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1 INTRODUCTION1 Introduction

1Consider the situation: You are sick. You go to a doctor, and he tells you you have a

stomach ulcer, and you need to take an expensive drug brand. You ask him about other

drugs and talks about the generic brand, as well as some competitor, but recommends the

expensive drug brand first most. He even gives you a free sample of the branded drug. Often

in such a situation, we hear of people getting a “second opinion” by visiting another doctor

and seeing what he recommends. Can this work? Can we find the drug that is best for

our ulcer, and then the next best, and so on? In this paper, I say yes, even with just two

advisers.

2Past papers on similar topics have generally garnered impossibility results. In Wolinsky

(2002) they look at a typical problem where they have two biased advisers, and are trying

to find the correct θ in the range of [0, 1]. This is a problem relevant to finding a price for a

drug brand, and they find they need advisers biased in opposite direction to get closer to the

true value of θ, but find its impossible to guaranteed discovery of true θ with any observable

features of the advisers. My paper is different. It is looking for a ranking of outcome, and will

use observable features of the advisers to get positive results. In the example of the doctor

prescribing medication for ulcers, we would say a doctor is biased between recommending a

drug from a company that is sponsoring him, and one that is not (he will have free samples

from the sponsoring company, or you can look up the drug companies he receives gifts from

in excess of 10$ due to the Physician Payments Sunshine Act). However, if given a choice

between two rankings where only two sponsored, or two non-sponsored drugs are the only

drugs that change their relative ranking, then we say he is impartial between those two

rankings and order the drugs by their effectiveness. Thus, if the doctor is sponsored by by

both drug A and drug B, we learn about the relative effectiveness between the two drugs

when he chooses between rankings ABC or BAC.
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1 INTRODUCTION

3This paper is similar to Amorós (2009). He looked at implementation in a environment

where he had 3 or more jurors. This is more common for institutional juries, such as the

judges for a figure skating competition. This is a subjective criteria, that only becomes more

objective to trained judges, such that the social planner has difficulty judging the skaters

themselves and must rely on the judges to report the true ranking of skaters from best

performance to worst. But judges can be biased, and can seek to improve the chances of

their countries candidates at the expense of others, but be impartial when ranking their own

countries skaters against each other. He ultimately finds that the largest environment the

social planner can get the judges to reveal the true ranking in, is when he knows a judge

impartial over each contestant pair, much like the doctor above being impartial over Drug A

and Drug B, and the social planner also has that all contestant pairs have a judge impartial

over them. If everyone prefers skater A to B, then we can’t expect them to rank B before

A, even if B out skated A.

4For my results, I will require the same two assumptions. However, I will also need to make

some restrictions on the distribution of the jurors impartiality over the contestant pairs. I

will also need to introduce indifference over contestant pairs to get implementation. I also

show that in such an environment, the optimal mechanism is the Stackleberg solution using

Subgame Perfect Nash Implementation (a two turn mechanism). Under stronger restrictions,

I show that Nash implementation is possible. Ultimately, while I get positive results, they

are quite particular, and ultimately show the value of a second opinion, and how honest

people are in general (rarely strategic, which makes implementation easy).

5The paper is organized as follows: Section 2 introduces the model and the environment,

and formal definitions. In section 3 I introduce important sets used in the proofs and the

concept by which I determine jurors incentive compatibility. Section 4 outlays the results.

It consists of subsections for the necessity and sufficient characterization and some more
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2 MODEL

intuitive assumptions to satisfy the necessity results. Section 5 is the conclusion.

2 Model

1The structure of the problem looks similar to social choice problems, but is usually called

a Juror problem. In this paper, I have only two jurors {i, j} = J . Let N be a set of n ≥ 3

contestants, and N2 the set of all contestant pairs. An outcome, π, is a ranking of all

contestants in N, where Π denotes the set of all rankings of N. Define pπA as the position of

contestant A in ranking π. For example, if π = (A,B,C), then pπA = 1. Accepting some

sloppy notation, rankings will often be written ABC and subrankings ...ABC, when context

clear.

2We need the jurors because they observe the true ranking, πt, for all j ∈ J , which is

unknown by the social planner. The socially optimal rule is that the ranking we elicit

from the jurors is the same as the true ranking.

3Jurors preferences are dependent on the true ranking. This gives a state-dependent

preference function R : Π → R, where R is the set of all possible preferences over

rankings, such that for any true ranking, πt ∈ Π, we get a preference relation Rj(πt) ∈ Rj

for juror j. Thus, with the same preference function, if we change the true ranking, we get

different preference relations. I will define Pj(π) as the strict part of juror j’s preferences,

and Ij(π) as the equivalence. This will allow us to start talking about impartialness on

preferences.

4I will say a juror has the impartial pair over (A,B), if given a choice between two

rankings where A and B are adjacent, and the only difference is A and B have swapped their

positions with each other, the juror strictly prefers the ranking where A and B are in the

same order as in the true ranking. I denote the set of juror j’s impartial pairs as Uj ⊂ N2.

Definition 1 (Partially Impartial Preferences). Preferences Rj are partially-impartial for

contestants {A,B} ∈ Uj if: for any rankings {π, π̂} ∈ Π for juror j, then πPj(πt)π̂ if:
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2 MODEL

• pπA = pπB − 1

• pπ̂A = pπ̂B + 1

• pπC = pπ̂C for all C ∈ N \ {A,B}, and

• pπtA < pπtB

Denote the set of Partially Impartial Preferences as Uj ⊂ Rj for any j ∈ J .

5For an example, consider a juror ranking three contestants Alice, Barbara, and Christina

in a gymnastics competition. Consider the case where the juror is impartial over Alice and

Christina, because they are her friends, {A,C} ∈ I, but she is biased between Barbara and

Alice because only Alice is a friend, {A,B} /∈ I. Then if the juror was given a choice over

the rankings (Barbara, Alice, Christina) and (Barbara, Christina, Alice), hereafter written

BAC and BCA, he would choose the ranking where Alice and Christina are in the same

order as the true ranking. Suppose the true ranking is ABC, then the juror would prefer

to choose BAC. If he had chosen BCA, then Christina is ranked before Alice. This is the

opposite ranking from the true ranking, ABC, therefore BAC Pj(ABC) BCA. So, even

though the juror is biased, we could get some meaningful information from them by just

knowing Alice and Christina are his friends.

6An advantage of using impartial pairs is that they are about the weakest assumption you

can make about how someone’s honesty translates into preferences. The fact the contestants

are adjacent in the rankings when swapped is important. When we look at BAC and BCA,

the A and C are adjacent and swapped between the two choices. That means the relative

order of A and C changes between the two rankings, but B ranks before C and A still, such

that their orders don’t change, and any bias in preferences related to the pairings {A,B} or

{B,C} doesn’t matter. As a result, the only motivations that matter in choosing between

BAC and BCA that matter are the ones related to the relative order of A and C, and if we

4



2 MODEL

know they are impartial, {A,C} ∈ I, we know they will report honestly in a simple choice

between those two rankings.

7A similar concept is indifference pairs, and partially indifferent preferences. The definition

is almost identical to impartial pairs, but instead of creating a strong preference to reveal

the ranking, they are indifferent. This could be considered a true indifference, or you could

consider it as a bias weaker than the jurors preference towards impartiality. Thus, when

forced trade off being impartial or being weakly biased towards a pair in the indifference

pairs, they will choose to be impartial. I denote the set of indifference pairs for juror j as Vj.

Definition 2 (Partially Weakly Indifferent Preferences). Preferences Rj are partially-
indifferent for all alternatives {A,B} ∈ Vj if: for any rankings {π, π̂} ∈ Π for juror j,
then πIj(πt)π̂ if:

• pπA = pπB − 1

• pπ̂A = pπ̂B + 1

• pπC = pπ̂C for all C ∈ N \ {A,B}

Denote the set of Partially Indifferent Preferences as Vj ⊂ Rj for any j ∈ J .

8

9The above definition does not allow learning like the impartial pairs. If {A,B} ∈ Vj, then

ABC Ij(πt) BAC but the ranking in the true ranking can be either pπtA < pπtB or pπtA > pπtB .

For example, let the true ranking be ABC, and the juror to be indifferent on the contestant

pair of {A,B} ∈ V . Then if the juror is given a choice over {ABC,BAC}, he would be

indifferent between the two. He could choose ABC or BAC just as easily. Likewise, suppose

he chooses ABC, that doesn’t tell us the true ranking is ABC, it could just as easily be

any other ranking, such as CBA, which is completely different. Thus, the social planner

can’t use choices using only indifferent pairs to learn anything, and for this paper we treat

indifferent pairs as bias weaker than impartiality, since our goal is to guarantee elicitation

of the true ranking.
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2 MODEL

10The solution to the problem is two fold, first, the designer needs restrictions on jurors

preferences, second, he needs to have an optimal mechanism for elicitation. An optimal

mechanism for two juror elicitation does not exist previously for this problem, Amorós (2009)

found an optimal mechanism for the case of |J | ≥ 3, but he also shows by proposition 3 in

appendix A that his mechanism is insufficient for |J | = 2. The next section will consist of

showing the design of the mechanism used in this paper, and how it is optimal.

11The State of the World is the vector of true ranking and preference functions given

by e = (πt, R1, R2) ∈ Π × R1 × R2. Let S be the restricted universe on which we get

implementation, formally S ⊂ Π× F1 × F2. Here, Fi is the set of preferences that satisfies

both juror i’s impartiality and indifference restrictions, formally Fi = Ui ∩ Vi.

12A mechanism is the vector Γ = (T,>,D, δ, ω). A node in the extensive form game is

t ∈ T . I will assume there is only 1 root node, and label it t0. The order of the nodes is

captured by >, such that if t4 > t2, that means t4 is on a lower tier of the tree than node 2.

The set of possible choices is D, which will be D = Π since all rankings could be the true

ranking. As a function δ : {T − t0} → T , delta takes each node and maps to the node from

which it departed. For example, δ(t1) = t0 means that node t1 was chosen at node t0. This

allows us to construct the choices at each node by δ−1(t0) = {t ∈ T |δ(t) = t0}, where δ−1(t0)

indicates the choices available at node t0, δ
−1(t1) would be choices at t1, et cetera. To clean

up notation, let D(tn) ≡ δ−1(tn) be my conditional choice set at node n. Finally, ω maps the

terminal nodes into outcomes. This is a direct mechanism such that the terminal nodes are

rankings, which are the outcomes, such that ω is simply an identity map. For ease, the first

to move in the mechanism will be juror 1, and the second, and last, to move will be juror 2.

13Let Si(t) be juror i’s strategies available at node t. If we observe |Si(t)| > 1 and |Sj(t)| >

1, then jurors i and j are moving simultaneously at node t, whereas if |Si(t)| > 1 but

|Sj(t)| = 1 for any juror j not i, then only juror i moves at node t. For the most part, all

moves will sequential. Let the space of juror i’s strategies be Si = ×t∈TSi(t), the space of all
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3 MECHANISM

strategies from each node. Then, the strategy space for all jurors would be S = S1×S2. For

any s ∈ S and t ∈ T , let ω(s|t) be the outcome be achieved using strategy s starting from

node t.

14A strategy s ∈ S is a subgame perfect equilibrium for the mechanism Γ and state

of the world e ∈ S if ∀i ∈ J,∀t ∈ T,∀ŝi ∈ Si, ω(si, s−i|t)Ri(πt)ω(ŝi, s−i|t). Where its worth

keeping in mind that s−i is all other jurors strategy, which is determined by choices at each

node. Thus, si includes responses at nodes off the equilibrium path. Denote the space of

SPNE strategies as SPE(Γ, e) and the outcomes as ω(SPE(Γ, e)|t0).

15An extensive form game Γ subgame implements the true ranking πt in state e ∈ S if

ω(SPE(Γ, e)|t0) = πt, for all e ∈ S.

3 Mechanism

1With two jurors, there are few choices for optimal mechanisms. The choice of a dicta-

torship would not work in this setting, because we don’t want the jurors to reveal their true

preferences, but the true ranking, which won’t occur under a dictatorship unless some juror

is fully impartial. I exclude the possible case of a fully impartial juror, because it makes the

second juror redundant. Therefore, I will instead use a two-turn extensive form game, where

juror 1 chooses a message, and juror 2 observes juror 1’s message and chooses a message in

response. This is known as a Stackleberg solution, and since I have complete information, I

can guarantee that a sequential equilibrium exists. Using longer extensive form games can

be useful for implementation sometimes, but that involves a social choice correspondence

that is attempting to enforce compliance, in my case, I could not do so because the designer

is ignorant of Ri. Further more, since the game is perfect information for the jurors, they

could backwards induct the outcome of their choices, and the designer has nothing to ask

them about besides the true ranking, such that having each juror make more than 1 choice
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3 MECHANISM

is unnecessary. Proof of this to be shown later.

2Since the “optimality” of a mechanism depends on the scope of the environment, let me

introduce some initial assumptions that restrict our choice of mechanism. First, no juror has

all possible impartial pairs, or stated differently, no juror is fully impartial (A1). If you had

a juror who was fully impartial, this satisfies the requirements for implementability with only

one juror, such that any additional juror is unnecessary to consult. Second, any impartial

pair is assigned to a juror (A2). If this is not the case, that means there are two contestants

in a ranking no judge is willing to place in the correct order, which makes implementing the

true ranking impossible. Third, the Designer needs to know for each pair of contestants at

least 1 juror who has them as an impartial pair (A3). If the juror does not know which juror

is impartial over a pair of contestants, he does not know whom he can trust to elicit that

information from. All three assumptions are discussed in Amorós (2009), where the last two

are shown to be necessary to get implementation, but not sufficient in the two juror case.

3Now if we attempt to look at other mechanisms, it can be shown that they will violate at

least one of the three base line assumptions. If we consider the Dictatorship, we suppose you

randomize and juror 2 is chosen such that his choice of ranking is the mechanism’s choice.

The choice of the mechanism can be guaranteed to be the true ranking only if juror 2 is

fully impartial. Only if he is fully impartial can you ensure that the top of R2(πt) is the true

ranking. In the deferred acceptance algorithm the problem is similar, and it stems from the

fact in this problem we want the true ranking, and the relation of jurors preference over true

ranking is independent of the SCC. Or in other words, the true ranking does not cease to be

the true ranking if it becomes less popular with the jurors; the jurors opinions of the truth

does not change your objective from figuring out the truth.

4The next mechanism would be the Maskin mechanism, or a slight variation on it. It is

much more subtle to show, but it is also not the optimal mechanism choice in this environ-

ment. The Maskin mechanism handles multiple intractable messages by having the jurors
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3 MECHANISM

play the integer game, a game with no equilibrium. With two jurors, anytime the jurors do

not send the exact same ranking as a message, then we would be playing the case with no

equilibrium. As a result, unilateral deviations are not equilibrium play. Strictly speaking,

that means any ranking could be equilibrium. However, in this setting with both jurors

almost completely impartial, each just missing one impartial pair, it is still possible for there

to be rankings in common in both jurors upper contour sets of the true ranking. Thus, if the

true ranking was an equilibrium, these rankings in common in the upper contour set would

also be equilibrium, violating SCC implementability.

5Thus, the mechanism I use will be structured as a simple Stackleberg Solution, also

known as a two-turn extensive form game. Juror 1 will move first, choosing a message at

node t0 from his message space D(t0), then juror 2 observes juror 1’s message, and chooses a

message from the resulting node tn. Only juror 1 has to consider a implications of message

choice, since juror 2 goes last after observing juror 1’s choice. The result of the mechanism

is juror’s 2 choice.

t0 Juror 1

t1 t2 t3 t4 t5 t6 Juror 2

(c, b, a) (b, c, a) (b, a, c) Output

abc
acb bac bca cab cba

cba bca bac

6The above image shows an example of how the mechanism works. Rather than draw out

all of the terminal nodes, I simply showed one path of play. In this instance, the first juror

chose the ranking (c, b, a) as their message. This forces juror 2 to make a choice amongst the

selection at t6, which can be (c, b, a), (b, c, a), or (b, a, c). Whichever ranking juror 2 chooses

will be the output of the mechanism. Given juror 2’s impartial pairs, we can ensure he reports

the true ranking if it is among his choices by restricting his set of choices, just as we did above
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3 MECHANISM

by restricting him to choosing among just three rankings. A jurors choice of rankings in set

β will be defined as the correspondence Cj(β) ≡ {π ∈ β|@π′ ∈ β, such that π′Pj(πt)π}.

7Ultimately, since whichever juror 2 chooses is the outcome, we want his choice to be the

true ranking, which means he chooses the true ranking whenever he is able. I will define a

set β(π, Uj) as the set from which we can assure that the true ranking will be chosen if it is

present. Since the information available to the Designer is the impartial sets, we design this

set based on the impartial sets, and the message juror 1 sends.

Definition 3. Let β(U, V ) = {α ⊂ Π|∀e ∈ S, πt ∈ α→ C(α|U ∪ V ) = πt} is a collection of

sets of rankings. Each element α ∈ β(U, V ) is a set of rankings, such that if the true ranking

is in the set α, then juror 2 will choose the true ranking when his choice is restricted to set

α.

8The sets in β will be important, because if we want the resulting terminal node of

the mechanism to be a true ranking, then the last juror has to be making a choice from

D(t) ⊂ α ∈ β. As it turns out, by using impartial pairs we can always create sets in β,

however, without restrictions some α ∈ β can be singletons - which would be a problem.

However, while the sets in β will be an important set to look at for implementation, it is

not sufficient. The following shows that for any proper subset of contestant pairs, there will

always be an α ∈ β, such that there is a ranking not in that α. That ranking could always

be the true ranking, πt. As a result, juror 1’s message becomes necessary to choose a set α

from which juror 2 is to choose, and juror 1 can always choose an α where the true ranking

is not available to juror 2.

Proposition 1 (Manipulation of juror 2’s Choices). For any Uj 6= N2, then for any α ∈

β(Uj ∪ Vj), there is a ranking π ∈ Π such that π /∈ α.

9However, some good news comes from the fact that the a two turn extensive form game

is optimal. So long as a juror isn’t what I call mostly honest, which occurs if Ui ∪ Vi = N2,

10



3 MECHANISM

then adding more turns simply makes it easier for jurors to manipulate one another - making

it harder to get the true ranking. What Ui∪Vi = N2 means, is that if a juror is not impartial

over a pair of contestants {A,B}, then they are indifferent2. This is a restrictive case, one in

which I can get Nash Implementation, thus, for all practical purposes, a two - turn extensive

form game is optimal.

Proposition 2 (Two-turn Optimality). If for both j ∈ J , Uj ∪ Vj 6= N2, then the two turn

mechanism used in this paper is optimal compared to any mechanism using more turns where

any juror goes twice or more.

10The proofs for above propositions are in the appendix. The following are three functions

useful in the proofs. The first is the set of swapped pairs, accounting for all possible rankings

achieved from π by stringing together swaps of adjacent pairs over which juror j is impartial

or indifferent. This set is important because the set α ∈ β(Uj, Vj) always contains it, and is

often equal to it.

Definition 4 (Set of Swapped Pairs). Let X(π, Ui) ⊂ Π be the set of all rankings achieved

by swapping any or all adjacent pairs in Ui, in any order.

11The set of Misranked Pairs satisfies a lot of properties. It is injective, well defined, but

not surjective. It finds all the contestant pairs that are misranked, and for any two rankings,

this collection of contestant pairs is unique. This is useful in determining the necessary

distribution of impartial pairs, or the above two propositions.

Definition 5 (Set of Misranked Pairs). Let Z(π, πt) ⊂ N2 be the set of all contestant

pairs misranked when comparing π to πt. Formally this is written as Z(π, πt) ≡ {{A,B} ∈

N2| if pπtA < pπtB then pπA > pπB}.

12The Set of Partially-Honest Rankings is probably the most important set. It is a set of

all rankings, such that juror j has all the contestant pairs in his impartial pairs U2 ranked

2With these restricted preferences and mechanism, this is the same as the juror is not a strategic liar.
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similarly to the true ranking, πt. The set can range from the size of half of all the rankings, to

only the true ranking if juror fully impartial (which we exclude by assumption). Later results

will show that if we can get just one juror to report a ranking from the partially-honest set,

then the other juror will want to as well. When both jurors report from their partially-honest

sets respectively, then the only outcome is the true ranking. So the partially-honest set is

integral, but it is not incentive compatible, wherein lies the problem.

Definition 6 (Set of Partially Honest Rankings). Formally defined as H(πt, U) = {π ∈

Π|∀{a, b} ∈ U, paπt < pbπt → paπ < pbπ}, the set H is the set of all rankings where contestants

in the juror’s impartial pairs are in the same order as the true ranking.

4 Results

1I will continue with information requirements established as necessary for all equilibrium

concepts by Amorós (2009). He required all impartial pairs to be assigned to a set of jurors,

and the designer must know which judge has which impartial pair.3I will also look at the

strict case when a single juror does not have all the impartial pairs - since the solution in

such a case would simply be to implement the fully impartial juror’s most preferred ranking.

Since I have only two jurors, then any alternative not in juror i’s impartial collection must

be in the other juror’s collection.

Assumption 4 (Transitive over sets in β). ∀π, π′, π′′ ∈ α ∈ β(Uj ∪ Vj), if πRi(πt)π
′ and

π′Ri(πt)π
′′ then πRi(πt)π

′′.

2The assumptions that I will look at to characterize the implementation in this environ-

ment, in addition to Amorós results, include partial transitivity such that jurors are partially

rational. This is a fairly standard assumption, which will be useful to establish consistency

3Notice that maskin monotonicity, a necessary condition for implementation in nash equilibrium, is sat-
isfied by all impartial pairs being assigned to a set of judges.
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of choices with preferences.

Assumption 5 (Non-Partial over Alternative). If {A,B} ∈ Ui, then ∀X ∈ N−A, {A,X} ∈

Ui ∪ Vi.

3To prevent the first juror from manipulating the last juror requires some restrictions on

the distribution of the last juror’s impartial pairs, as well as partially-indifferent preferences.

The last juror being non-partial over an alternative is a fairly weak restriction, that boils

down to a juror not being partial over the ranking of an alternative and any other one.

Assumption 6 (Condition-λ). If {A,B} ∈ Uj then {A,X} ∈ V2, for any X ∈ N−B.

4An intuitive version of above is that if juror j is impartial between contestants A and

B, then he is more impartial over A and B than he is over impartial or bias over any other

contestant pair containing A. This precludes juror j from having {A,C} and {B,C} as an

impartial pair, forcing them to be indifferent pairs. This looks like its weakening juror j, but

in fact makes him harder for juror 1 to manipulate.

4.1 Necessary and Sufficient Characterization

1For the necessity results I will not be able to take advantage of many features in other

works, such as Moore and Repullo (1990). In their work they have a known ranking π that is

less preferable than πt for all environments for both jurors. However, my results resonate with

the necessity that deviating choices have to lead to subgame perfect equilibrium outcomes

that is less favorable for the deviator than the true ranking. By satisfying this condition, I will

satisfy Condition C from Moore and Repullo (1988), which is the necessary condition that

must be satisfied for Subgame perfect implementation in a general environment. Further,

in a two juror case there is no way to tell who is deviating. In a three juror case this is

handled by the fact the one juror with a different message is ignored. Thus, implementation
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for three juror implementation needs to find coalition proofness restrictions, while two juror

case must also find preference restrictions to prevent unilateral deviation in addition. These

restrictions will need to force consequences for deviating, since the deviators are unknown

to the social planner.

2To avoid the difficulty to ensure truth telling of πt as a message space for both jurors, my

mechanism tries to get a specific one of them to report πt, the last guy. We will see in the

necessity proof this is necessary. In what follows I will show that assumptions A5 and A6

are necessary, as well as restricting the last juror’s choice set to D(t) = α for some α ∈ β,

∀t ∈ T−{t0}. I will also show an irreducible condition I call condition-λ, which cannot be

satisfied with restrictions only on impartial pairs.

3Let us define the set of admissible states of the world S as the set of all states of the world

where jurors 1 and 2’s preference satisfy assumptions A1 through A4, and juror 2’s preference

also satisfy A5 and A6. Further, if we restrict the mechanism such that ∀t ∈ T−{t0}, there

exists some α ∈ β such that D(t) = α, then we have our necessary results. Thus if e /∈ S we

can not guarantee SP implementation. The proof below proceeds more cautiously to show

the necessity of each part.

4To begin, I will show a rather innocent looking lemma. The lemma’s results show that

the sets in β and the set of partially-honest rankings can only have one ranking in common.

The problem with the partially-honest set is that the most preferred ranking in the set is

most likely not the true ranking. As a result, if juror 2 had a choice over multiple partially-

honest answers, with one being the true ranking, there are states of the world where he

would deviate. With the sets in β we can avoid that problem for juror 2, but not juror 1.

Lemma 1. If juror 2 is choice set is restricted to D(T−{t0}) ⊆ α ∈ β(U), then for any

ranking juror 1 chooses, juror 2 can have at most one ranking in D(T−{t0}) that is a partially-

honest message. ∀U ⊂ N2,∀tn ∈ Π, |D(tn|U) ∩H(πt, U)| ≤ 1.

5Now, I will proceed to solve the mechanism backwards, and show what it takes to get
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juror 2 to be incentive compatible. It turns out we can get juror 2’s cooperation practically

for free. We just need to restrict his choices to sets in β and require him to be transitive over

the sets in β so he makes rational choices on the set. By forcing juror 2 to makes decisions

on β, juror 2 will always report a partially-honest message when he is able. This is useful,

because if juror 2 reports a partially-honest message, but juror 1 does not, than juror 1 will

prefer the true ranking to the ranking that resulted from their choice. The following proof

shows that if one juror chooses a partially-honest message for themselves, then the other one

will choose the true ranking, if we restrict the responders choice set to sets in β.

Proposition 3. If both jurors satisfy A4, and one juror chooses a partially honest message,

then X(π, Uj) ⊂ D(T−{t0}) ⊆ α ∈ β(Uj) iff Cj(D(T−{t0})) = πt, where D(T−{t0}) is juror j’s

choices given juror i chose π.

6It is important for the success of the mechanism for both agents to report partially-honest

messages. Because of A1 and A2, the true ranking is where both juror’s set of Partially-

honest message overlap. However, while it is easy to get juror 2 to be cooperative, it is not

easy to get juror 1 to be cooperative. However, If we can ensure juror two can always send

a partially-honest ranking, then juror 1 would prefer the result if he had sent one a message

where he was being partially-honest, i.e. he would prefer the true ranking to the ranking

outcome where he lied, and the juror 2 was honest.

Lemma 2. If the jurors satisfy A4, Juror 1 reports a message tn such that πt ∈ D(tn|U)

iff juror 2 can always choose a partially-honest ranking: ∀e ∈ S,∀tn ∈ D(t0), C2(D(tn|U2))∩

L1(πt, R1(πt)) 6= ∅ ⇐⇒ C2(D(tn|U2)) ∩H(πt, U2) 6= ∅.

7A simple illustration. Let π = CBAD. Suppose πt = ABCD. then A is the first mis-

ranked contestant. The pairs betweenA and C that are misranked are {A,B}, {A,C}, {B,C},

whereas all of the impartial pairs including contestant D are ranked properly. Since we know

juror 2 was partially-honest, that means all the misordered pairs are in U1. Which means
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that juror 1 can swap C and B to get BCAD, then swap A and C to get BACD, and

finally swap A and B to get ABCD. If we had different true ranking, we would get different

ownership of the impartial pairs. Suppose that {A,B}, {A,C} ∈ U1, then the others are in

U2 and are ranked correctly, which means the true ranking must be either ACBD, CABD,

or CBAD, depending on which pairs in U1 are misranked. In sum, if juror 2 is honest, juror

1 could always swap his pairs to be honest.

8Finally, to get juror 2 to always be able to send an partially-honest ranking to the

mechanism for output, takes a bit of restriction on the distribution on juror 2’s impartiality.

In addition to the preference restrictions the two agents have in common with A1 through

A4, juror 2 will also need to satisfy assumptions A5 and A6. These two restrictions combine

will prevent juror 1 from being able to manipulate juror 2’s choice set from sets in β, where

juror 2 has no partially-honest ranking to choose. By A5, juror 1 will not be able to lie and

place a contestant in juror 2’s way so that contestant pairs in U2 ∪ V2 are never adjacent,

and thus can never be swapped by him. By A6, juror 1 can never force juror 2 to face a

tradeoff in satisfying one impartial pair at the expense of another. Taken together, A5 and

A6 make it impossible for juror 1 to choose a choice set for juror 2 that doesn’t contain any

ranking that is partially-honest for him.

Proposition 4. Juror 2 can always choose a partially-honest message iff his preferences

satisfy A2 through A6.

Theorem 1 (Implementation). The mechanism Γ subgame implements the true ranking iff

Γ is the Stackleberg Solution and D(T−{t0}) ⊆ α ∈ β, jurors 1 and 2’s preferences satisfy A1

through A4, and juror 2 satisfies A5 and A6 in addition or some juror j is non-strategic.

Proof. (→)

If we subgame implement the true ranking all the time, that means the jurors are always

being at least partially-honest every time. By lemma 2, juror 1 only reports a partially-honest
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message if juror 2 always can. By proposition 4, juror 2 can always report a partially-honest

message if he satisfies assumptions 1 through 6. By proposition 3, juror 1 must satisfy A4,

and juror 2 choices must be restricted to sets α ∈ β(U2, V2) if juror 1 to prefer sending a

partially-honest ranking. As result, if we always get implementation, than we must satisfy

restricting juror 2’s choice set to α ∈ β(U2, V2), and jurors 1 and 2 satisfy A1-A4, and juror

2 satisfy A5 and A6 as well.

(←)

By proposition 3, we restrict juror 2’s choice set to α ∈ β(U2, V2), and by proposition

4, with A1-A6 restrictions on juror 2’s preference, we can ensure he always can choose a

partially-honest message. By lemma 2, this means juror 1 will also choose a partially-honest

message. As a result, when both be partially-honest messages respectively, than the resulting

outcome is the true ranking.

9Finally, unlike Amorós (2009), this paper takes advantage of partially-indifferent prefer-

ences in addition to partially-impartial preferences. This turns out to be necessary, because

A6 explicitly creates atleast 1 indifference pair for juror 2 in conjunction with A5. Therefore,

because these two assumptions are necessary, it is impossible to garuantee implemententa-

tion, even subgame implementation, with only impartial pairs.

Corrolary 1 (Impossibility). A6 and A5 is necessary, therefore it is impossible to implement

using impartial pairs alone.

4.2 Nash Equilibrium Implementation

1The following are sufficiency results to get nash implementation. In the context of this

environment, an agent is non-strategic if over any contestant pair he is either impartial or

indifferent. Intuitively, this means he prefers being partially-honest over being a strategic
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liar at any point, but does not mean he is unbiased.

Definition 7 (Non-Strategic). Juror j is non-strategic if U2 ∪ V2 = N2.

2It is straightforward to see that an agent that is non-strategic satisfies A5, but it looks

to breach A6. That is because A6 is necessary for α ∈ β(Uj, Vj) to be non-manipulatable.

But if a juror is non-strategic, that means they will report partially-honest, where they don’t

manipulate, and thus we can let them go first. In effect, we can use a different mechanism. In

fact, they could move simultaneously and we can still get implementation. Implementation

under bias, but not strategic liars anymore.

Remark 1. Its clear that A5 and A6 are weaker than some juror j being non-strategic,

but does being non-strategic satisfy A5 and A6? The answer is no, but it could. Consider

the example of three contestants ABC, then if the juror j has {A,B}, {B,C} ∈ U2 and

{A,C} ∈ V2, then this is non-strategic, but it doesn’t satisfy A6 since {A,B} ∈ U2 means

{B,C} should not be impartial, but indifferent, and its not. However, if we set {B,C} ∈ V2,

then it is still non-strategic, but it also now satisfies A6.

Theorem 2 (Nash Implementation). If jurors 1 and 2 satisfy A1 through A4, and one juror

is non-strategic, we can get Nash implementation.

Proof. Forthcoming. Must show well-defined outcome function.

3I do not know if this condition is necessary. It likely is, which would make this a negative

result.

5 Conclusion

1So, with only two jurors, can we get implementation of the true ranking? Yes, using

subgame implementation. But to do so, requires weak restrictions on juror 1, forcing him to
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satisfy the same assumptions shown to be necessary in Amorós (2009), plus transitivity. Juror

2 would need to satisfy restriction on the distribution of his impartialness and indifference

in addition. He would have to contain all of the indifference pairs for a contestant, if he is

impartial over the contestant. How does this connect to the example of the two doctors and

their ranking of drugs for an ulcer?

2Well, we can get information on the the doctors sponsorship from Physician Payment

Sunshine Act. Thus, we can ensure that the doctors satisfy A1 through A4, considering

drugs that both have sponsors to be an impartial pair, and two drugs that don’t have any

sponsor to be an impartial pair as well. But to satisfy A5 and A6, means we know there is

one drug that the doctor wants to make sure is ranked correctly. That is unlikely. But at

the end of the day, most of us probably get very close to the true ranking of the best drugs

for our condition.

3How so? The truth is, while more restrictive, the non-strategic requirement for Nash

implementation is more universally applicable. If we consider a difference between telling

a lie, and abusing someone’s trust, then we can make the difference between being bias

(lie) and being strategic. In the case of doctors, they got in the business to help people, so

are unlikely to be strategic at their patients expense, but can still be biased because drug

sponsorship also provides more information that might make the drug more appealing to

the doctor. Thus, while the results are negative in general, much as Amorós (2009), or any

paper looking eliciting information from biased jurors or advisers, there is some good news

when one juror is non-strategic.
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6 Appendix

The Following are results with their proofs.

Proposition 1 (Manipulation of juror 2’s Choices). ∀U ⊂ N2,∃α ∈ β(U), ∃π ∈ Π, such that π /∈

α.

Proof. By U ⊂ N2 this implies ∃{A,B} /∈ N2 \ U . Then taken, we get ∃α, α′ ∈ β(U) such

that the difference between α and α′ is that their exists π ∈ α \ α′ and π′ ∈ α′ \ α, where

pπA < pπB and pπ
′
A > pπ

′
B .

Since, if π, π′ ∈ α, then to get a contradiction, just choose e ∈ S such that π′Rj(π)π and

π = πt. Then Cj(α) 6= πt which contradicts α ∈ β(U) because α ∈ β(U) is defined such that

Cj(α) = πt.

Therefore, α 6= α′ which implies ∃π /∈ α′ and ∃π′ /∈ α which is what we wanted to

prove.

Proposition 2 (Two-turn Optimality). If for any j ∈ J , Uj ∪ Vj 6= N2, then the two turn

mechanism used in this paper is optimal over any mechanism using more turns where any

juror goes twice or more.

Proof. Let juror 2 go last. Since juror 2 goes last, his last choice will be from some α ∈

β(U2 ∪ V2) and so if he goes before juror 1, and after, his first choice is among two different

α, α′ ∈ β(U2 ∪ V2). First, 2 cases:

Case 1: Uj ∪ Vj 6= N2, for all j ∈ J .

Take α, α′ ∈ β(U2 ∪ V2) such that α 6= α′, then there exists π′ 6= πt such that πt ∈ α

and π′ ∈ α′ and πt, π
′ /∈ α ∩ α′. Since the state of the world is suppose to be arbi-

trary, we can choose e ∈ S such that C2(α) = πt and C2(α
′) = π′ and π′P2(πt)πt such

that:C2(C2(α), C2(α
′)) = C2(πt, π

′) = π′.

Thus, we do not implement. We could fix this by forcing all possible resulting terminal

nodes from juror 2’s first choice to belong to either α or α′ exclusively. But if juror 2 goes
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first, then we can not choose between the two sets otherwise than randomizing. Thus, we let

juror 1 go before juror 2, then we can use juror 1’s choice to choose between α or α′, which

is the same as the two-turn mechanism except with more turns. As a result, because of the

juror’s being perfectly informed, it is their very first choices each make, that matters to the

resulting outcome. The restrictions to get implementation on each jurors first choice, is the

same in Stackleberg Solution mechanism, where each only goes once.

Case 2: U2 ∪ V2 = N2

Under this restriction we can get implementation with agent 2 going first and last, thus

more than two turns, however, this result is also sufficient to get Nash Equilibrium Imple-

mentation, which is shown elsewhere. Thus, because we get the stronger NE implementation,

we wouldn’t worry about a many turn mechanism and its SPN Implementation.

Lemma 1. If juror 2 is choice set is restricted to D(T−{t0}) ⊆ α ∈ β(U), then for any

ranking juror 1 chooses, juror 2 can have at most one ranking in D(T−{t0}) that is a partially-

honest message. ∀U ⊂ N2,∀tn ∈ Π, |D(tn|U) ∩H(πt, U)| ≤ 1.

Proof. Proceed by way of contradiction: let |D(tn|U)∩H(πt, U)| ≥ 2. Then by D(T−{t0}) ⊆

α ∈ β(U) this implies that there exists α ∈ β(U) such that there is two rankings π, π′ ∈ α

which are ranked as is the true ranking, i.e. if pπtA < pπtB then pπA < pπB and pπ
′
A < pπ

′
B .

Then as a result, it becomes very easy to get a contradiction. Choose e ∈ S such that

πt = π and π′Pj(πt)πt, which is expected with bias advisors, and you get that Cj(α) 6= πt, a

contradiction of how β defined. Therefore, |D(tn|U) ∩H(πt, U)| ≤ 1.

Lemma 2. The function Z is well-defined, injective, but not surjective.

Proof. To see that Z is well defined: Take two rankings π, π′ ∈ Π, where π 6= π′. Wlog,

let A be the first contestant that is in a different position for the two rankings, such that

P π
A 6= P π′

A . Let P π
A < P π′

A , then this implies there is some B ∈ N such that P π
A = P π′

B , which
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therefore implies that P π
A < P π

B and P π′
B < P π′

A . Thus, {A,B} ∈ n, where n is Z(π, π′) = n.

Thus, if the two rankings are different, then the function has a nonempty solution. Further,

for every two rankings it has only one solution.

Let there be two rankings such that Z(π, π′) = {n, n′}, n 6= n′. Being different, this

implies ∃{A,B} ∈ N2, such that {A,B} ∈ n′ \ n, which means that if P π′
A < P π′

B and

P π
A < P π

B by n, then by n′, P π
B < P π

A. But π can not have both that P π
A < P π

B and P π
B < P π

A

by n and n′, therefore a contradiction. Thus, n = n′, and Z is in fact, a well defined function.

To show that Z is injective, I will do so by way of contradiction. Suppose ∃n ⊂ N2 such

that ∀π 6= π′ ∈ Π, we get Z(π, πt) = n and Z(π′, πt) = n. But this would imply that all

contestant pairs not in n are ranked the same as the true ranking: i.e. ∀{A,B} ∈ N2
−{n}, if

pπtA < pπtB then pXA < pXB for X = {π, π′}.

Likewise, for any contestant pair in {C,D} ∈ n, pπtA < pπtB then pXA > pXB for X = {π, π′}.

Therefore, if we take π there will be a contestant A ∈ N such that its first: ∀B ∈ N, pπA < pπB,

and if π 6= π′ there has to be a difference between the two rankings, wlog let it be what is

first: Then this implies that there is some B ∈ N,B 6= A such that B is first in π′. But this

implies pπA < pπB, but pπ
′
B < pπ

′
A . Thus, if pπtA < pπtB , then Z(π, πt) = n, {A,B} /∈ n, whereas

Z(π′, πt) = n′, {A,B} ∈ n′ such that n 6= n′ a contradiction. Thus the map Z is injective.

Counter example to show not Surjective:

Consider a ranking π = ABC, and n = {A,C} ∈ N2. Then there doesn’t exist a ranking

π′ ∈ Π such that Z(π′, ABC) = {{A,C}}. Because if A and C are misranked, then some

other contestant pairs must also be misranked. As a result, the lone pair does not have a

pre-image in the domain. And this problem is not consistent as we swap π for other rankings.

Therefore, the function is not surjective.

Proposition 3. If one juror chooses a partially honest message, then X(π, Uj) ⊂ D(T−{t0}) ⊆

α ∈ β(Uj) iff Cj(D(T−{t0})) = πt, where D(T−{t0}) is juror j’s choices given juror i chose π.
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Proof. I will show (→) first.

Suppose π ∈ H(πt, Ui) and X(π, Ui) ⊂ D(T−{t0}) ⊆ α ∈ β(Uj, Vj). I want to show that

Cj(D(T−{t0})) = πt.

Notice, that for each π ∈ Π, Z(π, πt) is unique. Thus, by π ∈ H(πt, Ui), and by

X(π, Ui) ⊂ D(T−{t0}) this implies that H(πt, Ui) ⊂ D(T−{t0}), which means that for any

π ∈ D(T−{t0}), that Z(π, πt) ⊂ Uj.

Thus, if Cj(D(T−{t0})) = π̂ 6= πt then ∃n ⊂ U2, Z(π̂, πt) = n. Now because agent

ones message was honest, that means πt ∈ D(T−{t0}), which means there exists π1 ∈

X(π, Uj), Z(π1, πt) = n−{A,B} such that π1P(πt)π̂.

And we can repeat this step: ∃π2 ∈ X(), Z(π2, πt) = n−{{A,B},{D,C}} such that π2PJ(πt)π
1.

Continue this until we have a πn ∈ X() such that Z(πn, πt) = ∅, then πn = πt and we can

construct a change of the rankings as πnPj(πt)π
n−1Pj(πt)...Pj(πt)π

1Pj(πt)π̂ and conclude

by transitivity that πtPj(πt)π̂. Therefore, Cj(D(T−{t0})) 6= π̂, which thus for an arbitrary

ranking that is not the true ranking means he chooses the true ranking.

Now to show (←).

Suppose π ∈ H(πt, Ui) and Cj(D(T−{t0})) = πt and D(T−{t0}) ⊂ α ∈ β(Uj) from lemma

1. I want to show that X(π, Uj) ⊂ D(T−{t0}) ⊆ α ∈ β(Uj).

From lemma 1, we already know that |α∩H(πt, Uj)| ≤ 1 such that |D(T−{t0})∩H(πt, Uj)| ≤

1. Since we know that Cj(D(T−{t0})) = πt, we know that D(T−{t0}) ∩H(πt, Uj) = πt.

Now to show that ∃α ∈ β(Uj), X(π, Uj) ⊆ α, I will do so by way of contradiction.

Suppose otherwise, then this implies there exists π′ ∈ X(π, Uj) such that for any α which

contains the rest of X(π, Uj)−π′ , π′ /∈ α. Then simply choose e ∈ S such that π ∈ H(π′, Ui)

so that the other juror would still choose π, then Cj(α) 6= π′ a contradiction of how α defined.

Thus, for the same reason, X(π, Uj) ∈ D(T−{t0}), otherwise it would contradict the fact that

Cj(D(T−{t0})) = f(e).

This concludes the proof.
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Lemma 3. Juror 1 reports a message tn such that πt ∈ D(tn|U) iff juror 2 can always

choose a partially-honest ranking: ∀e ∈ S,∀tn ∈ D(t0), C2(D(tn|U2)) ∩ L1(πt, R1(πt)) 6=

∅ ⇐⇒ C2(D(tn|U2)) ∩H(πt, U2) 6= ∅.

Proof. To ensure the first juror is incentive compatible, I require that for ∀tn ∈ D(t0), C2(D(tn|U2))∩

L1(πt, R1(πt)) 6= ∅ when C2(D(tn|U)) 6= πt. I will show this is equivalent to ∀e ∈ S, ∀tn ∈

D(t0), C2(D(tn|U2)) ∩ L1(πt, R1(πt)) 6= ∅ ⇐⇒ C2(D(tn|U2)) ∩H(πt, U2) 6= ∅.

I Will show (→) first.

To show ∀e ∈ S,∀tn ∈ D(t0), C2(D(tn|U2)) ∩ L1(πt, R1(πt)) 6= ∅ → C2(D(tn|U2)) ∩

H(πt, U2) 6= ∅. I will take the contradiction of the contrapositive, such that ∀e ∈ S,∀tn ∈

D(t0), C2(D(tn|U2))∩L1(πt, U2) 6= ∅ is rewritten as C2(D(tn|U2))
c∪L1(πt, R1(πt))

c = ∅. Now

to determine the contradiction:

First: C2(D(tn|U2))
c = ∅ only possible if ∃tn ∈ Π, D(tn|U2) = Π which is only possible if

U2 = N2 since D(tn|U) ⊂ α ∈ β. However, this would imply the last juror is fully impartial,

a contradiction of A1.

Second: L1(πt)
c = ∅ equivalent to saying ∀πt ∈ Π, πtP1(πt)π. However, requiring the

true ranking to be the preference maximizing for the first juror makes it unnecessary to

consult two judges, therefore also a contradiction of A1. Therefore, by way of contradiction,

∀e ∈ S,∀tn ∈ D(t0), C2(D(tn|U2)) ∩ L1(πt, R1(πt)) 6= ∅ → C2(D(tn|U2)) ∩H(πt, U2) 6= ∅.

Now to show (←).

First, we know that by the construction of the sets α ∈ β(U2, V2), that if juror 2 has a

choice of a partially-honest message, he picks it. Since we are looking at the reverse, we can

assume that juror 2’s choice always contains a partially-honest message.

Therefore, let us assume juror 1 chose tn, such that juror 2 chose the ranking π 6= πt, but

π ∈ H(πt, U2). Then, π 6= πt implies π /∈ H(πt, U1). To show that juror 1 prefers the true
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ranking to pi, we just need to show that ∃α ∈ β(U2, V2), such that π, πt ∈ α. First, notice

that Z(π, πt) ⊂ U1, since juror is partially-honest, but we did not get the true ranking. As

a direct result, πt ∈ X(π, U1 ∪ V1) ⊂ α ∈ β(U1, V1), where the true ranking is in the set of

swapped pairs of π.

Now, such a set is always possible because we know juror 2 is being partially-honest. I

will show recursively how. Take a ranking in juror 2’s honest set, but not juror 1’s, call

it π. Now, take the first contestant B ∈ N that is not in the proper order. It can’t be

out of order with something before it, because its the first, so their is a contestant later in

the ranking that is suppose to be before B, let it be A. For all the contestants between

B and A in π there are the impartial pairs. By assumption, all the impartial pairs in U2

are honestly-ordered. Therefore, all the impartial pairs between A and B misordered are in

juror 2’s U2 and thus in his ability to swap. So that fixes A and B. Move on to the next

misordered and it fixes similarly. Since π finite, this process will end.

A simple illustration. Let π = CBAD. Suppose πt = ABCD. then A is the first mis-

ranked contestant. The pairs betweenA and C that are misranked are {A,B}, {A,C}, {B,C},

whereas all of the impartial pairs including contestant D are ranked properly. Since we know

juror 2 was partially-honest, that means all the misordered pairs are in U1. Which means

that juror 1 can swap C and B to get BCAD, then swap A and C to get BACD, and

finally swap A and B to get ABCD. If we had different true ranking, we would get different

ownership of the impartial pairs. Suppose that {A,B}, {A,C} ∈ U1, then the others are in

U2 and are ranked correctly, which means the true ranking must be either ACBD, CABD,

or CBAD, depending on which pairs in U1 are misranked. In sum, if juror 2 is honest, juror

1 could always swap his pairs to be honest.

Proposition 4. Juror 2 is always able to choose a partially-honest message iff his prefer-

ences satisfy A6, and a condition−λ.

Proof. First, check (→).
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Case 1.

BWOC, suppose juror 2 is always able to choose a partially-honest message, but doesn’t

satisfy A6. Let the true ranking be ABC, and {A,C} = U2∪V2. Then if juror 1 is not honest

and choose node tn = CBA, then {CBA} = X(CBA, {A,C}) = α ∈ β(U2, V2), is juror 1’s

only choice and is not a partially-honest message for juror 2. A contradiction4, therefore, we

must have at least that {A,B} ∈ V2, which makes {CBA,CAB,ACB} = X(CBA,U2, V2),

and ACB ∈ H(πt, U2).

Case 2.

BWOC, suppose juror 2 is always able to choose a partially-honest message, satisfies

A6, but doesn’t satisfy condition−λ. Let the true ranking be ABC and juror 2 has the

impartial pairs {A,B}, {B,C} ∈ U2, but V2 = ∅. Then suppose juror 1 was not honest and

chose the node tn = CBA. Then α = X(CBA,U2) = {BCA,CBA,CAB}, all of which

are not in H(πt, U2), since none of the ranking ranks both B before C and A before B.

This is a contradiction of juror 2 always able to pick a partially-honest ranking. However, if

{A,B} ∈ V2, which satisfies condition−λ, then BCA ∈ H(ABC,U2). Therefore, if juror 2

is always able to be partially-honest, he satisfies A6 and condition−λ.

Now for the reverse case: (→)

Suppose juror 2 satisfies A6 and condition−λ. Let juror 1 choose a node tn. Then

D(tn) = α ∈ β(U2, V2) is such that D(tn)∩H(πt, U2) 6= ∅. Let tn = π 6= πt. Then for Z(π, πt),

let {A,B} ∈ U2 be be misranked. By A6 and condition−λ, wlog, {A,X} ∈ V2,∀X ∈ N−B,

which means there exists π′ ∈ X(π, U2, V2) where A and B properly ranked. Since this was

done for an arbitrary pair in U2, it can be done for all of them, such that πr ∈ X(π, U2, V2),

and thus πr ∈ H(πt, U2). Therefore, since this was done for an arbitrary true ranking, and

4Notice, this proves we need more than impartial pairs to get implementation with two jurors.
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6 APPENDIX

choice by juror 1, juror 2 can always choose a partially-honest message.

Lemma 4. If the mechanism subgame implements the true ranking, then ∀t ∈ T−{t0}, there

exists some α ∈ β such that D(t) = α.

Proof.

Proposition 5. Given that D(T−{t0}) ⊆ α ∈ β, juror 2 is transitive over rankings in δ,

and juror 2 satisfies Non-Partial over Alternatives, then Juror 1 will send a partially-honest

message iff condition-λ is met.

Proof.

Theorem 1 (Implementation). The mechanism Γ subgame implements the true ranking

iff D(T−{t0}) ⊆ α ∈ β, juror 2’s preferences are transitive over D(T−{t0}), juror 2 satisfies

Non-Partial over Alternatives, and both jurors satisfy condition-λ.

Proof.
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