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Fast Convergence in Semi-Anonymous Potential Games
Holly Borowski and Jason R. Marden

Abstract—Log-linear learning has been extensively studied in
both the game theoretic and distributed control literature. A
central appeal of log-linear learning for distributed control of
multiagent systems is that this algorithm often guarantees that
the agents’ collective behavior will converge in probability to
the optimal configuration. However, the worst case convergence
time can be prohibitively long, e.g., exponential in the number
of players. Building off the work in [20], in this paper we
formalize a modified log-linear learning algorithm whose worst
case convergence time is roughly linear in the number of players.
We prove this characterization for a class of potential games
where the agents’ utility functions can be expressed as a function
of aggregate behavior within a finite collection of populations.
Lastly, we show that the convergence time remains linear in the
number of players even when the players are permitted to enter
and exit the game over time.

I. INTRODUCTION

Game theoretic learning algorithms have gained traction as
a powerful design tool for distributed control systems [9], [10],
[16], [21], [24]. Here, a static game is repeated over time and
agents are permitted to revise their strategies in response to
their objective functions and information about the behavior
of the other agents. Emergent collective behavior for such re-
vision strategies has been studied extensively in the literature,
e.g., fictitious play [8], [15], [17], regret matching [12], and
log-linear learning [1], [5], [20]. While many results prove that
these learning rules possess desirable asymptotic guarantees,
convergence times associated with these algorithms remain
uncharacterized or have been shown to be prohibitively long
[7], [11], [13], [20]. Characterizing convergence rates is key to
determining whether a game theoretic algorithm is desirable
for system control.

The class of games known as potential games [18] has
received significant research attention with regards to dis-
tributed control. A game is a potential game if each agent’s
local objective function is “aligned” with some system level
objective function. Although potential games may not natu-
rally emerge in many social systems, there are methods for
designing local objective functions in engineering systems so
that (i) the resulting game is a potential game and (ii) the
optimal behavior corresponds to a Nash equilibrium of the
game [3], [16], [22]. Consequently, a surge of research interest
has focused on deriving distributed learning algorithms that
converge to this efficient Nash equilibrium in potential games.
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Log-linear learning is one algorithm that accomplishes this
task [5]. Log-linear learning can be viewed as a perturbed
best reply process where the agents predominantly select
the optimal action given their beliefs regarding the behavior
of other agents; however, the agents will occasionally make
mistakes and select suboptimal actions with a probability
that decays exponentially with respect to the potential payoff
loss. As noise levels tend to zero, the resulting process
has a unique stationary distribution with full support on the
efficient Nash equilibria. Thus, by designing the agents’ local
objective functions appropriately, log-linear learning can be
used to derive distributed control laws with highly desirable
asymptotic guarantees.

Unfortunately, convergence rates associated with log-linear
learning in its nominal form have been shown to be exponen-
tial in the game size [20]. This stems from inherent tension
between desirable asymptotic behavior and convergence rates.
The tension arises from the fact that small noise levels are
necessary for ensuring that the bulk of the mass of the
stationary distribution lies on the efficient Nash equilibria;
however, small noise levels also make it difficult to leave ineffi-
cient Nash equilibria which ultimately degrades the underlying
convergence rates.

Positive results regarding convergence rates of log-linear
learning and its variants are beginning to emerge for specific
problem instantiations [2], [14], [19], [20]. For example, in
[19] the authors study the convergence rates of log-linear
learning for a class of coordination games played over graphs
and demonstrate that the underlying convergence rates are
desirable provided that the interaction graph is sufficiently
sparse. Alternatively, in [20] the authors introduce a variant
of log-linear learning and show that convergence times grow
roughly linearly in the number of players for a special class
of congestion games over parallel networks. Furthermore, the
authors show that the convergence times remain linear in the
number of players even under the situations where players are
permitted to exit and enter the game. Although these results
are encouraging, the restriction to parallel networks is severe
and hinders the applicability of such results to distributed
engineering systems.

In this paper, we focus on identifying whether the positive
results regarding convergence rates highlighted above extend
beyond symmetric congestion games over parallel networks
to games of a more general structure relevant to distributed
engineering systems. Such guarantees are not automatic as
there are many simplifying attributes associated with sym-
metric congestion games over parallel networks that do not
extend to more general network structures, e.g., uniqueness
of equilibria (see Example 2). The main contributions of this
paper are as follows:
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– First, we formally define a subclass of potential games,
termed semi-anonymous potential games, which are parame-
terized by populations of agents where each agent’s objective
function can be evaluated using only information regarding
the agent’s own decision and the aggregate behavior within
each population. Here, agents within a given population have
identical action sets and the same structural form of their
objective functions. For comparison, the framework studied
in [20] could be viewed as a semi-anonymous potential game
with only one population.1

– Second, we introduce a variant of log-learning learning
that is similar in spirit to the algorithm introduced in [20].
In Theorem 1, we prove that the convergence time of this
algorithm grows linearly in the number of agents in the context
of semi-anonymous potential games for a fixed number of
populations. In particular, this analysis explicitly highlights the
potential impact of system-wide heterogeneity, i.e., agents with
different action sets or objective functions, on the underlying
convergence rates. Furthermore, in Example 3 we demonstrate
how a given resource allocation problem can be modeled as a
semi-anonymous potential game.
– Lastly, we study the convergence times associated with
our modified log-linear learning algorithm when the agents
continually enter and exit the game. In Theorem 2, we prove
that the convergence time of this algorithm remains linear in
the number of agents provided that the agents exit and enter
the game at a sufficiently slow rate.

II. SEMI-ANONYMOUS POTENTIAL GAMES

Consider a game with agents N = {1, 2, . . . , n} where each
agent i ∈ N has a finite action set denoted by Ai and a utility
function Ui : A → R where A =

∏
i∈N Ai denotes the set

of joint actions. We will frequently express an action profile
a ∈ A as (ai, a−i) where a−i = (a1, . . . , ai−1, ai+1, . . . , an)
denotes the actions of all agents other than agent i. Similarly,
we let A−i = A1× · · ·×Ai−1×Ai+1× · · ·×An denote the
action sets of all players excluding i. We will denote a game
G by the tuple G = (N, {Ai}i∈N , {Ui}i∈N )2.

Definition 1. A game G is a semi-anonymous potential game
if there exists a partition N = (N1, N2, . . . , Nm) of N such
that the following conditions are satisfied:
(i) For any population Ni ∈ N and agents i, j ∈ Ni we
have Ai = Aj . Accordingly, we say population Ni has action
set Āi = {a1

i , a
2
i , . . . , a

si
i } where si denotes the number of

actions available to population Ni. For simplicity, let p(i) ∈
{1, . . . ,m} denote the index of the population associated with
agent i. Accordingly, we haveAi = Āp(i) for all agents i ∈ N .
(ii) For any population Nj ∈ N , let

Xj =

{(
v1
j

n
,
v2
j

n
, . . . ,

v
sj

j

n

)
≥ 0 :

sj∑
k=1

vkj = |Nj |

}
(1)

represent all possible aggregate action assignments for the
agents within population Nj . The utility function of any agent

1The framework of semi-anonymous potential games can be viewed as the
cross between a potential game and a finite population game [6].

2For brevity, we refer to G by G = (N, {Ai}, {Ui}).

i ∈ Nj can be expressed as a lower-dimensional function of
the form Ūj : Āj×X → R where X = X1×· · ·×Xm. More
specifically, the utility associated with agent i for an action
profile a ∈ A is of the form

Ui(a) = Ūj(a|X)

where

a|X = (a|X1 , a|X2 , . . . , a|Xm) ∈ X, (2)

a|Xj
=

1
n

{∣∣{p ∈ Nj : ap = ãkj }
∣∣}
k=1,...,sj

(3)

the operator a|X captures each population’s aggregate behavior
in the action profile a.
(iii) There exists a potential function φ : X → R such that for
any a ∈ A and agent i ∈ N with action a′i ∈ Ai,

Ui(a)− Ui(a′i, a−i) = φ(a|X)− φ((a′i, a−i)|X). (4)

If each agent i ∈ N is alone in its respective partition, the
definition of semi-anonymous potential games is equivalent to
that of exact potential games in [18].

Example 1 (Congestion Games [4]). Consider a conges-
tion game with players N = {1, . . . , n}, roads R =
{r1, r2, . . . , rk}, and each road r ∈ R is associated with
a congestion function Cr : Z+ → R, where Cr(k) is the
congestion on road r with k total users. The action set of
each player i ∈ N is of the form Ai ⊆ 2R, e.g., all paths
that connect the player’s source and destination. The utility
function of each player i ∈ N is of the form

Ui(ai, a−i) = −
∑
r∈ai

Cr(|a|r),

where |a|r = |{j ∈ N : r ∈ aj}|. It is well known that this
game is a potential game with potential function φ : A → R

φ(a) = −
∑
r∈R

|a|r∑
k=1

Cr(k). (5)

When the players’ action sets are symmetric, i.e., Ai = Aj
for all agents i, j ∈ N , then a congestion game can be viewed
as a semi-anonymous potential games with a single population.
Such games, also referred to as anonymous potential games,
are the central focus of [20]. When the players’ action sets
are asymmetric, i.e., Ai 6= Aj for all agents i, j ∈ N , then a
congestion game can be viewed as a semi-anonymous potential
where populations correspond to agents with identical path
choices. It is important to highlight that the results in [20] are
not proven to hold for such settings.

The following example sheds some light into the issues that
arise when transitioning from a single population to multiple
populations.

Example 2. Consider a resource allocation game with n
players and three resources R = {r1, r2, r3}. Suppose n is
even and players are divided evenly into populations N1 and
N2, where players in N1 may select exactly one resource from
{r1, r2}, and players in N2 may select exactly one resource
from {r2, r3}. The welfare garnered at each resource depends
only on how many players have selected that resource, i.e., for
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any k ∈ {0, 1, . . . , n}, the resource-specific welfare functions
are

Wr1(k) = 2k,

Wr2(k) = min
{

3k,
3
2
n

}
,

Wr3(k) = k.

and the total system welfare is
∑
r∈RWr(|a|r). Lastly, define

each agent’s utility function as their marginal contribution to
the system-level welfare, i.e., for any agent i and action profile
a

Ui(a) = W (a)−W (∅, a−i) (6)

where ∅ indicates that player i did not select a resource. Note
that the marginal contribution utility in (6) always ensures that
the resulting game is a potential game with potential function
W [23]. If the agents had symmetric action sets, i.e., Ai =
{r1, r2, r3} for all agents i ∈ N , then this game has exactly
one Nash equilibrium with n/2 players at resource r1 and
n/2 players at resource r2. Furthermore, this Nash equilibrium
corresponds to the optimal allocation. One the other hand,
for the two population scenario depicted above, there are two
Nash equilibria: (i) an efficient Nash equilibrium in which all
players from N1 select resource r1 and all players from N2

select resource r2, and (ii) an inefficient Nash equilibrium in
which all players from N1 select resource r2 and all players
from N2 select resource r3. Employing distributed algorithms
that effectively deal with multiplicities of equilibria invariably
comes at the expense of the underlying convergence rates.
Hence, transitioning for single population to multi-population
scenarios can induce significant challenges associated with the
underlying algorithm design.

III. MAIN RESULTS

In this section, we present the main results of this paper.
We begin by posing a variant of the well-studied algorithm
log-linear learning [5] that is similar in spirit to the algorithm
presented for single populations in [20]. Next, in Theorem 1
we show that for any semi-anonymous potential game our
algorithm ensures that (i) the asymptotic behavior is close
to the potential function maximizer and (ii) the mixing time
grows roughly linearly in the number of agents. Lastly, in
Theorem 2 we show that these guarantees continue to hold
even in situations where agents are permitted to enter and exit
the game. The significance of attaining fast convergence to
the potential function maximizer in semi-anonymous potential
games stems from the fact that a system-designer can often
design agent objective functions that ensure that the potential
function maximizers correspond to optimal system behavior
as shown in Example 2.

A. Modified Log-Linear Learning

The following modification of the log-linear learning algo-
rithm is an extension of the algorithm in [20]. Let a(t) ∈ A be
the action profile at time t ≥ 0. Each agent i ∈ N is associated
with a Poisson clock of rate αn/zi(t), where

zi(t) = |{k ∈ Np(i) : ak(t) = ai(t)}|,

where α > 0 is a design parameter. Hence, a player’s update
rate is higher if he is not using a common action within his
population. If player i’s clock ticks, he chooses action ai ∈
Āp(i) probabilistically according to

Prob[ai(t+) = ai] =
eβU

t
i (ai,a−i(t))∑

a′i∈At
i
eβU

t
i (ai,a−i(t))

=
eβφ(a(t)|X )∑

a′i∈At
i
eβφ((a′i,a−i(t))|X )

, (7)

where ai(t+) indicates the agent’s revised action and β
determines how likely an agent is to choose a high payoff
action; as β → ∞, payoff maximizing actions are chosen,
and as β → 0, agents choose from their action sets with
uniform probability. The new joint action is of the form
a(t+) = (ai(t+), a−i(t)) ∈ A, where t ∈ R+ is the time
immediately before agent i’s update occurs.

The agents’ update rates are the only difference between this
algorithm and the standard log-linear learning continuous time
implementation or the variant posed in [20]. In the standard
implementation, agents have a fixed rate 1 Poisson clock,
yielding n expected updates per second over periods when
n is fixed. The expected number of updates per second for
modified log-linear learning is lower bounded by mαn and
upper bounded (|Ā1|+ · · ·+ |Ām|)αn. To achieve an expected
update rate at least as fast as the standard log-linear learning
update rate, set α ≥ 1/m. For any α > 0, these dynamics
define an ergodic, reversible Markov process.

B. Semi-Anonymous Potential Games

The following theorem extends the results of [20] to semi-
anonymous potential games.

Theorem 1. Let G = (N, {Ai}, {Ui}) be a stationary semi-
anonymous potential game with aggregate state space X and
potential function φ : X → [0, 1]. Suppose agents play
according to the modified log-linear learning algorithm, and
the following conditions are met:
(i) The potential function is λ-Lipschitz, i.e., there exists λ ≥ 0
such that

|φ(x)− φ(y)| ≤ λ‖x− y‖1, ∀x, y ∈ X.

(ii) The number of players within each population is suffi-
ciently large:

m∑
i=1

|Ni|2 ≥
m∑
i=1

|Āi| −m.

Then for any fixed ε ∈ (0, 1), if the the parameter β is
sufficiently large, i.e.,

β ≥ max
{

4m(s− 1)
ε

log 2ms,
4m(s− 1)

ε
log

8msλ
ε

}
.

(8)
then

E[φ(a(t)|X)] ≥ max
x∈X

φ(x)− ε (9)
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for all

t ≥ 22msc1e
3βm(m(s− 1))!2n

4α
× 

log log(n+ 1)ms−m + log β + 2 log
1

ε

!
where c1 is a constant that depends only on s.

This theorem explicitly highlights the role of system-wide
heterogeneity, i.e., m > 1 distinct populations, on the under-
lying mixing times of the process. For the special case when
m = 1, this theorem recovers the results of [20]. Observe that
for a fixed number of populations, the mixing time grows as
n log log n.

C. Time Varying Semi-Anonymous Potential Games

In this section, we expand the framework of semi-
anonymous potential games to model the scenario where
agents enter and exit the game over time. To that end, consider
a trajectory of semi-anonymous potential games,

G = {Gt}t≥0 = {N t, {Ati}i∈Nt , {U ti }i∈Nt}t≥0

where, for all t ∈ R+, the game Gt is a semi-anonymous
potential game, and the set of active players, N t, is a
finite subset of N. We refer to each agent i ∈ N \ N t

as inactive and the agent is associated with the action set
Ati = ∅ at time t. We define X = ∪t∈R+Xt, where Xt

is the finite aggregate state space corresponding to game
Gt. At time t, we denote the partitioning of players per
Definition 1 by N t = (N t

1, N
t
2, . . . , N

t
m). Further, we require

that there is a fixed number of populations, m, for all time,
and that the j-th population’s action set is constant, i.e.,
∀j ∈ {1, 2, . . . ,m}, ∀t1, t2 ∈ R+, Āt1j = Āt2j . We write
the fixed action set for players in the j-th population as Āj .

Theorem 2. Let G be a trajectory of semi-anonymous po-
tential games with state space X and time-invariant potential
function φ : X → [0, 1]. Suppose agents play according to the
modified log-linear learning algorithm and Conditions (i) - (ii)
of Theorem 1 are satisfied. Then for any fixed ε ∈ (0, 1), if
the the parameter β satisfies (8) and the following additional
conditions are met:
(iii) For all t ∈ R+, the number of players satisfies:

|N t| ≥ max
{

4αme−3β

22msc1m2(m(s− 1))!2
, 2βλ+ 1

}
, (10)

(iv) There exists k > 0 such that

|N t
i | ≥ |N t| / k, ∀i ∈ {1, 2, . . . ,m}, ∀t ∈ R+. (11)

(v) There exists a constant

Λ ≥ 8c0ε−2e3β(6βλ+ eβk(s− 1)) (12)

such that, for any t1, t2 with |t1 − t2| ≤ Λ,∣∣{i ∈ N t1 ∪N t2 : At1i 6= A
t1
i

}∣∣ ≤ 1, (13)

where c0 and c1 do not depend on the number of players. Ac-
cordingly, the constant Λ does not depend on n. Furthermore,
at most one agent may become active or inactive in a time

interval of length Λ, and agents may not switch populations
over this interval, i.e., if i ∈ N t1 ∩N t2 , then i ∈ N t

j for some
j ∈ {1, . . . ,m} and for all time t ∈ [t1, t2].
Then, we have

E[φ(a(t)|X)] ≥ max
x∈X(t)

φ(x)− ε (14)

for all

t ≥ |N 0|e3βc0
(

(ms−m)! log(n(0) + 2) + β

ε2
− 2
)
. (15)

Theorem 2 proves that, if player entry and exit rates are
sufficiently slow, i.e., Condition (v), then the convergence
time of our algorithm is roughly linear in the number of
players. However, the established bound grows quickly with
the number of populations. Note that selection of parameter β
impacts convergence time, as reflected in (15): larger β tends
to slow convergence. However, the minimum β necessary to
achieve an expected potential near the maximum, as in (14),
is independent of the number of players, as given in (8).

IV. ILLUSTRATIVE EXAMPLES

In the following examples we consider resource allocation
games with a similar structure to Example 2. Unless otherwise
specified, we consider games with n players distributed evenly
into populations N1 and N2. There are three resources, R =
{r1, r2, r3}. Players in population N1 may choose a single
resource from {r1, r2} and players in population N2 may
choose a single resource from {r2, r3}. We represent a state
by x = (x1, x2, x3, x4), where nx1 and nx2 are the numbers
of players from N1 choosing resources r1 and r2 respectively.
Likewise, nx3 and nx4 are the numbers of players from N2

choosing resources r2 and r3 respectively. Welfare functions
for each resource depend only on the number of players
choosing that resource, and are specified in each example. The
total system welfare for a given state is the sum of the welfare
garnered at each resource, i.e.,

W (x) = Wr1(nx1) +Wr2(n(x2 + x3)) +Wr3(nx4).

Player utilities are their marginal contribution to the total
welfare, W , as in (6).

The first example supports the result of Theorem 1 that
convergence time for modified log-linear learning grows as
Θ(n log log n) via simulation of the algorithm.

Example 3. For x = (x1, x2, x3, x4) ∈ X̄ , welfare functions
for resources in R are

Wr1(x) =
ex1 − 1
e2

, Wr2(x) =
e2x2+2x3 − 1

e2
,

Wr3(x) =
e2.5x4 − 1

e2
.

The global welfare optimizing allocation is ai = r2 for all
i ∈ N , i.e., xopt = (0, 1/2, 1/2, 0).

We simulated our algorithm with rate α = 1 / σ =
1 / 4 starting from an inefficient Nash equilibrium xne =
(1/2, 0, 0, 1/2). Using Theorem 1, we examine the time it
takes for the expected welfare with respect to the empirical
frequency of joint actions to come within 90% of its maximum.
Here, β is set appropriately for each value of n to ensure the
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Fig. 1: Number of players vs. average time to reach 90% of
maximum welfare

expected welfare with respect to the stationary distribution is
90% of maximum. The empirical frequency for a state x ∈ X̄
is

νx(t) =
1

t

tX
τ=1

I{x(τ) = x}.

The indicator function I returns 1 if the state x(τ) is x and
0 otherwise; νx(t) is the percentage of time from τ = 1 to
τ = t that the system has been in state x.

Eν(t)W (x) ≥ .9max
x∈X̄

W (x)

per Theorem 1. Simulation results are shown in Figure 1 for
an average over 2000 simulations with n ranging from 4 to
100. Average times until the expected welfare comes within
90% of its maximum are bounded below by 2n log log n for
all n and bounded above by 4n log log n when n > 30. These
results support Theorem 1.

Example 4. In this example we compare convergence times of
our log-linear learning variant, the variant of [20], and standard
log-linear learning. We use the probability transition kernels
of each algorithm to compute the expected welfare over time.

Starting with the basic setup of the previous example,
we add a third population, N3. Agents in population N3

contribute nothing to the system welfare, and may only choose
resource r2. Because the actions of agents in population N3

are fixed, states may be represented in the same way as in
the previous example, simply reflecting the aggregate actions
of players in populations N1 and N2. The three resources
have the following submodular welfare functions for each
x = (x1, x2, x3, x4) ∈ X̄ :

Wr1(x) = 2nx1,

Wr2(x) = min
{

3(nx2 + nx3),
3
2

(nx1 + nx2)
}
,

Wr3(x) = nx4.

The welfare maximizing state is xopt = (1/2, 0, 1/2, 0), and
the state xne = (0, 1/2, 0, 1/2) represents an inefficient Nash
equilibrium, which we set as the initial configuration. Suppose
we wish to achieve an expected total welfare within 98% of
the maximum.

We fix the number of players in populations N1 and N2 at
n1 = n2 = 7, and vary the number of players in population
n3 to examine the sensitivity of each algorithm’s convergence
rate to the size of N3. We use the notation x5 = n3/n.

Recall that in both our log linear learning variant and in the
variant introduced in [20], an updating player chooses its new
action according to (7); the algorithms differ only in agents’
update rates. In our algorithm, an agent i in population Nj’s
update rate is αn/ zji (t), where zji (t) is the number of agents
from population j selecting the same action as agent i at time
t. The discrete time kernel of this process can be described
using the following update rule:

• Select a population Nj ∈ {N1, N2, N3} uniformly at
random.

• Select a resource r ∈ Āj uniformly at random.
• Select a player uniformly at random from population Nj

who is currently choosing resource r. This player updates
its action according to (7).

Hence, in this example, increasing the size of population N3

does not change the probability that a player from population
N1 or N2 will update next.

In the algorithm of [20], agent i’s update rate is αn/ z̃i(t),
where z̃i(t) is the total number of players selecting the same
action as agent i. The discrete time kernel of this process, as
applied to our multiple population setting, can be described
using the following update rule [20]:

• Select a resource r ∈ {r1, r2, r3} uniformly at random.
• Select a player uniformly at random who is currently

choosing resource r. This player updates its action ac-
cording to (7).

In general, the two algorithms differ when at least two popu-
lations have overlapping action sets. Here, increasing the size
of population N3 significantly decreases the probability that
players from N1 or N2 who are currently choosing resource
r2 will be selected for update. This sensitivity to the size of
N3 is even more significant for standard log-linear learning,
since all players are equally likely to be selected for update
in the discrete time version.

We begin by selecting β so that, in the limit, the expected
welfare is within 98% of its maximum. Then we examine the
number of updates necessary to come within ε = 0.05 of this
expected welfare. Often the global update rate is set to be n
per second; in this case, convergence times are a factor of n
smaller than the number of updates to convergence.

For both log-linear learning and our modification, the re-
quired β to reach an expected welfare within 98% of the
maximum welfare is independent of n3 and can be computed
using the expressions

πLLL
x ∝ eβW (x)

(
n1

nx1, nx2

)(
n2

nx3, nx4

)
(16)

πMLLL
x ∝ eβW (x) (17)

These stationary distributions can be verified using reversibil-
ity arguments with the standard and modified log-linear learn-
ing probability transition kernels. Unlike standard log-linear
learning and our variant, the required β to reach an expected
welfare of 98% of maximum for the log-linear learning
variant of [20] does change with n3. We estimate stationary
distribution by raising the probability transition matrix for their
log-linear learning variant to a sufficiently high power, then
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use this to determine the β necessary to reach the desired
expected welfare.

Table 4 shows the required β values for each algorithm to
yield the desired expected welfare with respect to its stationary
distribution. The table also shows the number of updates until
the expected total welfare has come within ε = 0.05 of this
goal value. The expected value of the welfare after a given
number of updates, k, is determined by simply raising the
probability transition matrix to the kth power.

Our algorithm converges to the desired expected welfare
in fewer updates than both alternate algorithms for all tested
values of n3; in fact, the number of updates required does not
vary with n3. The ratio between the convergence times of each
of the two alternate algorithms and our algorithm approaches
0 as the number of players grow, showing that convergence
rates for log linear learning and the variant from [20] are both
more sensitive to the number of players in population 3 than
our algorithm.

In this example, a high update rate for players in popu-
lation N3 was undesirable because they contribute no value.
This example does not directly represent a practical scenario:
the system could simply be modeled without the agents in
population 3 to avoid convergence rate impacts illustrated
here. However, mild variations to this example are expected to
display similar behavior. For example, consider a scenario in
which a relatively large population may choose from multiple
resources, but contributes relatively little welfare at each.

V. CONCLUSION

We have extended the results of [20] to define dynamics for
a class of semi-anonymous limited population potential games
whose player utility functions may be written as functions of
aggregate behavior within each population. For games with a
fixed number of actions and a fixed number of populations, the
time it takes to come arbitrarily close to a potential function
maximizer is linear in the number of players. This convergence
time remains linear in the initial number of players even when
players are permitted to enter and exit the game, provided they
do so at a sufficiently slow rate.
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Algorithm n3 β Expected welfare # updates to converge

Standard Log Linear Learning 1 3.77 98% 9430
5 3.77 98% 11947

50 3.77 98% 40250
500 3.77 98% 323277

Log Linear Learning Variant from [20] 1 2.39 98% 1325
5 2.44 98% 1589

50 2.83 98% 3342
500 3.72 98% 15550

Our Log Linear Learning Variant 1 1.28 98% 743
5 1.28 98% 743

50 1.28 98% 743
500 1.28 98% 743

TABLE I: This table shows the required values of β for each algorithm to guarantee an expected total welfare within 98%
of the maximum with respect to the stationary distribution, and how this value varies with the number of players for each
algorithm. Note that for standard log-linear learning and for our variant, the β required to reach the desired expected welfare
is constant, whereas is grows with n for the log-linear learning variant of [20]. The final column also shows the number of
updates necessary to ensure the emergent behavior which guarantees this near-maximum welfare has been achieved. Note that
this value does not increase with n for our algorithm, but does increase with n for the other two. Update rates are a design
parameter in the log-linear learning algorithm; by selecting a global update rate of n per second, the convergence times would
be a factor of n smaller than the number of updates shown.
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