs
∈ (Bs , θîsĵs), we have

c′
îs

vîsĵs
>

B

s · vîsĵs
≥ cik
vikjk

.

Accordingly, for any ` < s such that î` 6= îs, the pair (̂i`, ĵ`) is ranked before (̂is, ĵs) by the

mechanism under player îs’s new bid c′
îs

, because
cî`
vî`ĵ`
≤ cik

vikjk
.

Moreover, for any ` < s such that î` = îs, the pair (̂i`, ĵ`) is also ranked before (̂is, ĵs) by the
mechanism under player îs’s new bid, because vî`ĵ` ≥ vîsĵs and the two pairs have the same cost.

(When vî`ĵ` = vîsĵs , it must be ĵ` < ĵs due to the lexicographic tie-breaking rule, and thus (̂i`, ĵ`) is

still ranked before (̂is, ĵs) by the mechanism under player îs’s new bid, due to the same tie-breaking
rule.)

Accordingly, when player îs bids c′
îs

, all s − 1 pairs (̂i1, ĵ1), . . . , (̂is−1, ĵs−1) are ranked be-

fore (̂is, ĵs) by the mechanism, and the total value of all pairs before or equal to (̂is, ĵs) is at least∑
`≤s vî`ĵ` . Because

c′
îs

vîsĵs
>

B

s · vîsĵs
≥ B∑

`≤s vî`ĵ`
,

the pair (̂is, ĵs) is not picked up by the mechanism under c′
îs

, contradicting the fact that c′
îs
< θîsĵs .

Therefore we have

θîsĵs ≤
B

s
for any s ≤ k,

which implies ∑
i≤m

∑
j≤ai

θij =
∑
s≤k

θîsĵs ≤
∑
s≤k

B

s
≤ B

∑
s≤n

1

s
≤ (1 + lnn)B,

as we wanted to show.
Since the sub-mechanism outputting ei∗ pays B to player i∗ and 0 to others, the expected

payment of mechanism MAdd is at most

1

2(1 + lnn)
· (1 + lnn)B +

1

2
·B = B,

and Lemma 3 holds.

Lemma 4. Mechanism MAdd is a 4(1 + lnn)-approximation.

Proof. Recall that A∗ is an optimal allocation and i∗ is a player whose first unit has the highest value
among all units of all players. We shall show that V (A) + V (ei∗) is a 2-approximation of V (A∗).

To do so, notice that once the cost profile (c1, . . . , cn) is given, without strategic considerations,
the optimization problem in our setting can be reduced to a 0-1 knapsack problem with n items and
budget B. In particular, for each player i ∈ [m] and each j ∈ [ni], there is an item (i, j) with value
vij and cost cij = ci. For any subset S ⊆ {(i, j) : i ∈ [m], j ∈ [ni]}, its value is V (S) =

∑
(i,j)∈S vij ,

and its cost is
∑

(i,j)∈S cij =
∑

(i,j)∈S ci. The allocation A∗ naturally corresponds to an optimal set
S∗ in the 0-1 knapsack problem, and the pair (i∗, 1) is the item with the highest value.

For 0-1 knapsack, it is well known (see, e.g., [22]) that the greedy algorithm under value-rate
sorting gives constant approximation. In particular, letting (i1, j1), . . . , (in, jn) be the ordered list

13

with rij ’s decreasing and ties broken lexicographically, and letting k̂ be the largest number in [n]
satisfying

∑
`≤k̂ ci` ≤ B, we have∑

`≤k̂

vi`j` + vi∗1 ≥
∑
`≤k̂+1

vi`j` ≥ V (S∗) = V (A∗), (5)

where vik̂+1jk̂+1
= 0 if k̂ = n, the first inequality is by the definition of i∗, and the second is

because
∑

`≤k̂+1 vi`j` is greater than or equal to the optimal fractional solution.

For the k pairs picked up by the mechanism, we have
ci`
vi`j`
≤ cik

vikjk
for any ` ≤ k, thus∑

`≤k ci`∑
`≤k vi`j`

≤ cik
vikjk

≤ B∑
`≤k vi`j`

,

which implies
∑

`≤k ci` ≤ B. Accordingly, k ≤ k̂.

If k = k̂, by Inequality 5 we have

V (A) + V (ei∗) =
∑
`≤k̂

vi`j` + vi∗1 ≥ V (A∗). (6)

If k < k̂, then ∑
k+1≤`≤k̂ ci`∑
k+1≤`≤k̂ vi`j`

≥
cik+1

vik+1jk+1

>
B∑

`≤k+1 vi`j`
,

where the first inequality is because
ci`
vi`j`

≥
cik+1

vik+1jk+1
for any ` ≥ k + 1, and the second is by the

construction of the mechanism. Accordingly,

∑
k+1≤`≤k̂

vi`j` <

∑
k+1≤`≤k̂ ci`

B
·
∑
`≤k+1

vi`j` ≤
∑
`≤k+1

vi`j` ≤
∑
`≤k

vi`j` + vi∗1,

where the second inequality is because
∑

k+1≤`≤k̂ ci` ≤
∑

`≤k̂ ci` ≤ B. Thus

2V (A)+2V (ei∗) = 2
∑
`≤k

vi`j` +2vi∗1 ≥
∑
`≤k

vi`j` +vi∗1+
∑

k+1≤`≤k̂

vi`j` =
∑
`≤k̂

vi`j` +vi∗1 ≥ V (A∗), (7)

where the last inequality is by Inequality 5.
Combining Inequalities 6 and 7, we have that V (A) + V (ei∗) is a 2-approximation for V (A∗),

and thus the expected value of the mechanism MAdd’s output is

1

2(1 + lnn)
· V (A) +

1

2
· V (ei∗) ≥

V (A) + V (ei∗)

2(1 + lnn)
≥ V (A∗)

4(1 + lnn)
.

Since individually rationality and budget feasibility have been shown by Lemmas 1 and 3, mecha-
nism MAdd is a 4(1 + lnn)-approximation, and Lemma 4 holds.

Putting everything together, Theorem 2 holds.

Combining Theorems 1 and 2 we immediately have the following.

Corollary 1. Mechanism MAdd is optimal up to a constant factor among all DST budget-feasible
mechanisms for multi-unit procurement games with additive valuations.

14

Remark 1. Theorems 1 and 2 show that multi-unit settings are very different from single-unit
settings. In single-unit settings various constant-approximation mechanisms have been constructed,
while in multi-unit settings an O(log n) approximation is the best one can hope, and our mechanism
provides such an approximation.

Furthermore, for bounded knapsack, without strategic considerations there is an FPTAS, while
with strategic considerations no mechanism can get better than an lnn-approximation. Thus we have
shown that bound knapsack is a problem for which provably there is a gap between the optimization
domain and the mechanism design domain.

An optimal mechanism for symmetric valuations. A different but closely related class of
valuation functions are the symmetric ones. In this case the buyer only cares about how many
units an allocation has, not to whom they belong. Namely, there exists v1, . . . , vn such that, for
any allocation A with k units in total, V (A) =

∑
`≤k v`.

In general, symmetric valuations are not additive since there is no unique value vij associated
with player i’s unit j, and additive is not symmetric either. But when there is only one item with n
units, symmetric is equivalent to additive, and contains bounded knapsack as a special case. Thus
the proof of Theorem 1 also implies that no mechanism can do better than lnn-approximation for
symmetric valuations. For general symmetric valuations, it is not hard to verify that the following
mechanism is a 4(1 + lnn)-approximation: the same as MAdd except in Step 2, where k is set to
be the largest number in [n] satisfying cik ≤ B

k . We omit the analysis as it is very similar to that
of MAdd, and only present the theorem below.

Theorem 3. No randomized DST mechanism can be an f(n)-approximation with f(n) < lnn for
symmetric valuations, and there exists a polynomial-time DST mechanism which is a 4(1 + lnn)-
approximation.

5 Truthful mechanisms for sub-additive valuations

5.1 The non-monotonicity of the greedy algorithm

Although the greedy algorithm based on marginal value-rates is an important building block for
budget feasible mechanisms in single-unit settings and multi-unit additive settings, we do not know
how to use it for multi-unit sub-additive settings. The fundamental reason is that, it is not mono-
tone anymore, even for valuations with diminishing returns, even without strategic considerations.
Indeed, by lowering his cost, a player i will still win his first unit in the previous allocation. But
once the rank of his first unit changes, all units after that will be re-ranked according to their new
marginal value-rates with respect to the updated allocation. Under the new ordering there is no
guarantee whether player i will still get any of his remaining units. Re-ordering was not an issue in
single-unit settings, because a player in such a setting need not care how other players’ items are or-
dered after his own (unique) item. Below we give an example demonstrating the non-monotonicity
of the greedy algorithm in settings with diminishing returns.

Example 1. There are 3 players, n1 = 1, n2 = n3 = 2, c1 = c3 = 1, c2 = 1 + ε for some arbitrarily
small ε > 0, and B = 3 + 2ε. To highlight the non-monotonicity of the greedy algorithm, instead
of defining the valuation function directly, we work through the algorithm and define the marginal
values on the way. The valuation function will be reconstructed afterward, based on the marginal
values.

For any allocation A = (a1, a2, a3) and player i, denote by V (i|A) the marginal value of item i
given A, namely, V (A+ ei)− V (A). The greedy algorithm works as follows.

15

• At the beginning, the allocation is A0 = (0, 0, 0).

• V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 1 has the largest marginal
value-rate, thus A1 = (1, 0, 0).

• V (1|A1) = 0 (item 1 is not available anymore), V (2|A1) = 5 + 5ε, and V (3|A1) = 5− ε. Item
2 has the largest marginal value-rate, thus A2 = (1, 1, 0).

• V (1|A2) = 0, V (2|A2) = 1 + ε, and V (3|A2) = 1 − ε. Item 2 has the largest marginal
value-rate, thus A3 = (1, 2, 0).

• The budget is used up, and the final allocation is A3, where player 2 gets 2 units.

Now let c′2 = 1− ε. The greedy algorithm works as follows.

• A0 = (0, 0, 0).

• V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 2 has the largest marginal
value-rate, thus A′1 = (0, 1, 0). (Notice that player 2 gets his first unit earlier than before.)

• V (1|A′1) = 5 + 4ε, V (2|A′1) = 5− 5ε, and V (3|A′1) = 5 + 5ε. Item 3 has the largest marginal
value-rate, thus A′2 = (0, 1, 1).

• V (1|A′2) = 1− 2ε, V (2|A′2) = 1− ε, and V (3|A′2) = 1 + ε. Thus A′3 = (0, 1, 2).

• The remaining budget is 3ε, no further unit can be added, and the final allocation is A′3, where
player 2 only gets one unit, violating monotonicity.

Given the marginal values, the valuation function is defined as follows:

V (0, 0, 0) = 0,

V (1, 0, 0) = 10, V (0, 1, 0) = 10 + ε, V (0, 0, 1) = 10− ε,
V (1, 1, 0) = 15 + 5ε, V (1, 0, 1) = 15− ε, V (0, 2, 0) = 15− 4ε, V (0, 1, 1) = 15 + 6ε, V (0, 0, 2) = 15,

V (1, 2, 0) = 16 + 6ε, V (1, 1, 1) = 16 + 4ε, V (1, 0, 2) = 16, V (0, 2, 1) = 16 + 5ε, V (0, 1, 2) = 16 + 7ε,

V (0, 2, 2) = V (1, 2, 1) = V (1, 1, 2) = 16 + 7ε,

V (1, 2, 2) = 16 + 7ε.

It is easy to verify that V is consistent with the marginal values defined above. Diminishing return
is easy to check as well. Indeed, notice that we put allocations with the same number of units in the
same row, to ease the comparison. For any allocation with k units for k from 0 to 4, the marginal
value of adding 1 more unit of any item is roughly 10, 5, 1, ε, 0, and thus diminishing.

5.2 Approximating the optimal one-item allocation

Given the non-monotonicity of the greedy algorithm, we turn to another approach for constructing
DST mechanisms, namely, random sampling. In particular, we use a variant of the mechanism for
single-unit sub-additive valuations in [7] as a subroutine of our mechanism.

Yet a new problem arises in multi-unit settings and has to be solved first. Let us explain. In
mechanisms for single-unit settings, part of the value approximation comes from choosing a single
player i∗ with the highest marginal value and paying him the budget B. Similarly, in our additive
settings we choose player i∗ whose first unit has the highest marginal value, take that unit and
pay him B. But for multi-unit sub-additive settings, as will become clear in our analysis, in order

16

to get a good approximation we need (as a subroutine) to choose a single player and pick up as
many units as possible from him, under the budget constraint. Namely, given the true cost profile
(c1, . . . , cn), let

i∗∗ ∈ argmax
i

V (min{ni, b
B

ci
c} · ei),

where for any λ ∈ [ni], λei is the allocation with λ units of item i and 0 unit of others. Ideally
we want to pick up λ∗∗ , min{ni∗∗ , b B

ci∗∗
c} units from player i∗∗ and pay him B. We shall refer to

(i∗∗, λ∗∗) as the optimal single-item allocation.
The problem is, although the identity of player i∗ is publicly known, both i∗∗ and λ∗∗ depend

on the players’ true costs, and have to be solved from the players’ bids. It is easy to see the ideal
solution does not correspond to a DST mechanism.

Below we construct a DST mechanism, MOne, which is budget feasible and approximate V (λ∗∗ei∗∗)
within a (1 + lnn) factor. Later we shall use it as another subroutine in our mechanism for sub-
additive valuations.

Mechanism MOne for Approximating the Optimal One-item Allocation

With probability 1
1+lnn , do the following.

1. Let vi = V (min{ni, bBci c} · ei) and order the players according to the vi’s
decreasingly, with ties broken lexicographically.

Let i∗∗ be the first player in the list and λ∗∗ = min{ni∗∗ , b B
ci∗∗
c}.

2. Let k ∈ [λ∗∗] be the smallest number such that player i∗∗ is still ordered
the first with cost c′i∗∗ = B

k .

3. Set θ` = B
k for each ` ≤ k and θ` = B

` for each k + 1 ≤ ` ≤ λ∗∗.

4. Output allocation λ∗∗ei∗∗ and pay
∑

`≤λ∗∗ θ` to player i∗∗.

Lemma 5. Mechanism MOne is DST, individually rational, budget feasible, and is a (1 + lnn)-
approximation for V (λ∗∗ei∗∗).

Proof. It is easy to see that the allocation is monotone. Indeed, for any player i 6= i∗∗, increasing i’s
cost can only cause vi to decrease. Thus i is still not the first in the list and gets 0 unit in the new
allocation. Decreasing his cost can only cause him to get more units, since he gets 0 under ci.

For player i∗∗, decreasing his cost to c′ < ci∗∗ can only cause vi∗∗ to increase, thus he is still the
first in the list, and the number of units he gets is min{ni∗∗ , bBc′ c} ≥ min{ni∗∗ , b B

ci∗∗
c}. On the other

hand, increasing his cost to c′ > ci∗∗ will either cause him to lose the first place and get 0 unit, or
will have him still the first but with the number of units min{ni∗∗ , bBc′ c} ≤ min{ni∗∗ , b B

ci∗∗
c}.

Next, we show that for each ` ∈ [λ∗∗], θ` is the correct threshold for the `-th unit of player i∗∗.
We distinguish whether ` ≤ k or not.

If ` ≤ k, then by bidding c′i∗∗ > θ` = B
k , we have B

c′
i∗∗

< k, and thus b B
c′
i∗∗
c ≤ k− 1. Accordingly,

V (min{ni∗∗ , b
B

c′i∗∗
c} · ei) ≤ V (min{ni∗∗ , k − 1} · ei) = V (min{ni∗∗ , b

B

B/(k − 1)
c} · ei).

By the definition of k, player i∗∗ is not the first in the list by bidding B
k−1 . Thus by bidding c′i∗∗ he

is not the first either, and does not get his `-th unit.

17

By bidding c′i∗∗ < θ`, we have B
c′
i∗∗
≥ k, and thus

V (min{ni∗∗ , b
B

c′i∗∗
c} · ei) ≥ V (min{ni∗∗ , b

B

B/k
c} · ei).

Since player i∗∗ is the first by bidding B
k , he is still the first by bidding c′i∗∗ , and the number

of units he gets is min{ni∗∗ , b B
c′
i∗∗
c} ≥ min{ni∗∗ , b B

B/kc} = k ≥ `, where the equality is because

k ≤ λ∗∗ ≤ ni∗∗ . That is, by bidding c′i∗∗ he still gets his `-th unit.
If k + 1 ≤ ` ≤ λ∗∗, then by bidding c′i∗∗ > θ` = B

` player i∗∗ will not get his `-th unit even
if he remains to be the first in the list, since b B

c′
i∗∗
c ≤ ` − 1. By bidding c′i∗∗ < θ`, we have

V (min{ni∗∗ , b B
c′
i∗∗
c} · ei) ≥ V (min{ni∗∗ , b B

B/`c} · ei). Again by the definition of k, by bidding B
`

player i is the first in the list, and thus by bidding c′i∗∗ he is still the first. The number of units he
gets is min{ni∗∗ , b B

c′
i∗∗
c} ≥ min{ni∗∗ , b B

B/`c} = `. That is, by bidding c′i∗∗ he still gets his `-th unit.

In sum, the θ`’s are the correct thresholds, and the mechanism MOne is DST.

Individual rationality follows directly from the fact that for each ` ≤ λ∗∗ we have

θ` ≥
B

λ∗∗
≥ B

b B
ci∗∗
c
≥ ci∗∗ ,

and thus
∑

`≤λ∗∗ θ` ≥ λ∗∗ci∗∗ .
Furthermore, because for each ` ≤ λ∗∗ we have θ` ≤ B

` , the total payment is∑
`≤λ∗∗

θ` ≤
∑
`≤λ∗∗

B

`
≤
∑
`≤n

B

`
≤ (1 + lnn)B.

Since this payment is made with probability 1
1+lnn , the mechanism is budget feasible.

Finally, under the true cost profile, the mechanism outputs λ∗∗ei∗∗ with probability 1
1+lnn , and

thus is a (1 + lnn)-approximation for V (λ∗∗ei∗∗).

Since the impossibility result in Theorem 1 applies to settings with a single item, we have the
following corollary.

Corollary 2. Mechanism MOne is optimal for approximating V (λ∗∗ei∗∗) among all DST budget-
feasible mechanisms.

Remark 2. Notice that mechanism MOne does not even require the valuation function to be sub-
additive. The only thing it requires is that, for each player i, V (λei) is a non-decreasing function
for λ ∈ [ni]. Thus it can also be used in many settings that are more general than sub-additivity,
such as the class of all monotone valuations.

Furthermore, given that (i∗∗, λ∗∗) is the multi-unit counterpart of player i∗ in single-unit set-
tings, and given the important role i∗ has played in designing budget feasible mechanisms, we
believe mechanism MOne will be a useful building block in the design of budget feasible mechanisms
for multi-unit settings.

5.3 Our mechanism for sub-additive valuations

The random-sampling mechanism in [7] provides an O(logn
log logn)-approximation in single-unit sub-

additive settings. In this subsection we generalize their result to multi-unit settings and provide

an O((logn)2

log logn)-approximation. The algorithm AMax and the mechanism MRand below are respec-
tively variants of their algorithm SA-alg-max and mechanism SA-random-sample. But the

18

differences are also clear. Indeed, we need to carefully distinguish between an item and a unit of
it. In the mechanism and the analysis, we sometimes deal with an item (and thus all of its units at
the same time) and sometimes deal with a single unit. Also, the role of player i∗ is replaced by i∗∗,
and the way it contributes to the value approximation has changed in many places —this is where
the extra log n factor comes. Our mechanism MSub is a uniform distribution between MRand and
the mechanism MOne in Section 5.2.

Algorithm AMax

Since this algorithm will be used multiple times with different inputs, we specify the
inputs explicitly to avoid confusion. Given players 1, . . . ,m, numbers of units n1, . . . , nm,
costs c1, . . . , cm, budget B, and a demand oracle for the valuation function V , do the
following.

1. Let n′i = min{ni, bBci c} for each i, i∗∗ = argmaxi V (n′iei), v
∗ = V (n′i∗∗ei∗∗), and

V = {v∗, 2v∗, . . . ,mv∗}.

2. For each v ∈ V,

(a) Set pi = v
2B · ci for each player i. Query the oracle with m players, number of

units n′i and cost pi for each i, to find

S = (s1, . . . , sm) ∈ arg maxA=(a1,...,am):ai≤n′i∀i V (A)−
∑

i∈[m] aipi.

(When there are multiple optimal solutions, the oracle always returns the same
one whenever queried with the same instance.)

(b) Set allocation Sv = A⊥.

(c) If V (S) < v
2 , then continue to next v.

(d) Else, order the players according to sici decreasingly with ties broken lexico-
graphically, and denote them by i1, . . . , im.

Let k be the largest number in [m] satisfying
∑

`≤k si`ci` ≤ B, and let Sv be
S projected on {i1, . . . , ik}: namely, Sv =

∨
`≤k si`ei` (that is, take si` units of

item i` for each ` ≤ k, and take 0 unit of others).

3. Output SMax ∈ argmaxv∈V V (Sv).

(When there are several choices, the algorithm chooses one arbitrarily but always
outputs the same one.)

We first prove a variant of Lemma 3.1 in [7].

Lemma 6. For any input to AMax, letting A∗ be the optimal allocation under the same input, we
have V (SMax) ≥ V (A∗)

8 .

Proof. Denoting A∗ by (a∗1, . . . , a
∗
m), we have A∗ =

∨
i∈[m] a

∗
i ei, and sub-additivity implies

V (A∗) ≤
∑
i∈[m]

V (a∗i ei).

Since
∑

i a
∗
i ci ≤ B, for each player i we have a∗i ci ≤ B, implying

a∗i ≤ min{ni, b
B

ci
c} = n′i,

19

Mechanism MRand

1. Pick each player independently at random with probability 1/2 into group T , and
let T ′ = [m] \ T .

2. Run AMax with the set of players T , number of units ni and cost ci for each i ∈ T ,
budget B, and the demand oracle for valuation function V . Let v be the value of
the returned allocation.

3. For k from 1 to
∑

i∈T ′ ni,

(a) Run AMax with the set of players Tk = {i : i ∈ T ′, ci ≤ B
k }, number of units ni

and cost B
k for each i ∈ Tk, budget B, and the demand oracle for V . Denote

the returned allocation by X = (x1, . . . , xm), where xi = 0 for each i /∈ Tk.
(b) If V (X) ≥ log logn

64 logn · v, then output allocation X, pay xi · Bk to each player i,
and stop.

4. Output A⊥ and pay 0 to each player.

and further implying V (a∗i ei) ≤ V (n′iei) ≤ V (n′i∗∗ei∗∗). Accordingly,

V (A∗) ≤ mV (n′i∗∗ei∗∗) = mv∗.

Since on the other hand we have V (A∗) ≥ V (n′i∗∗ei∗∗) = v∗, there exists v ∈ V such that V (A∗)
2 ≤

v ≤ V (A∗).
Fixing such a v and letting S = (s1, . . . , sm) be the allocation returned by the demand oracle

for v, we have

V (S)− v

2B
·
∑
i∈[m]

sici ≥ V (A∗)− v

2B
·
∑
i∈[m]

a∗i ci ≥ v −
v

2B
·B =

v

2
,

thus V (S) ≥ v
2 , and the algorithm will not output A⊥. If

∑
i sici ≤ B, then Sv = S, V (SMax) ≥

V (Sv) ≥ v
2 ≥

V (A∗)
4 , and we are done.

Assume now
∑

i sici > B. By the construction of Sv we have
∑

`≤k si`ci` >
B
2 . Letting

S′v =
∨
k+1≤`≤m si`ei` , we have S = Sv ∨ S′v, and thus V (S) ≤ V (Sv) + V (S′v), which implies

V (S)− v

2B
·
∑
i∈[m]

sici ≤ V (Sv)−
v

2B
·
∑
`≤k

si`ci` + V (S′v)−
v

2B
·

∑
k+1≤`≤m

si`ci` . (8)

If V (Sv) <
v
4 , then

V (S)− v

2B
·
∑
i∈[m]

sici <
v

4
− v

2B
· B

2
+ V (S′v)−

v

2B
·

∑
k+1≤`≤m

si`ci` = V (S′v)−
v

2B
·

∑
k+1≤`≤m

si`ci` ,

contradicting the fact that S is the optimal solution returned by the demand oracle. Thus

V (Sv) ≥
v

4
≥ V (A∗)

8
,

implying V (SMax) ≥ V (A∗)
8 , as desired.

20

Below we prove our main theorem for sub-additive valuations. The main ideas follow from [7],
but many new ideas are needed as well. In particular the proof of Lemma 8 requires novel ways of
dealing with multi-unit allocations.

Theorem 4. Mechanism MSub runs in polynomial time, is DST and individually rational, and is

an O((logn)2

log logn)-approximation for procurement games with sub-additive valuations.

Proof. The mechanism clearly runs in polynomial time. The proof that mechanism MRand is DST,
individually rational, and budget feasible is almost the same as in [7], and thus we omit it here. By
Lemma 5, mechanism MOne also satisfies all of those properties. Thus mechanism MSub is DST,
individually rational, and budget feasible.

It remains to analyze the approximation ratio of MSub.
If V (λ∗∗ei∗∗) ≥ V (A∗)

2 , then by Lemma 5 mechanism MOne already provides a 2(1 + lnn)

approximation and we are done. From now on we assume V (λ∗∗ei∗∗) <
V (A∗)

2 .

Consider the two player sets T and T ′ = [m]\T in Step 1 of MRand. Let ÂT and ÂT ′ respectively
be the optimal allocation among the budget feasible ones that only take units from players in T
and T ′. We have the following lemma.

Lemma 7. With probability at least 1/4,

V (ÂT ′) ≥ V (ÂT) ≥ V (A∗)

8
. (9)

Proof. For any subset of players C, let A∗C be A∗ projected to C: letting A∗ = (a∗1, . . . , a
∗
n),

A∗C =
∨
i∈C a

∗
i ei. If C = {i}, we write A∗i instead of A∗{i}. We show that there exists two disjoint

player sets C1, C2 such that C1 ∪ C2 = [m],

V (A∗C1
) ≥ V (A∗)

4
, and V (A∗C2

) ≥ V (A∗)

4
.

Similar to [7], we start with C1 = ∅ and C2 = [m], and move players to C1 one by one in an

arbitrary order, until V (A∗C1
) ≥ V (A∗)

4 . Letting i be the last player moved, we have V (A∗C1\{i}) <
V (A∗)

4 . Since C1 \ {i} and C2 ∪ {i} are two disjoint sets whose union is [m], we have

A∗ = A∗C1\{i} ∨A
∗
C2∪{i},

and sub-additivity implies V (A∗) ≤ V (A∗C1\{i}) + V (A∗C2∪{i}).
7 Accordingly V (A∗C2∪{i}) >

3V (A∗)
4 .

Since A∗ is budget feasible, the number of units i gets in A∗ is at most min{ni, bBci c}, and we have

V (A∗i) ≤ V (min{ni, b
B

ci
c} · ei) ≤ V (λ∗∗ei∗∗) <

V (A∗)

2
,

where the first inequality is because V is monotone and the second is by the definition of i∗∗.
Since i /∈ C2, we have A∗C2∪{i} = A∗C2

∨A∗i , and again sub-additivity implies V (A∗C2∪{i}) ≤ V (A∗C2
)+

V (A∗i). Thus

V (A∗C2
) ≥ V (A∗C2∪{i})− V (A∗i) >

3V (A∗)

4
− V (A∗)

2
=
V (A∗)

4
.

7Notice that in single-unit settings partitioning the players is the same as partitioning the units, and given the
optimal allocation S∗ which is a subset of players, for any set S ⊆ S∗ we have V (S∗) ≤ V (S) + V (S∗ \ S). But in
our setting the partition has to be done in terms of players rather than units. Indeed, partitioning A∗ = (a∗1, . . . , a

∗
m)

into two arbitrary allocations A = (a1, . . . , am) and A′ = (a′1, . . . , a
′
m) with ai + a′i = a∗i for each i will not give us

A∗ = A ∨A′, since there may exist i such that both ai and a′i are strictly less than a∗i . Only when A and A′ are A∗

projected to two disjoint player sets will one have A∗ = A ∨A′ and thus V (A∗) ≤ V (A) + V (A′).

21

Since T ∩ T ′ = ∅ and T ∪ T ′ = [m], for each Ci we have A∗Ci = A∗Ci∩T ∨ A
∗
Ci∩T ′ , and thus

V (A∗Ci) ≤ V (A∗Ci∩T)+V (A∗Ci∩T ′). Accordingly, either V (A∗Ci∩T) or V (A∗Ci∩T ′) is greater than V (A∗)
8 .

Since the players in C1 and C2 are partitioned to T and T ′ uniformly and independently, with
probability at least 1/2 there exists i such that

V (A∗Ci∩T) ≥ V (A∗)

8
and V (A∗C3−i∩T ′) ≥

V (A∗)

8
, (10)

namely, the more valuable parts of C1 and C2 end up at different sides.
Since both allocations A∗Ci∩T and A∗C3−i∩T ′ in Equation 10 are budget feasible, we have V (ÂT) ≥

V (A∗Ci∩T) and V (ÂT ′) ≥ V (A∗C3−i∩T ′). Thus with probability at least 1/2, V (ÂT) ≥ V (A∗)
8 and

V (ÂT ′) ≥ V (A∗)
8 . Because the role of T and T ′ can be switched, with probability 1/2 we have

V (ÂT ′) ≥ V (ÂT). Thus with probability at least 1/4 we have V (ÂT ′) ≥ V (ÂT) ≥ V (A∗)
8 , and

Lemma 7 holds.

From now on we only consider scenarios where Inequality 9 holds. In this case, by Lemma 6,
the value v computed in Step 2 of Mechanism MRand satisfies

v ≥ V (ÂT)

8
≥ V (A∗)

64
. (11)

Let A be the outcome of MRand. Different from [7], in our setting it is possible that A = A⊥.
However, we can prove the following lemma.

Lemma 8. V (A) + V (λ∗∗ei∗∗) ≥ log logn
64 logn · v.

Proof. To do so, we are going to partition ÂT ′ into disjoint sets. But instead of partitioning
according to the players as we have done in Lemma 7, this time we shall partition according to the
units. Let t = |T ′|, âi be the number of units each player i ∈ T ′ gets in ÂT ′ , and n′ =

∑
i∈T ′ âi.

Without loss of generality, assume T ′ = {1, 2, . . . , t} and c1 ≥ c2 ≥ · · · ≥ ct.
Let L be the ordered list of player-unit pairs (1, 1), . . . , (1, â1), (2, 1), . . . , (2, â2), . . . , (t, 1), . . . , (t, ât),

and denote by (i`, j`) the `-th pair in L, with ` ∈ [n′]. Similar to [7], we recursively partition the
pairs in L into different groups as follows:

• Let α1 be the largest integer such that ci1 ≤ B
α1

. Put the first α′1 = min{α1, n
′} pairs into

group Z1.

• Let βr = α′1 + · · ·+α′r. If βr < n′, then let αr+1 be the largest integer such that ciβr+1
≤ B

αr+1
.

Put the next α′r+1 = min{αr+1, n
′ − βr} pairs in group Zr+1.

Let x + 1 be the number of groups. For each r ∈ [x + 1], notice that Zr naturally correspond to
an allocation where each player i’s number of units is the number of pairs of his in Zr. Slightly
abusing notation, we refer to this allocation as Zr as well, and use V (Zr) to denote its value.

If x = 0, then there is only one group Z1 = L. Thus Z1 = ÂT ′ and V (Z1) = V (ÂT ′). In round
k = α1 of mechanism MRand, we have Tk = T ′ since ci ≤ c1 ≤ B

α1
for each i ∈ T ′. The optimal

budget feasible allocation for Tk with unit-cost B
α1

has value at least V (Z1), because |Z1| ≤ α1,

which makes Z1 a budget feasible allocation under unit-cost B
α1

. By Lemma 6, in this round we
have

V (X) ≥ V (Z1)

8
=
V (ÂT ′)

8
≥ log logn

8 log n
· v,

22

where the last inequality is because v is the value of a budget feasible allocation for players in T ,
which implies V (ÂT) ≥ v, and thus V (ÂT ′) ≥ v by Inequality 9. Thus the mechanism, which may
terminate before or at round α1, will output an allocation A such that V (A) ≥ log logn

64 logn · v, and
Lemma 8 holds.

If x > 1, notice that for any 1 ≤ r < x there is at most one player whose pairs appear in both
Zr and Zr+1: he is the last one picked up by Zr and the first by Zr+1. Denote this player by jr.

8

We have
ÂT ′ = Z1 ∨ âj1ej1 ∨ Z2 ∨ âj2ej2 ∨ · · · ∨ âjxejx ∨ Zx+1,

where âjrejr is defined to be A⊥ if there is no such a player jr between some Zr and Zr+1. This is
because, for any player in T ′, either all his units taken by ÂT ′ appear in some Zr, or he is player
jr for some r and all his units appear in âjrejr . By sub-additivity,

V (ÂT ′) ≤
∑

r∈[x+1]

V (Zr) +
∑
r∈[x]

V (âjrejr) ≤
∑

r∈[x+1]

V (Zr) + xV (λ∗∗ei∗∗), (12)

where the second inequality is because ÂT ′ is budget feasible, and thus for each i ∈ T ′ we have
âici ≤ B, implying âi ≤ min{ni, bBci c}.

Letting r∗ ∈ argmaxr∈[x+1] V (Zr), by Inequality 12 we have

V (ÂT ′) ≤ xV (λ∗∗ei∗∗) + (x+ 1)V (Zr∗).

By a similar argument as in [7], we have that n′ ≥
(
x
2

)x
, which implies n ≥

(
x
2

)x
, and thus

x ≤ 2 logn
log logn . Accordingly,

V (λ∗∗ei∗∗) + V (Zr∗) ≥
V (ÂT ′)

x+ 1
≥ V (ÂT ′)

2x
≥ log log n

4 log n
· V (ÂT ′).

If V (λ∗∗ei∗∗) ≥ log logn
8 logn · V (ÂT ′), then Lemma 8 holds immediately, again because V (ÂT ′) ≥ v.

Otherwise, we have V (Zr∗) ≥ log logn
8 logn ·V (ÂT ′). In round k = αr∗ of mechanism MRand, Tk includes

all players whose pairs appear in Zr∗ , and thus the optimal budget feasible allocation for Tk with
unit-cost B

αr∗
is at least V (Zr∗), because |Zr∗ | ≤ αr∗ , which makes Zr∗ a budget feasible allocation

for Tk with unit-cost B
αr∗

. By Lemma 6, the allocation X in this round satisfies

V (X) ≥ V (Zr∗)

8
≥ log log n

64 log n
· V (ÂT ′) ≥

log logn

64 log n
· v.

Thus the mechanism, which may terminate before or at round αr∗ , will output an allocation A such
that V (A) ≥ log logn

64 logn · v, and Lemma 8 holds.

Combining Lemma 7, Inequality 11 and Lemma 8, we have that the expected value of mechanism
MSub is

1

4
·
(
V (A)

2
+
V (λ∗∗ei∗∗)

2(1 + lnn)

)
≥ V (A) + V (λ∗∗ei∗∗)

8(1 + lnn)
≥ log logn

8(1 + lnn) · 64 log n · 64
· V (A∗) =

V (A∗)

O((logn)2

log logn)
.

Thus mechanism MSub is an O((logn)2

log logn)-approximation, and Theorem 4 holds.

8In principle it is possible that a player’s units spread among several consecutive groups Zr, Zr+1, Zr+2, In
this case any group in the middle contains only pairs of this player, and jr = jr+1 = This will not affect our
analysis.

23

5.4 Approximation when the players have small costs

Notice that the worst case of the approximation ratio above comes from the case where V (λ∗∗ei∗∗)
is the main contribution to the final value. An extra log n factor is introduced compared with
single-unit settings since the optimal approximation ratio for V (λ∗∗ei∗∗) is O(log n). For scenarios
where the players’ costs are very small compared with the budget, in particular, where nici ≤ B
for each i, the optimal single-item allocation (i∗∗, λ∗∗) is publicly known, just as the player i∗ in
single-unit settings. Thus the mechanism MOne in our mechanism can be replaced by “allocating
ni∗∗ units of item i∗∗ and paying him B”, and the log n factor is avoided. Indeed, we have the
following theorem, whose proof we omit.

Theorem 5. For sub-additive valuations where nici ≤ B for each i, there exists a DST mechanism
which is individually rational, budget feasible, and is an O(logn

log logn) approximation.

Such a small-cost setting is possible in some markets, but is not realistic in many others. For
example, in the Provision-after-Wait problem in healthcare as discussed in our introduction, it
is very unlikely that all patients can be served at the most expensive hospital without exceeding
the government’s budget. Also in many procurement auctions, a seller, as the manufacture of his
product, can be considered as having infinite supply. Thus the total cost of all units he can provide
will always exceed the buyer’s budget. Thus one need to be careful about where the small-cost
condition applies, and in our main results we focus on the general settings where we do not rely on
such a condition.

References

[1] Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In SODA, pages 1083–1092, 2006.

[2] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In Proceedings
of the 42Nd IEEE Symposium on Foundations of Computer Science, FOCS ’01, pages 482–,
Washington, DC, USA, 2001. IEEE Computer Society.

[3] Aaron Archer and Éva Tardos. Frugal path mechanisms. ACM Trans. Algorithms, 3(1):3:1–
3:22, February 2007.

[4] Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, and Kunal Talwar. Sec-
retary problems: Weights and discounts. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’09, pages 1245–1254, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

[5] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’07, pages 434–443, Philadelphia, PA, USA, 2007. Society for Indus-
trial and Applied Mathematics.

[6] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a budget:
Posted price mechanisms for online procurement. In Proceedings of the 13th ACM Conference
on Electronic Commerce, EC ’12, pages 128–145, New York, NY, USA, 2012. ACM.

[7] Xiaohui Bei, Ning Chen, Nick Gravin, and Pinyan Lu. Budget feasible mechanism design:
From prior-free to bayesian. In Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, pages 449–458, New York, NY, USA, 2012. ACM.

24

[8] Mark Braverman, Jing Chen, and Sampath Kannan. Optimal provision-after-wait in health-
care. In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science,
ITCS’14, pages 541–542, New York, NY, USA, 2014. ACM.

[9] Matthew C. Cary, Abraham D. Flaxman, Jason D. Hartline, and Anna R. Karlin. Auctions
for structured procurement. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’08, pages 304–313, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[10] Ning Chen, Edith Elkind, Nick Gravin, and Fedor Petrov. Frugal mechanism design via
spectral techniques. In FOCS, pages 755–764, 2010.

[11] Ning Chen, Nick Gravin, and Pinyan Lu. Mechanism design without money via stable match-
ing. CoRR, abs/1104.2872, 2011.

[12] Ning Chen, Nick Gravin, and Pinyan Lu. On the approximability of budget feasible mech-
anisms. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, pages 685–699. SIAM, 2011.

[13] Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In Proceedings
of the 10th International Workshop on Approximation and the 11th International Workshop
on Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX
’07/RANDOM ’07, pages 89–103, Berlin, Heidelberg, 2007. Springer-Verlag.

[14] Shahar Dobzinski, Christos H. Papadimitriou, and Yaron Singer. Mechanisms for complement-
free procurement. In Proceedings of the 12th ACM Conference on Electronic Commerce, EC
’11, pages 273–282, New York, NY, USA, 2011. ACM.

[15] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality in path auctions. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 701–709,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[16] Joan Feigenbaum, Christos H. Papadimitriou, Rahul Sami, and Scott Shenker. A bgp-based
mechanism for lowest-cost routing. In PODC, pages 173–182, 2002.

[17] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mechanism design for policy routing. In
PODC, pages 11–20, 2004.

[18] Andrew V. Goldberg, Jason D. Hartline, Anna R. Karlin, Andrew Wright, and Michael Saks.
Competitive auctions. In Games and Economic Behavior, pages 72–81, 2002.

[19] Michael Kapralov, Ian Post, and Jan Vondrák. Online submodular welfare maximization:
Greedy is optimal. In SODA, pages 1216–1225, 2013.

[20] Anna R. Karlin, David Kempe, and Tami Tamir. Beyond vcg: Frugality of truthful mech-
anisms. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’05, pages 615–626, Washington, DC, USA, 2005. IEEE Computer Society.

[21] David Kempe, Mahyar Salek, and Cristopher Moore. Frugal and truthful auctions for vertex
covers, flows and cuts. In FOCS, pages 745–754, 2010.

[22] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

25

[23] Debasis Mishra and Dharmaraj Veeramani. Vickrey-dutch procurement auction for multiple
items. European Journal of Operational Research, 180:617–629, 2006.

[24] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

[25] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35:166–196, 2001.

[26] David C. Parkes and Jayant Kalagnanam. Models for iterative multiattribute procurement
auctions. Management Science (Special Issue on Electronic Markets), 51:435–451, 2005.

[27] Yaron Singer. Budget feasible mechanisms. In Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science, FOCS ’10, pages 765–774, Washington, DC,
USA, 2010. IEEE Computer Society.

[28] Kunal Talwar. The price of truth: Frugality in truthful mechanisms. In Proceedings of the 20th
Annual Symposium on Theoretical Aspects of Computer Science, STACS ’03, pages 608–619,
London, UK, UK, 2003. Springer-Verlag.

26

